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ABSTRACT  51 

Parent-of-origin effects are unexpectedly common in complex traits, including metabolic and 52 

neurological diseases. Parent-of-origin effects can be modified by the environment, but the architecture 53 

of these gene-by-environmental effects on phenotypes remains to be unraveled. Previously, quantitative 54 

trait loci (QTL) showing context-specific parent-of-origin effects on metabolic traits were mapped in the 55 

F16 generation of an advanced intercross between LG/J and SM/J inbred mice. However, these QTL were 56 

not enriched for known imprinted genes, suggesting another mechanism is needed to explain these 57 

parent-of-origin effects phenomena. We propose that non-imprinted genes can generate complex parent-58 

of-origin effects on metabolic traits through interactions with imprinted genes. Here, we employ data from 59 

mouse populations at different levels of intercrossing (F0, F1, F2, F16) of the LG/J and SM/J inbred mouse 60 

lines to test this hypothesis. Using multiple populations and incorporating genetic, genomic, and 61 

physiological data, we leverage orthogonal evidence to identify networks of genes through which parent-62 

of-origin effects propagate. We identify a network comprised of 3 imprinted and 6 non-imprinted genes 63 

that show parent-of-origin effects. This epistatic network forms a nutritional responsive pathway and the 64 

genes comprising it jointly serve cellular functions associated with growth. We focus on 2 genes, Nnat 65 

and F2r, whose interaction associates with serum glucose levels across generations in high fat-fed 66 

females. Single-cell RNAseq reveals that Nnat and F2r are negatively correlated in pre-adipocytes along 67 

an adipogenic trajectory, a result that is consistent with our observations in bulk white adipose tissue.  68 

 69 

 70 

 71 

 72 

 73 

 74 
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INTRODUCTION 77 

Parent-of-origin effects, where the phenotypic effect of an allele depends on whether the allele is 78 

inherited maternally or paternally, are epigenetic phenomena associated with a wide range of complex 79 

traits and diseases (Lawson et al. 2013a). Thus, the functional impact of a specific genetic variant can 80 

depend on its parental origin. The best characterized parent-of-origin effect is genomic imprinting, an 81 

epigenetic process in which either the maternally or paternally inherited allele is silenced, typically 82 

through DNA methylation. In humans there are 107 verified imprinted genes and in mice there are 124, 83 

of which ~70% overlap (Jirtle 2012). Despite the rarity of imprinted genes, parent-of-origin effects on 84 

complex traits and diseases are relatively common, suggesting that canonical imprinting mechanisms 85 

are not sufficient to account for these phenomena (Mozaffari et al. 2019; Zeng et al. 2019). With so few 86 

imprinted genes, what mechanisms underlie these parent-of-origin effects? We hypothesize that a small 87 

number of imprinted genes can generate a large number of parent-of-origin effects through interactions 88 

with non-imprinted genes. 89 

In this study, we use four populations at different levels of intercrossing of the LG/J and SM/J 90 

inbred mouse lines to test the hypothesis that non-imprinted genes can contribute to parent-of-origin 91 

effects on metabolic phenotypes through epistatic interactions with imprinted genes. Multiple populations 92 

(F0, F1, F2, F16) allow us to refine our search space and provide orthogonal evidence supporting putative 93 

networks of interacting genes. Metabolic traits were previously mapped in a F16 generation of an 94 

advanced intercross between LG/J and SM/J (Cheverud et al. 2011; Lawson et al. 2010, 2011b, 2011a). 95 

We generated visceral white adipose tissue gene expression profiles from 20 week-old F1 animals in 96 

order to match the age of the F16 LG/J x SM/J advanced intercross population. F1 reciprocal cross (LxS 97 

and SxL) mice were subjected to the same high and low-fat diets and phenotyping protocols as the 98 

previously-studied F16 mice to keep environmental contexts consistent. We identified genes showing 99 

parent-of-origin-dependent allele-specific expression (ASE), characterized interactions among these 100 

genes and biallelic genes that are differentially expressed by reciprocal cross (DE), and correlated 101 
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interacting ASE and DE gene pairs with metabolic phenotypes in the F1 population. Pairs that significantly 102 

associated with phenotypic variation were tested for epistasis on correlated traits in the F16 population.        103 

