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The multispecies coalescent with introgression (MSci) model accom-
modates both the coalescent process and cross-species introgres-
sion/hybridization events, two major processes that create genealogi-
cal fluctuations across the genome and gene-tree–species-tree dis-
cordance. Full likelihood implementations of the MSci model take
such fluctuations as a major source of information about the history
of species divergence and gene flow, and provide a powerful tool for
estimating the direction, timing and strength of cross-species intro-
gression using multilocus sequence data. However, introgression
models, in particular those that accommodate bidirectional intro-
gression (BDI), are known to cause unidentifiability issues of the
label-switching type, whereby different models or parameters make
the same predictions about the genomic data and thus cannot be dis-
tinguished by the data. Nevertheless, there has been no systematic
study of unidentifiability when full likelihood methods are applied.
Here we characterize the unidentifiability of arbitrary BDI models
and derive simple rules for its identification. In general, an MSci
model with k BDI events has 2k unidentifiable towers in the posterior,
with each BDI event between sister species creating within-model
unidentifiability and each BDI between non-sister species creating
cross-model unidentifiability. We develop novel algorithms for pro-
cessing Markov chain Monte Carlo (MCMC) samples to remove label
switching and implement them in the BPP program. We analyze ge-
nomic sequence data from Heliconius butterflies as well as synthetic
data to illustrate the utility of the BDI models and the new algorithms.
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Genomic sequences sampled from modern species contain rich1

historical information concerning species divergences and cross-2

species gene flow. In the past two decades, analysis of genomic se-3

quence data has demonstrated the widespread nature of cross-species4

hybridization or introgression (1, 2). A number of statistical meth-5

ods have been developed to infer introgression using genomic data,6

most of which use data summaries such as the estimated gene trees7

(3–5). Full-likelihood methods applied directly to multi-locus se-8

quence alignments (6–8) allow estimation of evolutionary parameters9

including the timing and strength of introgression, as well as species10

divergence times and population sizes for modern and extinct ances-11

tral species. These have moved the field far beyond simply testing for12

the presence of cross-species gene flow.13

Models of cross-species introgression are known to cause unidenti-14

fiability issues, whereby different introgression models make the same15

probabilistic predictions about multilocus sequence data, and cannot16

be distinguished by such data (9–12). If the probability distributions17

of the data are identical under model m with parameters Θ and under18

model m′ with parameters Θ′, with19

f (X |m,Θ) = f (X |m′,Θ′) [1]20

for essentially all possible data X , the models are unidentifiable by 21

data X . Here we use the term within-model unidentifiability if m = m′
22

and Θ ̸= Θ′, or cross-model unidentifiability if m ̸= m′. In the former 23

case, two sets of parameter values in the same model are unidentifiable, 24

whereas in the latter, two distinct models are unidentifiable. There 25

have been very limited studies of unidentifiability of introgression 26

models, which examined heuristic methods that use gene tree topolo- 27

gies (either rooted or unrooted) as data (10–12), but the issue has 28

not been studied when full-likelihood methods are applied. Note that 29

unidentifiability depends on the data and the method of analysis. An 30

introgression model unidentifiable given gene tree topologies alone 31

may be identifiable given gene trees with coalescent times. Similarly, 32

a model unidentifiable using heuristic methods may be identifiable 33

when full likelihood methods are applied to the same data. It is thus 34

important to study the problem when full likelihood methods are 35

applied, because unidentifiability by a heuristic method may reflect 36

its inefficient use of information in the data rather than the intrinsic 37

difficulty of the inference problem (13). 38

Among the different types of MSci models developed (6–8), the 39

bidirectional-introgression (BDI) model (or model D in (8), fig. 1a) is 40

one of the most useful in real data analysis (e.g., 14, 15). The basic 41

BDI model for two species involves nine parameters, with Θ = (θA, θB, 42

θX , θY , θR, τR, τX , ϕX , ϕY ) (fig. 1a). Note that an introgression model 43

is similar to a species tree except that there are hybridization nodes 44

representing cross-species introgressions, besides speciation nodes 45

representing species divergences. While a speciation node has one 46

parent and two daughters, a hybridization node has two parents and 47

one daughter. The introgression probabilities (ϕ and 1−ϕ) describe 48

the contributions of the two parental populations to the hybrid species. 49

When we trace the genealogical history of a sample of sequences from 50

the modern species backwards in time and reach a hybridization node, 51

each of the sequences takes the two parental paths with probabilities ϕ 52

and 1−ϕ . There are thus three types of parameters in an introgression 53

(or MSci) model: the times of species divergence and introgression 54

(τs), the (effective) population sizes of modern and ancestral species 55

(θs), and the introgression probabilities (ϕs). Both the divergence 56

times (τs) and population sizes (θs) are measured in the expected 57

number of mutations per site. 58

The BDI model, in the case of two species (fig. 1), is noted to 59

have an unidentifiability issue (8). Let Θ′ be a set of parameters 60

with the same values as Θ except that ϕ ′
X = 1−ϕX , ϕ ′

Y = 1−ϕY , 61

θ ′
X = θY , and θ ′

Y = θX . Then f (G|Θ) = f (G|Θ′) for any gene tree G 62

(fig. 1b&c). Thus for every point Θ in the parameter space, there is 63

a ‘mirror’ point Θ′ with exactly the same likelihood. With Θ, the A 64
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sequences take the left (upper) path at X and enter population RX with65

