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Abstract 
Motivation: Antibodies are a type of important biomolecules in the humoral immunity system, which  
can bind tightly to potential antigens with high affinity and specificity. An accurate identification of the 
paratope, the binding sites with antigens, is crucial for antibody mechanistic research and design. Alt-
hough many methods have been developed for paratope prediction, further improvement of their ac-
curacy is necessary. 
Results: In this study, we concatenated the sequences of Complementarity Determining Regions 
(CDRs) within a single antibody to better capture nonlocal interactions between different CDRs and 
loop type-specific features for improving paratope prediction. We further integrated BiLSTM and trans-
former networks to gain the dependencies among the residues within the concatenated CDR se-
quences and to increase the interpretability of the model. The new method called DeepANIS (Antibody 
Interacting Site prediction) outperforms other antibody paratope prediction methods compared. 
Availability: The DeepANIS method is freely available as a webserver at https://biomed.nscc-
gz.cn:9094/apps/DeepANIS and for download at https://github.com/HideInDust/DeepANIS 
Contact: yangyd25@mail.sysu.edu.cn or zhouyq@szbl.ac.cn 
Supplementary information: Supplementary data are available at Bioinformatics online. 

 

1 Introduction  
Antibodies, one of the most important biomolecules in the humoral im-
munity system, are responsible for neutralizing undesirable foreign mole-
cules from pathogens such as bacteria and viruses (Frank, 2002). Such 
neutralization is achieved through their tight and specific binding with an-
tigens followed by subsequent destruction mediated by the immune sys-
tem. Typical antibodies are Y-shaped proteins consisting of two pairs of 
heavy and light chains linked by disulfide bridges. These chains are made 
of constant domains (C domains) that determine the functional properties, 

and variable domains (V domains) that are responsible for antigen binding 
(Moser and Leo, 2010). Each variable domain is composed of three hy-
pervariable regions known as Complementarity Determining Regions 
(CDRs) and four relatively constant Framework Regions (FRs) (Schroeder 
Jr and Cavacini, 2010). The whole antibody contains six CDRs located 
within its binding loops, among which three are on the heavy chain (H1, 
H2, H3) and three are on the light chain (L1, L2, L3). CDRs typically 
contained antigen-binding residues (paratope). 

Currently, the biotechnology and biopharmaceutical industries increas-
ingly take advantage of the binding malleability of antibodies because the 
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variability of CDR sequences enables antibodies to form complexes with 
almost any antigen (Ecker, et al., 2015; Reichert, 2017). With antibodies 
being the most promising class of biopharmaceuticals, their optimizations 
are often required for specific properties such as binding affinity, expres-
sion levels, stability, and solubility (Chiu and Gilliland, 2016). Such func-
tional optimization requires the knowledge of antibody paratopes. Focus-
ing on paratopes is important because less than one half of CDRs are in-
volved in antigen binding (Esmaielbeiki, et al., 2016). Accurate identifi-
cation of a paratope allows the separation of the binding from non-binding 
residues, so that further optimization can be better focused on the region 
of interest. Although experimental techniques can provide the gold stand-
ard for binding mode identification, they are time-consuming and labour-
intensive. Thus, it is necessary to make computational prediction of para-
tope to complement experimental studies. Early studies on paratope pre-
diction are mainly based on hand-coded physical models, requiring vast 
amounts of expert experience (Duhovny, et al., 2002; Krawczyk, et al., 
2013). These methods require the structural and sequence information of 
antibody and antigen, limiting their usage in the real-world application of 
paratope identification. 

More recently, deep learning techniques have been highly successful in 
many research areas where other traditional approaches appeared to have 
reached their limits. Examples are proteins structure prediction (Senior, et 
al., 2020), virtual screening (Zheng, et al., 2020), and antibody paratope 
prediction (Deac, et al., 2019; Liberis, et al., 2018). One advantage of deep 
learning is that it can perform automatic feature extraction directly from 
the original input data, thereby eliminating the need for domain experts to 
manually design features (Goodfellow, et al., 2016). In a previous study, 
the bidirectional long short-term memory neural networks (BiLSTM) 
(Hochreiter and Schmidhuber, 1997), which is an improvement of recur-
rent neural networks (RNNs) (Schuster and Paliwal, 1997), showed state-
of-the-art results in many difficult sequencial problems. It can better cap-
ture the dependencies in sequences without standard directions. The trans-
former architecture (Vaswani, et al., 2017) further removes traditional re-
current units with significant advantages in machine translation. It em-
ploys the self-attention mechanism to extract both local and global fea-
tures of sentences and increase the interpretability.  

