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ABSTRACT 

Neurodegenerative and neuropsychiatric disorders (ND-NPs) are multifactorial, polygenic and 

complex behavioral phenotypes caused by brain abnormalities. Large-scale collaborative efforts 

have tried to identify the genetic architecture of these conditions. However, specific and shared 

underlying molecular pathobiology of brain illnesses is not clear. Here, we examine transcriptome-

wide characterization of eight conditions, using a total of 2,633 post-mortem brain samples from 

patients with Alzheimer’s disease (AD), Parkinson’s disease (PD), Progressive Supranuclear Palsy 

(PSP), Pathological Aging (PA), Autism Spectrum Disorder (ASD), Schizophrenia (Scz), Major 

Depressive Disorder (MDD), and Bipolar Disorder (BP)–in comparison with 2,078 brain samples 

from matched control subjects. 

Similar transcriptome alterations were observed between NDs and NPs with the top correlations 

obtained between Scz-BP, ASD-PD, AD-PD, and Scz-ASD. Region-specific comparisons also 

revealed shared transcriptome alterations in frontal and temporal lobes across NPs and NDs. Co-

expression network analysis identified coordinated dysregulations of cell-type-specific modules 

across NDs and NPs. This study provides a transcriptomic framework to understand the molecular 

alterations of NPs and NDs through their shared- and specific gene expression in the brain. 

 

Keywords: transcriptome profiling; RNA-Seq; neurodegeneration; psychiatric disorder; network 
analysis; brain cell types 
 
 

INTRODUCTION 

Neurodegenerative and neuropsychiatric disorders (ND-NPs) are multifactorial, polygenic, and 

complex behavioral phenotypes caused by changes in multiple underlying mechanisms1,2. In NDs, 
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nerve cells become unable to respond to changes in their internal and external environments, 

eventually resulting in an impairment of brain function 3–5. At present, the most prevalent NDs6,7 

are Alzheimer’s disease (AD), Parkinson’s disease (PD), progressive supranuclear palsy (PSP), as 

well as early preclinical manifestations of those such as pathological aging (PA). Because of the 

presence of amyloid plaques, but not tangles, and the absence of dementia, PA is considered to be 

either a prodrome of AD or a condition, in which there is resistance to the development of NFT 

and/or dementia8. Alteration of neuronal communications has been implicated in NDs, as well as 

in NPs such as schizophrenia (Scz), bipolar disorder (BP), autism spectrum disorder (ASD), and 

major depressive disorder (MDD), which are also among the major contributors to disability 

worldwide9. The etiology and mechanisms of NDs and NPs are elusive and a broad spectrum of 

causative genetic and environmental factors have been proposed 10. 

Several investigations have shed light on the genetic heterogeneity within brain conditions and the 

degree of molecular similarities between closely related disorders11–13. Patterns of converging 

clinical and biological characteristics across NDs such as AD, PD, and PA have been lately 

discussed14–16. NPs have also shown symptomatic overlaps17,18. This demands uncovering 

condition-specific and overlapping pathological mechanisms across ND-NPs, which has been 

partly revealed by recent large-scale genome-wide association studies (GWAS)19–21. For instance, 

the genetic correlation between eight neuropsychiatric disorders revealed 3 different sub-groups 

with high levels of genetic overlap as well as multiple pleiotropic loci related to genes involved in 

neurodevelopment 22. Moreover, some effort has been made to relate shared genetic causes with 

shared transcriptomic alterations in the post-mortem brains in subsets of these disorders, revealing 

similar relationships among diseases even if not necessarily implicating the same genes 21,23.   
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Such integrative transcriptomic studies attempt to fill the functional gap and establish the degree 

of coupling between primary genetic causes and secondary events captured by the transcriptome 

in adult postmortem samples. However, a comprehensive characterization of gene expression 

changes in brain regions from individuals with major brain NDs and NPs compared with healthy 

subjects is missing. To address this shortcoming, we have uniformly analyzed a large collection 

of bulk RNA-Seq samples from post-mortem brain regions of subjects with NDs and NPs 

produced by different studies. The results of our meta-analysis revealed similarities of 

transcriptomic alterations between NDs and NPs which have also been observed in brain regions 

such as frontal and temporal lobes across the conditions. We additionally found coordinated 

downregulation of neuron-specific co-expression modules in both NDs and NPs, while 

oligodendrocyte and astrocyte modules showed mainly upregulation across conditions. 