probability 1−ϕX , coalescing at the rate 2
θX

, while with Θ′, the same66

A sequences may take the right (horizontal) path and enter population67

RY with probability ϕ ′
X = 1−ϕX , coalescing at the rate 2

θ ′
Y
= 2

θX
. The68

differences between Θ and Θ′ are in the labelling, with ‘left’ and X69

under Θ corresponding to ‘right’ and Y under Θ′, but the probabilities70

involved are the same. The same argument applies to sequences from71

B going through node Y , and to any numbers of sequences from A and72

B considered jointly. Thus f (G|Θ) = f (G|Θ′) for essentially all G.73

If the priors on ϕX and ϕY are symmetrical, say ϕ ∼ beta(α,α), the74

posterior density will satisfy f (Θ|X) = f (Θ′|X) for all X . Otherwise75

the “twin towers” may not have exactly the same height.76

The situation is very similar to the label-switching problem in77

Bayesian clustering (16–19). Consider data X = {xi} as a sample78

from a mixture of two normal distributions, N(µ1,1) and N(µ2,1)79

with the mixing proportions p1 and 1− p1. Let Θ = (p1, µ1, µ2) be80

the parameter vector. Then Θ′ = (1− p1, µ2, µ1) will have exactly81

the same likelihood, with f (X |Θ) = f (X |Θ′) for essentially all data82

X . In effect, the labels ‘group 1’ and ‘group 2’ are switched between83

Θ and Θ′.84

As an example, we fit the BDI model of figure 2a to the first85

500 noncoding loci on chromosome 1 in the genomic data from86

three Heliconius butterfly species: H. melpomene, H. timareta, and87

H. numata (14, 20). Figure 3a shows the trace plots for parameters88

ϕX and ϕY from a Markov chain Monte Carlo (MCMC) run. The89

Markov chain moves between two peaks, centered around (ϕX ,ϕY ) =90

(0.35,0.1) and (0.65,0.9), respectively. In effect, the algorithm is91

switching between Θ and Θ′ and changing the definition of parameters.92

This is a label-switching problem, as occurs in Bayesian clustering.93

The usual practice of estimating parameters by their posterior means94

(which are 0.54 for ϕX and 0.62 for ϕY in fig. 3a) and constructing the95

credibility intervals is inappropriate. Indeed the posterior distribution96

of Θ is exactly symmetrical with twin towers, and if the chain is run97

long enough, the posterior means of ϕX and ϕY will be exactly 1
2 .98

The results are similar when the first 500 exonic loci are analyzed, in99

which the Markov chain moves between two towers centered around100

(0.3,0.1) and (0.7,0.9) (fig. S1a).101

Unidentifiable models cannot be applied to real data as they are102

trying to “distinguish the indistinguishable” (10). Results such as103

those of figures 3a & S1a raise two questions. First, are BDI models104

with more than two species or two BDI events unidentifiable, and105

what are the rules? Second how do we deal with the problem of106

label-switching and make the models useful for real data analyses?107

Those two problems are addressed in this paper. We study the uniden-108

tifiability issue of BDI models for an arbitrary number of species with109

an arbitrary species tree, when a full-likelihood method is applied110

to multilocus sequence data. It has been conjectured that an MSci111

model is identifiable by full likelihood methods using data of multi-112

locus sequence alignments if and only if it is identifiable when the113

data consist of gene trees with coalescent times (8). We make use114

of this conjecture and consider two BDI models to be unidentifiable115

if and only if they generate the same distribution of gene trees with116

coalescent times. We identify general rules for the unidentifiability of117

the BDI models. We then develop new algorithms for post-processing118

the MCMC samples generated from a Bayesian analysis under the119

BDI model to remove the label-switching. Those advancements make120

the BDI models usable for real data analysis despite their unidentifia-121

bility. We use the BPP program to analyze synthetic datasets as well122

as genomic data from Heliconius butterflies to demonstrate the utility123

of the BDI models and the new algorithms.124

Theory 125

The rule of unidentifiability of BDI models. Suppose species 126

A and B exchange migrants at time τX = τY through bidirectional 127

introgression (fig. 4). To study the backwards-in-time process of 128

coalescent and introgression, we can treat nodes X and Y as one 129

node, XY . When sequences from A reach node XY , each of them has 130

probability 1−ϕX of taking the left parental path (RX) and probability 131

ϕX of taking the right parental path (SY ). Similarly when sequences 132

from B reach node XY , they have probabilities ϕY and 1−ϕY of taking 133

the left (RX) and right (Y S) parental paths, respectively. If we swap 134

branches A and B, carrying their population size parameters (θ ) and 135

introgression probabilities (ϕ) in the process, the probability density 136

of the gene-trees remains unchanged. Thus the species tree-parameter 137

combinations (S,Θ) and (S′,Θ′) of figure 4b&c are unidentifiable. 138

The processes of coalescent and introgression before reaching nodes 139

A and B are identical between Θ and Θ′, as are the processes past 140

nodes X and Y . For example, the rule still applies if each of A and B is 141

a subtree, with introgression events inside, or if there are introgression 142

events involving a descendant of A and a descendant of B. 143

In the case of two species, the parental species R and S (fig. 4) are 144

one node, and the species trees (A,B) and (B,A) are the same. As a 145

result, Θ and Θ′ in figure 4 correspond to two sets of parameter values 146

in the same model, so this is a case of within-model unidentifiability. 147

Otherwise the unidentifiability will be cross-model. 148

Canonical cases of BDI models. Here we study major BDI models 149

to illustrate the rule of unidentifiability and to provide reference for 150

researchers who may apply those models to analyze genomic datasets. 151

If we add subtrees onto branches XA, Y B, or the root branch R in 152

the two-species tree of figure 1a, so that the BDI event remains to 153

be between two sister species, the model will exhibit within-model 154

parameter unidentifiability (fig. S2), just like the basic model of figure 155

1a. 156

If the BDI event is between non-sister species, the model exhibits 157

cross-model unidentifiability. Figures S3a&a′ show a model with a 158

BDI event between cousins, while in figures S3b&b′, the two species 159

involved in the BDI event are more distantly related. 160

Figures S4a, b &c show three models each with a BDI event 161

between non-sister species. In figure S4a, X and Y are non-sister 162

species on the original binary species tree. In figure S4b&c, X and Y 163

are non-sister species because there are introgression events involving 164

branches RX and/or RY . In all three cases, there is cross-model 165

unidentifiability, with the twin towers shown in S4a′, b′, &c′. 166

The case of two non-sister BDI events for three species is illus- 167

trated in figure S5. According to our rule, there are four unidentifiable 168

models in the posterior, with parameter mappings shown in figure S5. 169

One way of seeing that the four models are equivalent or unidenti- 170

fiable is to assume that the introgression probabilities (ϕX , ϕY , ϕZ , 171

and ϕW ) are all < 1
2 , and then work out the major routes taken when 172

we trace the genealogical history of sequences sampled from modern 173

species. In such cases, all four models of figure S5 predict the fol- 174

lowing: most sequences from A will take the route ZR at node ZW 175

with probability 1− γ; most sequences from B will take the route 176

X-W at node XY (with probability 1−α), then the route WS at node 177

ZW (with probability 1−δ ), before reaching SR; and most sequences 178

from C will take the route Y S at node XY (with probability 1− β , 179

before reaching SR. Of course the four models are unidentifiable 180

whatever values the introgression probabilities take. Those models 181

have been used to analyze genomic data from Texas horned lizard 182

(Phrynosoma cornutum) (15). 183

Figure 5 shows two models for five species, each model involving 184
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three BDI events. In figure 5a, all three BDI events involve sister185

