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 2 

Abstract 28 

1. Soil microbiota are fundamentally linked to the restoration of degraded ecosystems, as 29 

they are central to important ecological functions including the support of plant 30 

communities. High throughput sequencing of environmental DNA used to characterise 31 

soil microbiota offers promise to monitor ecological progress towards reference states. In 32 

post-mining rehabilitation, successful mine closure planning requires specific, 33 

measurable, achievable, relevant and time-bound (SMART) completion criteria, such as 34 

returning ecological communities to match a target level of similarity to reference sites. 35 

2. We analysed patterns of surface soil bacterial community similarity to reference 36 

(‘rehabilitation trajectory’) data from three long-term (> 25 year) post-mining 37 

rehabilitation chronosequence case studies from south-west Western Australia. We 38 

examined the influence of different ecological distance measures, sequence grouping 39 

approaches, and eliminating rare taxa on rehabilitation trajectories and predicted recovery 40 

times. We also explored the issue of spatial autocorrelation in our rehabilitation trajectory 41 

assessments and trialled a first-pass approach for correcting its undue influence. 42 

3. We found considerable variation in bacterial communities among reference sites within 43 

each case study minesite, providing valuable context for setting targets and evaluating 44 

recovery. Median Bray-Curtis similarities among references within each minesite ranged 45 

from 30–36%, based on amplicon sequence variant-level data. Median predicted times for 46 

rehabilitated sites to recover to these levels ranged from around 40 to over 100 years. We 47 

discuss strengths and limitations of the different approaches and offer recommendations 48 

to improve the robustness of this assessment method. 49 

4. Synthesis and applications. We demonstrate a proof-of-concept, complexity-reducing 50 

application of soil eDNA sequence-based surveys of bacterial communities in restoration 51 

chronosequence studies to quantitatively assess progress towards reference communities 52 
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 3 

and corresponding rehabilitation targets. Our method provides a step towards developing 53 

microbiota-based SMART metrics for measuring rehabilitation success in post-mining, 54 

and potentially other, restoration contexts. Our approach enables prediction of recovery 55 

time, explicitly including uncertainty in assessments, and assists examination of potential 56 

barriers to ecological recovery, including biologically-associated variation in soil 57 

properties. 58 

 59 

 60 
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rehabilitation trajectory, soil microbiota, spatial autocorrelation 63 
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1. INTRODUCTION 65 

Land degradation and transformation, with negative impacts to biodiversity and ecosystem 66 

function, is estimated to impact 75% of the Earth's land surface, and this figure is projected to 67 

rise to over 90% by 2050 (IPBES 2018). Ecological restoration—activity that supports 68 

rehabilitation of locally representative, sustainable, biodiverse ecosystems (Gann et al. 69 

2019)—is seen as integral to reversing these impacts, as highlighted by the UN declaration of 70 

2021–2030 as the Decade on Ecosystem Restoration (https://www.decadeonrestoration.org/). 71 

Restoration is technically challenging and requires considerable investment, without 72 

guaranteed success (Tibbett 2015). With large investments in restoration (e.g. Menz, Dixon 73 

& Hobbs 2013 estimate US$18 billion/yr is required to restore degraded lands globally; 74 

BenDor et al. 2015 estimate US$9.5 billion/yr is spent in the USA alone), there is a need to 75 

improve the evidence base to guide continuous improvement in restoration outcomes and to 76 

underpin future investment. 77 

Reference ecosystems provide an important basis for establishing targets and 78 

monitoring progress of restoration activities (Gann et al. 2019) (SI Appendix, Figure S1). In 79 

post-mining contexts, best practice guidelines require formal mine completion criteria to be 80 

prescribed in a matter that is specific, measurable, achievable, relevant and time-bound 81 

(SMART) (Australian_Government 2016; Manero, Standish & Young 2021). To-date, 82 

completion criteria have largely focussed on vegetation community variables, with typical 83 

ecological measures including alpha and beta diversity reflecting the number of different taxa 84 

and community composition, respectively. For example, targets may be set at a minimum 85 

threshold similarity to a reference community. Despite available guidance, many completion 86 

criteria are ambiguous or ill-defined, and can result in unclear standards for regulators, 87 

unrealistic expectations for stakeholders, and represent a key barrier to the relinquishment of 88 

minesites (Manero, Standish & Young 2021). To help move the industry towards improved 89 
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definitions of completion criteria, Manero, Standish and Young (2021) suggest criteria for 90 

industry best practice, which include using multiple reference sites, monitoring and corrective 91 

actions (i.e., adaptive management), allowing innovation-guided completion criteria, and 92 

specific objectives and indicators. 93 

Soil microbial communities (microbiota) have essential roles in organic matter 94 

decomposition, soil formation, and nutrient cycling, and therefore help regulate plant 95 

productivity and community dynamics (Harris 2009). Patterns of land use, vegetation 96 

communities, and soil quality each help to shape soil microbiota (Bulgarelli et al. 2013; 97 

Turner et al. 2013; Delgado‐Baquerizo et al. 2018). Microbiota depend on the resource and 98 

energy flows associated with aboveground biota, and therefore their monitoring may help 99 

indicate the impact of restoration interventions (Harris 2009; Jiao et al. 2018; van der Heyde 100 

et al. 2020). 101 

The development of low-cost, high-throughput sequencing of environmental DNA 102 

(eDNA) has enabled affordable, rapid and comprehensive assessment of soil microbiota. 103 