RESULTS 

Samples characteristics and clustering 

We analyzed 4,711 RNA-Seq samples produced by 19 different labs8,21,24–41 from patients with AD 

(n = 906 samples), PD (n = 29), PA (n = 58), PSP (n = 168), Scz (n = 535), ASD (n = 187), MDD 

(n = 240), BP (n = 510), and non redundant matched controls (n = 2,078) pooled across all studies, 

obtained from seven major brain regions (Fig. 1 & S1, for further details see Table S1 & S2). To 

produce a uniform gene expression quantification that could be compared across different datasets, 

the samples were processed using the Grape RNA-Seq pipeline42 and underwent normalization and 

quality control (see Methods & Fig. S2-S9). t-Distributed Stochastic Neighbor Embedding 

(tSNE)43 analysis in combination with principal component analysis (PCA) was used to produce a 

latent representation of the samples based on their gene expression profiles. Globally, NDs and 
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NPs clustered separately, driven by the disjoint clustering of AD and Scz, respectively (Fig. 2a).  

PA and PSP clustered together very distinctively, but this could be confounded because samples 

for these conditions are coming from exactly the same regions. ASD clustered into two different 

groups, likely reflecting the brain region from which samples originated. This could indicate that 

ASD may correspond to different molecular conditions. Control samples showed little structure, 

supporting the effectiveness of our normalization, whereas, condition samples demonstrate a 

stronger structure (Fig. S10). To some extent, this also happens with MDD. Finally, BP shows 

partly clustering with Scz based on the origin of the regions (Fig. 2a).   

Condition-specific differential gene expression (DGE)  

Condition-specific differential gene expression (DGE) analyses were performed using a linear 

mixed-effect model (see Methods). These analyses provided insights regarding transcriptional 

changes for the pathobiology of each condition (Supplementary Data 1). In total, we found 4419 

genes differentially expressed in at least one condition (Fig. S11a,b). Significant overlap between 

condition-specific DEGs and those obtained from individual datasets represented the 

reproducibility of the results (Fig.S12).  Most DEGs were exclusive of one single condition, and 

we did not find a single gene shared across all the conditions, but there were genes shared across a 

number of conditions (Fig. 2b & Fig. S13). For instance, CHI3L1 (which codes for a protein also 

known as YKL-40) and CHI3L2 that have been associated with astrocytic reactivity and neuronal 

damage44,45, are deregulated in all conditions except in MDD.  Gene enrichment analysis 

performed using DEGs for each condition showed that most functional alterations were quite 

condition-specific, but functions related to and to the immune response were shared among some 

conditions (FDR-corrected p-value < 0.05; Fig. 2c).  
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Cross-condition transcriptome overlap observed across NDs and NPs 

To investigate the similarity between transcriptome alterations underlying the NDs and NPs, we 

compared the genes’ fold change (FC) in expression in cases vs controls between conditions, by 

explicitly computing the pairwise correlation of logFCs from 15,819 shared genes (See Methods, 

Supplementary Fig. S14a and Supplementary Data 2). This set of genes showed significant 

overlap with the list of common genes across psychiatric disorders from Gandal et al21. study (odd 

ratio = 4.5, FDR-corrected p-value < 0.001 ).  Scz and BP represented the strongest correlation 

with the overlap of both downregulated and upregulated genes (Fig. 3a & Fig. S14b). According 

to the transcriptional alterations, ASD clustered together with NDs, rather than within the other 

NPs (Fig. 3b). Within NP’s, Scz and BP clustered closer, and within NDs, PA and PSP.  MDD 

clustered separately from the rest of the conditions (Fig. 3b). These results were confirmed by 

computing correlations of the logFCs from the same set of genes across individual datasets to 

check for reproducibility (Fig. S14c).  

 Region-specific differential gene expression 

Although some regions were present for only a limited number of conditions, brain-region-specific 

DGE revealed a set of overlapping genes that were frequently differentially expressed in multiple 

brain regions across conditions or vice versa (Fig. S15 & Supplementary Data 3). These genes 

included SERPINA3 associated with neuropathies and the formation of amyloid-fibrils in 

condition46–48, S100A8/A9, Socs3, ILR1L1 associated with inflammation49,50, APOL4 involved in 

lipid metabolism51, and NPAS4 which regulates the excitatory-inhibitory balance within neural 

circuits52. We built classifier models using the expression of DEGs from temporal and frontal 

regions (the most present regions across conditions) to explore the discrimination power of 
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transcriptomic profiles between condition and control samples. High prediction accuracy was 

obtained for PD (78%) and AD (79%) in the frontal and temporal cortex, respectively (Fig. S16).  

Analysis of the similarities in transcriptional alterations between different conditions in the 

individual brain regions separately generally recapitulated the findings in Fig. 3a.  BP and Scz 

showed a high positive correlation in all the regions in which these conditions were assayed (Fig. 