species, so that there are 23 = 8 unidentifiable within-model towers in186

the posterior. In figure 5b, one BDI event involves non-sister species187

while two involve sister species, so that there are two unidentifiable188

models, each of which has four unidentifiable within-model towers in189

the posterior.190

In general, if there are m BDI events between sister species and n191

BDI events between non-sister species, there will be 2m unidentifiable192

models, each having 2n within-model unidentifiable towers.193

Unidentifiability of double-DBI models. Figure 6a shows two BDI194

events between species A and B, which occurred at times τX = τY and195

τZ = τW , respectively. To apply the rule of figure 4, we treat Z and W196

as one node so that X and Y are considered sister species. There are197

then four unidentifiable within-model towers in the posterior space,198

shown as Θ1-Θ4 in fig. 6. The parameter mappings are199

Θ ϕX ϕY θX θY ϕZ ϕW θZ θW

Θ1 : ϕX < 1
2 ,ϕZ < 1

2 α β θX θY γ δ θZ θW
Θ2 : ϕX < 1

2 ,ϕZ > 1
2 α β θX θY 1− γ 1−δ θW θZ

Θ3 : ϕX > 1
2 ,ϕW < 1

2 1−α 1−β θY θX δ γ θW θZ
Θ4 : ϕX > 1

2 ,ϕW > 1
2 1−α 1−β θY θX 1−δ 1− γ θZ θW

[2]200

In general, with k BDI events between two species, which occurred201

at different time points in the past, there will be 2k unidentifiable202

within-model towers in the posterior. There may be little information203

in practical datasets to estimate so many parameters: if all sequences204

have coalesced before they reach the ancient introgression events205

near the root of the species tree, the introgression probabilities (ϕs)206

and the associated population sizes (θs) will be nearly impossible to207

estimate. Thus we do not consider more than two BDI events between208

two species. Note that even the model with one BDI event is not209

identifiable by heuristic methods that use gene tree topologies only. A210

small simulation is conducted to illustrate the feasibility of applying211

the double-BDI model (fig. 6) to genomic datasets; see Results.212

Addressing unidentifiability issues and difficulties with identi-213

fiability constraints. According to our rule, MSci models with BDI214

events can create both within-model and cross-model unidentifiability.215

Cross-model unidentifiability is relatively simple to identify and deal216

with. If the MCMC is run with the MSci model fixed (8), only one217

of the models (e.g., model S1 with parameters Θ1 in fig. S5) is vis-218

ited in the chain. One can then summarize the posterior distribution219

for parameters under that model (which may be smooth and single-220

moded), and the posterior summary may be mapped onto the other221

unidentifiable models according to the rule. See ref. (15) for such an222

application of BDI models of figure S5. If the MCMC is trans-model223

and visits different models in the chain (6, 7), the posterior space is224

symmetrical between the unidentifiable models (such as models S1–S4225

of fig. S5). However, such symmetry is unlikely to be achieved in the226

MCMC sample due to well-known mixing difficulties of trans-model227

MCMC algorithms. One may choose to focus on one of the models228

(e.g., S1 of fig. S5) and post-process the MCMC sample to map the229

sample onto the chosen model before producing the within-model230

posterior summary. Oftentimes the MCMC may explore the within-231

model posterior space very well, despite difficulties of moving from232

one model to another. In all cases, the researcher has to be aware of233

the unidentifiable models which are equally good explanations of the234

data (see Discussion).235

Our focus here is on within-model unidentifiability created by BDI236

events between sister species. When there are multiple modes in the237

posterior, each mode may offer a sensible interpretation of the data, 238

but it is inappropriate to merge MCMC samples from different modes, 239

or to construct posterior summaries such as the posterior means and 240

CIs using MCMC samples that traverse different modes. It is instead 241

more appropriate to summarize the samples for each mode. 242

A common strategy for removing label-switching is to apply so- 243

called identifiability constraints. In the simple BDI model of figure 1, 244

any of the following constraints may be applicable: ϕX < 1
2 , ϕY < 1

2 , 245

and θX < θY . Such identifiability constraints may be imposed during 246

the MCMC or during post-processing of the MCMC samples. As 247

discussed previously (17, 18), such a constraint may be adequate if the 248

posterior modes are well separated, but may not work well otherwise. 249

For example, when ϕX is far away from 1
2 in all MCMC samples, 250

it is simple to process the MCMC sample to impose the constraint 251

ϕX < 1
2 . This is the case in analyses of the large datasets in this paper, 252

for example, when all noncoding and exonic loci from chromosome 1 253

of the Heliconius data are analyzed (table 1). However, when the pos- 254

terior modes are not well-separated (either because the true parameter 255

value is close to the boundary defined by the inequality or because the 256

data lack information so that the CIs are wide), different identifiability 257

constraints can lead to very different parameter posteriors (16), and an 258

appropriate constraint may not exist. A serious problem in such cases 259

is that imposing an identifiability constraint may generate posterior 260

distributions over-represented near the boundary, with seriously bi- 261

ased posterior means (17, 18). For example, ϕX may have substantial 262

density mass both below and above 1
2 , and imposing the constraint 263

ϕX < 1
2 will artificially generate high density mass close to ϕX = 1

2 . 264

Similarly the posterior distributions of θX and θY may overlap, so that 265

the constraint θX < θY may not be appropriate. 266

New algorithms to process MCMC samples from the BDI model 267

to remove label switching. One approach to dealing with label- 268

switching problems in Bayesian clustering is relabelling. The MCMC 269

is run without any constrain, and the MCMC sample is then post- 270

processed to remove label-switching, by attempting to move each 271

point in the MCMC sample to its alternative unidentifiable positions 272

in order to, as far as possible, make the marginal posterior distribu- 273

tions smooth and unimodal (17, 18). The processed sample is then 274

summarized to generate the posterior of the parameters. Here we 275

follow this strategy and implement three relabelling algorithms for 276

use with the BDI model. 277

Let Θ = (ϕX ,ϕY ,θX ,θY ), which has a mirror point Θ′ = 278

(ϕ ′
X ,ϕ

′
Y ,θ

′
X ,θ

′
Y ) = (1− ϕX ,1− ϕY ,θY ,θX ) (fig. 1). The other pa- 279

rameters in the model are not involved in the unidentifiability and are 280

simply copied along. Let Θt , t = 1, · · · ,N, be the N samples of pa- 281

rameters generated by the MCMC algorithm. Each sample is a point 282

in the 4-D space. Let σt be a transform for point t, with σt(Θt) = Θt 283

to be the original point, and σt(Θt) = Θ′ to be the transformed or 284

mirror point (fig. 1b&c). With a slight abuse of notation, we also 285

treat σt as an indicator, with σt = 0 and 1 representing Θt and Θ′
t , 286

respectively. For each sample t, we choose either the original point or 287

its mirror point, to make the posterior of the parameters look smooth 288

and single-moded as far as possible. The first two algorithms, called 289

center-of-gravity algorithms CoG0 and CoGN , loop through two steps. 290

Algorithms CoG0 and CoGN . Initialize. For each point t, t = 291

1, · · · ,N, pick either the original point (Θt ) or its mirror point (Θ′
t ). 292

We set σt to 0 (for Θt ) if ϕX < 1
2 or ϕY < 1

2 , or to 1 (for Θ′
t ) otherwise. 293

• Step 1. Determine the center of gravity, given by the sample 294

means of the parameters, µ = (ϕ̄X , ϕ̄Y , θ̄X , θ̄Y ). 295

• Step 2. For each point t = 1, · · · ,N, compare the current and 296

its mirror positions and choose the one closer to the center of 297
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gravity (µ).298

In step 2, we use the Euclidean distance299

d0(Θ,µ) =

[
4

∑
j
(φ j −µ j)

2

]1/2

, [3]300

where φ j are the four parameters in Θ: ϕX ,ϕY ,θX ,θY . This is algo-301

rithm CoG0.302

If we consider different scales in the different dimensions (for303

example, ϕX and θX may have very different posterior variances), we304

can calculate the sample variances ν (in addition to the sample means305

µ) in step 1 and use them as weights to normalize the differences in306

step 2, with307

dN(Θ,µ) =

[
4

∑
j

1
ν j

(φ j −µ j)
2

]1/2

. [4]308

We refer to this as algorithm CoGN .309

The third algorithm, called the β–γ algorithm, follows the rela-
belling algorithm in ref. (18) for Bayesian clustering. We use max-
imum likelihood (ML) to fit the sample {Θt} to independent beta
distributions for ϕX and ϕY and gamma distributions for θX and θY :

f (Θ;ω) = b(ϕX ; pX ,qX ) ·b(ϕY ; pY ,qY )

×g(θX ;aX ,bX ) ·g(θY ;aY ,bY ), [5]

