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Abstract 

Diffusion MRI (dMRI) provides unique insights into the neural tissue milieu by probing interaction of 
diffusing molecules and tissue microstructure. Most dMRI techniques focus on white matter tissues 
(WM) due to the relatively simpler modelling of diffusion in the more organized tracts; however, 
interest is growing in gray matter characterisations. The Soma and Neurite Density MRI (SANDI) 
methodology harnesses a model incorporating water diffusion in spherical objects (assumed to be 
associated with cell bodies) and in impermeable “sticks” (representing neurites), which potentially 
enables the characterisation of cellular and neurite densities. Recognising the importance of rodents 
in animal models of development, aging, plasticity, and disease, we here sought to develop SANDI 
for preclinical imaging and provide a validation of the methodology by comparing its metrics with the 
Allen mouse brain atlas. SANDI was implemented on a 9.4T scanner equipped with a cryogenic coil, 
and experiments were carried out on N=6 mice. Pixelwise, ROI-based, and atlas comparisons were 
performed, and results were also compared to more standard Diffusion Kurtosis MRI (DKI) metrics. 
We further investigated effects of different pre-processing pipelines, specifically the comparison of 
magnitude and real-valued data, as well as different acceleration factors. Our findings reveal 
excellent reproducibility of the SANDI parameters, including the sphere and stick fraction as well as 
sphere size. More strikingly, we find a very good rank correlation between SANDI-driven soma 
fraction and Allen brain atlas contrast (which represents the cellular density in the mouse brain). 
Although some DKI parameters (FA, MD) correlated with some SANDI parameters in some ROIs, they 
did not correlate nearly as well as SANDI parameters with the Allen atlas, suggesting a much more 
specific nature of the SANDI parameters. We conclude that SANDI is a viable preclinical MRI 
technique that can greatly contribute to research on brain tissue microstructure. 
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1. Introduction 

The development of non-invasive imaging biomarkers which can reflect microscopic tissue 

properties, for instance the size and density of cells and/or neurite projections  [1, 2], is a topic of 

great interest for neuroimaging in general and diffusion Magnetic Resonance Imaging (dMRI) in 

particular. Extracting such microstructural information can be valuable for assessing changes upon 

brain development [3], plasticity [4], or aging [5], as well as for the diagnosis and monitoring of 

various neurologic, neurodegenerative, and psychiatric diseases [5, 6], as well as neural injury such 

as stroke [7, 8] [9] or traumatic brain injury[10], cancer infiltration [11], and other conditions.        

Diffusion Magnetic Resonance Imaging (dMRI) has become one of the most valuable modalities 

for probing tissues noninvasively, with sensitivity to the microscopic scale. In dMRI, the signal is 

sensitized to the displacement of water molecules in the tissue, which is strongly influenced by 

microscopic boundaries imparted by cellular and subcellular structures [12]. Various approaches 

have been proposed in the literature to characterise dMRI signals [1, 2, 13, 14] and can be considered 

as part of two broad categories. Signal representations, on one hand, employ general functional 

forms of the dMRI signal decay, for example by considering different orders of the cumulant 

expansion, with diffusion tensor imaging (DTI) [15] and diffusion kurtosis imaging (DKI)[16] being 

prominent examples. While precise, these methods are not considered very specific since the 

underlying contributions to the metrics are not resolved, and since many different tissue features 

can lead to similar signal decays [17, 18]. On the other hand, to characterize tissue features more 

specifically, biophysical modelling approaches aim to disentangle the signal contributions from two 

or more water pools, usually assigned to different tissue components, such as intra- and extra-cellular 

space [1] [2, 13, 19-21]. When thoroughly validated, these models can be considered more specific 

.CC-BY-NC 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is 

The copyright holder for this preprintthis version posted August 11, 2021. ; https://doi.org/10.1101/2021.08.11.455923doi: bioRxiv preprint 

https://doi.org/10.1101/2021.08.11.455923
http://creativecommons.org/licenses/by-nc/4.0/


4 
 

than representations (and often require more measurements to resolve the microstructural features) 

[22-30].  

Most brain tissue models employed with dMRI data make the explicit assumption of exactly two 

compartments, e.g. [22-24, 31, 32], with the following diffusion properties: signal ascribed to the 

intra-neurite space (i.e. axons and dendrites) is assumed to be described by diffusion inside 

impermeable cylinders, usually considered to have zero radius (i.e. “sticks” [31]), while the extra 

cellular space is assumed to be described by signal exhibiting either isotropic or anisotropic Gaussian 

diffusion [13, 21-24, 31-34]. Thus, the Gaussian diffusion component models signal from water in the 

extra-cellular space as well inside cell bodies. At high and very high b-values, such a model would 

yield a well characterized power-law of the directionally averaged data as the b-value is increased. 

However, recent studies show a departure from this behaviour at (very) high b-values, which has 

been used to inform modelling approaches, for instance to characterise axon diameter in white 

matter [35], or to include an additional compartment of slow diffusion [36, 37]. In some studies, the 

slow diffusion compartment is represented by diffusion restricted in spheres [37] and has been 

proposed to model the signal from cell bodies (and other quasi spherical structures), with a significant 

contribution especially in gray matter (GM) [38-41].     

The recently-introduced Soma and Neurite Density Imaging (SANDI) methodology [39] aims to 

characterise such spherical object contributions using standard single diffusion encoding (SDE) dMRI, 

acquired with several shells (usually ≥ 5, depending on the number of fitted parameters[42]) up to 

(very) high b-values and powder-averaged data. The SANDI model relies on a three-compartment 

model consisting of sticks, spheres and isotropic Gaussian diffusion fitted to the powdered averaged 

data. Insofar, SANDI has been applied to in-vivo human brain imaging on a high-performance scanner, 

as well as ex-vivo in the mouse brain, where a preliminary comparison with histology data showed a 

good correlation between the soma signal fraction and signal intensity of DAPI stain, a marker for cell 
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nuclei [30]. Nevertheless, estimating the spherically restricted signal fraction is challenging due to 

signal-to-noise and contrast-to-noise limitations as well as bias due to Rician noise floor [40, 43]. 

Other studies have combined standard SDE acquisitions with more general B-tensor encoding 

schemes showing a potential benefit of multi-waveform approaches [40, 41], nevertheless, such 

sequences are not widely available, neither on clinical nor on pre-clinical systems.  

 In this study we aim to address several gaps in the evaluation and application of the original 

SANDI approach based on SDE acquisitions: i) we investigate the stability of SANDI metrics in the 

mouse brain, in-vivo at 9.4T; ii) we utilise the complex dMRI data to assess experimentally the effects 

of Rician noise floor on the SANDI parameters; iii) we compare parameters derived from SANDI and 

a more established technique, namely Diffusion Kurtosis Imaging (DKI), and iv) assess their 

correspondence to a histological proxy of cell density based on the Allen Brain atlas; v) lasty, we also 

investigate the possibility of reducing the number of shells in the diffusion protocol and its impact on 

the estimated parameters. 
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2. Methods 

2.1 In-vivo MRI experiments 

All animal studies were approved by the competent institutional and national authorities, and 

performed according to European Directive 2010/63. 

In-vivo dMRI data was acquired from N=6 C57BL/6J mice (N=1 males, N=5 females, 34 ± 5 

weeks old, grown in a 12 h/12 h light/dark cycle with ad libitum access to food and water) on a 9.4T 

Bruker Biospec scanner equipped with an 86 mm quadrature transmission coil and 4-element array 

reception cryocoil. Briefly, mice were induced with 5% isoflurane mixed with oxygen-enriched 

medical air and maintained at 1.5-2%, and their temperature and breathing rate were continuously 

monitored.  

Diffusion MRI datasets for SANDI were acquired using a PGSE-EPI sequence with the following 

parameters: TE = 36.8 ms, TR = 4 s, 4 averages, slice thickness = 0.4 mm, 35 slices, in plane resolution 

= 0.12 x 0.12 mm2, FOV = 14.2 x 12 mm2, matrix = 118 x 100, Partial Fourier = 1.35, per-slice triggering 

and with fat suppression. The EPI acquisition bandwidth was 375 kHz and data were acquired in a 

single shot.  