3c & Fig. S17). MDD showed little correlation with the other conditions across different regions. 

Some conditions, however, showed similar or distinct transcriptome alterations depending on the 

region. Thus, transcriptomic changes underlying PSP and AD were highly correlated in the 

cerebellum, but negatively associated in the temporal lobe (Fig. 3c & Fig. S17). In some cases, 

therefore, apparently similar phenotypic outcomes are the consequence of different molecular 

events in different brain regions. 

Network analyses identified condition-specific and shared transcriptional signatures 

To connect molecular alterations with the phenotypes of NDs and NPs, via their impact on the 

cellular composition of the brain, we constructed co-expression networks over all combined 

normalized datasets for the same set of shared genes using weighted gene co-expression network 

analysis (rWGCNA)53 and obtained seventeen co-expression modules (Fig. 4a & Supplementary 

Data 4). Module M0 comprises the genes that are not included in specific modules. We assigned 

cell types to each module based on the overlap between the genes in the module and the genes 

defining the cell type as in the PanglaoDB database54. A number of modules were enriched for 

cells of a specific type: M2 for oligodendrocytes and Schwann cells, M5 for astrocytes and 

Bergmann glia, M10 for microglia, M8 and M13 for neurons, and M14 for ependymal cells (Fig. 

4b). These modules were actually the most distinct from the rest according to the correlation 

analysis and MDS (Fig. S18). The assignments were confirmed using an independent single-cell 
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expression dataset55 composed of five main brain cell types including neurons, astrocytes, 

oligodendrocytes, microglia, and endothelial cells (Fig. S19a). We also identified the hub genes 

(the genes with the highest intramodular connectivity for each module (Fig. S19b). The functional 

categories enriched in cell-type-specific modules were broadly consistent with the cell type 

assignments (Fig. 4c & Supplementary Data 5). 

We next identified the differential expression of cell-type-specific modules in each condition from 

the expression of eigengenes (the first principal component of the expression matrix of the 

corresponding module, as a representative of an entire co-expression module) in each module 

using a linear mixed model (see Methods, Fig. 5a & Supplementary Data 6). In addition, the 

differential expression of top hub genes within these modules was measured for each condition 

(Fig. 5b).  Then, we could relate NDs and NPs to cellular alterations in the brain.   

Thus, neuron-specific modules (M8 and M13) were broadly downregulated across 

AD,PD,ASD,Scz,and BP, but upregulated in PA and PSP. The oligodendrocyte module M2 was 

upregulated in all conditions except PA and PSP (Fig. 5a,b), and consistently enriched with genes 

involved in oligodendrocyte and glial cell differentiation (Fig. 4c). The microglia-associated 

module (M10) which was upregulated in neurodegenerative diseases AD and PD, PA and a 

psychiatric disorder ASD represented enrichment for genes involved in the immune response. 

These results are consistent with the reported microglial activation in AD56, PD57and ASD58 and 

also with the crucial role of microglia in the CNS development and immunity59,60. The astrocyte-

specific module (M5), broadly upregulated in AD, PD, PA, ASD, Scz, and BP (Fig. 5a), was 

enriched for metabolic genes. An increase in astrocytic reactivity has previously been reported in 

response to oxidative stress induced by amyloid-beta accumulation61. Additional analysis 

demonstrated significant overlap of module M5 with an astrocyte-specific module (CD4: yellow) 

(which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprintthis version posted August 20, 2021. ; https://doi.org/10.1101/2021.08.16.456345doi: bioRxiv preprint 

https://doi.org/10.1101/2021.08.16.456345


8 

from Gandal et al.21 study which represented coordinated upregulation in ASD, BP and Scz (Fig. 

S19c). These results highlight the significant role of astrocytes in synaptic signalling, 

neuroprotection, and brain development62–64.  

Furthermore, we investigated the role of enhancers in the regulation of the network modules. We 

used an independently derived dataset of brain enhancer RNAs or eRNA (a class of relatively long 

non-coding RNAs) modules65 (sets of eRNAs which are coordinately expressed in the brain). 

Results demonstrated the enrichment of multiple eRNA modules for the cell-type-specific modules 

(Fig. 5c & Supplementary Fig. S20), demonstrating the role of these enhancer modules in 

regulating network modules across brain conditions. Neuron-specific modules M8 and M13 

showed enrichment for eRNA eModule5, which shows expression specificity for cerebral cortex65. 