Applying recognised ecological assessment approaches to abundant eDNA-based microbiota 104 

data has potential to provide a novel tool for measuring trajectories and predicting time to 105 

recover towards restoration targets (Rydgren et al. 2019). Chronosequence study designs, 106 

while containing limitations (Walker et al. 2010), are commonly used to examine ecosystem 107 

recovery following restoration activities (Tibbett 2010). However, there are few studies of 108 

soil microbiota from restoration chronosequences that explicitly visualise and evaluate 109 

patterns in ecological similarity to reference data with time since rehabilitation. It is 110 

customary for such studies (e.g., Jiao et al. 2018; Schmid et al. 2020) to examine patterns in 111 

microbiota composition via analysis of taxonomic groups and ordination techniques which 112 

project multivariate community data into lower dimensional space (e.g. 2-d plots). These 113 

techniques often characterise the complexity and site-specificity of soil ecosystems. 114 
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However, a focus on measuring ‘similarity to reference’ may help cut through the complexity 115 

inherent to microbiota data. Along these lines, van der Heyde et al. (2020) visualised 116 

temporal trends in ecological similarity to reference data in post-mining rehabilitation—117 

however, each rehabilitation sample was only compared to a single closest reference sample, 118 

which potentially limited insight into variability and uncertainty in microbiota recovery. 119 

Here we conduct a detailed exploration of a complexity-reducing application of 120 

eDNA-based soil bacterial community data to assess post-mining rehabilitation in three long-121 

term (> 25 year) chronosequence case studies from south-west Western Australia. 122 

Specifically, we aim to demonstrate the use of chronosequence-based rehabilitation 123 

trajectories, using measures of percent similarity to ecological reference sites (hereafter 124 

termed references), to assess progress of soil bacterial communities towards reference states 125 

with increasing rehabilitation age. We note that further work that links microbiota to other 126 

ecosystem components (e.g., vegetation, fauna) is important but beyond the scope of our 127 

study. 128 

Our a priori research questions were: (1) Can soil bacterial community data be used 129 

to establish reference-based targets? (2) Can soil bacterial community rehabilitation 130 

trajectory data be used to predict the time to recover to reference targets? (3) How are these 131 

predictions of recovery influenced by different ecological distance/similarity measures and 132 

sequence data resolution? For example, grouping bacterial taxa based on sequence similarity 133 

might help reduce noise associated with DNA sequencing methods; taxonomic grouping 134 

might assist interpretation if recognised groups can be discussed; and eliminating rare taxa (to 135 

simulate reduced sequencing depths) might allow more cost-effective and rapid analyses. We 136 

also recognise the potential for spatial autocorrelation—where measured outcomes are closer 137 

in value due to closer spatial proximity—to confound the assessment of rehabilitation age in 138 

chronosequence studies that lack appropriate spatial design and replication. Therefore, we 139 
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also undertake a preliminary, illustrative examination of spatial autocorrelation, and trial a 140 

first-pass approach to highlight, and correct for, its excessive influence. We then discuss 141 

limitations and synthesise our findings to inform future work. 142 

 143 

2. MATERIALS AND METHODS 144 

2.1 Data collection 145 

We used surface soil bacterial 16S rRNA marker gene data from three case study minesites 146 

(Figure 1; online Supporting Information (SI) Appendix, Tables S1–S3) from south-west 147 

Western Australia. Soil sampling was undertaken in accordance with Australian Microbiome 148 

(AM) protocols (Bissett et al. 2016; https://www.australianmicrobiome.com/protocols; SI 149 

Appendix, Supplementary Methods). Each minesite experiences a Mediterranean-type 150 

climate with hot, dry summers and cool, wet winters. Post-mining rehabilitation activities 151 

typically involved deep-ripping, prior to the ‘direct return’ (where possible) of subsoil and 152 

topsoil stripped from a separate pit about to be mined, followed by revegetation with locally 153 

appropriate seed of diverse plant communities (Tibbett 2010). Precise soil handling and 154 

storage techniques differed between the minesites and different pits within minesites. 155 

Summary information for each minesite is provided below (see SI Appendix, Supplementary 156 

Methods for more background information; other studies in-progress will provide expanded 157 

analyses of surface and subsoil data from these minesites, including additional marker gene 158 

datasets). 159 

Alcoa’s Huntly bauxite-producing minesite is approximately 100 km south-east of 160 

Perth, occurring in mixed open forest with dominant overstorey species of Jarrah (Eucalyptus 161 

marginata) and Marri (Corymbia calophylla) on lateritic, nutrient poor soils. We consider 162 

Huntly data sampled in 2016, with rehabilitation ages between 2–29 years old. Huntly’s 36 163 

samples correspond to rehabilitation years: 1987 (n = 3), 1991 (n = 3), 1999 (n = 3), 2002 (n 164 
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= 3), 2008 (n = 3), 2014 (n = 3), reference (n = 18), where each reference site was paired with 165 

an adjacent rehabilitation site. Iluka Resource’s Eneabba mineral-sand minesite is 166 

approximately 280 km north of Perth, occurring in sandplain heath vegetation comprising 167 

low shrubland on undulating infertile siliceous sandplains, predominantly featuring perennial 168 

woody species from the Proteaceae, Myrtaceae, and Fabaceae families. We consider Eneabba 169 

data sampled in 2019, with rehabilitation ages between 7–38 years. Eneabba’s 26 samples 170 

correspond to rehabilitation years: 1981 (n = 3), 1989 (n = 2), 1995 (n = 3), 2000 (n = 2), 171 