Here, we introduced a deep learning-based method for making se-
quence-based prediction of ANtibody Interacting Site (DeepANIS). Be-
cause it is difficult and expensive to obtain experimental structure of anti-
bodies, only sequences and incurred properties are available in the early 
stages of development such as antibody discovery and antibody design, 
As a result, a sequence-based method is more useful in real-world appli-
cations. Unlike previous methods, we utilized CDR sequences only and 
concatenate those CDRs within a single antibody. Such concatenation al-
lows our model to capture the interaction between different CDRs and 
loop type-specific features. In addition, the architecture of DeepANIS 
builds upon the bidirectional LSTM and transformer encoder, which can 
gain the dependencies among arbitrary residues within a concatenated 
CDR sequence and increase the interpretability of our model. DeepANIS 
was shown to outperform Parapred and ProABC (Liberis, et al., 2018; 
Olimpieri, et al., 2013). Parapred is a deep-learning method using convo-
lutional and recurrent neural networks with CDRs inputted separately to 
predict their antibody paratope. ProABC is a random-forest-based method 
that employs the whole antibody sequence (no need for 3D structure) and 
extra features such as antigen volume and germline family.  

2 Methods 

2.1 Datasets 
To train and test our models, we utilized a subset obtained from the Struc-
tural Antibody Database (SAbDab) (Dunbar, et al., 2014), which contains 
antibody and antigen crystal structures, to train and test our models. The 
subset was selected according to the same rules as Parapred (Liberis et al., 
2018): (1) Antibodies should have variable domains of the heavy (VH) 
and light (VL) chains; (2) The structure resolution is better than 3Å; (3) 
No two antibody sequences have >95% sequence identity; (4) Each anti-
body has at least five residues in contact with the antigen bound to it. The 
final dataset contains 277 antibody-antigen bound complexes. Residues 
with missing electron density in the antibody sequence were assumed to 
be non-binding. 

2.2 Data preprocessing and feature encoding 
Our sequence-based model addresses a paratope classification task. The 
paratope is contained within the CDRs of the antibody or two extra resi-
dues at both ends of CDRs (Krawczyk, et al., 2013; Kunik, et al., 2012). 
To construct the input, we identify the CDR sequence of each antibody 
and the additional four extra residues using the Chothia encoding format 
(Al-Lazikani, et al., 1997). These extended CDR sequences are encoded 
as vectors prior to being processed by our model. We use an alphabet 
named 𝒟𝒟 to denote 21 types of residues, which contains 20 letters for 20 
canonical residues and a letter ‘X’ for non-standard residues. Then a CDR 
sequence can be defined as a sequence of residues 𝑆𝑆𝑐𝑐𝑐𝑐𝑐𝑐 = (𝑝𝑝1,𝑝𝑝2, … , 𝑝𝑝𝑛𝑛) 
where 𝑝𝑝𝑖𝑖 ∈ 𝒟𝒟 stands for the residue at position i of the CDR sequence, and 
𝑛𝑛 represents the length of the CDR sequence (CDR sequences usually 
have different lengths). 𝑆𝑆𝑐𝑐𝑐𝑐𝑐𝑐 is encoded as follows:  
Embedding: We didn’t use one-hot encoding of residues since the sparse 
encoding of residues cannot be processed by a transformer encoder to cal-
culate the attention matrix. Instead, we encoded each residue type into an 
integer (1-21) for its residue type and input the sequence vector to the em-
bedding network (see below the Embedding Layer part) for embedding 
representations. 
Evolutionary information: We employed the PSSM (position-specific 
scoring matrix) and the HMM matrix. Specifically, the HMM profile was 
generated by HHblits v3.0.3 in aligning the UniClust30 profile HMM da-
tabase with default parameters (Mirdita, et al., 2017). PSSM was gener-
ated by PSI-BLAST v2.7.1 (Altschul, et al., 1997) using the UniRef90 
sequence database after three iterations. Each residue contains 50 features 
with 20 from PSSM and 30 from HMM. 
Predicted Structural properties: We obtained the predicted one-dimen-
sional structural features from SPIDER3 (Heffernan, et al., 2017), which 
is one of the most accurate predictors. The feature group consists of 14 
features: (1) three probability values respectively for three secondary 
structure states, (2) Accessible Surface Area (ASA), (3) eight values for 
the sine/cosine values of backbone torsion angles (phi, psi, theta, tau), (4) 
two values for Half-Sphere Exposures based on the C_α atom (HSE-up 
and HSE-down).  