In addition, the relationship between protein-coding genes and their adjacent lncRNAs in neuron 

modules show their coordinated regulation across the conditions (Fig. 5d). Oligodendrocyte and 

microglia modules (M2 and M10) were enriched for eModule7 which is specific for the thalamus- 

a region affected in a variety of systemic or metabolic diseases, degenerative disease, and 

psychiatric conditions66. The astrocyte-specific module M5 is associated with eModule6, which is 

specific for medulla oblongata65 (a part of the brainstem), a region associated with 

neurodegeneration and movement disorders67–69. These results demonstrate regulation of co-

expression modules across the conditions in the brain. 

 

Eventually, as mitochondrial genes have been formerly linked to neuronal phenotypic diversity and 

brain conditions70–73, we performed enrichment analysis of synaptic and nonsynaptic mitochondrial 

genes for each module using an independent dataset73. Multiple modules (M15, M13, M8, M4, and 

M3) were enriched for mitochondrial genes73, of which M15, M8 and M3 showed enrichment for 
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synaptic mitochondria (Fig. 5e & Supplementary Data 7). These modules which have previously 

shown enrichment for neurons (Fig. S19a) are mainly downregulated across conditions (Fig. 5a). 

These results highlight the relationship between alteration of mitochondrial transcriptome and 

synaptic dysfunction in the brain across conditions74. 

DISCUSSION 

Leveraging the transcriptome profile of post-mortem tissues from several brain regions, for the 

first time to our knowledge, we highlighted the substantial overlapping molecular patterns across 

eight brain conditions including NDs and NPs. Dysregulation of overlapping genes such as 

SERPINA3, Socs3, APOL4, and NPAS4 across brain regions suggests shared perturbation of 

several mechanisms such as activation of microglia75, inflammatory mechanisms, synapse 

development, and synaptic plasticity52 across conditions. Microglia and astrocytes are vital in 

regulating neuronal activity and brain functioning during development and in the adult brain76. 

These results are consistent with the previous well-established findings that molecular mechanisms 

in microglia and astrocytes are altered in ND-NPs 64,77. 

In line with this, co-expression network results revealed mainly downregulation of neuron-specific 

modules across multiple conditions, reflecting neural dysfunction in both NDs78 and NPs79. The 

microglial-related module showed mainly upregulation in NDs (i.e., AD and PD) reflecting 

activation of microglia during neurodegeneration and brain dysfunction59,80. Astrocyte- and 

oligodendrocyte-specific modules demonstrated broad upregulation across conditions including 

both NDs and NPs, representing activation of these cell types in neurogenesis, signaling, and cell 

development21,62,81. Also, coordinated downregulation of synaptic mitochondria-related modules 

across conditions suggests the importance of mitochondria for synaptic connections, neuronal 

survival, and function73 in both NDs82 and NPs83.  
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Moreover, our results revealed shared transcriptional changes between neurodegenerative and 

psychiatric disorders. Specifically, we observed similar transcriptional changes between PD-ASD, 

AD-ASD, PD-BP, PD-Scz, and AD-Scz. Moreover, within NDs, we found transcriptome alteration 

overlaps between AD-PD and PA-PSP, while within NPs, we found top transcriptome alteration 

similarities between Scz-BP and Scz-ASD. The high correlations observed for the Scz-BP and 

Scz-ASD pairs support previous reports on the molecular similarity of these disorders21,22. 

Correlation of transcriptomic alterations across brain regions demonstrated the limbic lobe 

captures the majority of transcriptomic similarity between Scz and BP, supporting the role of this 

region in mood and psychotic disorders84. Although the only region studied for PD was the frontal 

lobe, similar transcriptional changes were observed between PD-ASD, particularly for the genes 

involved in pathways such as neuroinflammation that has been recently linked to autism85,86. High 

frequency of parkinsonism has previously been reported in autistic cases87, in which inflammatory 

mechanisms are seemingly involved in the pathobiology of the disease88,89. The correlation of 

transcriptional alterations between AD and ASD supports the evidence of neurodegeneration in 

autism90. This similarity between AD and ASD was mainly observed for the temporal and then 

frontal lobes. The overlapping expressional changes of genes such as CHI3L1 between Scz and PD 

suggest perturbation of dopaminergic-glutamatergic balance in the brain, as described 

previously91,92. The Scz-AD similarity, which was mainly captured by the temporal lobe, is also 

consistent with the evidence of shared mechanisms between neurodegeneration and Scz93,94. 

Primary damaged regions in PSP and PA are reported to be brain stem (specifically substantia 

nigra)95 and hippocampus96, respectively. However, the significant correlation of transcriptome 

alterations between PSP and PA, mainly observed in the temporal lobe, suggests similar molecular 

changes of this brain area in the conditions. Although PSP is sometimes misdiagnosed as PD due 
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to similar clinical symptoms97, we did not observe transcriptome similarity here. This could be due 

to the lack of primary damaged regions for either condition and/or different pathobiology of the 

conditions98.  