2004 (n = 3), 2009 (n = 2), 2012 (n = 2), reference (n = 9). South32’s Worsley bauxite-172 

producing minesite is located approximately 150 km south of Perth, occurring in Jarrah 173 

(Eucalyptus marginata) forest on lateritic, nutrient poor soils. We consider Worsley data 174 

sampled in 2019, with rehabilitation ages between 2–28 years old. Worsley’s 25 samples 175 

correspond to rehabilitation years: 1991 (n = 2), 1996 (n = 4), 1999 (n = 2), 2002 (n = 2), 176 

2005 (n = 2), 2007 (n = 1), 2011 (n = 3), 2017 (n = 3), reference (n = 6). Each soil sample 177 

had physico-chemical analyses performed at CSBP Laboratories (Perth, Western Australia) to 178 

quantify key soil abiotic variables as prescribed by AM protocols, including soil texture, 179 

organic carbon, ammonium, potassium, sulphur, calcium, pH, nitrate, phosphorous, and 180 

electrical conductivity. 181 

 182 

 183 

  184 
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 185 

FIGURE 1. Locations of minesites and soil sampling sites: (A) Huntly, (B) Eneabba, 186 

(C) Worsley. (Imagery: Sentinel-2; https://eos.com/landviewer; EOS Data Analytics, Inc.) 187 

 188 

2.2 eDNA sequencing, bioinformatics, and data preparation 189 

DNA extraction, PCR and preliminary bioinformatic analyses were undertaken in accordance 190 

with AM workflows (Bissett et al. 2016; see SI Appendix, Supplementary Methods). From 191 

this workflow, denoised 16S rRNA gene amplicon sequence variant (ASV) level abundance 192 

data were produced for all minesites. Note, in this study ASVs are equivalent to zero radius 193 
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operational taxonomic units (zOTUs). Further data preparation and analyses were largely 194 

undertaken in R version 4.0.3 (R-Core-Team 2020) utilising the framework of the R phyloseq 195 

package (McMurdie & Holmes 2013) to manage the datasets (see SI Appendix 196 

Supplementary Methods for number of sequences and ASVs studied in each minesite, initial 197 

data cleaning steps, and preparation of phylogenetic trees). 198 

 199 

2.3 Data visualisation and statistical analyses 200 

We visualised the sequence depth of samples using rarefaction curves (SI Appendix, Figure 201 

S2). For the majority of subsequent analyses, we normalised the sequence data for sampling 202 

effort by rarefying abundances of ASVs, and other taxonomic levels investigated below, to 203 

the minimum sample sequence depth within respective minesites (Huntly, n = 17,485 204 

sequences; Eneabba, n = 10,142 sequences; Worsley, n = 54,122 sequences) using the 205 

rarefy_even_depth() function from R phyloseq. For ASV-level data, the total rarefied 206 

sequences comprised at Huntly, n = 629,460 sequences (30,751 ASVs); Eneabba, 263,692 207 

sequences (27,115 ASVs); and Worsley, 1,353,050 sequences (54,327 ASVs). Exploratory 208 

data analyses to visualise ASV alpha diversity, evenness, and relative abundance via 209 

heatmaps of phyla, classes, and orders in each minesite are presented in the SI Appendix, 210 

Supplementary Methods, and Figures S3–S13. Exploratory data analyses also included 211 

preliminary visualisations of soil and landscape variables that associated with the soil 212 

bacterial community samples within each minesite (refer to SI Appendix Supplementary 213 

Methods, Supplementary Data, Figures S14–20). 214 

We examined a range of alternative qualitative and quantitative beta diversity 215 

measures (i.e., ecological distance or community dissimilarity, converted to similarity) to 216 

model rehabilitation trajectories and time to reach reference targets (described below). For 217 

the minesite with the largest number of samples (Huntly), we also investigated data pre-218 
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processing options of grouping by sequence similarity, taxonomic grouping, and excluding 219 

rare taxa. Details of the number of taxa considered and percentage of sequences remaining 220 

after grouping, rarefying, and exclusions (see below) are indicated in the SI Appendix, Table 221 

S4. 222 

 223 

2.3.1 Alternative ecological distance measures 224 

For each minesite, we used the cleaned and rarefied ASV-level bacterial community data to 225 

derive ecological distance matrices using distance measures commonly employed in 226 

microbiota studies—i.e., Jaccard, Bray-Curtis, Unweighted UniFrac and Weighted UniFrac 227 

(Lozupone et al. 2007)—via the vegdist() function from the R vegan package (Oksanen et al. 228 

2020). 229 

 230 

2.3.2 Grouping by sequence similarity 231 

For Huntly data only, separate R phyloseq objects were generated to represent soil bacterial 232 

community data with sequences clustered into 99%, 97%, 95%, and 90% identity OTUs (see 233 