where310

b(φ ; p,q) =
1

B(p,q)
φ

p−1(1−φ)q−1,

g(φ ;a,b) =
ba

Γ(a)
φ

a−1 e−bφ

[6]311

are the beta and gamma densities and where ω = (pX , qX , pY , qY ,312

aX ,bX ,aY ,bY ) is the vector of hyper-parameters.313

The log likelihood, as a function of the hyper-parameters ω and314

the transforms σ = {σt}, is315

ℓ(ω,σ) =
N

∑
t
ℓt(ω,σt(Θt)) =

N

∑
t

log f (σt(Θt);ω). [7]316

We have implemented the following iterative algorithm to estimate ω317

and σ by maximizing ℓ.318

Algorithm β–γ . Initialize σt , t = 1, · · · ,N. As before, we set σt319

to 0 (for Θt ) if ϕX < 1
2 or ϕY < 1

2 , or to 1 (for Θ′
t ) otherwise.320

• Step 1. Choose ω̂ to maximize the log likelihood ℓ (eq. 7) with321

the transforms σ fixed.322

• Step 2. For t = 1, · · · ,N, choose σt to maximize ℓt(ω̂,σt(Θt))323

with the hyper-parameters ω fixed. In other words compare Θt324

and Θ′
t and choose the one that better fits the beta and gamma325

distributions.326

Step 1 fits two beta and two gamma distributions by ML and327

involves four separate 2-D optimization problems. The maximum328

likelihood estimates (MLEs) of p and q for the beta distribution329

b(φ ; p,q) are functions of ∑t logφt and ∑t log(1− φt), whereas the330

MLEs of a and b for the gamma distribution g(φ ;a,b) are functions331

of ∑t φt and ∑t logφt . These are simple optimization problems, which332

we solve using the BFGS algorithm in the PAML program (21). Step 2333

involves N independent optimization problems, each comparing two334

points (σt = 0 and 1), with ω fixed. It is easy to see that the algorithm335

is nondecreasing (that is, the log likelihood ℓ never decreases) and336

converges, as step 1 involves ML estimation of parameters in the beta 337

and gamma distributions, and step 2 involves comparing two points. 338

Note that algorithm β–γ becomes algorithm CoGN if the beta and 339

gamma densities are replaced by normal densities. 340

Algorithms CoG0, CoGN , and β–γ for the double-BDI model 341

(fig. 6a). Under the double-BDI model, there are four within-model 342

unidentifiable towers, specified by eight parameters (eq. 2). Thus σt 343

takes four values (0,1,2,3). Let Θ= (ϕX ,ϕY ,ϕZ ,ϕW , θX ,θY ,θZ ,θW ). 344

We use the same strategy and fit four beta distributions to the ϕs and 345

four gamma distributions to the θs, with 16 hyper-parameters in ω . 346

We implement the three algorithms (β–γ , CoGN , and CoG0) as before. 347

We prefer the tower in which the introgression probabilities are small 348

and initialize the algorithm accordingly. The transforms (σt ) are as 349

follows (eq. 2) 350

• σt = 0: if the parameters are in Θ1, do nothing. 351

• σt = 1: if in Θ2, let ϕZ = 1−ϕZ , ϕW = 1−ϕW , and swap θZ 352

and θW . 353

• σt = 2: if in Θ3, let ϕX = 1−ϕX , ϕY = 1−ϕY , swap θX and 354

θY , swap ϕZ and ϕW , swap θZ and θW ; 355

• σt = 3: if in Θ4, let ϕX = 1−ϕX , ϕY = 1−ϕY , swap θX and 356

θY , and let ϕZ = 1−ϕW and ϕW = 1−ϕZ . 357

The algorithms are implemented in C and require minimal compu- 358

tation and storage. Processing 5×105 samples takes several seconds, 359

mostly spent on reading and writing files. The algorithms are in- 360

tegrated into the BPP program (22) so that MCMC samples from 361

various BDI models are post-processed and summarized automati- 362

cally. We also provide a stand-alone program in the github repository 363

abacus-gene/bpp-msci-D-process-mcmc. 364

Results 365

Introgression between Heliconius melpomene and H. timareta. 366

We fitted the BDI model of figure 2 to the genomic sequence data from 367

three species of Heliconius butterflies: H. melpomene, H. timareta, 368

and H. numata (14, 20). When we used the first 500 loci, either 369

noncoding or exonic, there was substantial uncertainty in the posterior 370

of ϕX and ϕY , and the MCMC jumped between the twin towers, and 371

the marginal posteriors had multiple modes, due to label switching 372

(figs. 3a & S1a). Post processing of the MCMC sample using the 373

new algorithms led to single-moded marginal posterior distributions 374

(figs. 3b–d & S1b–d). The three algorithms produced extremely 375

similar results for both datasets. For example, the posterior mean and 376

95% CI for ϕX from the noncoding data were 0.356 (0.026, 0.671) 377

by CoG0, 0.357 (0.026, 0.674) by CoGN , and 0.354 (0.022, 0.664) 378

by β–γ , while those for ϕY were 0.103 (0.000, 0.304) by CoG0 and 379

CoGN , and 0.104 (0.000, 0.306) by β–γ . 380

We then analyzed all the 2592 noncoding and 3023 exonic loci on 381

chromosome 1. With the large datasets, the parameters were better 382

estimated with narrower CIs and the unidentifiable towers were well- 383

separated. In fact, the MCMC visited only one of the two towers, but 384

that tower was well explored so that multiple runs produced highly 385

consistent results. We started the MCMC with small values for ϕX 386

and ϕY , and post-processing the MCMC samples had no effect. 387

Estimates of all parameters from the small (with L = 500) and 388

large datasets are summarized in table 1. In the small datasets, the 389

introgression probabilities were ϕX ≈ 0.354 (with the CI 0.022–0.664) 390

for the noncoding data and 0.280 (with CI 0.002–0.547) for the coding 391

loci, while ϕY was 0.104 (CI 0.000–0.306) for the coding data and 392

0.116 (CI 0.000–0.318) for the exonic data. When all loci from 393

chromosome 1 were used, ϕX was 0.124 (with the CI 0.007–0.243) 394
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for the noncoding data and 0.161 (with CI 0.070–0.264) for the coding395