In addition, our findings provide new insights about the shared cognitive impairment in ASD and 

Scz and their transcriptome similarity with NDs99,100. Also, the results did not show significant 

transcriptional correlation between AD and PA, suggesting their divergent molecular 

pathobiology101. Transcriptional relationships were not observed between MDD and other NPs 

such as Scz and ASD as expected, which could be due to its heterogeneous nature21,22,102.  Of note, 

shared transcriptional changes observed here do not necessarily indicate similar pathobiology of 

the conditions, particularly in conditions such as PD, PSP, and PA that lacked primary damaged 

regions which demands further investigation. 

Comparisons of transcriptional changes across brain regions demonstrated similar molecular 

changes in the temporal and frontal lobe across NDs and NPs, implicating their possible 

impairment in the pathogenesis of a variety of brain diseases103–109. Similar molecular patterns of 

the cerebellum were observed across AD, PSP, and PA, supporting its emerging role in the 

pathobiology of NDs110,111. Despite the lack of samples for some of the conditions mentioned 

before, the basal ganglia and limbic lobe showed transcriptional similarities across Scz, ASD, BP 

and MDD, implying their involvement in several mood and psychiatric disorders. These findings 

suggest, on one hand, the impairment of multiple brain regions (rather than one primary region) in 

one condition and, on the other hand, the involvement of one region in multiple conditions. 

Of note, in the analysis of the overlapping transcriptomic alterations, we did not expect to capture 

modifications directly linked to the underlying etiological mechanisms of the different conditions 

studied here. However, this was addressed in condition-specific gene expression analyses and will 

(which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprintthis version posted August 20, 2021. ; https://doi.org/10.1101/2021.08.16.456345doi: bioRxiv preprint 

https://doi.org/10.1101/2021.08.16.456345


12 

be more investigated in future analyses with the same database, along with the exploration of 

conditions sharing common mechanisms (i.e., cerebral proteinopathies) or between the different 

stages of the same disease (i.e., preclinical and clinical stages of AD)112,113. In line with this, we 

anticipate that future research will also benefit from the integration of transcriptomics with other 

omics modalities, such as genomics, proteomics, metabolomics, and epigenomics. This promises 

to provide deeper insights into the causative pathways through which genes and environment 

interact during life and influence the human brain114. Additional research could also benefit from 

further identification of sex-specific gene networks and transcription profiles to unravel the 

molecular mechanisms of brain diseases115–117. 

In addition, since tissue samples from all brain regions were not available for all conditions, in 

some of them we might have missed the transcriptomic profile of the brain area in which the 

primary pathology is expected to be expressed (i.e., basal ganglia in PD). Also, even though batch-

effect corrections have thoroughly been applied here, the inevitable effect of merging multiple 

datasets on the results could still be a limitation. However, despite the limitations of the current 

analyses, molecular signatures here described across ND-NPs can provide target leads for the 

development of therapeutic interventions targeted to common pathological mechanisms which may 

overcome indications solely based on clinical manifestations, thus paving the way for the rational 

design of personalized and mechanistically-based therapies118. 
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METHODS 

Samples and raw data 

RNA-Seq raw data were obtained from 4,711 post-mortem brain samples from subjects with AD, 

PD, PSP, PA, Scz, MDD, ASD, BP, and matched controls through previously-published 

studies8,21,24–41 and consortia including CommonMind Consortium and PsychENCODE 

Consortium from Sage Synapse (https://www.synapse.org/) and the NCBI Gene Expression 

Omnibus (GEO) (https://www.ncbi.nlm.nih.gov/geo/) (see Table S1). The samples from 

individual datasets were processed separately and analyzed according to our RNA-Seq pipeline as 

described below. 

Data processing 

The data obtained from individual datasets were processed separately. We used RNA-Seq fastq 

files as the initial source of data processing. The samples that were retrieved as SRA and BAM files 

were converted to fastq file formats using SRA-toolkit119 and SAM-tools120, respectively. For 

further sample processing, the Grape pipeline121 was used for RNA-Seq analysis, with Nextflow122 

as the execution backend, the STAR aligner v.2.6.0a tool123 for mapping reads to the human 

genome build hg19 with GENCODE v.28 annotations, and the RSEM tool124 for isoform 

quantification (using default options). Next, post-alignment quality control (QC) was performed 

using STAR aligner statistics, Qualimap v.2.2.1 tools125, and Picard tools v1.8 

(http://broadinstitute.github.io/picard/) to check for the total number of reads, total number of 

mapped reads, GC percentage, exonic rate, intronic rate, intergenic rate, duplication rate, and 

insertion/deletion rate. Sequencing statistics was used to check for quality control and sample 

outliers. The data were then normalized for library size using the voom-limma R package126. To 
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filter out lowly-expressed genes, only genes with at least log2(CPM) of 0.5 in 70 % of the samples 

were kept for further analyses. The sva R package v.3.32.1127 was used to correct for any batch 

effect of sequencing library preparations. To remove sample outliers, standardized network 

connectivity Z-scores were measured and a cutoff of Z < -2 was set as the threshold128,129. 