We identify an epistatic network that forms a nutritional environment responsive pathway 104 

mediated through calcium signaling. This network contributes to metabolic variation by balancing 105 

proliferation, differentiation, and apoptosis in adipocytes. The genes comprising this network jointly serve 106 

functions associated with growth in multiple tissues, which is consistent with the evolutionary hypothesis 107 

that sexual conflict underlies some parent-of-origin effects (Mochizuki et al. 1996). We focus on two key 108 

interacting genes: Nnat (neuronatin), a canonically imprinted gene, and F2r (coagulation factor II 109 

receptor), a biallelic gene showing significant DE by cross in F1 high fat-fed female animals. Co-110 

expression of these two genes associates with variation in basal glucose levels, and this association 111 

persists across generations. Further, single-cell RNAseq reveals that Nnat and F2r are negatively 112 

correlated in pre-adipocytes along an adipogenic trajectory, a pattern consistent both with their 113 

expression in bulk white adipose tissue and with their respective roles in adipogenesis. Our results 114 

demonstrate that incorporating orthogonal lines of evidence including genotype, allele specific 115 

expression, total gene expression, single-cell expression, and phenotype from different populations 116 

varying in their degree of intercrossing is a powerful way to identify putative mechanisms and test 117 

hypotheses underlying parent-of-origin effects on phenotype. 118 

 119 

RESULTS 120 

Non-imprinted genes interact with imprinted genes and effect metabolic phenotypes 121 

 We test the hypothesis that non-imprinted genes can mediate complex parent-of-origin effects on 122 

phenotypes through genetic interactions with imprinted genes using a F1 reciprocal cross model of the 123 

LG/J and SM/J inbred mice (LxS and SxL). In this model the effects of parental origin on an allele can be 124 

tested directly and isolated from sequence dependent cis-regulatory differences. We validated our 125 

findings in LG/J and SM/J parentals (F0) as well as in F2 and F16 intercrosses of LGxSM (Figure 1). The 126 

parental F0 animals serve to anchor variation in allele-specific expression that is a function of allelic 127 
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identity (L or S). Incorporating the F2 and F16 populations into our validations ensures that the interactions 128 

we observe are not solely a function of linkage in the F1 animals. We generated mRNA expression profiles 129 

in white adipose tissue from 20-week-old F1 reciprocal cross animals. These animals were subjected to 130 

the same high and low-fat diets and phenotyping protocols as the previously studied F16 animals 131 

(Cheverud et al. 2011; Lawson et al. 2011a, 2010; Carson et al. 2020; Miranda et al. 2020). We identified 132 

two classes of genes: 1) imprinted genes, and 2) non-imprinted genes with parent-of-origin effects on 133 

total expression. 134 

   135 
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 136 

Figure 1: Proposed model for propagation of parent-of-origin effects through gene-gene 137 
interactions. Parent of origin effects should be partitioned into cis mechanisms and trans mechanisms 138 
A. An example of a cis parent-of-origin effect is a system with three regulatory elements: promoter, 139 
insulator, and enhancer. Activation of transcription requires the enhancer to act upon the promoter. 140 
Enhancer activity is blocked by the insulator when it has been bound by CTCF. CTCF cannot be bound 141 
when methylated. In this system, the insulator is selectively methylated when inherited maternally, so 142 
methylation of the maternally inherited insulator blocks CTCF binding, allowing the enhancer to activate 143 
transcription. Because the paternally inherited insulator is not methylated, it is bound by CTCF which 144 
blocks enhancer activity, silencing transcription. This canonical genomic imprinting mechanism interacts 145 
with genetic variation in the three regulatory features. For example, if one allele produces stronger 146 
enhancer activity (Alt) than the other, individuals inheriting the Alt allele maternally would have elevated 147 
expression compared to those that inherit the same allele paternally. These cis genetic effects do not 148 
occur in isolation. Due to the highly interconnected nature of biological systems, there are downstream 149 
effects. We refer to these as trans parent-of-origin effects. B. An example of a trans parent-of-origin effect 150 
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is a system with two genes each having its own promoter. The first gene is canonically imprinted, and 151 
the activity of the gene promoter is blocked by DNA methylation. The imprinted gene’s promoter is 152 
methylated when inherited maternally. Consequently, the paternally inherited allele is almost exclusively 153 
expressed. As before, when genetic variation in a regulatory feature interacts with these epigenetic 154 
mechanisms, we see parent-of-origin effects on expression of the imprinted gene. In this example the 155 
imprinted gene regulates expression of a non-imprinted gene. Despite the non-imprinted gene being 156 
agnostic to parental origin, its expression nonetheless depends on the parental origin of alleles at the 157 
imprinted locus. C. Summary of our experimental design. Expression patterns of genes showing allele 158 
specific expression (ASE) such as imprinted genes are shaped by parental genotypes and environment 159 
(e.g. nutrition). Downstream gene expression is a function of their genotype and the expression of 160 
upstream ASE genes. Altered parent-of-origin dependent total gene expression of ASE genes leads to 161 
differential expression of downstream genes varying only in allelic parent-of-origin (DE). Phenotype is 162 
most directly affected by expression of DE genes. Variation in DE gene expression leads to 163 
corresponding variation in phenotype. Mouse populations used to probe parts of this model are labeled 164 
F0 (inbred lines), F1 (reciprocal cross of inbred lines), F2 (intercross of F1 mice), and F16 (advanced 165 
intercross of inbred lines). 166 
 167 