SI Appendix, Supplementary Methods). For these analyses, OTUs were formed, abundance 234 

data were rarefied, and then Jaccard and Bray-Curtis distances were calculated. 235 

 236 

2.3.3 Taxonomic grouping 237 

For Huntly data only, we examined the influence of taxonomic grouping (i.e., ASV, genus, 238 

family, order, class, and phylum) on the assessments of recovery. We also tested the 239 

influence of discarding versus retaining (at the next available classified grouping) taxa that 240 

were unclassified at each taxonomic rank, which we termed ‘pruned’ and ‘non-pruned’ data 241 

respectively. Grouping was undertaken using tax_glom(); and in ‘pruned’ datasets, 242 

unclassified taxa were removed using prune_taxa() from R phyloseq. For these analyses, taxa 243 

(which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprintthis version posted August 13, 2021. ; https://doi.org/10.1101/2021.08.12.456018doi: bioRxiv preprint 

https://doi.org/10.1101/2021.08.12.456018


 12 

were grouped, abundance data were rarefied, then Jaccard and Bray-Curtis distances were 244 

calculated. Richness and evenness of sequences at the order, class and phylum level were 245 

also visualised based on rarefied data and plotted together with composite estimates within 246 

rehabilitation age groups from merged-sample bootstrap resampling (Liddicoat et al. 2019) 247 

(B=100). 248 

 249 

2.3.4 Excluding rare taxa 250 

For Huntly data only, we examined the influence of excluding rare taxa, by considering all 251 

ASVs, then ASVs with >0.001 %, > 0.01%, and > 0.1% relative abundance within each 252 

minesite. For these analyses, ASVs with below the respective relative abundance threshold 253 

were removed, abundance data were rarefied, then Jaccard and Bray-Curtis measures were 254 

calculated. 255 

 256 

2.3.5 Rehabilitation trajectory modelling 257 

The rehabilitation trajectory analyses presented here were derived from a subset of data 258 

contained in the abovementioned ecological distance matrices. Specifically, only pairwise 259 

distances between samples and reference samples were considered (including distances 260 

among reference samples within minesites). Data were then expressed as percent similarity 261 

values (i.e., 100  ´ (1 - distance) [%]). Rehabilitation trajectory boxplots were then generated 262 

from the series of similarity to reference data on the y-axis and increasing rehabilitation age 263 

on the x-axis, concluding with reference samples (e.g., see Figure 2B). Testing for 264 

differences in similarities to reference at each rehabilitation age (as visualised with boxplots) 265 

was performed using the Kruskal-Wallis rank sum test, followed by post-hoc Dunn tests for 266 

multiple comparisons, with Bonferroni adjusted threshold P-values. The multiple comparison 267 

testing used default two-sided P-values and alpha = 0.05 nominal level of significance. 268 
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 269 

 270 

 271 

FIGURE 2. Example data for the Huntly minesite chronosequence soil bacterial 272 

communities. (A) NMDS ordination to visualise beta diversity or compositional differences 273 

based on ASV-level data and Bray-Curtis distances. (B) Rehabilitation trajectory boxplots 274 

express a trend in ecological similarity to references with increasing rehabilitation age. The 275 

similarity data in (B) are based on a subset of the distance matrix data that underpins (A), i.e. 276 

(B) uses only those distances that involve reference samples, and the value is expressed as 277 
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similarity to reference (%). Groups not sharing letters are significantly different. Note the x-278 

axis is presented here as a categorical (not numerical) scale. Sample sizes for the 279 

rehabilitation age groups (used to produce distance data) are described in section 2.1. 280 

 281 

After observing the variation in similarity to reference values among references 282 

within each minesite (e.g., Figure 2B), we defined rehabilitation targets for the purpose of 283 

this study as the median (= the central value) of among-reference similarities. This target 284 

median value varied by minesite, distance/similarity measure, and pre-processing option. We 285 

predicted the time to reach a restoration target (= recovery time) by modelling the trend in 286 

similarity to reference with increasing rehabilitation age using bootstrapped (B = 100) 287 

logarithmic models. The median, 5th and 95th percentile of predicted recovery time were 288 

evaluated. Our use of logarithmic models was consistent with the approach of Rydgren et al. 289 

(2019), except we used ecological similarity not distance measures. Each iteration of the 290 

bootstrap involved random sampling with replacement from the available chronosequence 291 

similarity to reference data, excluding outliers identified via the boxplot() function in base R, 292 

and developing a predictive logarithmic model for similarity to reference out to a maximum 293 

rehabilitation age of 500 years, or until the target was reached. Models that failed to reach the 294 

target were reported with a prediction time of ‘>500 years’. Rectangular hyperbola and 295 

negative exponential models were also trialled but were abandoned after many cases failed to 296 

produce model fits. 297 

 298 

2.3.6 Exploring spatial autocorrelation 299 

To explore the influence of spatial autocorrelation on our trajectory analyses, we produced 300 

variogram-like plots with ecological distance (i.e., Jaccard, Bray-Curtis; between samples 301 

and references) on the y-axis, and geographic distances (between samples and references) on 302 
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the x-axis. Each rehabilitation age group was modelled as a second-order polynomial, 303 

allowing the possible expression of curvilinear trendlines that mimicked variogram-like 304 

relationships (i.e., increasing then flattening). Assuming reference curves offered a natural 305 

baseline trend for spatial autocorrelation within each minesite environment, we applied a 306 