loci, while ϕY was 0.048 (CI 0.000–0.139) for the coding data and396

0.019 (CI 0.000–0.056) for the exonic data. The estimates were similar397

between the coding and noncoding data, with greater proportions398

of migrants in H. timareta from H. melpomene than in the opposite399

direction. This was so despite the fact that H. melpomene had a smaller400

effective population size than H. timareta. Note that H. melpomene401

has a widespread geographical distribution whereas H. timareta is402

restricted to the Eastern Andes; the small θM estimates are most likely403

due to the fact that the H. melpomene sample was from a partially404

inbred strain to avoid difficulties with genome assembly. Estimates405

of θs and τs were smaller for the coding loci than for the noncoding406

loci, due to selective constraint on nonsynonymous mutations.407

Estimates of ϕX and ϕY showed large differences between the408

small and large datasets, but they involved large uncertainties, with the409

CIs for large datasets mostly inside the CIs for the small datasets. One410

reason for the differences may be the variable rate of gene flow across411

the genome or chromosome. Note that ϕ in the MSci model reflects412

the long-term effects of gene flow and selection purging introgressed413

alleles, influenced by linkage to gene loci under natural selection.414

Analysis of data simulated under the double-BDI model of fig-415

ure 6a. We conducted a small simulation to illustrate the feasibility416

of the double-BDI model (fig. 6), simulating 10 replicate datasets of417

L = 500, 2000, and 8000 loci. The three algorithms were used to418

process the MCMC samples, before they were summarized. A typical419

case is shown in figure 7 for the case of L = 500. While there are four420

unidentifiable towers in the 8-D posterior space (eq. 2), the MCMC421

visited only two of them, with different values for parameters around422

the ZW BDI event. The dataset of L = 500 loci are very informative423

about the parameters for the recent BDI event at node XY (ϕX , ϕY ,424

θX , θY ), so that these had highly concentrated posteriors with well425

separated towers. We started the Markov chains with small values426

(e.g., 0.1 and 0.2) for ϕX and ϕY , so that the sampled points were all427

around the correct tower for those parameters. If the chain started with428

large ϕX and ϕY , it would visit a ‘mirror’ tower. Thus post-processing429

of the MCMC samples in the case of L = 500 mostly affected pa-430

rameters around the BDI event at ZW (ϕZ , ϕW , θZ , θW ). Figure 7431

shows the effects on parameters ϕZ and ϕW using the β–γ algorithm.432

The CoG0 and CoGN algorithms produced nearly identical results,433

and all algorithms were effective in removing label switching. The434

post-processed samples were summarized to calculate the posterior435

means and the HPD CIs (fig. 8).436

At L = 2000 or 8000 loci, the four towers were well-separated and437

the MCMC visited only one of them. Applying the post-processing al-438

gorithms either had no effect or, in rare occasions, moved all sampled439

points from another tower.440

Posterior means and the 95% highest-probability-density (HPD)441

credibility intervals (CI) for all parameters were summarized in figure442

8. Parameters around the BDI event at ZW (ϕZ , ϕW , θZ , θW ) are the443

most difficult to estimate. Nevertheless, with the increase of data size,444

the CIs for all parameters become smaller, and the posterior means445

are converging to the true values. Note that while the simulation is446

conducted using one set of correct parameter values (say, Θ1 of fig. 6),447

we consider the estimates to be good if they are close to any of the448

four towers (say, Θ2, Θ3, or Θ4).449

Analysis of data simulated with one BDI event with poorly450

separated modes. We simulated a more challenging dataset for the451

relabelling algorithms, with L = 500 loci under the BDI model of452

figure 1a with parameter values (ϕX ,ϕY ) = (0.7,0.2) (see table S1).453

As ϕX and ϕY are not too far away from 1
2 and the dataset is small,454

the posterior modes are poorly separated, with considerable mass 455

near ( 1
2 ,

1
2 ). The unprocessed sample from BPP shows two modes 456

for ϕY , and one mode around 1
2 for ϕX , with the posterior means 457

at 0.51 for ϕX and 0.50 for ϕY , very close to 1
2 (fig. S6. These are 458

misleading summaries, as the sample is affected by label switching. 459

The three algorithms (β–γ , CoGN , and CoG0) produce similar results, 460

with single-moded posterior, around the mirror tower Θ′ = (0.3,0.8). 461

The posterior means for ϕX are 0.245, 0.236, and 0.235, for the three 462

algorithms (β–γ , CoGN , and CoG0), and those for ϕY are 0.553, 463

0.539, and 0.538 (table S1). The three algorithms have worked well 464

even when the posterior modes are poorly separated. 465

The parameters involved in the label switching, ϕX , ϕY , θX , θY , 466

are poorly estimated, due to the difficulty of separating the towers and 467

to influence from the priors. The estimates should improve if more 468

loci are used in the data. Other parameters in the model are all well 469

estimated (table S1). 470

Discussion 471

Identifiability and low information content of MSci models. The 472

identifiability of other MSci models implemented in BPP are simpler. 473

MSci model A is consistent with three different biological scenarios 474

(fig. 9a-c). In scenario A1, two species SH and T H merge to form 475

a hybrid species HC, but the two parental species become extinct 476

after the merge. This scenario may be rare. In scenario A2, species 477

SUX contributes migrants to species T HC at time τH and has since 478

become extinct or is unsampled in the data. In scenario A3, TUX 479

is the ghost species. The three scenarios are unidentifiable using 480

genomic data. Model B1 assumes introgression from species RA to 481

TC at time τS = τH (fig. 9d). This is distinguishable using genetic 482

data from the alternative model B2 in which there is introgression 483

from RB to SC (B2, fig. 9e). Note that models B1 and B2 are both 484

special cases of model A1 with different constraints. 485