In terms of diffusion weighting, the data has 8 shells with b-values of 1, 2.5, 4, 5.5, 7, 8.5, 10 

and 12.5 ms/μm2 and 40 directions each, distributed on a hemisphere following the default directions 

from the manufacturer. The diffusion time Δ = 20 ms was chosen to provide sensitivity for mapping 

apparent soma density according to previous simulation studies [43], and the gradient duration δ = 

5.5 ms was chosen based on the maximum diffusion weighting given the hardware constraints (max 

gradient strength of ~ 660 mT/m). The acquisition also included anatomical images acquired with a 

RARE sequence: RARE factor 8, TE = 36.2 ms, TR = 3.2 s, 4 averages, slice thickness = 0.4mm, 35 slices, 
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in plane resolution = 0.08 x 0.08 mm, matrix = 178 x 150, Partial Fourier = 1.1, per-slice triggering and 

fat suppression. The acquisition time for this protocol including all necessary adjustments was ~ 2.5h. 

 

2.2 Data pre-processing 

Complex data for each of the four receiver channels was exported from the scanner and processed 

in Matlab® (The MathWorks, Natick, MA, USA), unless otherwise specified, and the pre-processing 

pipeline is illustrated in Figure 1. 

Step 1. The first step was denoising the complex data using the Marchenko-Pastur PCA (MP-

PCA) denoising technique described in [44] and implemented in Matlab®[45]. As noise correlations 

in the image, due to data combination from multiple channels as well as zero filling in k-space (which 

is automatically performed by the vendor as part of the reconstruction pipeline), would negatively 

impact the performance of the denoising, we performed the following steps on the data: a) for the 

complex image for each channel we calculated the complex k-space data using a 2-dimensional 

inverse Fourier Transform, b) then we removed the zero padding and c) computed the (slightly lower 

resolution) complex image. Then, d) we denoised the magnitude of the lower resolution image, as 

the application of the MP-PCA denoising to magnitude data is well characterized, e) then we 

combined it with the phase information and calculated the corresponding denoised complex k-space. 

f) Next, we substituted the measured k-space data with the denoised one, and g) finally, we 

computed the denoised complex image at the original resolution. 

Step 2. The next step was ghost correction based on the algorithm described in [46], to correct 

the phases differences between odd and even k-space lines from EPI acquisition. We used an in-

house Matlab® implementation of the algorithm. 

Step 3. Following the ghost correction, the complex data from the 4 different channels was 

combined using the adaptive approach described in [47, 48] implemented in Matlab®[49]. 
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Step 4. At this step we calculated the standard magnitude images by taking the absolute 

values of the complex data, as well as the real images after the background phase removal. To obtain 

the real data, we followed the steps described in [50, 51]. a) First, we calculated the complex k-space, 

then b) we a applied a low pass filter, specifically, a Hamming window centred on the k-space centre 

and with a width equal to the amount of symmetrically acquired k-space lines, as described in [50]. 

c) Next, the background phase after applying the low pass filter was calculated and d) subtracted 

from the image phase; e) the resulting real part is used in subsequent analyses and referred to as 

“real image”.    

Step 5. The last step of this processing pipeline was the intra-scan registration (3D rigid 

registration based on mutual information), necessary due to the long duration of the scans to account 

for any movement as well as effects from gradient heating. As the diffusion data was measured in 

two acquisitions (8 b = 0 ms/µm2 volumes followed by odd and even b-values, respectively), with the 

first loop over b-values and the second over directions (i.e. b1 dir1, b2 dir1, …, b1 dir2, b2 dir2, … ), 

the registration was performed as follows: a) first, the measurements with the lowest b-values (i.e. 

b = 1 ms/μm2 for the first acquisition and b = 2.5 ms/μm2 for the second one) were registered to the 

first direction, then the transformation was applied to the higher b-values from the respective 

direction; b) the b = 0 ms/µm2 images were registered to the last one, then c) this reference b = 0 

ms/µm2 image was registered between the second and first acquisition sets, and d) this 

transformation was applied to all diffusion weighted volumes. The registration was performed using 

the imregister function in MATLAB on magnitude images and the same transformations were applied 

to real data.  

Step 6. After registration, real and magnitude data were individually corrected for Gibbs 

ringing, using a Matlab® implementation of the algorithm proposed by Kellner et al [52]. 
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Finally, the data was normalized by the mean of the b = 0 ms/µm2 images, and for the SANDI 

analysis, the diffusion weighted images were averaged over directions for each shell to calculate the 

powder averaged signal.  

  

Figure 1. a) Schematic description of the data processing pipeline. Input: complex images for each 
individual channel after the Bruker reconstruction from the scanner. Step 1: images are denoised for 
each channel. Step 2: images are ghost corrected by accounting for phase differences between odd 
and even k-space lines.  Step 3: the four channels are combined following an adaptive approach. Step 
4: magnitude and real images are computed. Step 5: images are registered within each scan. Step 6: 
images are corrected for Gibbs ringing. Output: Post-processed real and magnitude images. b) 
Example of mouse brain tissue reconstructed based on electron microscopy reproduced with 
permission from [53] (left) and schematic representation of the SANDI model (right). The powder 
averaged diffusion signal is a combination of diffusion restricted in spheres with a signal fraction fstick, 
diffusion restricted in sticks with signal fraction fsticks and isotropic Gaussian diffusion with signal 
fraction fball, with fsphere + fstick + fball = 1. 
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2.2 SANDI analysis 

In the first analysis, we employ the SANDI framework to analyse the powder-averaged diffusion data, 

as detailed in [39].  

 

2.2.1 Model formulation:  

The SANDI model assumes the diffusion signal can be explained by three compartments, namely 

intra-neurite signal which is modelled as diffusion inside impermeable sticks with zero radial 

diffusivity, intra-soma signal which is modelled as restricted diffusion inside spheres, and extra-

cellular signal, which is modelled as Gaussian diffusion, as illustrated in Figure 2. The powder-

averaged normalized diffusion signal has thus the following expression: 

 
�̃�(𝑏)

𝑆(0)
= 𝑓𝑠𝑡𝑖𝑐𝑘�̃�𝑠𝑡𝑖𝑐𝑘(b) + 𝑓𝑠ℎ𝑒𝑟𝑒�̃�𝑠𝑝ℎ𝑒𝑟𝑒(b) + 𝑓𝑏𝑎𝑙𝑙�̃�𝑏𝑎𝑙𝑙(b),  ( 1 ) 

where fstick + fsphere + fball = 1; �̃�𝑠𝑡𝑖𝑐𝑘 and �̃�𝑠𝑝ℎ𝑒𝑟𝑒 are the normalised, directionally averaged signals for 

restricted diffusion within neurites and soma, respectively and �̃�𝑏𝑎𝑙𝑙 the normalised, directionally 

averaged signal of the extra-cellular space. The specific expressions are given bellow: 

 Extra-cellular compartment. The diffusion of water molecules associated with the extra-cellular 

compartment, �̃�𝑏𝑎𝑙𝑙 is modelled as isotropic Gaussian diffusion with a scalar effective diffusion 

constant Dball:  

 𝐴𝑏𝑎𝑙𝑙(𝑏, 𝐷𝑏𝑎𝑙𝑙) = �̃�𝑏𝑎𝑙𝑙(𝑏, 𝐷𝑏𝑎𝑙𝑙) ≈  𝑒−𝑏𝐷𝑏𝑎𝑙𝑙  ( 2 ) 

Intra-neurite compartment. The signal contribution �̃�𝑠𝑡𝑖𝑐𝑘 from neurites (dendrites and axons) 

assumes that neuronal processes can be described as a collection of long thin cylinders, with a parallel 

apparent diffusion coefficient 𝐷𝑠𝑡𝑖𝑐𝑘
∥ ≡ 𝐷𝑠𝑡𝑖𝑐𝑘  and a negligible perpendicular one 𝐷𝑠𝑡𝑖𝑐𝑘

⊥ ~0. Under 

these assumptions, the direction-averaged �̃�𝑠𝑡𝑖𝑐𝑘 can be computed as powder average of randomly 

oriented sticks, such that [21, 54-59]: 
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 �̃�𝑠𝑡𝑖𝑐𝑘(𝑏, 𝐷𝑠𝑡𝑖𝑐𝑘 ) ≈ √
𝜋

4𝑏𝐷𝑠𝑡𝑖𝑐𝑘
𝑒𝑟𝑓(√𝑏𝐷𝑠𝑡𝑖𝑐𝑘) ( 3 ) 