To test our model, we identified genes showing parent-of-origin dependent allele specific 168 

expression (ASE). We identified 23 genes showing significant ASE (Figure 2A; Supplemental Table 1). 169 

Of these 23 genes, 17 are canonically imprinted genes, two are not reported as imprinted genes but are 170 

located in known imprinted domains, and four are novel. Next we identified genes showing differential 171 

total expression between individuals varying only in allelic parent-of-origin (DE between reciprocal 172 

crosses, SxL vs LxS). We identified 33 genes that are significantly DE in at least one sex or dietary 173 

context (Figure 2A; Supplemental Table 2). A larger set of genes show signatures of parent-of-origin 174 

effects at the total gene expression level, but do not meet the statistical rigor demanded by the massive 175 

multiple tests burden incurred by a genome-wide scan accounting for sex, diet, and parent-of-origin (see 176 

Methods). 177 

To identify interactions between gene sets, we constructed a network comprised of genes that 178 

could initiate a parent-of-origin effect on phenotype (ASE) and genes that may mediate the effect onto 179 

phenotype (DE). Interacting gene pairs were predicted by modeling the expression of biallelic genes that 180 

are significantly DE by reciprocal cross as a function of the expression of genes showing significant 181 

parent-of-origin-dependent ASE, their allelic bias (Lbias), diet, sex, and the diet-by-sex interaction. Genes 182 

showing parent-of-origin effects form a highly interconnected network comprised of 52 genes forming 183 

217 gene pairs (Figure 2B)(Supplemental Table 3). Most of these interactions are trans-chromosomal. 184 
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We identified two genes that could serve as initiation points of propagating parent-of-origin effects 185 

through this network. These two genes, Nnat (neuronatin) and Cdkn1c (cyclin dependent kinase inhibitor 186 

1C), are both canonically imprinted and differentially expressed by cross (Supplemental Table 1). 187 

Functional over representation analysis was performed and seven terms were significantly 188 

overrepresented at an FDR<=0.05 (Figure 2C) (Zhang et al. 2005).  Enriched terms suggest this network 189 

plays a role in signaling and genetic imprinting (Supplemental Table 4). In order to identify which 190 

phenotypes might be affected by genes in this network, gene expression was correlated with metabolic 191 

phenotypes collected for the F1 animals (Figure 2D). Seventy-four ASE/DE/phenotype sets were 192 

identified as candidates for subsequent testing (Supplemental Table 5). 193 

 194 
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 195 

Figure 2: Genes showing parent-of-origin effects at the allele specific and/or total expression 196 
levels covary with each other and with metabolic traits. A. Mean POE score across contexts. Effect 197 
size of ASE is calculated as the mean allelic bias (L / L+S) of SxL animals minus LxS animals. Effect size 198 
of DE is measured by log2(Fold Change) between LxS and SxL crosses. The single context with largest 199 
magnitude fold change is plotted for each gene. Dashed lines represent minimum acceptable effect size 200 
cut offs within a context. Genes showing significant ASE and sufficiently large POE score are shown in 201 
blue. Genes showing significant DE and sufficiently large fold change in some sex or dietary context are 202 
shown in lime. Genes showing both ASE and DE are shown in teal. Genes not meeting cut-offs are shown 203 
in grey. The two genes showing significant ASE but falling short of POE score requirements are a case 204 
of context dependent bipolar POE scores (i.e. paternally expressed in one context and maternally 205 
expressed in its opposite). B. POE network constructed from ASE and DE gene pairs. C. Significantly 206 
overrepresented ontologies after multiple tests correction in POE network. Terms are color coded by 207 
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ontology domain. GO biological process (yellow), GO cellular component (orange), and Mammalian 208 
phenotype (purple). Circle size denotes the number of genes with each term. D. Correlation of POE 209 
network genes with metabolic traits. Only genes and phenotypes with at least one significant correlation 210 
after multiple test corrections are shown. The heatmap is broken up into subnetworks with the ASE gene 211 
as the first separated row followed by associated DE genes in subsequent rows. Columns correspond to 212 
metabolic traits. Coloration of each cell denotes the Pearson’s correlation coefficient value. 213 
 214 