'correction' to the curvilinear trendline for each rehabilitation age group by calculating the 307 

difference in mean-centred model curves (= rehabilitation age group minus reference), such 308 

that 'corrected' data for rehabilitation age groups expressed the same ecological distance-309 

geographic distance curvilinear trend as seen for references (see SI Appendix Supplementary 310 

Methods for further details of the rationale and approach for this preliminary analysis). 311 

Rehabilitation trajectories and predicted recovery times were compared between ‘original’ 312 

and ‘corrected’ data, considering Jaccard and Bray-Curtis similarities. For the Worsley 313 

minesite, a ‘filtered’ dataset, and corresponding correction, were also prepared which 314 

excluded the three southernmost samples, which were geographically separate from the other 315 

Worsley samples (see Figure 1, and SI Appendix Table S3). 316 

 317 

3. RESULTS 318 

3.1 General findings 319 

We found remarkable variability among reference samples within each minesite (Figure 3; SI 320 

Appendix, Table S5, Figures S21–S23). Among-reference similarities ranged from <20% to 321 

>95% depending on ecological measures, pre-processing, and minesite. All rehabilitation 322 

trajectory plots displayed the general pattern of increasing similarity to references with 323 

increasing rehabilitation age (Figure 3; SI Appendix, Figures S21–S23), although the 324 

logarithmic models and predicted recovery times varied by ecological measures, pre-325 

processing and minesite.  326 

  327 
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3.2 Alternative ecological measures 328 

We found a general increase in similarity to reference values across the ecological measures, 329 

from Jaccard (generally lowest similarities), Bray-Curtis, Unweighted UniFrac, to Weighted 330 

UniFrac (generally highest similarities) (Figure 3; SI Appendix, Table S5). The greatest y-331 

axis span, and therefore greatest sensitivity to detect change, in similarity to reference values 332 

between the youngest rehabilitation ages and references occurred with Bray-Curtis measures 333 

(Figure 3). The smallest span (or flattest curves) in similarity to reference values between the 334 

youngest rehabilitation ages and references occurred with Weighted UniFrac measures. 335 

Except for the Unweighted Unifrac result at Huntly, Jaccard measures generally 336 

returned the longest predicted recovery times, followed by reduced or similar recovery times 337 

predicted using Bray-Curtis, Unweighted Unifrac and Weighted UniFrac measures (Figure 4; 338 

SI Appendix, Table S6). Low sample sizes (and corresponding low numbers of distance 339 

measures) represent a limitation in our analysis, and the ecologically-distant samples in the 340 

17-year and 25-year rehabilitation age group at Huntly (Figure 2A) are likely contributing to 341 

the reduced similarity and longer rehabilitation trajectory in Unweighted UniFrac data. These 342 

17-year and 25-year rehabilitation age group data at Huntly express reduced alpha diversity 343 

and evenness compared to other samples, however reasons for this are unclear (SI Appendix, 344 

Figures S3–S4). 345 

 346 
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 347 

FIGURE 3. Rehabilitation trajectory plots based on surface soil bacterial community 348 

similarity to reference samples, for the Huntly, Eneabba, and Worsley minesites. Boxplots 349 

display the distribution of similarity values across rehabilitation ages (groups not sharing a 350 

letter are significantly different). Blue dotted lines denote the median similarity among 351 

references. Red lines represent logarithmic models for the change in similarity to reference 352 

with rehabilitation age, based on bootstrap resampling and modelling (B=100).  353 
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 354 

 355 

FIGURE 4. Predicted recovery times for soil bacterial ASVs to reach the target similarity to 356 

reference (= median of among-reference similarity values), for Huntly, Enneabba, and 357 

Worsley, considering Jaccard, Bray-Curtis, Unweighted- and Weighted-UniFrac measures, 358 

based on bootstrap (B=100) logarithmic models (see SI Appendix, Table S6 for values). 359 

 360 

3.3 Grouping by sequence similarity (Huntly only) 361 

Grouping by sequence similarity resulted in progressive overall shifts towards increasing 362 

similarity to reference values from ASV-level (generally lowest similarities), 99%, 97%, 363 

95%, to 90%-identity OTUs (generally highest similarities) (SI Appendix, Figure S21). 364 

Predicted recovery times with more broadly clustered OTUs followed continuous and 365 

seemingly predictable patterns of: (i) increasing recovery times with Jaccard measures, and 366 

(ii) decreasing to steadying recovery times with Bray-Curtis measures (SI Appendix, Figure 367 

S24A, Table S6). 368 

 369 

3.4 Taxonomic grouping (Huntly only) 370 

(which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprintthis version posted August 13, 2021. ; https://doi.org/10.1101/2021.08.12.456018doi: bioRxiv preprint 

https://doi.org/10.1101/2021.08.12.456018


 19 

Moving from ASV to genus-level data resulted in a pronounced shift towards increasing 371 

similarity to reference, with similar although somewhat flatter rehabilitation trajectory curves 372 

at higher taxonomic groupings (SI Appendix, Figure S22). Visually, there appeared to be 373 

little effect on the rehabilitation trajectory plots from pruning unclassified taxa (SI Appendix, 374 