Intra-soma compartment. The signal contribution �̃�𝑠𝑝ℎ𝑒𝑟𝑒 from cell bodies and other quasi 

spherical tissue components (astrocytes, glial cells, etc) is assumed to arise from a pool of diffusing 

water molecules restricted inside impermeable spheres with an effective radius 𝑅𝑠𝑝ℎ𝑒𝑟𝑒 and 

characterised by a diffusion coefficient Dsphere. The normalized signal �̃�𝑠𝑝ℎ𝑒𝑟𝑒 can be computed 

following the Gaussian Phase Distribution (GPD) approximation [60, 61], such that:  

 

�̃�𝑠𝑝ℎ𝑒𝑟𝑒(𝑏, 𝐷𝑠𝑝ℎ𝑒𝑟𝑒 , 𝑅𝑠𝑝ℎ𝑒𝑟𝑒) ≈ 𝑒𝑥𝑝 {−
2(𝛾𝑔)2

𝐷𝑠𝑝ℎ𝑒𝑟𝑒
∑

𝛼𝑚
−4

𝛼𝑚
2 𝑅𝑠𝑝ℎ𝑒𝑟𝑒

2 − 2

∞

𝑚=1

  

× [2𝛿 −
2 + 𝑒−𝛼𝑚

2 𝐷𝑠𝑝ℎ𝑒𝑟𝑒(∆−𝛿) − 2𝑒−𝛼𝑚
2 𝐷𝑠𝑝ℎ𝑒𝑟𝑒𝛿 − 2𝑒−𝛼𝑚

2 𝐷𝑠𝑝ℎ𝑒𝑟𝑒∆ + 𝑒−𝛼𝑚
2 𝐷𝑠𝑝ℎ𝑒𝑟𝑒(∆+𝛿)

𝛼𝑚
2 𝐷𝑠𝑝ℎ𝑒𝑟𝑒

]} 

( 4 ) 

where 𝐷𝑠𝑝ℎ𝑒𝑟𝑒 is the bulk diffusivity of water inside the spherical compartment,  and  the diffusion 

gradient pulse width and separation, g the magnitude of diffusion gradient pulse, m the mth root of 

the equation (𝛼𝑅𝑠𝑝ℎ𝑒𝑟𝑒)−1𝐽3

2

(𝛼𝑅𝑠𝑝ℎ𝑒𝑟𝑒) = 𝐽5

2

(𝛼𝑅𝑠𝑝ℎ𝑒𝑟𝑒), with Jn(x) the Bessel function of the first 

kind. For simplicity, here we consider a single apparent radius Rsphere as representative for all the 

somas, as a proxy for the volume weighted size distribution from a given MRI voxel, as detailed in 

[39]. For the diffusion weighting values and sphere radii considered here, the GPD provides a good 

proxy of the dMRI signal inside spheres [43, 62].   

This model formulation assumes that on the timescale of the diffusion experiments (td ~ 20 ms), 

the effects of exchange between different compartments can be neglected. Moreover, it does not 

explicitly account for size distributions as well as for intra-compartment kurtosis, which is neglected 

in the GPD approximation.  

 

2.2.2 Model parametrization:  
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Following equations (1)-(4), the parameters to be estimated from the direction-averaged data are: 

𝐷𝑠𝑡𝑖𝑐𝑘, 𝐷𝑠𝑝ℎ𝑒𝑟𝑒, 𝐷𝑏𝑎𝑙𝑙, 𝑅𝑠𝑝ℎ𝑒𝑟𝑒 as well as the signal fractions subject to the constraint fstick + fsphere + 

fball = 1. For diffusion restricted in spheres, i.e. equation (4), the signal depends on the ratio 

𝐷𝑠𝑝ℎ𝑒𝑟𝑒/𝑅𝑠𝑝ℎ𝑒𝑟𝑒
2, thus disentangling both the bulk diffusivity and restriction size from 

measurements which vary only the gradient strength is challenging. Thus, following the approach in 

[39], we fix the bulk diffusivity Dsphere to 2 μm2/ms, a value measured for intracellular diffusivity at 

ultra-short diffusion times [63], and then we estimate Rsphere. Moreover, it has been shown that fixing 

the diffusivities to slightly different values will not have a large impact on the pattern of estimated 

radii [64]. To ensure the signal fractions of the three compartments add up to 1, we have 

parametrized them as follows: fstick = f1, fball = f2(1-f1) and fsphere = (1-f2)(1-f1), where f1 and f2 are 

between 0 and 1. Furthermore, to ensure f1 and f2 are indeed constrained between 0 and 1, they 

have been parametrized as cos(α1)2 and cos(α2)2, respectively, as proposed in [21].    

 

2.2.3 Radom Forest Regression 

To estimate the five model parameters of SANDI we have employed a Random Forest (RF) regression 

algorithm [39]. Specifically, we have used the TreeBagger Matlab® algorithm with 200 trees, i.e. the 

same number of trees as performed in the original SANDI analysis, and default settings for regression 

to estimate separately each SANDI parameter. Thus, a separate RF was trained for each parameter. 

The data for training consisted of the normalized and directionally averaged diffusion signal 

simulated using the same acquisition as the experimental data and 105 SANDI parameter 

combinations, uniformly sampled as follows: f1 and f2 ∈ [0, 1], Dstick ∈ [0.25, 3] µm2/ms, Dball ∈ [0.25, 

3] µm2/ms and Rsphere ∈ [1, 10] µm. To each datapoint, Gaussian noise with a standard deviation σ = 

6.7E-3 was added, corresponding to an SNR of the powder averaged non-diffusion weighted data of 

150. The value of σ was approximated based on the SNR in white matter as follows: the SNR of b0 
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images was ~25, with corresponding noise standard deviations of the normalized signal σ0 ~ 0.04. 

When averaging N images, the noise standard deviation of the averaged data decreases with ~√𝑁, 

thus for the powder averaged data over 40 directions, the standard deviation of the noise was less 

than 6.7E-3, the value used in the training dataset. 

 

2.3 DKI analysis 

To further compare our results with a more established model of diffusion, we have also employed 

a diffusion kurtosis (DKI) analysis [16]. Thus, diffusion and kurtosis tensors were fitted voxelwise to 

the first 2 shells (b-values of 1 and 2.5 ms/μm2), that provide appropriate diffusion weighting for DKI 

[65], using a linear least squares algorithm implemented in MATLAB, employing the following 

equation: 

 
log (

𝑆(�̂�, 𝑏)

S0
) = −𝑏 ∑ 𝐷𝑖𝑗�̂�𝑖�̂�𝑗

3

𝑖,𝑗=1

+
𝑏2�̅�2

6
∑ 𝑊𝑖𝑗𝑘𝑙�̂�𝑖�̂�𝑗�̂�𝑘�̂�𝑙,

3

𝑖,𝑗,𝑘,𝑙=1

 

 

( 5 ) 

 

with Dij is the ij element of the symmetric rank 2 diffusion tensor D with trace Tr(D) = 3�̅�, and Wijkl is 

the ijkl element of the symmetric rank 4 kurtosis tensor W and �̂� denotes the direction of the 

diffusion gradient. Next, scalar metrics, specifically mean diffusivity (MD), fractional anisotropy (FA) 

and mean kurtosis (MK), were calculated and included in the subsequent analyses, as follows [66]: 

 𝑀𝐷 =  
1

3
∑ 𝐷𝑖𝑖

3

𝑖=1

 
( 6 ) 
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3

2
√
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 𝑀𝐾 =  
1

𝑁
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𝑁
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3
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where λi are the eigenvalues of the diffusion tensor, N is the total number of gradient directions and 

Dapp and Kapp are the apparent diffusion and kurtosis values along the nth gradient direction.  

 

2.4 Magnitude vs Real data 

Magnitude data is in most cases the standard output from a dMRI acquisition and is used in many 

dMRI techniques. Nevertheless, the Rician distribution of the noise in the magnitude data can lead 

to parameter biases especially when including measurements with very high diffusion weighting 

close to the noise floor [40, 50], as performed in the SANDI technique. One way to remove this bias 

is to model the Rician noise floor and remove it [57] or, when complex data is available, employ real 

data instead [50, 51]. Thus, in the first analysis, we investigate the correlations of the SANDI 

parameters when obtained either from magnitude data, which is the standard approach, or real data, 

which provides less bias when averaging the signal [51], following the pre-processing pipeline 

described in Section 2.2. Given that the SANDI analysis uses the powder averaged data, to minimize 

the effect of the Rician noise floor on the estimated parameters[50, 51], in the subsequent analyses 

we use the parameters derived from the real data. 