2.3 CDR concatenating 
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There are six CDRs located within binding loops of an antibody, three on 
the heavy chain (H1,H2,H3) and three on the light chain (L1,L2,L3). Dif-
ferent from previous studies where CDRs were individually processed (Li-
beris, et al., 2018), we concatenate 6 CDRs from one antibody into a se-
quence using five tags to capture the interaction between different CDRs 
(Fig S1). More specifically, for each antibody, we obtain a sequence 𝒞𝒞 =
(𝐻𝐻1𝑈𝑈𝐻𝐻2𝑈𝑈𝐻𝐻3𝑈𝑈𝑈𝑈1𝑈𝑈𝑈𝑈2𝑈𝑈𝑈𝑈3), in which 𝐻𝐻1−3, 𝑈𝑈1−3 denotes the six CDR se-
quences from different chains (heavy chain and light chain) and the letter 
‘U’ denotes the tag between different CDR sequences. Finally, we obtain 
protein sequences from 277 antibodies with different lengths, and padded 
them to the longest length in batches to speed up the training process. It is 
worth noting that the padding is not necessary during evaluation and pre-
diction. 

2.4 Model architecture 
Our sequence-based neural network model consists of three components 
(Fig. 1). The first component is an embedding layer, which obtains train-
able embedding representations of the input concatenated CDR sequences. 
The second component is the bidirectional LSTM and transformer encoder, 
which can capture the dependency between the residues within a concate-
nated CDR sequence. Finally, the output vector of the second component 
employs full connection layers to yield the prediction results of this node 
classification task. 

2.4.1 Embedding Layer 

For each concatenated CDR sequence 𝒞𝒞 = (𝐻𝐻1𝑈𝑈𝐻𝐻2𝑈𝑈𝐻𝐻3𝑈𝑈𝑈𝑈1𝑈𝑈𝑈𝑈2𝑈𝑈𝑈𝑈3), we 
generate a L×1 vector 𝒱𝒱 in which each element is an integer representing 
the residue type. The embedding layer initialize a 22×𝑑𝑑 vector 𝑊𝑊, which 
contains 22 rows (0 for padding and 1-21 for residue type). Then embed-
ding layer process 𝒱𝒱 to a L×22 vector 𝒱𝒱′, in which each row is one hot 
encoding of the corresponding residue denoted by an integer. At last, the 
embedding layer computes trainable embedding representations of 𝒞𝒞, i.e., 

 𝐸𝐸𝐸𝐸𝐸𝐸 = 𝒱𝒱′𝑊𝑊 (1) 

2.4.2 Bidirectional LSTM 

We utilize the Long Short-Term Memory (LSTM) to learn long-range de-
pendencies in concatenated CDR sequences. LSTM cell is a special RNN 

(recurrent neural network) cell, which consists of the following computa-
tion steps:  
The first step in the LSTM cell is to determine what information needs to 
be discarded, which is implemented with a forget gate. The forget gate 
looks at ℎ𝑡𝑡−1 (previous output) and 𝑥𝑥𝑡𝑡  (input of current time step), and 
uses a sigmoid function 𝜎𝜎 to output a 0-1 number 𝑓𝑓𝑡𝑡, i.e., 

 𝑓𝑓𝑡𝑡 = 𝜎𝜎(𝑊𝑊𝑓𝑓[ℎ𝑡𝑡−1,𝑥𝑥𝑡𝑡] + 𝐸𝐸𝑓𝑓) (2) 

, where 𝑊𝑊 and 𝐸𝐸 are trainable parameters of our model, [ℎ𝑡𝑡−1,𝑥𝑥𝑡𝑡] means 
to concatenate ℎ𝑡𝑡−1 and 𝑥𝑥𝑡𝑡. 
The next step in the LSTM cell is to determine what information needs to 
be stored, which is implemented with an input gate. The input gate uses a 
sigmoid function 𝜎𝜎 to decide what values we will update (𝑖𝑖𝑡𝑡) and a func-
tion 𝑡𝑡𝑡𝑡𝑛𝑛ℎ to create a candidate value 𝑗𝑗𝑡𝑡 that will be added to the state, i.e., 

 𝑖𝑖𝑡𝑡 = 𝜎𝜎(𝑊𝑊𝑖𝑖[ℎ𝑡𝑡−1,𝑥𝑥𝑡𝑡] + 𝐸𝐸𝑖𝑖) (3) 

 𝑗𝑗𝑡𝑡 = 𝑡𝑡𝑡𝑡𝑛𝑛ℎ(𝑊𝑊𝑗𝑗[ℎ𝑡𝑡−1,𝑥𝑥𝑡𝑡] + 𝐸𝐸𝑗𝑗) (4) 

Then the LSTM cell updates the old cell state 𝐶𝐶𝑡𝑡−1 into the new cell state 
𝐶𝐶𝑡𝑡 using 𝑓𝑓𝑡𝑡 , 𝑖𝑖𝑡𝑡, 𝑗𝑗𝑡𝑡, i.e., 