Epistasis in an F16 advanced intercross identifies a diet-responsive network affecting adipogenesis 215 

To validate the interactions we identified in F1 animals, we tested for imprinting-by-imprinting 216 

epistasis in an F16 population. This allowed us to determine if the effect of parent-of-origin at DE genotype 217 

on phenotype is dependent upon the parent-of-origin at ASE genotype. This orthogonal approach allows 218 

us to connect genotype at these loci to phenotype as predicted in the F1 candidates. Nine epistatic 219 

interactions replicated in the F16 population (FDR≤0.1; Figure 3A; Supplemental Table 6). These 220 

interactions were comprised of three ASE genes showing parent-of-origin (Cdknlc, Nnat, Plcd1), six 221 

genes that are DE by cross (Car3, F2r, Hexb, Hmger, Srgn, Tnfrsf11a) and four phenotypes (basal 222 

glucose level, AUC calculated from a glucose tolerance test, serum cholesterol, necropsy weight). 223 

Together, these 9 genes form a putative diet-responsive network affecting adipogenesis (Figure 3B). 224 

 225 
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Figure 3: A. There are nine significant imprinting-by-imprinting epistatic ASE/DE/phenotype sets in the 226 
F16 advanced intercross population. Interactions are shown as lines connecting ASE (yellow) and DE 227 
genes (purple). Chromosome number is shown around the plot. B. The epistatic POE network is 228 
composed of key steps in a putative pathway regulating differentiation and survival of adipocytes. This 229 
pathway was constructed by incorporating previously published cellular functions. The pathway members 230 
are color coded in blue for ASE genes (Plcd1, Nnat, and Cdkn1c) and green for DE genes (F2r, Hexb, 231 
Hmgcr, Car3, Tnfrsf11a, and Srgn). The network breaks down into potentiation, transduction, and 232 
response. Nnat and Hexb potentiate signaling by managing availability and accumulation of calcium 233 
necessary for signal transduction. Once a signal is received, F2r and Plcd1 transduce it by activating 234 
second messengers to initiate a response. This response initiates an adipogenesis cellular program that 235 
affects expression of Cdkn1c, Hmgcr, Car3, Tnfrsf11a, and Srgn.  236 
 237 

The network can be broken down into signal potentiation, transduction, and response. Nnat 238 

(neuronatin) and Hexb (beta-hexosaminidase subunit beta) fall into the potentiation group. These genes 239 

play a role in managing the availability and accumulation of calcium necessary for signal transduction. 240 

Nnat is a paternally expressed canonically imprinted gene which encodes a proteolipid protein that 241 

localizes to the ER (Li et al. 2010). Nnat is diet-responsive and its overexpression in 3T3L1 pre-242 

adipocytes promotes adipogenesis through increased free cytosolic calcium (Young et al. 2005). In pre-243 

neural stem cells, Nnat binds sarco/endoplasmic reticulum Ca2+-ATPase (SERCA) to block Ca2+ uptake 244 

into the ER thereby increasing cytosolic Ca2+ levels (Lin et al. 2010). In addition to Nnat, Hexb regulates 245 

the uptake and accumulation of Ca2+ in the ER via SERCA (Pelled et al. 2003). Upon the arrival of a 246 

signal, F2r (coagulation factor II receptor) and Plcd1 (1-phosphatidylinositol 4,5-bisphosphate 247 

phosphodiesterase delta-1) in the transduction group initiate the adipogenesis cellular program. F2r is a 248 

G-protein-bound receptor that promotes phosphoinositide hydrolysis (Soh et al. 2010). Variation in the 249 

human F2R gene is associated with obesity (Kichaev et al. 2019). G-protein coupled receptors transmit 250 

external signals into the cell where they are then propagated by second messenger systems, one of 251 

which is mediated by Plcd1 (Nakamura et al. 2005; McDonald and Mararack 1995). The downstream 252 

effect of Plcd1-mediated signaling is the efflux of calcium into the cytosol from the ER, thereby increasing 253 

cytosolic Ca2+ levels (Thatcher 2010; Berridge 2016). Increased cytosolic Ca2+ in pre-adipocytes 254 

promotes phosphorylation of cAMP-response element-binding protein (CREB), which promotes activity 255 

of CCAAT/enhancer-binding protein (C/EBP) transcription factors, activating adipogenesis, altering the 256 
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expression of Cdkn1c (cyclin dependent kinase inhibitor 1C), Hmgcr (3-hydroxy-3-methylglutaryl-CoA 257 

reductase), Car3 (carbonic anhydrase 3), Tnfrsf11a (TNF receptor superfamily member 11a), and Srgn 258 