 

2.5 ROI analysis 

To analyse the range of SANDI parameters in the mouse brain, in-vivo, we performed a region of 

interest (ROI) analysis including gray matter (GM) areas (cortex, thalamus, striatum, hippocampus), 

white matter (WM) areas (corpus callosum, internal capsule) and cerebrospinal fluid (CSF) regions. 

For each animal, the representative ROIs for each structure were manually delineated on the S0 

images upon comparison with an atlas, and are illustrated in Figure 2.   
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Figure 2. Graphical depiction of the different ROIs analysed. 
 

The ROI analysis was employed to: 

i) analyse the differences of SANDI parameters derived from magnitude and real data to 

investigate the effect of Rician noise in different parts of the brain. Correlation analysis 

was used to assess the agreement between the two cases, and Bland-Altman plots [67] 

were employed to better observe biases of the estimated parameters; 

ii) investigate the parameter distributions across different areas of the brain. The parameter 

variability across animals was assessed by calculating the coefficient of variation of the 

mean ROI values across animals, both for SANDI and DKI parameters; 

iii) analyse the correlations between SANDI and DKI parameters in different areas of the 

brain. From this analysis the CSF ROI is excluded, since it can obscure the interpretation 

of the correlation analysis. For example, fsphere and MK are both close to 0 in CSF, although 

they are not necessarily positively correlated in tissue ROIs, thus including CSF would 

make the correlation analysis more difficult to quantify and interpret. 

 

2.6 Comparison with the atlas 
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The next analysis focused on comparing the parameters estimated from SANDI and DKI with the Allen 

Brain mouse atlas [68]. Specifically, we investigated how well different dMRI parameters correlate 

with the image intensity of the atlas generated based on serial two-photon tomography images, in 

which “dark” and “light” areas often reflect cell density[68].  

 

2.6.1 Atlas information 

For this analysis we employed the P56 Mouse Brain atlas which was built at a resolution of 10 μm 

isotropic using serial two-photon tomography (STPT) images from 1675 young adult mice [68]. In the 

original STPT images with an in-plane resolution of 0.35μm, the cellular nucleus appears dark and the 

cytoplasm bright. When interpolating the atlas at 10 μm, the areas with relatively densely packed 

cells appear bight, for instance layer 4 of the cortex, while areas with sparser cell body distribution 

appear darker, such as in white matter fibre tracts. Nevertheless, there are some well-known 

exceptions: for instance the densely packed pyramidal layer of the hippocampus where the large 

number of nuclei which appear dark in the original STPT images also result in a dark layer in the 

interpolated image. Thus, to avoid any issues with misregistration when the same gray level intensity 

reflects very different underlying cell densities, we decided to exclude hippocampal regions from 

analyses. 

 

2.6.2 Registration 

To create the template, we downloaded the P56 Mouse Brain Atlas in NIFTY format with a resolution 

of 20 μm isotropic (https://scalablebrainatlas.incf.org/mouse/ABA_v3). Then, the atlas was further 

downsampled to match the resolution of the dMRI data, namely 0.12x0.12x0.4 mm. 

To compare the atlas intensity with MRI derived parameters, we performed a 2D, slice to slice 

registration, to avoid interpolation between MRI slices during the registration process. First, we 
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chose a slice of interest in the atlas, then we picked the corresponding slices from the dMRI dataset 

based on anatomical landmarks for each animal, and next we performed a 2D non-rigid registration 

using the Registration function from the ANTs package [69]  for Python 3 (Python Software 

Foundation). We tested 2D registrations both using b = 0 ms/µm2 images as well as the fsoma maps, 

and the latter provided a better registration outcome upon inspection, likely because low signal 

intensity values in the atlas corresponded to some extent to low fsoma values, both in tissue as well as 

in the ventricles. Thus, the 2D slice registration was performed based on the fsoma maps for all animals 

and then the transformations were applied to all other parameter maps using a linear interpolation. 

The registered parameter maps were then averaged over the 6 animals. 

 

2.6.3 Correlation analysis 

To study the link between the MRI derived parameters and the image intensity of the atlas, we have 

considered two representative slices, covering the cerebrum and the cerebellum. Then, for each slice 

we manually drew an ROI which encompasses the tissue areas, while avoiding the ventricles, for two 

reasons: a) the MRI data showed larger ventricles compared to the atlas, thus this area was more 

prone to misregistration b) including ventricles would bias the correlation analysis for parameters 

such as MD, FA and fneurite where we would no longer expect a monotonical relationship with atlas 

intensity. The delineated ROIs are shown in Figure 8. Then, for all voxels in the ROI we computed the 

Spearman rank correlation coefficient between the dMRI parameters and the atlas intensity, a metric 

that reflects a monotonic relationship between variables, rather than a linear relationship.  

 

2.7 Acceleration  

The last analysis of this study investigated the effect of reducing SANDI’s number of shells and 

maximum b-value, aiming at potentially enabling the acceleration of its acquisition. This was 
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performed by progressively excluding the last shells (higher b-values) from the full protocol employed 

in this study, which consists of 8 shells with a maximum b-value of 12.5 ms/ μm2. Thus, we have 

analysed data for 7 shells with b = {1, 2.5, 4, 5.5, 7, 8.5, 10} ms/μm2, 6 shells with b = {1, 2.5, 4, 5.5, 

7, 8.5} ms/μm2, and 5 shells with b = {1, 2.5, 4, 5.5, 7} ms/μm2. We have not included protocols with 

less than 5 shells, as this is the number of free parameters estimated by the SANDI model in the 

current implementation. To perform the model fitting, for each sub-protocol we have retrained the 

RF regression algorithm on simulated data with the respective number of shells, and the same SNR 

as detailed in section 2.2.3. Then, real data was employed to estimate the SANDI parameters, which 

were evaluated voxelwise in the ROIs defined in section 2.5.  

 

3. Results 

3.1 Data quality assessment 

To explore the quality of the acquired data, Figure 2 depicts, for a representative mouse, the 

normalized and directionally averaged raw data, i.e. prior to the application of the denoising, ghost-

correction and unringing steps in the pre-processing pipeline. The data is presented for 5 b-values 

from 0 to 10 ms/μm2, both for real and magnitude data, in two slices from a representative animal.  

The maps show a faster signal attenuation in gray matter compared to white matter and a good 

contrast between WM and GM at very high b-values (b > 7 ms/μm2). Moreover, at these b-values 

when the signal is highly attenuated (~ 5% in GM and ~ 15% in WM), we observe most differences 

between real and magnitude data due to the Rician noise floor, with real data showing lower signal 

intensity especially in GM and CSF. Similar data quality is observed throughout the brain, as illustrated 

in Figure S1 in Supplementary Information, which plots the directionally averaged real data for b = 1 

and 12.5 ms/μm2 and 32 slices in one representative animal. The observed superior-inferior image 
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gradient is due to the sensitivity profile of the receiver cryoprobe, which is a surface coil. This pattern 

can also be observed in the SNR maps which have lower values in the inferior part. Representative 

SNR maps are illustrated in Figure S2 in Supplementary Information. The average SNR of the raw data 

across the entire brain was 37.9 ± 8.2, with higher values in gray matter, for instance SNR = 50.1 ± 

12.7 in the cortex, and lower in white matter, for instance SNR = 31.1 ± 5.2 in the internal capsule. 

After denoising the SNR increased by a factor of ~1.3. 

 

Figure 3. Powder-averaged diffusion weighted images using either magnitude or real data, from one 
representative animal. The data are presented for two slice positions, and 5 different b values 
increasing left to right. Clearly, the signal to noise of the powder averaged data is high even at the 
highest b-value used in this study (b = 10 ms/μm2), enabling the downstream processing of the SANDI 
model.  
 

3.2 SANDI parameter for magnitude and real data 
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Figure 3 presents the parametric maps derived from SANDI, for real and magnitude data following 

the pre-processing pipeline described in Figure 1, in one representative animal.  