We note that there are many parameter settings and data configura- 486

tions in which some parameters are hard to estimate, because the data 487

lack information about them. For example, ancestral population sizes 488

for short and deep branches in the species tree are hard to estimate, 489

because most sequences sampled from modern species may have coa- 490

lesced before reaching that population when we trace the genealogy 491

of the sample backwards in time. Similarly, if not many sequences 492

reach a hybridization node, there will be little information in the data 493

about the introgression probabilities at that node. In such case, even if 494

the model is identifiable mathematically, it may be nearly impossible 495

to estimate the parameters with any precision even with large datasets. 496

In some cases, certain parameters may be very near the boundary 497

of the parameter space, and this may create near unidentifiability 498

with multiple modes in the posterior. For example, the introgression 499

probability may be close to ϕ = 0 or 1, or speciation events may have 500

occurred in rapid succession so that the mother and daughter nodes on 501

the species tree have nearly the same age) (see (15) for an example). 502

The MCMC samples around different modes should be summarized 503

separately. 504

Estimation of introgression probabilities despite unidentifi- 505

ability. The three algorithms for post-processing MCMC samples 506

under the BDI model produced very similar results in our applica- 507

tions. In particular the simple center-of-gravity algorithms produced 508

results as good as the more elaborate β–γ algorithm, despite the fact 509

the normal distribution is a poor approximation to the posterior of 510

the introgression probabilities (ϕX and ϕY ). This may be due to the 511

fact that the distributions (or the distance in the CoG algorithms) are 512

used to compare the sampled points with their unidentifiable mirror 513
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points only, and are not used to directly approximate the posterior514

distribution of those parameters, which are estimated by using the515

processed samples. Similarly, while we fit independent distributions516

for parameters in the algorithms (eq. 6), there is no need to assume517

independence in the posterior for the algorithms to work. Further-518

more, if there exist multiple modes in the posterior that are not due to519

label-switching, such genuine multimodality will not be removed by520

the algorithms (18).521

A model with a label-switching type of unidentifiability can still be522

applied in real data analysis. In the clustering problem, the Bayesian523

analysis may reveal the existence of two groups, in proportions p1 and524

1− p1 with means µ1 and µ2, and it may not matter if it cannot decide525

which group should be called ‘group 1’. The twin towers Θ and Θ′
526

under the BDI model of figure 1 constitute a mathematically similar527

label-switching problem. However, Θ and Θ′ may represent different528

biological scenarios or hypotheses. Suppose that species A and B are529

distributed in different habitats (dry for A and wet for B, say), and530

suppose the ecological conditions have changed little throughout the531

history of the species. Θ may mean that species A has been in the dry532

habitat over the whole time period since species divergence at time533

τR, while species B has been in the wet habitat, and they came into534

contact and exchanged migrants at time τX . In contrast, Θ′ may mean535

that species A was in the wet habitat since species divergence while536

species B was in the dry habitat, but when they came into contact (at537

time τX ) they nearly replaced each other, switching places, so that538

today species A is found in the dry habitat while species B in the539

wet habitat. The two sets of parameters Θ and Θ′ may thus mean540

different biological hypotheses. The scenario of total replacement541

may be implausible for most systems, and in our algorithms, we start542

with the initial conditions ϕX < 1
2 and/or ϕY < 1

2 as much as possible.543

When the introgression probabilities are intermediate, the biological544

interpretations may not be so clear-cut, but unidentifiability exists545

nevertheless. In the example of figure S6 and table S1, the choice546

between the two unidentifiable towers Θ = (ϕX ,ϕY ) = (0.7,0.2) and547

Θ′ = (0.3,0.8) may not be easy. Ultimately, genomic data from mod-548

ern species provide information about the order and timings of species549

divergences and cross-species introgressions, but not about the geo-550

graphical locations and ecological conditions in which the divergences551

and introgressions occurred. Unidentifiable models discussed in this552

paper are all of this nature. The algorithms we developed in this paper553

remove label switching in the MCMC sample, but do not remove the554

unidentifiability of the BDI models. The researcher has to be aware555

of the unidentifiability or the equally supported explanations of the556

genomic data.557

In the current implementation of BDI models in BPP, each branch558

in the species tree is assigned its own population size parameter (8).559

We note that if all species on the species tree are assumed to have560

the same population size (θ ), unidentifiability persists. However,561

if we assume that the population size remains unchanged by the562

introgression event: e.g., θX = θA and θY = θB in figure 1, the model563

becomes identifiable. The assumption of the same population size564

before and after a migration event appears to be plausible biologically.565

It reduces the number of parameters by two for each BDI event, and566

removes unidentifiability. It may be worthwhile to implement such567

models. At any rate, the relabelling algorithms we have implemented568

makes it possible to apply the BDI models to genomic sequence data569

despite their unidentifiability.570

Materials and Methods571

Introgression in Heliconius butterflies. We fitted the BDI model to the ge- 572

nomic sequence data for three species of Heliconius butterflies: H. melpomene, 573