 𝐶𝐶𝑡𝑡 = 𝑓𝑓𝑡𝑡𝐶𝐶𝑡𝑡−1 + 𝑖𝑖𝑡𝑡𝑗𝑗𝑡𝑡  (5) 

Finally, the LSTM cell uses a sigmoid function to decide what part of 𝐶𝐶𝑡𝑡 
will be output (𝑂𝑂𝑡𝑡), then it puts 𝐶𝐶𝑡𝑡 through function 𝑡𝑡𝑡𝑡𝑛𝑛ℎ weighted by 𝑂𝑂𝑡𝑡 
to calculate the final output ℎ𝑡𝑡 , i.e,  

 𝑂𝑂𝑡𝑡 = 𝜎𝜎(𝑊𝑊𝑂𝑂[ℎ𝑡𝑡−1,𝑥𝑥𝑡𝑡] + 𝐸𝐸𝑂𝑂) (6) 

 ℎ𝑡𝑡 = 𝑂𝑂𝑡𝑡tanh (𝐶𝐶𝑡𝑡) (7) 

Because the concatenated CDR sequences do not have a canonical direc-
tion, a bidirectional LSTM (BiLSTM) is utilized to process them: 

 →
ℎ𝑡𝑡 = →

𝑈𝑈𝑆𝑆𝐿𝐿𝐿𝐿(𝑥𝑥𝑡𝑡,
→
ℎ𝑡𝑡−1) (8) 

 ←
ℎ𝑡𝑡 = ←

𝑈𝑈𝑆𝑆𝐿𝐿𝐿𝐿(𝑥𝑥𝑡𝑡,
←
ℎ𝑡𝑡+1) (9) 

, where 
→
ℎ𝑡𝑡 and 

←
ℎ𝑡𝑡 are concatenated as the output of time step t, which is a 

more information-enriched vector than the input 𝑥𝑥𝑡𝑡: 

Fig. 1. The architecture of our neural network model. For each sample, the feature matrix (F) consists of embedding features (C) and other additional features 
(E) is processed by BiLSTM and transformer encoder. Then the output of the second component (T) and (B) employs the full connection layer to make the final 
prediction. 
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ℎ𝑡𝑡 = [

→
ℎ𝑡𝑡 ,

←
ℎ𝑡𝑡] (10) 

 𝐻𝐻 = [ℎ0,ℎ1, … ℎ𝐿𝐿] (11) 

We denote the output of BiLSTM layer as H for simplicity. If the hidden 
unit number of each BiLSTM cell is 𝑢𝑢, the shape of 𝐻𝐻 will be 𝑈𝑈-by-2𝑢𝑢. 

2.4.3 Transformer Encoder 

To gain more dependency between the residues within a concatenated 
CDR sequence and increase the interpretability of our model, we apply a 
transformer encoder in our model. The architecture of the transformer en-
coder is shown in Fig.2. Several identical layers are stacked in the encod-
ing phase. Each layer is composed of a multi-head self-attention sublayer 
and a feedforward network (FFN) sublayer. The two sub-layers are inte-
grated using the residual connection and layer normalization. 
   A multi-head self-attention unit contains several attention layers that can 
execute the attention mechanism in parallel, and then concatenate these 
layers and project them to the final values. The input of the scaled-dot 
attention layers are three matrices: the query (Q), the key (K), and the 
value (V), which are created by multiplying the input feature matrix 𝐹𝐹 by 
three trainable weight matrices during the training process. We then cal-
culate the attention weight for each residue within a concatenated CDR 
sequence as follows: 

 
𝑡𝑡𝑡𝑡𝑡𝑡𝑎𝑎𝑛𝑛𝑡𝑡𝑖𝑖𝑎𝑎𝑛𝑛(𝑄𝑄,𝐾𝐾,𝑉𝑉) = 𝑠𝑠𝑎𝑎𝑓𝑓𝑡𝑡𝐸𝐸𝑡𝑡𝑥𝑥(

𝑄𝑄𝐾𝐾𝑇𝑇

�𝑑𝑑𝑘𝑘
)V (12) 

, where 𝑑𝑑𝑘𝑘 is a scaling factor, depending on the size of feature matrix and 
head. 𝑄𝑄𝐾𝐾𝑇𝑇 computes the degree of association between keys and queries. 
The large dot product means that keys and queries are aligned well. Then 
we obtained an attention map, using the 𝑠𝑠𝑎𝑎𝑓𝑓𝑡𝑡𝐸𝐸𝑡𝑡𝑥𝑥 function. Finally, we 
multiplied the attention map by the value vector. Using this procedure, the 
transformer encoder important features from the source concatenated 
CDR sequences. 
   The transformer encoder lacks a way to explain the order of the residues 
within an input sequence because it removes the recurrent units. To solve 
this, we employed the position encoding proposed in the previous study 
(Vaswani, et al., 2017): 