 

Figure 4. SANDI parameter maps derived from magnitude (top) and real (bottom) data in one 
representative animal. Note the lower, but non-zero sphere (tentatively assumed to represent cell 
soma) fraction in white matter, and higher sphere fractions in gray matter. The opposite is observed 
for the stick fraction (tentatively assumed to represent neurites). In the ventricles, especially in the 
real data, neither sphere nor stick signals are detected. Sphere radii are quite uniform across the gray 
matter, and are somewhat lower in white matter regions, while the diffusivity in sticks is between free 
diffusion (e.g. ventricles in Dball) and the other Gaussian diffusion processes in the brain (Dball in the 
brain parenhcyma), tentatively associated with extracellular diffusion.  
 

Qualitatively, a good correspondence between the parametric maps derived from real and 

magnitude data is observed. Nevertheless, the maps derived from real data exhibit better superior-

inferior homogeneity, which can be clearly observed especially in the slice position at Bregma 0.5, 
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where an increase in fstick and Rsphere and a decrease in fsphere and Dstick in the inferior part of the brain 

was observed when parameters were estimated based on magnitude data compared to when they 

were estimated using real data. Importantly, the coil signal profiles have a decreasing gradient along 

the superior-inferior axis, as illustrated in Figure 3, with higher signal closer to the surface of the coil, 

suggesting that Rician bias will be higher in the lower S/N areas in the inferior part of the brain. 

We then investigated the more quantitative relationships between real and magnitude 

signals. The correlation between parameters derived from magnitude and real data in different WM 

and GM ROIs is shown in Figure 4. Overall, a good correlation between data types was noted, 

especially for fstick and Dball with correlation coefficients r > 0.8. For fsphere we also see high correlations 

in WM (r > 0.85), and slightly lower in GM (0.5 < r < 0.8), with lower values in areas where the 

parameters are more homogenous and have a lower dynamic range, such as striatum (r ~ 0.5). For 

Rsphere the correlation strength is lower, especially in GM (r ~ 0.5-0.6). All correlations are significant 

with p << 0.01. In terms of bias, which is reflected in Figure 5 as a departure from the identity line, 

fstick shows the largest differences, with higher values when estimated from magnitude data. Rsphere 

also shows slightly larger values when estimated from magnitude data, while the other parameters 

show little bias, as also illustrated in the Bland-Altman diagrams in Supplementary material.  

For all further analyses, SANDI parameters are estimated from real data, in order to decrease 

the bias due to Rician noise floor in the powder averaged data [50, 51]. Maps of SANDI parameters 

for all slices are shown in one representative animal in Figure S1 in Supplementary Information. 
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Figure 5. Scatter plots of SANDI parameters estimated based on real and magnitude data for the ROIs 
defined in Figure 2. The data is shown for GM ROIs (cortex, striatum, thalamus and hippocampus) 
depicted with dark grey, WM ROIs (corpus callosum and internal capsule) depicted with light grey, 
and CSF depicted with light blue. While correlations are generally good, some bias is observed in the 
magnitude data.  
 

3.3 SANDI parameter distributions within the ROIs 

Next, we analyse the estimated metrics within well-defined ROIs representing similar GM, WM and 

CSF structures across the animals. Figure 6a shows the decay of the normalized, powder averaged 

signal in each ROIs as a function of b-value, plotting the data points, the signal prediction from the 

estimated SANDI parameters, as well as their difference, for one representative animal. Figure 6b 

presents boxplots of the estimated SANDI parameters from the ROI averaged signals, showing 

consistent values of the estimated metrics across animals. The results also attest that the model 
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provides a good fit to the data, both when fitted to the ROI averaged signal, as illustrated in Figure 

6a, as well as when fitted to individual voxels selected from each ROI, as shown in Figure 6c.  

 

Figure 6 a) Decay curve as a function of b-value of the powder averaged mean ROI data, predicted signal from the estimated SANDI 
model parameters, as well as their difference in GM, WM and CSF ROIs: CT – cortex, STR – striatum, TH – thalamus, HP – hippocampus, 
CC – Corpus Callosum, IC – internal capsule, CSF – cerebro-spinal fluid. The curves are presented for one representative animal and 
show a good fit of the SANDI model to the data. b) Boxplots of estimated SANDI parameters across the six animals in the different ROIs. 
c) Same as a), but for data from a single voxel selected from each ROIs. Both ROI-based and single-voxel data are deemed to have 
sufficient signal to noise to be fitted to the SANDI model.  

We then turn to investigate the distribution of the metrics within the ROIs. Figure 7 presents 

histograms of SANDI and DKI parameters in GM, WM and CSF ROIs across the six mice and Table S2 

in supplementary material presents the average and standard deviation across animals of the mean 

parameter values in each ROI. The results reveal several interesting findings.  First, higher soma signal 

fractions were observed in GM than in WM, while the contrast for the neurite signal fraction is 

reversed with higher values in WM and lower in GM, consistent with previously published results[39-

41]. Second, both fsphere and fstick are almost 0 in CSF. The other parameters vary less across tissue 
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ROIs, as also illustrated by the mean values in Table S2. In CSF, Dball approaches the diffusivity of free 

water. For DKI parameters, MD shows the least contrast between GM and WM, while both FA and 

MK values are higher in WM compared to GM ROIs. 

In terms of variability across animals, we found that fsphere and fstick have a coefficient of 

variation (CoV) up to ~12% (range: 1.7% - 12.3%) in tissue ROIs and higher CoVs in CSF due to the 

very low fsphere and fstick mean values. Rsphere and Dstick have a much lower CoV across animals, up to 

3.1% in tissue ROIs. Dball has a higher CoV with values between 6.4% and 15.4%. The variability of 

fsphere and fstick is similar to the variability shown by MD, while FA and MK parameters estimated from 

the DKI analysis show higher variability across animals (range: 6.4% to 24%).    
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Figure 7. Histograms of a) SANDI and b) DKI parameters for the 7 ROIs depicted in Figure 2. The six 
animals are presented by different colours. The CoV across animals is calculated for the mean 
parameter values in each ROI. Excellent stability of the SANDI parameters is observed between the 
animals.  
 

3.4 Do SANDI and DKI parameters correlate well?  

The next analysis focused on attempting to establish links between DKI and SANDI parameters. Figure 

8 shows scatterplots between DKI and SANDI parameters when the data from all tissue ROIs (i.e. 

excluding CSF, c.f. Methods) was pooled together.  
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The results show that mean diffusivity has a strong positive corelation with SANDI-derived 

Dball (r = 0.8), and a weak positive correlation with Dstick (r = 0.29). The MD did not correlate with the 

other SANDI parameters (r < 0.15). On the other hand, FA has a very strong positive correlation with 

fstick (r = 0.85), a very strong negative correlation with fsphere (r = -0.82) and a moderate negative 

correlation with Rsphere (r = -0.61).  

MK better correlated with several SANDI parameters, but nevertheless the correlations 

observed were only moderate. Specifically, we found a positive correlation of MK with fstick, Dball and 

Dstick (r = 0.46, r = 59, r = 0.52, respectively) and a weak negative correlation with fsphere and Rsphere (r 

= -0.33, r = -0.28, respectively).  

 

Figure 8. Scatterplots of DKI parameters vs SANDI parameters with datapoints pooled together for all 
tissue ROIs (excluding CSF). The correlation coefficient is also provided for each plot. MD shows a very 
strong positive correlation with Dball, FA shows a very strong positive correlation with fsphere and 
negative correlation with fstick and MK shows only moderate and weak correlations with any of the 
SANDI parameters.  
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3.5 Comparison of SANDI and DKI parameters with the Allen brain atlas 

This analysis is focused on the comparison dMRI parameters derived from SANDI (fsphere and fstick) and 

DKI (MD, FA, MK) with the image intensity of the P56 Allen brain atlas, which reflects cell density 

(among other things) [68]. Figure 9 show the results for two representative slices covering both the 

cerebrum (a) and the cerebellum (b).  
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Figure 9. Comparison between dMRI parameters and the downsampled Allen mouse brain atlas for 
three slices in the a) cerebrum and b) cerebellum. For each region, the top row shows the parameter 
maps derived from SANDI (fsphere, fstick and Rsphere) and DKI (MD, FA and MK), averaged over the 6 
animals, after registration to the template as described in section 2.6.2. The bottom row shows 
voxelwise scatter plots of the same dMRI parameters versus the image intensity of the atlas, and the 
legend presents the Spearman correlation coefficient. Strikingly, fsphere exhibits a very good rank 
correlation with the Allen brain contrast in all areas.  
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Both in the cerebrum and cerebellum, the maps of the group fsphere qualitatively follow the 

intensity patterns observed in the downsampled Allen atlas, with higher values in the gray matter 

and lower in the white matter. Although group fsphere does not exhibit the same dynamic range as the 

atlas image intensity in gray matter, it does provide contrast between different regions, for example 

it has lower values in striatum compared to the cortex. The scatterplots also show there is a strong 

positive rank correlation between group fsphere and the atlas intensity with Spearman correlation 

coefficients of ρ = 0.74, ρ = 0.75 and ρ = 0.68, respectively.  