Figure S22). Using Jaccard measures, moving from ASV-level to grouping at genus-level or 375 

higher groupings dramatically increased predicted recovery times, compared to other 376 

measures (SI Appendix, Figure S24B, Table S6). Also, pruning of unclassified groups 377 

reduced the smoothness or continuity in Jaccard predicted recovery times (SI Appendix, 378 

Figure S24B). Using Bray-Curtis measures, we found a non-linear pattern of recovery times 379 

across the taxonomic groupings, with shorter times to reach the target in genus, family, and 380 

order-level groups, and longer recovery times in other groupings (SI Appendix, Figure S24B; 381 

see SI Appendix, Figures S5–S13 for relative abundance of order, class, and phylum-level 382 

taxa for each minesite). Richness and evenness of bacterial communities varied across 383 

rehabilitation age groups and taxonomic groupings (e.g., data for phylum, class, and order-384 

level are shown in SI Appendix, Figure S25), which may help explain the somewhat erratic 385 

results from taxonomic grouping. 386 

 387 

3.5 Excluding rare taxa (Huntly only) 388 

Removing rare taxa to the point of retaining ASVs with >0.01% relative abundance produced 389 

results from the Jaccard analysis that appeared to mimic results from the Bray-Curtis analysis 390 

(SI Appendix, Figure S23). When only more common ASVs with >0.1% relative abundance 391 

were retained, both the Jaccard and Bray-Curtis results appeared to reflect over-simplified 392 

communities, resulting in shorter predicted recovery times. However, including only ASVs 393 

with >0.001% relative abundance produced a small increase in predicted recovery times for 394 

both Jaccard and Bray-Curtis (SI Appendix, Figure S24C, Table S6). 395 
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 396 

3.6 Young rehabilitation sites with ‘direct return’ soils 397 

During our analyses, we uncovered example data that highlighted a distorting influence on 398 

our trajectory modelling from young rehabilitation sites with ‘direct return’ soils. 399 

Specifically, these fresher soil materials were more similar to references than older 400 

rehabilitation sites. At Eneabba and Worsley, we compared trajectories with and without the 401 

youngest rehabilitation age groups (i.e., excluding 7-year old sites at Eneabba; and 2-year old 402 

sites and associated reference X138404 at Worsley) (SI Appendix, Figure S26–S29; Table 403 

S6). Excluding these samples reduced predicted recovery times, e.g., for Bray-Curtis 404 

similarities from median (and 5th percentile, 95th percentile) values of 94 (69, 131) years to 60 405 

(53, 71) years at Eneabba; and from 104 (69, 174) to 41 (36, 47) years at Worsley. 406 

 407 

3.7 Correcting for spatial autocorrelation 408 

We modelled the slope-trends of the relationships between ecological distance to references 409 

and geographic distance to references, within rehabilitation age classes, for each of the 410 

minesites with Bray-Curtis and Jaccard measures (see SI Appendix, Figures S30–S35). We 411 

also applied a ‘correction’ for the spatial autocorrelation, such that rehabilitation age groups 412 

were adjusted to display the same ecological-geographic slope trend as found in references 413 

(refer to the ‘C’ panels in SI Appendix, Figures S30–S35). Rehabilitation trajectory plots, and 414 

predicted recovery times, using these corrected data were compared to the original 415 

uncorrected data (see SI Appendix, Figures S36–S37 and Table S6). Worsley displayed a 416 

strong ecological distance-geographic distance trend in among-reference data (= spatial 417 

autocorrelation), and the greatest divergence of all the minesites in predicted recovery times 418 

between original and corrected data (SI Appendix, Figure S36–S37). However, with 419 

exclusion of the southernmost Worsley samples (i.e., the filtered dataset), the spatial 420 
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autocorrelation signal disappeared and predicted recovery times for filtered-original and 421 

filtered-corrected data displayed comparable distributions (SI Appendix, Figure S38–S40, 422 

Table S6). 423 

 424 

4. DISCUSSION 425 

4.1 Alternative ecological measures 426 

Bray-Curtis measures produced the greatest range in similarity values between young 427 

rehabilitation and reference samples, and therefore are likely to offer the greatest sensitivity 428 

to quantify the progress of recovery of soil bacterial communities towards reference states. In 429 

contrast, Weighted UniFrac offered limited sensitivity to detect changes with rehabilitation 430 

age (i.e., shallow trajectory curves) and may result in under-prediction of recovery times. 431 

Low variation in Weighted Unifrac similarities likely reflects high proportions of somewhat 432 

closely related organisms across the samples. Jaccard distances represent the proportion of 433 

unshared taxa out of the total number of taxa recorded in two groups (Anderson, Ellingsen & 434 

McArdle 2006). Unweighted UniFrac uses phylogenetic information and calculates the 435 

fraction of the branch length in a phylogenetic tree that leads to descendants in either, but not 436 

both, of the two communities (Lozupone et al. 2007). These qualitative measures reflect the 437 

survival and presence of taxa (Jaccard) and related lineages (Unweighted UniFrac), where 438 

loss of sequences can reflect extreme or limiting environmental conditions (e.g., soil abiotic 439 

factors) or limited geographic distribution. Meanwhile, Bray-Curtis and Weighted UniFrac 440 

measures emphasise abundant organisms (or abundant sequences). Similarity generally 441 

increased with increasing abundances of shared taxa for Bray-Curtis, and shared lineages of 442 

related sequences for Weighted UniFrac. The quantitative measures often reflect the growth 443 

or decline of certain organisms due to factors such as nutrient availability and sublethal 444 

variation in environmental conditions (Lozupone et al. 2007). 445 
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 446 