 
𝑃𝑃𝐸𝐸(𝑝𝑝𝑝𝑝𝑝𝑝,2𝑖𝑖) = 𝑠𝑠𝑖𝑖𝑛𝑛 (𝑝𝑝𝑎𝑎𝑠𝑠/100002𝑖𝑖/𝑐𝑐𝑘𝑘) (13) 

 
𝑃𝑃𝐸𝐸(𝑝𝑝𝑝𝑝𝑝𝑝,2𝑖𝑖+1) = 𝑐𝑐𝑎𝑎𝑠𝑠 (𝑝𝑝𝑎𝑎𝑠𝑠/100002𝑖𝑖/𝑐𝑐𝑘𝑘) (14) 

, where 𝑝𝑝𝑎𝑎𝑠𝑠 is the position and 𝑖𝑖 is the dimensional index of position en-

coding matrix (the same dimension as the input feature matrix). 

2.4.4 Multilayer Perceptron 

The output of the transformer encoder and BiLSTM are concatenated and 
then is fed to the multilayer perceptron (MLP) to obtain final prediction 
results: 

 
𝑃𝑃 = 𝜎𝜎(𝑊𝑊𝑀𝑀𝐿𝐿𝑀𝑀[𝐿𝐿,𝐵𝐵] + 𝐸𝐸𝑀𝑀𝐿𝐿𝑀𝑀) (15) 

, where 𝐿𝐿 is the output of transformer encoder, 𝐵𝐵 is the output of BiLSTM, 
𝑊𝑊𝑀𝑀𝐿𝐿𝑀𝑀 and 𝐸𝐸𝑀𝑀𝐿𝐿𝑀𝑀 are trainable parameters of MLP, 𝜎𝜎 is the sigmoid func-
tion that maps the value in 𝑃𝑃 to 0-1 for prediction. 

2.5 Training and Evaluation 

2.5.1 Loss Functions 

We used the backpropagation algorithm (Rumelhart, et al., 1985) and the 
gradient descent method to train all parameters of our model, and the loss 
function is the binary cross-entropy function (De Boer, et al., 2005): 

 
ℒ(𝑦𝑦,𝑃𝑃) = −�(𝑦𝑦𝑖𝑖 log(𝑃𝑃𝑖𝑖) + (1 − 𝑦𝑦𝑖𝑖)log (1 − 𝑃𝑃𝑖𝑖)) +

𝜆𝜆
2
∥ 𝛩𝛩 ∥22

𝐿𝐿

𝑖𝑖=1

  (16) 

, where 𝑦𝑦𝑖𝑖 and 𝑃𝑃𝑖𝑖 are true and predicted labels of the 𝑖𝑖th residue in the con-
catenated CDR sequences, respectively, 𝛩𝛩 is the set of all weight and bias 
parameters in our model, 𝜆𝜆 is the L2 regularization hyperparameter. The 
adam optimizer were used in this study (Kingma and Ba, 2014). The 
DeepANIS has been implemented using Keras library 2.2.4 and Tensor-
flow-GPU 1.9.0 (Abadi, et al., 2016). All the training and testing processes 
were performed on GTX 1080Ti GPU. 

2.5.2 Hyper-parameter-tuning 

Our model includes multiple hyperparameters. We performed a hyperpa-
rameter search to obtain the best parameters: 
(1) Hidden unit number of BiLSTM: The dimension of hidden states 

depends on the hidden unit number of BiLSTM. We varied the hidden 
unit number of BiLSTM {16,32,64,128,256,512} and found that 256 
units provided the best performance. 

(2) Transformer encoder layers: Several identical layers of a trans-
former encoder are stacked in the encoding phase. A high number of 
transformer encoder layers means the deeper and wider information 
mined from concatenated CDR sequences. However, excessive layers 
will cause greater algorithm complexity and a performance reduction. 
Therefore, it is crucial to choose a balanced number of layers. We var-
ied the number of transformer encoder layers from 1 to 6 and found 
that 2 layers provided the best performance. 

(3) Attention heads: The attention map learned by the transformer en-
coder provides weight coefficients, which can focus on key residues 
of the concatenated CDR sequences. Different attention heads enable 
the attention of input sequences from different views. We varied the 
number of attention heads {1,2,4,8} and found that 4 attention heads 
provided the best performance. 

2.5.3 The 10-fold cross-validation 

To ensure an unbiased evaluation and obtain statistically significant re-
sults, we use the 10-fold cross-validation technique on our dataset (277 
complexes). This technique divides the dataset into 10 subsets, 9 subsets 
of which was employed as the training set and the remaining portion as 
the test set. The test subset is rotated so that all structures were employed 
in the test. Each test will yield binding probabilities, the combined results 
are used as an estimate of the algorithm performance. Ten folds were ran-
domly divided 10 times to examine the robustness of the training. 