In the cerebrum, a strong negative correlation is also observed between the atlas intensity 

and FA (ρ = -0.67 and ρ = -0.73), and a moderate negative correlation with fstick (ρ = -0.49 and ρ = -

0.64). For Rsphere, MD and MK, we see only weak and very weak correlations (ρ = 0.22 and ρ = 31 for 

Rsphere; ρ = -0.1 and ρ = -0.33 for MD; ρ = 0.03 (n.s.) and ρ = -0.34).  

In the cerebellum, the only parameter which shows a strong correlation with the atlas 

intensity is fsphere, nevertheless, we also see moderate correlation with fstick and Rsphere, with ρ = -0.54 

and ρ = 0.56, respectively. For DKI parameters we see weaker correlations, specifically, ρ = 0.14 for 

MD, ρ = -0.15 for FA and ρ = -0.3 for MK. All correlation coefficients are significant with p << 0.01 

unless otherwise specified.  

Although this analysis has been performed on the group averaged metrics, similar patterns 

were observed in individual mice, as illustrated in Figure S6 from the Supplementary material for the 

SANDI parameters. 
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3.7 Accelerating SANDI acquisitions  

 

Figure 10. Boxplots of estimated SANDI parameters for protocols with varying number of shells in GM, 
WM, and CSF ROIs. The parameters are estimated voxelwise and aggregated over different animals 
for the voxels in each ROI. The rows present different model parameters and the columns different 
ROIs. The dotted black lines show the values estimated from the full, 8-shell, protocol, while the green 
lines show a variation of ±10 % from this value. The b-values employed in the different protocols are 
the following: full protocol (8 shells): b = {1,2.5,4,5.5,7,8.5,10,12.5} ms/μm2; 7-shells: b = 
{1,2.5,4,5.5,7,8.5,10} ms/μm2; 6-shells: b = {1,2.5,4,5.5,7,8.5} ms/μm2 and 5-shells: b = {1,2.5,4,5.5,7} 
ms/μm2. Overall, all SANDI parameters are stable as the protocol is reduced from 8 shells with 
maximum b-value of 12.5 ms/μm2 to 5 shells with maximum b-value of 7 ms/μm2. 
 

Finally, we investigate the potential for accelerating the acquisitions by removing data. Figure 10 

illustrates the SANDI parameters estimated from protocols with decreasing number of shells for the 

different GM, WM and CSF ROIs considered in this work. The results show that the estimated 

parameter values are overall stable when decreasing the acquisition protocol to 5 shells, both in 
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terms of median values and interquartile ranges, which reflect variability within the ROIs as well as 

between animals. In most cases presented in Figure 9, the median values estimated from the 5-shell 

protocol are within 10% of the values estimated from the full protocol, as shown by the dotted green 

lines. In other cases, there is a small change in parameter values, for instance, an increase in the 

estimated Rsphere, which is more pronounced in the WM ROIs, as well as an increase in fstick in the GM 

ROIs. For Rsphere, the median values are still within 10% difference, while for fstick the absolute 

differences are small, i.e. median value differences < 0.03, although in GM this change is larger than 

10% due to the overall small values of the parameters.  
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4. Discussion 

Preclinical animal models are heavily utilised to investigate many facets of normal biological process 

such as development[70], aging[71, plasticity, learning and memory, 72], as well as adverse effects 

such as neurodegeneration [73], stroke [74] and other brain injuries [75], and cancer [76]. Due to 

their non-invasive nature and ability to probe microscopic dimensions, diffusion MRI (dMRI) methods 

have been particularly useful for reporting on progressive changes in tissue microstructure, for 

instance in the detection of Alzheimer’s disease [77], demyelination [78], etc. However, most dMRI 

methods focused on WM due to the somewhat more simplistic nature of the structures (at least in 

terms of tissue modelling). By contrast, the SANDI model was designed to capture features that can 

be more relevant in gray matter, thereby providing an exciting opportunity to enhance 

microstructural inference via dMRI measurements.  

Here, we implemented SANDI on a 9.4T pre-clinical scanner and characterized, for the first 

time, the mouse brain microstructure, in-vivo, and attempted to correlate the SANDI findings with 

the Allen mouse brain atlas to provide a first “group-level” validation of the technique. Our work also 

suggests important magnitude versus real data effects and optimisations of the processing pipeline 

for in vivo imaging. Finally, we examined the relationship between SANDI and more standard DKI 

parameters as well as the possibility of reducing the acquisition protocol. All these as well as 

limitations and potential future implications, are discussed below.  

 

SANDI parameters across regions and animals 

Overall, we find that in the in-vivo mouse brain, SANDI acquisitions produce parameters trends that 

are in line with previous studies performed in vivo in humans [30, 39-41] (and one case of ex vivo 

mouse brain [39]), with higher fsphere values in GM than in WM, while the trends for fstick are reversed. 
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In CSF, both metrics are close to zero, providing an important internal reference that strong biases 

are not present where very few cells are expected. This can be important for investigating diseases 

where cell density decreases, for instance due to neuronal loss in Alzheimer’s [79] or Parkinson’s [80] 

disease. More specifically in GM ROIs, we saw a narrow distribution of fsphere values with a mean of 

0.59±0.02 in the cortex, while in the deeper GM regions and hippocampus, the distributions were 

wider, reflecting the more heterogenous sub-structures within these areas [81]. Although previous 

ex-vivo SANDI data which was acquired with much higher resolution (0.05 x 0.05 x 0.25 mm) showed 

clear differences between cortical layers [30], here such differences are not obvious, likely due to the 

lower resolution, both in plane as well as slice thickness, namely 0.12 x 0.12 x 0.4 mm in our study.   

In WM, as expected, SANDI produces lower estimates of fsphere values (~0.3) and the 

distributions are wider than in GM, also due to larger partial volume effects considering the (still very 

thin) slice thickness of 0.4 mm employed in this in vivo acquisition. Importantly, many models simply 

ignore spherical objects (assumingly, cell bodies) in white matter modelling of dMRI. Indeed, 

histological findings suggest that cell body density (not only neurons, but also astrocytes, microglia, 

etc) in the white matter is certainly not negligible [30, 82]. Our results also show that tissue 

components which are characterized by slow isotropic diffusion contribute to the signal with a 

fraction ~0.3 in WM, consistent with previous results [39, 83], and should not be ignored. Overall, 

the coefficients of variation of the mean fsphere values across animals were small, < 8% both in GM 

and WM, showing a good reproducibility of the metric. 

As some of its predecessors[22-24, 31, 84], SANDI also provides parametric estimates for the 

fraction of neurites, which are modelled as sticks, fstick. Using SANDI, the fstick metric showed lower 

values in GM, between 0.1 in cortex and 0.2 in thalamus, and higher values in WM (0.39±0.03 in CC 

and 0.52±0.02 in IC). The histograms were also narrower in cortex and wider in WM, due to partial 

volume effects, and in deep GM, especially in the thalamus where there are more myelinated fibres 
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compared to the other GM ROIs considered here. The coefficient of variation for fstick is also relatively 

small < 12%. The patterns and values of fstick measured in this study are in line with previous works 

estimating the signal fraction of sticks, both for techniques which use directional data [22-24, 84], as 

well as powder averaged data [39, 40] [30, 41]. In CSF, both fsphere and fstick are close to zero with a 

narrow distribution of values, although the CV is higher due to the division by the low mean values.  

 Rsphere values also show contrast between brain regions, with lower values in WM than in GM. 