Normalized datasets were kept for downstream analyses. 

Samples clustering and tSNE analysis 

t-SNE43 was used to produce a latent representation of the samples based on their gene expression 

profiles across datasets using all normalized datasets which were pooled together in an expression 

matrix. Before this, principal component analysis (PCA)130 was used to reduce the number of 

dimensions and obtain a small number of principal components as input to the tSNE analysis. The 

first two  t-SNE coordinates were used for visualization. 

Differential Gene Expression (DGE) analysis and transcriptome comparisons 

Differential expression analysis for each dataset was performed using limma with empirical Bayes 

moderated t-statistics, with the following model (expression ~ diagnosis + age + sex + RIN + 

ethnicity + PMI + pH). For condition- and brain region-specific DGE analyses, normalized 

expression data from relevant studies were combined and DGE was calculated using linear mixed-

effects models by the nlme R package v.3.1-140131, with fixed effects of diagnosis, age, sex, and 

study (and brain region when calculating condition-specific DE). A random effect for subjects was 

used to fix for overlapping subjects between the studies (expression ~ diagnosis + age + sex+ study 

+ 1 | subject). The calculated log fold-change (logFC) values were used for downstream analyses. 

Significantly differentially expressed genes (DEGs) were filtered by using a p-value of < 0.05 and 

|log2FC| > 0.5 as a significant threshold.  
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Reproducibility of differential expression results 

In order to check reproducibility of the results from DGE, the list of DEGs obtained from each 

dataset was compared to those obtained from condition-specific analysis by calculating Jaccard 

index132 and Simpson’s index133 using GeneOverlap R package134. Fisher’s exact test was used to 

calculate p-values of each comparison. 

Building classifier models 

To identify prediction power of transcriptional alterations from frontal and temporal lobe between 

cases and controls, normalized expressions of DEGs for each region were used to build classifier 

models using random forests135. Accuracy, sensitivity and specificity of the final models were used 

for comparing the results. A 5-fold cross-validation was used to avoid overfitting as much as 

possible.  

Comparisons of transcriptional alterations 

To analyze cross-condition transcriptome profile comparisons, we only kept the 15,819 genes that 

were common across all diseases. Pairwise gene expression comparisons were performed using 

Spearman’s correlation over logFC values of the genes. In addition, a correlation network and tree 

dendrogram was built using the correlations statistics to obtain a relative relationship of the 

conditions based on transcriptional alterations. To check reproducibility of results, logFC values of 

the genes common across condition-specific analyses and individual datasets were compared using 

Spearman’s correlation test. Moreover, brain region-specific comparisons across conditions were 

performed using logFC values of the genes shared between the present conditions for each region. 
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Rank-Rank Hypergeometric Overlap (RRHO) analysis 

In order to highlight the degree of overlap in gene signatures across conditions, as well as 

comparing condition pairs for shared brain regions, we performed an unbiased rank-rank 

hypergeometric overlap (RRHO) analysis using the RRHO R package v.1.24.0136. A one-sided 

version of the test only looking for over-enrichment was used. RRHO difference maps were 

produced by calculating for each pixel the normal approximation of difference in the log odds ratio 

and standard error of overlap with expression data in the intersection list. P-values were calculated 

and FDR-corrected for multiple comparisons across pixels.  

Gene co-expression network analysis 

We performed robust Weighted Gene Co-Expression Network Analysis (rWGCNA) using the 

WGCNA R package v.1.6853 to identify co-expressed gene modules using expression data that 

were first normalized for different covariates. The expression datasets from independent condition-

specific DGE analyses were combined using the 15,819 genes common between all datasets. Batch 

effect correction for the studies was performed using the ComBat function from the sva R package. 