H. timareta, and H. numata (23, 24). The species tree or MSci model as- 574

sumed is shown in figure 2, with introgression between H. melpomene and H. 575

timareta. The two species are known to hybridize, although no attempt has 576

yet been made to infer the direction or magnitude of introgression (except for 577

colour-pattern genes) (24). There are 31,166 autosomal noncoding loci and 578

36,138 autosomal exonic loci, with 2592 noncoding and 3023 exonic loci on 579

chromosome 1. We conducted two sets of analysis, using either the first 500 580

loci or all the loci on chromosome 1. 581

We used gamma priors for the population sizes (θ ) and for the age of the 582

root (τ0): θ ∼ G(2,400) with the mean 0.005 substitution per site, and τ ∼ 583

G(2,400) with mean 0.005. The introgression probabilities were assigned beta 584

priors ϕ ∼ B(1,1), which is the uniform U(0,1). We used a burn-in of 16000 585

iterations, and then took 2×105 samples, sampling every 5 iterations. Running 586

time on a server with 9 threads of Intel Xeon Gold 6154 CPU (3.0GHz) was 587

about 1 hour for the small datasets and 10 hours for the large ones. 588

Convergence of the MCMC algorithms was assessed by checking for 589

consistency between independent runs, taking into account possible label- 590

switching issues. In the large datasets analyzed in this paper, the MCMC 591

typically visits only one of the unidentifiable towers, but that tower is well- 592

explored, with the different runs producing highly consistent posterior after 593

label switching is removed. In such cases, reliable inference is possible 594

(cf.:(19)). 595

Simulation under the double-BDI model. We simulated and analyzed data 596

to under the double-BDI model of figure 6. We generated gene trees with 597

branch lengths (coalescent times) and sequences under the JC model (25). 598

The parameters used are ϕX = 0.1,ϕY = 0.2, ϕZ = 0.2,ϕW = 0.3, τR = 0.005, 599

τZ = τW = 0.0025, τX = τY = 0.00125, θR = θZ = θX = θA = 0.005, and 600

θW = θY = θB = 0.02. Each dataset consists of L = 500,2000 and 8000 loci, 601

with S = 16 sequences per species per locus, and with the sequence length to 602

be 500 sites. The numbre of replicate datasets is 10. 603

The data were then analyzed using BPP under the double-BDI model 604

(fig. 6) to estimate the 14 parameters. We use gamma priors τ0 ∼ G(2,400) 605

for the root age with the mean to be the true value (0.005), and θ ∼ G(2,200) 606

with the mean 0.01 (true values are 0.005 and 0.02). We used a burn-in of 607

32,000 iterations, and then took 5×105 samples, sampling every 2 iterations. 608

Analysis of each dataset took ∼10hrs for L = 500 and ∼ 130hrs for L = 8000, 609

using 8 threads on a server. The MCMC samples were processed to remove 610

label-switching before they are summarized to approximate the posterior 611

distribution. 612
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Fig. 1. (a) Bidirectional introgression model or model D (8) assumes introgression
in both directions between species A and B at time τX = τY . (b) and (c) Two sets
of parameters Θ and Θ′, with the same parameter values except that ϕ ′

X = 1−ϕX ,
ϕ ′

Y = 1−ϕY , θ ′
X = θY , and θ ′

Y = θX . The dotted lines indicate the main routes taken
by sequences sampled from species A and B, if both introgression probabilities α and
β are ≪ 1

2 .
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Fig. 2. Species tree and BDI model for Heliconius melpomene, H. timareta, and H.
numata. The branch lengths are drawn to represent the estimated species divergence
times (posterior means) using the noncoding and exonic loci from chromosome 1,
while the node bars represent the 95% HPD CIs. See table 1 for estimates of other
parameters. Photo of H. timareta courtesy of James Mallet.
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Table 1. Posterior means and 95% HPD CIs (in parenthees) for parameters in the BDI model of figure 2 for the Heliconius data

Noncoding, L = 500 Noncoding, L = 2592 Exonic, L = 500 Exonic, L = 3023

τR 4.73 (4.33, 5.13) 5.10 (4.89, 5.30) 4.39 (3.98, 4.81) 4.71 (4.54, 4.88)
τS 3.12 (2.05, 4.19) 2.58 (2.12, 3.05) 1.95 (1.07, 2.82) 1.78 (1.38, 2.19)
τX = τY 0.62 (0.21, 1.02) 0.25 (0.09, 0.40) 0.20 (0.03, 0.37) 0.13 (0.05, 0.24)
θM 1.50 (0.62, 2.34) 0.69 (0.35, 1.10) 0.38 (0.08, 0.70) 0.32 (0.14, 0.52)
θT 2.55 (1.40, 3.74) 1.23 (0.65, 1.84) 0.79 (0.13, 1.28) 0.63 (0.32, 0.94)
θN 15.1 (12.0, 18.5) 23.0 (20.3, 25.7) 11.2 (9.11, 13.5) 12.4 (11.4, 13.4)
θR 5.08 (4.12, 6.05) 5.74 (5.23, 6.24) 5.76 (4.83, 6.70) 6.68 (6.24, 7.11)
θS 4.62 (1.85, 7.40) 6.92 (5.48, 8.37) 5.31 (3.38, 7.36) 7.50 (6.51, 8.49)
θX 11.4 (2.83, 21.2) 12.9 (7.35, 19.6) 8.04 (1.67, 15.4) 5.80 (3.60, 8.36)
θY 6.78 (2.42, 11.6) 8.74 (5.69, 12.0) 4.03 (0.60, 7.51) 3.49 (2.56, 4.50)
ϕX 0.354 (0.022, 0.664) 0.124 (0.007, 0.243) 0.280 (0.002, 0.547) 0.161 (0.070, 0.264)
ϕY 0.104 (0.000, 0.306) 0.048 (0.000, 0.139) 0.116 (0.000, 0.318) 0.019 (0.000, 0.056)

Note.— Estimates of τs and θs are multiplied by 103. MCMC samples are processed using the β–γ algorithm before they are summarized.