2.5.4 Performance measure 

Our model was evaluated by the following indicators: MCC (Matthews 
Correlation Coefficient), AUPR (the area under the precision-recall curve), 
AUROC (the area under the receiver-operating characteristic) (Lobo, et 
al., 2008), and F1-score, which are defined as: 

 
𝐿𝐿𝑃𝑃𝑇𝑇 = 𝐿𝐿𝑃𝑃/(𝐿𝐿𝑃𝑃 + 𝐹𝐹𝐹𝐹) (17) 

 
𝐹𝐹𝑃𝑃𝑇𝑇 = 𝐹𝐹𝑃𝑃/(𝐹𝐹𝑃𝑃 + 𝐿𝐿𝐹𝐹) (18) 
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𝑝𝑝𝑝𝑝𝑎𝑎𝑐𝑐𝑖𝑖𝑠𝑠𝑖𝑖𝑎𝑎𝑛𝑛 = 𝐿𝐿𝑃𝑃/(𝐿𝐿𝑃𝑃 + 𝐹𝐹𝑃𝑃) (19) 

 
𝑝𝑝𝑎𝑎𝑐𝑐𝑡𝑡𝑟𝑟𝑟𝑟 = 𝐿𝐿𝑃𝑃/(𝐿𝐿𝑃𝑃 + 𝐹𝐹𝐹𝐹) (20) 

 
𝐹𝐹1 = 2 ∗ (𝑃𝑃𝑝𝑝𝑎𝑎𝑐𝑐𝑖𝑖𝑠𝑠𝑖𝑖𝑎𝑎𝑛𝑛 ∗ 𝑇𝑇𝑎𝑎𝑐𝑐𝑡𝑡𝑟𝑟𝑟𝑟)/(𝑃𝑃𝑝𝑝𝑎𝑎𝑐𝑐𝑖𝑖𝑠𝑠𝑖𝑖𝑎𝑎𝑛𝑛 + 𝑇𝑇𝑎𝑎𝑐𝑐𝑡𝑡𝑟𝑟𝑟𝑟) (21) 

 
𝐿𝐿𝐶𝐶𝐶𝐶 =

𝐿𝐿𝑃𝑃 ∗ 𝐿𝐿𝐹𝐹 − 𝐹𝐹𝑃𝑃 ∗ 𝐹𝐹𝐹𝐹

�(𝐿𝐿𝑃𝑃 + 𝐹𝐹𝑃𝑃)(𝐿𝐿𝑃𝑃 + 𝐹𝐹𝐹𝐹)(𝐿𝐿𝐹𝐹 + 𝐹𝐹𝑃𝑃)(𝐿𝐿𝐹𝐹 + 𝐹𝐹𝐹𝐹)
 (22) 

, where 𝐿𝐿𝑃𝑃, 𝐹𝐹𝑃𝑃, 𝐹𝐹𝐹𝐹, and 𝐿𝐿𝐹𝐹 denote the number of true positives, false 
positives, true negatives and false negatives, respectively, 𝐹𝐹𝑃𝑃𝑇𝑇 and 𝐿𝐿𝑃𝑃𝑇𝑇 
are the x and y axis of the receiver-operating characteristic, 𝑝𝑝𝑝𝑝𝑎𝑎𝑐𝑐𝑖𝑖𝑠𝑠𝑖𝑖𝑎𝑎𝑛𝑛 and 
𝑝𝑝𝑎𝑎𝑐𝑐𝑡𝑡𝑟𝑟𝑟𝑟 are the x and y axes of the precision recall curve. 

3 Results and Discussion 

3.1 Performances on the 10-fold cross-validation 
The results of ten fold cross validations are shown in Table.1. DeepANIS 
achieved a MCC score of 0.606 ± 0.002, and an AUPR score of 
0.727±0.004 in the 10-fold cross-validations. In order to illustrate the im-
portance of various features, we evaluated them individually and by addi-
tion and removal of each feature group. As shown in Table 1, sequence 
profiles PSSM yielded the best performance (a MCC score of 
0.597±0.005, and an AUPR score of 0.724±0.003) in the 10-fold cross-

validation. The performance of the other evolution-based feature (the 
HMM profile) is similar but slightly worse than PSSM. The predicted 
structural features by SPIDER3 achieved the worst performance with 
MCC of 0.583±0.004 and AUPR of 0.711±0.004. The removal and addi-
tion of each feature group has the similar trend: PSSM makes the largest 
contribution, followed by HMM and SPIDER3. Nevertheless, each feature 
group contributes positively to the overall performance and thus, all these 
features were utilized in our final method. 