Co-expression analysis was then performed using signed networks. Co-expression networks were 

built using the blockwisemodules function. The network dendrogram was created using the 

“average” linkage hierarchical clustering of the topological overlap dissimilarity matrix to identify 

modules of highly co-regulated genes. To obtain an approximately scale-free weighted co-

expression network, a power function with a soft-threshold of 20 was applied to the merged 

expression dataset. Modules were defined as branches of the dendrogram using the hybrid dynamic 

tree-cutting method, followed by a dynamic cut-tree algorithm to separate clustering dendrogram 

(which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprintthis version posted August 20, 2021. ; https://doi.org/10.1101/2021.08.16.456345doi: bioRxiv preprint 

https://doi.org/10.1101/2021.08.16.456345


17 

branches into gene modules. Modules were then summarized by their first principal component 

(ME, module eigengene) and those with high eigengene correlations were again merged. 

Because the topological overlap between two genes reflects both their direct and indirect 

interactions through all other genes in the network, this approach helps to build more cohesive and 

more biologically meaningful modules. To ensure the robustness of the module, random 

resampling was performed from the initial set of samples 100 times followed by consensus 

network analysis. The final module was achieved using network parameters including biweight 

midcorrelation (bicor), a minimum module size of 50, deepsplit of 4, merge threshold of 0.1, and 

negative pamStage. Each module was assigned by a unique (and arbitrary) color identifier. Genes 

with the highest intramodular connectivity (those with more connections at the core of the 

network) were considered as hub genes. Significance values were FDR-corrected to account for 

multiple comparisons. Top hub genes with the most connections were prioritized based on their 

module membership (kME), defined as a correlation to the module eigengene. Module-condition 

relationships were measured using a linear mixed effects model, with a random effect for subjects 

to fix for overlapping subjects.  

Cell-type-specific enrichment analysis 

To analyze cell-type-specific gene expression within each module, we retrieved the single-cell data 

for human brain cell types from the PanglaoDB database54. The genes within each module were 

then compared to the marker genes for each brain cell type using the GeneOverlap R package 

v.1.20.0134. Fisher’s exact test with an FDR-correction for p-values was used to analyze the gene 

overlap comparisons. To check the consistency of the results, another cell-type-specific expression 

dataset composed of five main brain cell types including neurons, astrocytes, oligodendrocytes, 
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microglia, and endothelial cells was obtained from another single-cell RNAseq study55. Gene 

symbols were mapped to Ensembl gene identifiers using the biomaRt R package. Specificity for 

the five brain cell types was calculated with the specificity.index function from pSI R package 

v.1.1 137. Fisher’s exact test with FDR correction for p-values was applied to check for the 

significant cell-type specificity (FDR-corrected p-value <0.05 was considered statistically 

significant). 

To see transcriptional relationships of cell-type-specific modules across conditions, effect sizes 

(beta values) obtained from linear mixed effect models for genes within each module were 

compared using Spearman’s correlation, followed by FDR-correction for multiple comparison 

tests. 

 Gene ontology enrichment analysis 

Gene Ontology (GO) pathway enrichment for each condition and gene modules was performed 

using the gprofiler2 R packages. Only pathways that comprise 10 to 2000 genes were filtered for 

analysis. The top pathways with an FDR-corrected p-value < 0.05 were considered significantly 

related.  

Brain enhancer RNAs co-expression analysis 

To understand the relationship between regulatory factors in the brain and co-expression modules, 

an expression dataset for brain enhancer-RNAs (eRNA)- a non-coding RNA transcribed from 

active enhancers65- was obtained from an independent study of human brain region-specific 

eRNAs co-expression analysis65. To explore the co-expression of gene modules from our dataset 

and each brain eRNA module, overlap of genes within each module and genes from eRNA 
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modules was tested by Fisher’s exact test. A p-value of < 0.05 followed by FDR correction was 

used to filter the significant enrichments.  

Protein coding-lncRNA co-expression analysis 

Within each co-expression module, genomic coordinates for the genes were obtained using the 

BiomaRt R package. Next, the genes were filtered to protein-coding genes and lncRNA pairs with 

a distance of < 10Mb, as the cis-regulatory cutoff distance. The expression fold change (beta) 

values of the genes across the conditions were illustrated in a genomic circos plot using the 

circlize138 R package.  

 

Mitochondrial transcriptome enrichment analysis 

To see whether co-expression modules are enriched for mitochondrial transcriptome, an 

independent dataset containing synaptic and nonsynaptic mitochondria modules was obtained73,139. 

Enrichment analysis for each module was performed by Fisher’s exact test followed by FDR 

correction for p-values. 