Fig. 3. Trace plots of MCMC samples and 2-D scatter plots for parameters ϕX (purple) and ϕY (green) before (top) and after (bottom three) the post-processing of the MCMC
sample in the BPP analysis of the first 500 noncoding loci from chromosome 1 of the Heliconius data under the MSci model of figure 2. The three algorithms used are β–γ ,
CoGN , and CoG0.
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Fig. 4. The rule of BDI unidentifiability. (a) In the BDI model, species RA and SB
exchange migrants at time τX = τY . Treat X and Y as one node with left parent RX
with population size θX and right parent SY with population size θY . When a sequence
from A reaches XY , it takes the left and right parental paths with probabilities 1−ϕX

and ϕX , respectively. When a sequence from B reaches XY , it goes left and right
with probabilities ϕY and 1−ϕY , respectively. (b & c) Placing the two daughters in
the order (A,B) as in Θ or (B,A) as in Θ′ does not affect the distribution of gene trees,
and constitutes unidentifiable towers in the posterior space. If X and Y are sister
species and have the same mother node (with R and S to be the same node), the
unidentifiability is within-model; otherwise it is cross-model.
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Fig. 5. (a) Three BDI events between sister species creating 23 = 8 within-model
towers in the posterior. (b) Two BDI events between sister species and one BDI
event between non-sister species creating two unidentifiable models each with four
within-model unidentifiable towers in the posterior space.
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Fig. 6. Double-BDI model between two species A and B, with four within-model
towers (Θ1, Θ2, Θ3, and Θ4). (a) The parameters in the model include 7 θs, 3 τs,
and 4 ϕs, with 14 parameters in total. (b)-(e) Four unidentifiable towers showing the
mappings of parameters (eq. 2). To apply the rule of figure 4, we treat each pair of
BDI nodes as one node, so that X and Y have the same node ZW as the parent, and
the unidentifiability caused by the BDI event at nodes X-Y is within-model, as is the
unidentifiability for the BDI event at nodes Z-W .
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Fig. 7. Trace plots of MCMC samples and 2-D scatter plots for parameters ϕZ (purple) and ϕW (green) before (top) and after (bottom) the post-processing of the MCMC
samples for the double-DBI model of figure 6a. Post processing used the β–γ algorithm, while CoGN and CoG0 produced nearly identical results (not shown). This is for
replicate 2 for L = 500 loci.
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they are summarized.
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Supporting Information (SI).670

• Figure S1: Analysis of the first 500 exonic loci of the Heliconius data.671

• Figure S2: Three models with a BDI event between sister species.672

• Figure S3: Two models with a BDI event between nonsister species.673

• Figure S4: Three models with a BDI event between nonsister species.674

• Figure S5: Two BDI events between non-sister species creating four675

unidentifiable models.676

• Figure S6: Trace plots for φX and φY in analysis of a dataset of L = 500677

loci simulated under the BDI model of figure 1.678

• Table S1: Posterior means and 95% HPD CIs for parameters in the BDI679

model from a simulated data of L = 500 loci.680

Fig. S1. Analysis of the first 500 exonic loci on chromosome 1 from the Heliconius data. See legend to figure 3.
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Fig. S3. BDI between non-sister species creates cross-model unidentiability. (a &
a′) A pair of unidentifiable models with a BDI event between non-sister species. The
dotted lines indicate the main routes taken by sequences sampled from species A
and B, if the introgression probabilities α and β are < 1

2 . (b & b′) Another pair of
unidentifiable models with a BDI event between non-sister species. The parameter
mapping from Θ to Θ′ in both cases is ϕ ′

X = 1−ϕY and ϕ ′
Y = 1−ϕX , with all other

parameters (such as θX , θY , θA, and θB) to be identical between Θ and Θ′.
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Fig. S6. Trace plots of MCMC samples for φX and φY and 2-D scatter plots from BPP analysis of a dataset of L = 500 loci simulated under the BDI model of figure 1a. See table
S1 for the true parameter values and posterior summaries. The plots are for, from top to bottom, unprocessed sample and processed samples using the β–γ , CoGN , and
CoG0 algorithms. The true parameter values are Θ = (ϕX ,ϕY ) = (0.7,0.2), and the post-processing using all three algorithms mapped the samples to the mirror tower around
Θ′ = (0.3,0.8).

Table S1. Posterior means and 95% HPD CIs (in parenthees) for parameters in the MSci model of figure 1a from a simulated dataset of L = 500
loci

truth (Θ) mirror (Θ′) beta-gamma CoGN CoG0

τR 0.01 0.0098 (0.0088, 0.0108)
τX = τY 0.005 0.0050 (0.0045, 0.0055)
θA 0.002 0.0020 (0.0018, 0.0021)
θB 0.01 0.0101 (0.0093, 0.0108)
θR 0.002 0.0020 (0.0006, 0.0034)
θX 0.002 0.01 0.0071 (0.0022, 0.0124) 0.0067 (0.0017, 0.0120) 0.0068 (0.0017, 0.0121)
θY 0.01 0.002 0.0063 (0.0005, 0.0130) 0.0066 (0.0005, 0.0133) 0.0066 (0.0005, 0.0133)
φX 0.7 0.3 0.245 (0.001, 0.528 ) 0.236 (0.001, 0.472 ) 0.235 (0.001, 0.470 )
φY 0.2 0.8 0.553 (0.330, 0.791 ) 0.539 (0.305, 0.786 ) 0.538 (0.305, 0.788 )

Note.— Empty cells mean the same values as on the left. MCMC samples are processed using the three algorithms and then summarized. See
figure S6 for the tracecatter plots. The dataset of L = 500 loci, each consisting of four sequences per species (or eight sequences per locus) and

500 sites per sequence, is simulated using the true parameter values (Θ).
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