3.2 Ablation study 

3.2.1 CDR concatenation improves prediction performance 

We used a neural network model (CNN+BiLSTM) to assess the effect of 
CDR concatenation. As shown in Table 2A, Using concatenated CDR se-
quences yields statistically significant improvement over inputting CDR 
individually. More specifically, the concatenating method achieved a 
MCC of 0.574 ± 0.004, an AUPR of 0.706 ± 0.005, an AUC of 
0.888±0.002, and a F-score of 0.694±0.002. By the comparison, the base-
line approach (CDRs processing individually method under the same neu-
ral network) leads to a MCC of 0.556±0.007, an AUPR of 0.700±0.006, 
an AUC of 0.878±0.003, and a F-score of 0.688±0.007. Thus, CDR con-
catenating was effective for improving prediction of binding sites of anti-
bodies. 

Table 1 Performance of DeepANIS in 10-fold cross-validation by different feature groups individually or in combination. To convert the predicted 
binding probabilities to binary labels, we used thresholds in the range of [0.482, 0.523] obtained by maximizing Youden’s index (Youden, 1950); the 
labels were used to compute the MCC and F-score metrics. The AUC and F-score metrics are shown in Supplementary.  

Feature 
groupsa 

MCC AUPR 
Feature 
groupsb 

MCC AUPR 
Feature 
groupsc 

MCC AUPR 

(Embedding) 0.585±0.003 0.714±0.003 DeepANIS 0.606±0.002 0.727±0.004 Embedding 0.585±0.003 0.714±0.003 

PSSM 0.597±0.005 0.724±0.003 -PSSM 0.597±0.003 0.723±0.002 +PSSM 0.597±0.005 0.724±0.003 

HMM 0.591±0.003 0.716±0.006 -HMM 0.601±0.003 0.723±0.003 +HMM 0.603±0.002 0.725±0.003 

SPIDER3 0.583±0.004 0.711±0.004 -SPIDER3 0.603±0.002 0.725±0.003 + SPIDER3 0.606±0.002 0.727±0.004 

a Performances based on individual feature groups, b by removing each feature group from all feature groups, and c by adding feature groups recursively.  
 
Table 2 The results of Ablation study. (A) Performance comparison between inputting concatenated CDRs and inputting individual CDRs. A 
CNN+BiLSTM model was used for this comparison. (B) Performance comparison among different neural network architectures. All models employed 
the same embedding features from concatenated CDR sequences as input. The Transformer+BiLSTM is the model architecture for DeepANIS.  

MethodA MCC AUPR AUC F-score NetworkB MCC AUPR AUC F1-score 
  Individually 0.556±0.007 0.700±0.006 0.878±0.003 0.688±0.007 BiLSTM 0.572±0.001 0.705±0.004 0.888±0.001 0.692±0.002 

Concatenated 0.574±0.004 0.706±0.005 0.888±0.002 0.694±0.002 Transformer 0.527±0.002 0.648±0.004 0.871±0.002 0.645±0.003 

Individually: The 6 CDRs from one antibody are inputted individually. 

Concatenated: the 6 CDRs from one antibody are concatenated into a single sequence. 

Transformer 

+ BiLSTM 
0.585±0.003 0.714±0.003 0.889±0.001 0.701±0.002 

 
Table 3 Performance comparison among different neural network architectures. All models employed the same embedding features from concatenated 
CDR sequences as input. The Transformer+BiLSTM is the model architecture for DeepANIS.  

Method MCC AUPR AUC F-score 
proABC 0.522 — 0.851 — 
Parapred 0.554±0.009 0.701±0.008 0.878±0.004 0.690±0.006 
CNN+BiLSTM 0.556±0.007 0.700±0.006 0.878±0.003 0.688±0.007 
DeepANIS (embedding features) 0.585±0.003 0.714±0.003 0.889±0.001 0.701±0.002 
DeepANIS (all features) 0.606±0.002 0.727±0.004 0.896±0.001 0.717±0.002 
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3.2.2 Transformer encoder improves prediction performance 

To illustrate the usefulness of a transformer encoder, we made a compar-
ative study using different neural network architectures. As shown in Ta-
ble 2B, using the same embedding features from concatenated CDR se-
quences as input, the single transformer-encoder model can achieve a 
MCC of 0.527±0.002, an AUPR of 0.648±0.004, an AUC of 0.871±0.002, 
and a F-score of 0.645±0.003. This is slightly worse than the performance 
given by the single BiLSTM model. Our model (Transformer+BiLSTM) 
achieves the best performance with a MCC of 0.585±0.003, an AUPR of 
0.714±0.003, an AUC of 0.889±0.001, and a F-score of 0.701±0.002. The 
result confirms the usefulness of the transformer encoder for improving 
prediction of antibody binding sites 