4.2 Grouping by sequence similarity 447 

Grouping near identical sequences will reduce the denominator used in calculating Jaccard 448 

distances. For a given number of unshared taxa between samples, using broader OTU clusters 449 

will make the proportion of unshared taxa (compared to all taxa) larger when there are a 450 

smaller number of total taxa present. Our data suggest this shifting Jaccard calculation can 451 

impact some samples strongly (e.g., note the 17-year age group in SI Appendix, Figure S21) 452 

resulting in a gradual increase in predicted recovery times with broader (reduced identity 453 

threshold) OTU clusters. On the other hand, broader OTU clusters will aggregate some 454 

sequences into already large groups and will tend to further emphasise abundant groups. 455 

Consequently, our Bray-Curtis data suggest broader OTU clustering will make the target 456 

similarity easier to reach and predicted recovery times reduced accordingly. 457 

 458 

4.3 Taxonomic grouping 459 

We do not recommend grouping 16S rRNA data by taxonomy to quantify recovery in soil 460 

bacterial communities due to the erratic behaviour of predicted recovery times. 461 

 462 

4.4 Excluding rare taxa 463 

We show that filtering out of rare taxa to a limited extent (>0.001% relative sequence 464 

abundance) produces a relatively small increase in predicted recovery times for both Jaccard 465 

and Bray-Curtis measures. Interestingly, this low level of exclusion of rare taxa does not 466 

appear to moderate the assessment by producing reduced recovery times. At the low level of 467 

exclusion, our analysis using rarefied data and similarity to reference measures may help 468 

mitigate some of the impacts and concerns of removal of rare sequences experienced 469 
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elsewhere (e.g., Schloss 2020). This raises the prospect to reduce sequencing depth, and 470 

potential for shifting investment towards more robust assessments that incorporate a larger 471 

number of samples with reduced sequencing depth and cost per sample. 472 

 473 

4.5 Influence of ‘direct return’ soils in young rehabilitation sites 474 

For reasons discussed here and below, we suggest it may be prudent for future similarity to 475 

reference trajectory assessments to exclude young rehabilitation sites with ‘direct return’ soils 476 

that display elevated similarity to reference. As observed at Eneabba and Worsley, the 477 

inclusion of young rehabilitation samples that were overly similar to references resulted in 478 

seemingly biased, longer predictions of recovery time. The industry best practice of ‘direct 479 

return’ of topsoil to new rehabilitation sites is based on objectives to minimise soil 480 

degradation and expedite ecosystem recovery. However, our use of monotonic logarithmic 481 

models applied to a data series that contains young rehabilitation sites with elevated 482 

similarity to reference values, followed by older sites with reduced similarity to reference 483 

values, results in the seemingly perverse outcome of a flatter, longer modelled trajectory of 484 

recovery. The enhanced ecological similarity to reference in young rehabilitation sites with 485 

‘direct return’ soils reflects a biological inertia, or temporary carryover effect, from unmined 486 

areas where the soils originate, and confounds the relationship between soil microbiota 487 

development and rehabilitation age. For ‘direct return’ soils, we speculate the time taken for 488 

local influences to become dominant in shaping the resident microbiota may be in the order 489 

of 1-10 years, varying on a case-by-case basis, e.g., due to soil factors including organic 490 

matter and clay content, as well as the magnitude of environmental influences. Soil 491 

microbiota will be shaped by influences including local rainfall, temperature, aspect, soil 492 

water availability and transport (e.g. run-on, lateral flow), and vegetation communities via 493 

plant-soil feedbacks. Existing deeper soil and substrate may also influence rehabilitation 494 
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surface soils via upward movement of water, nutrients, and some microbiota through 495 

mechanisms including: hydraulic redistribution by plant root systems (Neumann & Cardon 496 

2012); potential microbiota uptake and transfer via xylem into the phyllosphere (Fausto et al. 497 

2018; Deyett & Rolshausen 2019) and subsequent leaf litter; and capillary rise in heavier 498 

textured soils under conditions of soil water evaporation. 499 

Any decision to exclude young rehabilitation sites with direct return soils from the 500 

modelling should be made on a case-by-case basis. In particular, this decision should reflect 501 

whether these data display elevated similarity to reference values; and consider factors such 502 

as the source location of direct return soils (are they taken from sites that are generally closer 503 

to other reference sites or adjacent to rehabilitation sites?), the depth of fresh topsoil applied, 504 

the condition of subsurface layers (e.g., fresh vs stockpiled), and the depth and method of 505 

tillage or mixing of the soil surface following soil return. 506 

 507 

4.6 Spatial autocorrelation 508 

Excluding geographic outliers in the filtered Worsley analysis also removed a clear spatial 509 

autocorrelation signal in the data, which indicates the importance of sampling designs. If 510 

rehabilitation sites reflect environmental settings or imported soils that are overly similar or 511 

dissimilar to references (i.e., different to natural background rates of spatial autocorrelation), 512 

this may unduly bias predicted recovery times. Where possible, we recommend a sampling 513 