 

Software and code availability 

The R programming language version 3.5.0 (https://www.r-project.org/) was used for statistical 

analyses and data visualization. The functions and libraries used in this study are available as R 

packages: WGCNA, nlme, RRHO, GeneOverlap, pSI, ggplot2, Rtsne, gprofiler2, caret, limma, 

pheatmap, ComplexHeatmap, circlize at CRAN (http://cran.r-project.org/) and/or Bioconductor 

(https://bioconductor.org/).  
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Data availability 

The raw data incorporated in this work were gathered from various resources. RNA-Seq raw data, 

metadata, and source files are available on the NCBI GEO database and Sage Synapse as described 

in Supplementary Table S1. 
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Figure legends 

Figure 1. Schematic of the study design and samples used for gene expression analysis via an 

RNA-Seq pipeline. Post-mortem brain RNA-Seq data were obtained from subjects with AD (n = 

906 samples), PD (n = 29), PA (n = 58), PSP (n = 168), Scz (n = 535), ASD (n = 187), MDD (n = 

240), BP (n = 510), and matched controls (n = 2078) (see Supplementary Table S1&S2 and Fig. 

S1). 

 

Figure 2. Condition-specific transcriptome alterations. (a)  tSNE visualization of the pooled 

samples as colored by conditions (left) and brain regions (right). (b) A heatmap of differentially 

expressed genes across neurodegenerative disorders (ND) and neuropsychiatric disorders (NP). 

The row labels represent the genes differentially expressed in at least 5 conditions. (P < 0.05 & 

|log2FC| > 0.5). (c) Conditions-specific gene enrichment analysis. Top significantly enriched 
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pathways are represented for significantly differentially expressed genes across conditions (FDR-

corrected p-value < 0.05).  

Figure 3. Similarity of transcriptional alterations across conditions. (a) Correlation plot (top) 

shows transcriptome alterations overlap obtained by computing Spearman’s correlations using 

logFC values of the shared genes between the conditions. Rank-rank hypergeometric overlap 

(RRHO; bottom) depicts direction (upregulation and downregulation) of the logFC overlaps. The 

guide panel represents the cross-condition overlapping relationship. Signals in the upper left 

quadrant display an overlap for shared upregulated genes, while those in the bottom right quadrant 

depict shared downregulated genes. The color bar displays the degree of significance of the 

overlap (Fisher’s exact test with FDR < 0.05). (b) Correlation network (top) and a tree dendrogram 

(bottom) obtained from pairwise correlations corresponding to a., show relationship of the 

conditions based on transcriptome alterations. (c) A circos plot demonstrating correlations of 

transcriptional alterations across conditions. Only significant correlations after FDR correction 

(FDR < 0.05) with a cut-off of absolute correlation > 0.1 are displayed here (see Supplementary 

Fig. S17). The outer layer represents conditions, while the inner layer displays brain regions 

defined by colors.  

Figure 4. Cross-condition co-expression modules identified by network analysis. (a) A 

dendrogram plot displaying co-expression modules obtained from topological overlap of 15,819 

shared genes between conditions. Each color represents an individual module and the grey color 

(M0) contains genes that are not included into a specific module. The corresponding plot at the 

right shows the number of genes within each module. (b) Enrichment of co-expression modules for 

brain cell types, measured by comparing genes within each module to the brain single-cell dataset 

from PanglaoDB54 (see also Supplementary Fig. S19a). (c) Heatmap plot of gene ontology 
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enrichment for cell-type-specific modules using top five significant pathways for each module. 

Color key shows -log10(FDR).  

Figure 5. Co-expression gene modules characterizations. (a) Differential expression of cell-

type-specific modules across conditions. � values on y-axis computed by linear mixed effect 

model show relationship of modules eigengenes with conditions. Bar plots show mean ± SE values 

(b) Differential expression of top hub genes within cell-type-specific modules across conditions. 

Brain cell-type-specific modules are annotated with colors. (c) Enrichment of brain enhancer 

RNAs for cell-type-specific modules. The overlap between co-expression modules and eRNA 

modules from an independent dataset65 was computed by Fisher’s exact test (FDR < 0.05). Color 

key shows the -log10 (FDR-corrected p-values; *FDR < 0.05, **FDR < 0.01, ***FDR < 0.001; 

see also Supplementary Fig. S20). (d) A circular heatmap showing expression of protein coding 

and their flanking lncRNAs in neuron modules M8 and M13 across conditions. Conditions from 

outer to inner represent AD to MDD . Gene types are colored by blue (protein coding) and red 

(lncRNA) (See also Supplementary Fig. S21). (e) The enrichment of co-expression modules for 

mitochondrial transcriptomes. An independent study that previously reported synaptic and 

nonsynaptic mitochondria co-expression modules was obtained and compared to co-expression 

modules in this study using Fisher’s exact tests (FDR < 0.05). Yellow and black colors represent 

enrichment of synaptic and nonsynaptic mitochondrial transcriptomes for co-expression modules. 
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