3.3 Comparisons with other methods 

Table 3 compares DeepANIS with proABC, Parapred, and the netweorks 
based on CNN and BiLSTM. The random-forest method proABC, 
achieved a MCC score of 0.522 and an AUC score of 0.851. Parapred, a 
CNN+BiLSTM based method, achieved a MCC score of 0.554±0.009, an 
AUPR score of 0.701±0.008, an AUC score of 0.878±0.004, and a F-
score of 0.690±0.006. To ensure a fair comparison, we also emplolyed a 
network model of CNN+BiLSTM to mimic Parapred. An essentially iden-
tical result to Parapred was obtained. By comparison, DeepANIS performs 
the best with or without additional features besides embedding features. 
The improvement over Parapred by DeepANIS is further confirmed by the 
ROC curves and the precision-recall curves as shown in Figure 2. These 
curves given by DeepANIS are mostly above those given by Parapred, 
indicting a robust improvement at different levels of sensitivities. 

3.4 Transformer encoder finds important local features in 
CDR sequence 

Fig. 2. The receiver operating characteristics curves (a) and precision-
recall curves (b) given by Parapred and DeepANIS, respectively. Error 
bars show 95% confidence bounds. 

Fig.3. Comparison of the indicators of the top-k noted residues selected by 
transformer encoder. The MCC (a) and FPN (b) of our method were better 
than BiLSTM single model, and the difference between the two methods de-
creased with the decrease of attention score, which is in line with expectations. 

Fig.4. The visualization results of 2jel complex. The attention map (a) was obtained by transformer encoder, in which each position denoted the attention 
score between two residues. (b) and (c) are the visualization results of our method and LSTM method respectively. Different colors represent the following 
meanings: purple: true negatives of light chain; blue: true negatives of heavy chain; yellow: false negatives; green: true positives; red: false positives. The 
main difference between results predicted by two methods was the distribution of false positives. 
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Another benefit of using a transformer encoder is its interpretability, 
which can help us investigate what our neural network model has learned. 
We chose one fold from 10-fold cross-validation randomly for this analy-
sis. For an input sequence of length is 𝑈𝑈, the transformer encoder can yield 
an 𝑈𝑈 × 𝑈𝑈 attention map 𝐴𝐴𝑡𝑡𝑡𝑡, in which 𝐴𝐴𝑡𝑡𝑡𝑡𝑖𝑖𝑗𝑗 denotes the attention score of 
the 𝑗𝑗th residue to the 𝑖𝑖th residue. A higher attention score indicates a closer 
correlation between the 𝑗𝑗th amino and the 𝑖𝑖th residue. We calculated the 
sum of each column from 𝐴𝐴𝑡𝑡𝑡𝑡 without the diagonal elements. A larger sum 
of the columns for a residue indicates the more attention paid to the residue 
by the model. We chose top N residues with the highest attention scores 
from each test sample, and then analyzed their final prediction results 
compared with the BiLSTM single model (N=2, 4, 6, 8, 10). Figure 3 
shows that the difference between DeepANIS and Parapred is smaller for 
residues with low attenstion scores. That is, the transformer encoder can 
focus its attention on some residues within concatenated CDR sequences 
and thereby improve prediction by integrating their features in multi-head 
attention units. To further illustrate this, we selected one complex structure 
in the test set whose pdb id is 2jel. Figure 4 shows the attention map ob-
tained along with the complex structures with true positives, false posi-
tives, true negatives and false negatives highlighted in different colors on 
the CDR regions for DeepANIS and Parapred. The main difference be-
tween the two methods are that BiLSTM in Parapred yields more false 
positives. For example, positions 1, 6, and 7 of the second light chain (L2) 
and position 3 of the first heavy chain (H1) were predicted correctly as 
non-binding residues by DeepANIS but incorrectly as binding residues by 
Parapred. Examining the attention map reveals that the attention weights 
of these 4 residues ranked 3rd, 10th, 11th, and 13th among the 79 residues 
of the concatenated CDR sequence. Thus, the additional attention of the 
transformer encoder to the four residues leads to their correct classification 
as non-binding residues. 

4 Conclusions 
In this work, we introduced a sequence-based method DeepANIS (ANti-
body Interacting Site) dedicated to the prediction of antibody paratope. 
Compared to other methods, we concatenated CDRs from a single anti-
body, which allows us to capture nonlocal interactions among CDRs. The 
combined use of the BiLSTM and the transformer encoder further permits 
an improved attention to specific residues for better classification. The re-
sults indicate that the attention map obtained from the transformer encoder 
may be useful to investigate the binding mechanisms between antibodies 
and antigens, which is a subject for further research. 
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