Overall, the estimated Rsphere values are between 6 and 9 μm, consistent with values derived from 

histology, when considering that the apparent effective radii are actually tail-weighted values of the 

underlying distribution of sizes [85]. Higher Rsphere values can also be observed in regions known to 

have larger cells, such as the granular and pyramidal layer of the hippocampus or the piriform 

cortex[81], as illustrated in Figure S7 in Supplementary Information. The choice of sequence 

parameters, especially the gradient duration and diffusion time, can also play a role on the sensitivity 

to different cellular sizes and might influence the estimated Rsphere values.  

The other SANDI parameters, namely Dball and Dstick are also reproducible across animals, 

although the coefficients of variation for Dball are higher than for Dstick with values of 6-16% and <4%, 

respectively. The larger CoV of Dball is driven mostly by the values from one animal which are higher, 

and also visible as a separate peak on the MD histograms. Overall, these parameters show the least 

contrast across tissue types, and they seem to capture the effect of imaging artifacts, for instance 

Gibbs ringing due to Partial Fourier, as can be seen in Figure 4, where some ringing around ventricles 

can be seen in the maps of Dstick and Dball, but not for the other parameters. 

 

Comparison of real and magnitude data 

Our findings suggest that real data is preferable for more accurate SANDI estimation, at least in cases 

where signal to noise is similar or poorer than in this study. Comparing the parameters estimated 
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from magnitude and real data, the Rician noise floor clearly biases SANDI-derived parameters, mostly 

fstick, which has significantly higher values when magnitude data is considered. Still at these levels of 

signal to noise, there is a strong positive correlation between the two cases, especially in ROIs with a 

larger dynamic range of parameter values where r > 0.9. For data with lower SNR, for instance on 

clinical scanners, better averaging approaches can also be employed to reduce the Rician noise bias 

compared to taking the mean over directions [86]. Other parameters show less bias, although we 

observe a small positive bias for Rsphere and a small negative bias for fsphere, which is consistent with a 

previous simulation study which shows that in the presence of Rician noise, Rsphere tends to be 

overestimated, especially for lower values of fsphere, such as in WM ROIs[40].  

 

Comparison between DKI and SANDI parameters 

We sought to compare DKI and SANDI parameters to establish whether perhaps performing 

DKI can be a good proxy for SANDI. The results revealed that MD is strongly correlated to SANDI’s 

Dball, FA is strongly correlated to SANDI’s fsphere and fstick and MK is only moderately correlated to any 

of the SANDI parameters. Although FA strongly correlates with SANDI’s critical fsphere parameter for 

the ROIs considered here, it does not correlate as well with the Allen brain atlas, especially in the 

cerebellum (r = -0.16), suggesting SANDI cannot be merely replaced by DKI.  

Another point is the variation of parameters due to (imaging) artifacts. While in SANDI, the 

local variation in image intensity, for instance due to Gibbs ringing, is mostly reflected by the Dball and 

Dstick parameters, as illustrated in Figure 4, for DKI such intensity variations are reflected especially in 

the kurtosis maps, also giving rise (as expected) to the negative kurtosis values[87] seen in Figure 7 

and 8. Such effects are present especially in the corpus callosum as it is located next to the ventricle, 

an area of large image contrast thus prone to Gibbs ringing artifacts, especially that data was acquired 

with Partial Fourier, which were partially, but not entirely removed during pre-processing. These 
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effects on MK are consistent with previous literature, for instance the maps presented in [78, 88], 

where there are obvious drops in MK values due to Gibbs ringing. 

Moreover, the DKI analysis included a subset of the measurements with only two b-shells of 

{1, 2.5} ms/μm2 which are in the range of diffusion weightings appropriate for DKI [65], resulting in 

more variability of the maps compared to the SANDI parameters which were derived from 4x more 

measurements. Although, DKI requires less b-values and a faster acquisition, it appears that the high 

b-values used in the SANDI approach do provide additional contrast, as discussed below. 

 

Comparison to the Atlas 

The results from this study show a strong positive rank correlation between SANDI-driven fsphere and 

the Allen brain atlas image intensity, which reflects to some extent cell density [68]. fsphere is the only 

parameter which has a strong correlation both in the cerebrum and cerebellum, while other 

parameters such as FA and fstick show a strong / medium correlation only in the cerebrum, but not 

the cerebellum. These results suggest that there is information in the metrics derived high diffusion 

weighted data, which cannot be captured by DTI / DKI parameters. Another possible explanation is 

the effect of the slice thickness in the dMRI data. While in the cerebrum, there is a smoother variation 

in the tissue with changes in the slice direction, the cerebellum is smaller, and the tissue architecture 

changes more over the 0.4 mm slice thickness. This especially affects metrics such as FA which will 

have lower values where there are larger intra-voxel variations in fibre direction. Other possible 

issues are related to the non-rigid registration, as quite large deformations are necessary to match 

the EPI based dMRI images to the atlas due to susceptibility artifacts.  

Moreover, the registration was performed based on fsphere maps, which visually provided a 

better match between the atlas and the dMRI data compared to using b = 0 ms/µm2 images, either 

directly registered to the atlas, or registered first to anatomical undistorted images and then to the 
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atlas. Although this choice might favour the correlation between  fsphere and the atlas intensity, very 

similar patterns to the average map can be observed in individual maps before registration, as shown 

in Figure S3 in Supplementary material for all 6 mice, visually attesting that areas of high image 

intensity in the atlas correspond to those with high fsphere values.  

Although we see a strong rank correlation between fsphere and the Allen brain atlas, the atlas 

shows a wider dynamic range of intensity values compared to fsphere, especially in the cortex. This is 

likely related to the different contrast mechanisms of the two imaging modalities. In the two-photon 

tomography employed for the Allen Brain Atlas, the image intensity is related to the amount of 

cytoplasm, while fsphere reflects the amount of dMRI signal coming from water molecules restricted in 

spherical environments. While both metrics are considered to reflect to some extent cell density their 

contrast is inherently different, so we would not necessarily expect a perfect correlation. One 

example is the hippocampus, where the pyramidal layer has highly packed cells, as illustrated by 

stains such as Nissl or DAPI. In the Allen brain atlas, the pyramidal layer appears dark, due to the large 

and densely packed cell nuclei, nevertheless, fsphere values are high in this region.   

 

Acceleration of SANDI 

The last analysis of this study investigated the possibility to shorten the SANDI acquisition time as 

well as reduce the maximum b-value, which would facilitate lower echo times, better SNR, as well as 

acceleration that favours clinical application on standard systems with limited gradient strengths. In 

the past SANDI was performed with data from high performance clinical scanners, as well as standard 

hardware by combining linear and spherical tensor encoding. Our results show that metrics derived 

from standard PGSE acquisitions, which are widely available on clinical and pre-clinical systems, are 

comparable with previous values from the literature and are overall stable in both WM and GM ROIs, 

.CC-BY-NC 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is 

The copyright holder for this preprintthis version posted August 11, 2021. ; https://doi.org/10.1101/2021.08.11.455923doi: bioRxiv preprint 

https://doi.org/10.1101/2021.08.11.455923
http://creativecommons.org/licenses/by-nc/4.0/


38 
 

when the protocol is reduced from 8 shells with a maximum b-values of 12.5 ms/m2 to 5 shells with 

a b-value of 7000 s/mm2, which is very encouraging for future applications.  

 

Limitations 

As any study, ours also has some limitations, both intrinsic to the SANDI model, as well as related to 

the experiments. 

The SANDI model assumes non-exchanging compartments, where cell bodies are represented 

as spheres with apparent radius Rsphere, neurites (axons and dendrites) are represented as sticks, and 

the extracellular space is assumed to be a well-mixed environment characterized by Gaussian 

diffusion. This is a simplified view of the tissue and does not account for its full complexity, for 

instance variations in cell sizes and shapes, finite axon and dendrite sizes, the presence of intracellular 

organelles, membrane permeability and exchange across different compartments, etc. In terms of 

diffusion modelling, within the GPD approximation, the kurtosis of each compartment is assumed 

negligible. As recent studies employing double diffusion encoding have shown non-zero intra-

compartment kurtosis in brain tissue both using clinical and pre-clinical data [89-91], these 

assumptions might also have an impact on the estimated parameter values, and their interpretation. 