approach that resembles the approach used at Huntly, where each reference site was spatially 514 

paired with an adjacent rehabilitation site. This approach helps capture variation among 515 

references (within a given minesite) relevant to the broader range of rehabilitation sites; and 516 

provided there is adequate spatial replication and geographic outliers are avoided, then undue 517 

influence from spatial autocorrelation should be avoided. 518 

(which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprintthis version posted August 13, 2021. ; https://doi.org/10.1101/2021.08.12.456018doi: bioRxiv preprint 

https://doi.org/10.1101/2021.08.12.456018


 25 

Our analysis of spatial autocorrelation should be viewed as introductory and 519 

illustrative. For ‘direct return’ soils at young rehabilitation sites, our approach is deficient 520 

because we do not account for their previous location. Although, we anticipate localised 521 

influences would dominate the shaping of resident soil microbiota in rehabilitation sites after 522 

a few years, as discussed above. 523 

Plant-soil-microbiota feedbacks represent a complicating factor for disentangling 524 

effects of soil abiotic condition, rehabilitation age, and residual/unexplainable spatial 525 

autocorrelation in restoration chronosequence studies. This is because chronosequence 526 

studies (which presume a ‘space-for-time’ proxy relationship between treatments and 527 

outcomes) typically do not collect sufficient data to determine whether soil conditions have 528 

influenced rehabilitation outcomes, plants have conditioned soils, or both situations have 529 

occurred. Studies that have considered plant-soil feedbacks in restored Jarrah forest (Huntly) 530 

sites have shown differential correlative effects of rehabilitated soil biotic and abiotic 531 

properties (Orozco-Aceves, Tibbett & Standish 2017). Also, plant-soil feedbacks behave 532 

differently in unmined versus rehabilitated soils (Orozco-Aceves, Standish & Tibbett 2015). 533 

Further work is required to build understanding of this topic (e.g., via longitudinal studies). 534 

 535 

4.7 Other limitations 536 

There are important limitations in our study, in addition to those already discussed. The 537 

robustness of our study would be improved with more samples per minesite to help better 538 

capture minesite-wide variation. We did not consider soil microbiota patterns at depth, which 539 

are also important. Also, major changes to rehabilitation practices over time will disrupt the 540 

‘space-for-time’ substitutive modelling approach that is relied upon in chronosequence 541 

studies such as ours. As for restoration chronosequence studies elsewhere, careful sample 542 

selection is required to avoid confounding factors as much as possible (Walker et al. 2010). 543 
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There are potential limitations in our study associated with the phylogenetic trees we used to 544 

generate UniFrac distances (see SI Appendix, Supplementary Methods for details). Tree-545 

building often represents a compromise between accuracy in representing phylogenetic 546 

relationships and computing time, and it was beyond the scope of our study to test the 547 

sensitivity of our UniFrac-based analyses to the quality of trees used. We used logarithmic 548 

models which assume a monotonic recovery function, however other models that account for 549 

variable trends over time, and varying success for different rehabilitation techniques or sites, 550 

may offer improved estimates of recovery time. We suggest these limitations should be 551 

investigated in future studies. 552 

 553 

5. CONCLUSIONS 554 

We provide a proof-of-concept demonstration of an innovative, chronosequence-based, 555 

similarity to reference trajectory assessment method, to quantitatively track progress in soil 556 

microbiota with post-mining rehabilitation. Through incorporating microbiota survey data 557 

from multiple reference sites of varying character, we revealed substantial variation among 558 

reference ecosystems within each minesite that can inform realistic rehabilitation targets. Our 559 

approach reduces the complexity associated with microbiota data and enables prediction of 560 

recovery time to reach reference-based targets. The use of soil microbiota data (including 561 

alpha diversity, evenness, compositional data, and microbiota-associated soil variables; SI 562 

Appendix, Figures S3–S20) provides another line of evidence, which in conjunction with 563 

other information, could assist in the examination of potential impediments to the progress of 564 

rehabilitation, thereby helping to inform adaptive management. From our investigations, we 565 

recommend using ASV-level Bray-Curtis similarities which appear to offer a relatively 566 

sensitive and stable basis for modelling rehabilitation trajectories. We recommend wherever 567 

possible to maximise sample sizes, employ spatial pairing of reference and rehabilitation 568 
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sites; and to exclude geographically-distant, non-representative sampling areas. We also 569 

recommend considering, on a case-by-case basis, the exclusion of young rehabilitation sites 570 

with 'direct return' soils that display elevated similarity to reference values, which may 571 

unduly bias the trajectory modelling. Further fine-tuning to identify possible minor 572 

reductions in sequencing depths (eliminating some rare taxa) offers promise to reduce per 573 

sample costs, enabling investment in more samples, to help deliver more robust assessments. 574 

This work represents an important step towards a reduced-complexity microbiota-based 575 

monitoring and evaluation framework consistent with many best practice principles for 576 

setting, monitoring and managing towards mine completion criteria recommended by 577 

(Manero, Standish & Young 2021). We anticipate that our approach could be expanded to 578 

other eDNA sequence-based survey data (e.g., fungal ITS and eukaryote 18S rRNA marker 579 

genes, functional potential from shotgun metagenomics), and may have broader applicability 580 

for evaluating rehabilitation progress beyond post-mining contexts. 581 

  582 
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