Another modelling assumption is the lack of exchange between compartments.  According to some 

studies, the intra-cellular residence time of water is on the order of 500 ms [92], which would not 

play an important role at the diffusion time considered here (20 ms), although other recent studies 

show that water exchange across compartments can be faster in GM and can influence the dMRI 

signal at this diffusion time [93]. PGSE data acquired at a single diffusion time, as done in this study, 

is not appropriate to characterize the effects of intra-compartment kurtosis or exchange, which might 

produce some biases in the estimated parameters, that can be the focus of future work.  
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In terms of Atlas comparison, the SANDI metrics and the Atlas image intensity, which are used 

as proxies for cell density in the brain, are based intrinsically on different contrast mechanisms and 

assumptions, thus we do not expect to see a perfect correlation. Moreover, the dMRI metrics are 

compared to an average template, rather than data specific for each animal, and this might incur 

larger deformations than when comparing to slices from the same brain. Moreover, the template is 

based on young adult mice that are 8 weeks old, while the animals in our study are significantly older 

(34 ± 5 weeks), thus the effect of age on brain (micro)structure is not considered. An example of this 

effect is the area around the ventricles, which is prone to more severe misregistration, as illustrated 

in Figure 8, since the animals in our cohort have larger ventricles compared to the template. Thus, to 

avoid bias due to misregistration, these areas were not included in the correlation analysis. Future 

studies should engage in active histology of the imaged animals and find perhaps better proxies for 

cell body density than the intensity of the two-photon tomography used in the Allen brain atlas.  

In terms of shortening the acquisition protocol, this study has focused on subsets of the 

current dataset by decreasing the maximum b-value, which, as discussed, has several advantages in 

practice. Nevertheless, a lower number of shells with other b-value combinations, or even optimising 

the b-values, the diffusion time and/or the number of directions per shell is likely to further improve 

the performance of shorter protocol, which is also a possible direction for future research. Moreover, 

in this study we employed standard PGSE measurements (i.e. linear encoding) with a range of b-

values up to very high diffusion weighting (12,5 ms/μm2), as described in the original SANDI 

methodology. Using more advanced diffusion sequences and combining linear encoding with other 

shapes of the b-tensor, such as planar or spherical encoding, might benefit the estimation of SANDI 

parameters, although the results of the two different approaches have not been directly compared. 

Nevertheless, the benefit of using standard PGSE sequences is their wide availability on clinical and 

pre-clinical systems.   
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5. Conclusions 

We characterised mouse brain microstructure using SANDI in vivo and showed that the fraction of 

spheres – tentatively associated with cell bodies – correlate well with the Allen brain atlas contrast. 

SANDI shows excellent reproducibility across animals and high parametric stability, and the 

acquisition protocol can be further shortened to 5 shells without significantly biasing the parameter 

estimates, which suggests potential clinical translation. These findings bode well for further 

validation of SANDI vis-à-vis its underlying biological underpinnings and pave the way for future 

characterisations of gray matter in animal models of disease, plasticity, and development. 
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Figure Captions  
 
Figure 1 a) Schematic description of the data processing pipeline. Input: complex images for each 
individual channel after the Bruker reconstruction from the scanner. Step 1: images are denoised for 
each channel. Step 2: images are ghost corrected by accounting for phase differences between odd 
and even k-space lines.  Step 3: the four channels are combined following an adaptive approach. Step 
4: magnitude and real images are computed. Step 5: images are registered within each scan. Step 6: 
images are corrected for Gibbs ringing. Output: Post-processed real and magnitude images. b) 
Example of mouse brain tissue reconstructed based on electron microscopy reproduced with 
permission from [53] (left) and schematic representation of the SANDI model (right). The powder 
averaged diffusion signal is a combination of diffusion restricted in spheres with a signal fraction fstick, 
diffusion restricted in sticks with signal fraction fsticks and isotropic Gaussian diffusion with signal 
fraction fball, with fsphere + fstick + fball = 1. 
 

Figure 2 Graphical depiction of the different ROIs analysed. 
 

Figure 3 Powder-averaged diffusion weighted images using either magnitude or real data, from one 
representative animal. The data are presented for two slice positions, and 5 different b values 
increasing left to right. Clearly, the signal to noise of the powder averaged data is high even at the 
highest b-value used in this study (b = 10 ms/μm2), enabling the downstream processing of the SANDI 
model.  
 

Figure 4 SANDI parameter maps derived from magnitude (top) and real (bottom) data in one 
representative animal. Note the lower, but non-zero sphere (tentatively assumed to represent cell 
soma) fraction in white matter, and higher sphere fractions in gray matter. The opposite is observed 
for the stick fraction (tentatively assumed to represent neurites). In the ventricles, especially in the 
real data, neither sphere nor stick signals are detected. Sphere radii are quite uniform across the gray 
matter, and are somewhat lower in white matter regions, while the diffusivity in sticks is between free 
diffusion (e.g. ventricles in Dball) and the other gaussian diffusion processes in the brain (Dball in the 
brain parenhcyma), tentatively associated with extracellular diffusion.  
 

Figure 5 Scatter plots of SANDI parameters estimated based on real and magnitude data for the ROIs 
defined in Figure 2. The data is shown for GM ROIs (cortex, striatum, thalamus and hippocampus) 
depicted with dark grey, WM ROIs (corpus callosum and internal capsule) depicted with light grey, 
and CSF depicted with light blue. While correlations are generally good, some bias is observed in the 
magnitude data.  
 

Figure 6 a) Decay curve as a function of b-value of the powder averaged mean ROI data, predicted 
signal from the estimated SANDI model parameters, as well as their difference in GM, WM and CSF 
ROIs: CT – cortex, STR – striatum, TH – thalamus, HP – hippocampus, CC – Corpus Callosum, IC – 
internal capsule, CSF – cerebro-spinal fluid. The curves are presented for one representative animal 
and show a good fit of the SANDI model to the data. b) Boxplots of estimated SANDI parameters 
across the six animals in the different ROIs. c) Same as a), but for data from a single voxel selected 
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from each ROIs. Both ROI-based and single-voxel data are deemed to have sufficient signal to noise 
to be fitted to the SANDI model.  

 

Figure 7 Histograms of a) SANDI and b) DKI parameters for the 7 ROIs depicted in Figure 2. The six 
animals are presented by different colours. The CoV across animals is calculated for the mean 
parameter values in each ROI. Excellent stability of the SANDI parameters is observed between the 
animals.  
 

Figure 8 Scatterplots of DKI parameters vs SANDI parameters with datapoints pooled together for all 
tissue ROIs (excluding CSF). The correlation coefficient is also provided for each plot. MD shows a very 
strong positive correlation with Dball, FA shows a very strong positive correlation with fsphere and 
negative correlation with fstick and MK shows only moderate and weak correlations with any of the 
SANDI parameters. 
 
Figure 9 Comparison between dMRI parameters and the downsampled Allen mouse brain atlas for 
three slices in the a) cerebrum and b) cerebellum. For each region, the top row shows the parameter 
maps derived from SANDI (fsphere, fstick and Rsphere) and DKI (MD, FA and MK), averaged over the 6 
animals, after registration to the template as described in section 2.6.2. The bottom row shows 
voxelwise scatter plots of the same dMRI parameters versus the image intensity of the atlas, and the 
legend presents the Spearman correlation coefficient. Strikingly, fsphere exhibits a very good rank 
correlation with the Allen brain contrast in all areas.  
 

Figure 10  Boxplots of estimated SANDI parameters for protocols with varying number of shells in GM, 
WM, and CSF ROIs. The parameters are estimated voxelwise and aggregated over different animals 
for the voxels in each ROI. The rows present different model parameters and the columns different 
ROIs. The dotted black lines show the values estimated from the full, 8-shell, protocol, while the green 
lines show a variation of ±10 % from this value. The b-values employed in the different protocols are 
the following: full protocol (8 shells): b = {1,2.5,4,5.5,7,8.5,10,12.5} ms/μm2; 7-shells: b = 
{1,2.5,4,5.5,7,8.5,10} ms/μm2; 6-shells: b = {1,2.5,4,5.5,7,8.5} ms/μm2 and 5-shells: b = {1,2.5,4,5.5,7} 
ms/μm2. Overall, all SANDI parameters are stable as the protocol is reduced from 8 shells with 
maximum b-value of 12.5 ms/μm2 to 5 shells with maximum b-value of 7 ms/μm2. 
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