(serglycin). 259 

Cdkn1c is a canonically imprinted maternally expressed gene that inhibits cell proliferation (JW et 260 

al. 2008). Increased expression of Cdkn1c is protective against diet-induced obesity in mice (Pette et al. 261 

2018), and in humans increased caloric intake results in decreased CDKN1C expression (Franck et al. 262 

2011). Hmgcr is the rate limiting enzyme in cholesterol biosynthesis (JS and PJ 2011; Y and RA 2010) 263 

and converts HMG-CoA into mevalonate, which is essential for adipocyte survival (Yeh et al. 2018). Srgn 264 

is an adipocytokine thought to be part of a feedback loop with Tnfα (tumor necrosis factor alpha), 265 

mediating paracrine cross-talk between macrophages and adipocytes (JM et al. 2007; H et al. 2013; BP 266 

et al. 2001; L et al. 2006). Srgn is known to play a role in osteoblast-mediated bone mineralization (Bigdeli 267 

et al. 2010), which along with osteoclast-driven bone deconstruction drives bone remodeling (Aubin 268 

1992). Osteoblasts share a lineage with adipocytes, and the quantity of osteoblasts is inversely 269 

proportional to that of marrow adipose tissue (Rodriguez et al. 2008; Prockop 1997; Ali et al. 2005; Akune 270 

et al. 2004; Cho et al. 2011; Rosen and Bouxsein 2006; RT et al. 2018). Tnfrsf11a is a cell surface protein 271 

that regulates differentiation of osteoclasts (N et al. 1998). Osteoprotegerin (OPG) is a decoy receptor 272 

for TNFRSF11A thereby inhibiting osteoclastogenesis and bone resorption (FS et al. 2020). OPG is 273 

expressed during differentiation of 3T3L1 adipocytes (An et al. 2007). Expression of OPG is induced by 274 

Tnfα in 3T3L1 adipocytes and is associated with obesity in humans (M et al. 2007; Erol et al. 2016; Zaky 275 

et al.). 276 

The exact function of OPG/Tnfrsf11a outside of osteoclastogenesis is unknown, but the function 277 

of osteoclasts is to break down bone tissue during bone resorption. Bone resorption regulates the level 278 

of blood calcium. The bioavailability of calcium in the blood potentially alters ER calcium stores, creating 279 

cross-talk between bone cells and white adipose tissue calcium signaling. Osteoclasts break down bone 280 

by acidifying mineralized bone, orchestrated by osteoblasts that have become embedded in the matrix 281 

they produce (osteocytes). Oxidative stress on osteocytes from the bone acidification process is 282 
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prevented by Car3. Car3 is an enzyme that catalyzes the conversion of carbonic acid to CO2 and water. 283 

Its expression in white adipose is negatively correlated with and responsive to long term obesity in mice 284 

and humans (LW et al. 1991; Font-Clos et al. 2017). Car3 does not protect against diet induced obesity 285 

and is not necessary for fatty acid synthesis (Renner et al. 2017). As such its exact function in adipocytes 286 

is unknown. 287 

 288 

Nnat and F2r covary in white adipose tissue and their interaction associates with variation in basal 289 

glucose levels across generations 290 

To better understand how these interactions affect phenotype, we focused on the negative 291 

correlation of Nnat and F2r in the above network. In white adipose tissue, Nnat expression significantly 292 

covaries with F2r, a biallelic gene showing significant DE by cross in F1 high fat-fed females (FDR=0.05). 293 

Nnat and F2r show significant imprinting-by-imprinting epistasis for basal glucose levels in the F16 294 

population (FDR=6.00e-16; Figure 4A and B). To validate gene expression patterns, we combined F1 295 

biological replicates and F0 high fat-fed female animals (F1 n=13 and F0 n=12) and again observe that 296 

F2r and Nnat are each significantly differentially expressed between reciprocal heterozygotes, i.e. by 297 

cross (F2r p=0.007 and Nnat p=0.026; Figure 4C and D). Further, the co-expression of Nnat and F2r 298 

also persists in the F0/F1 population (p=3.00e-4; Figure 4E).   299 

A limitation of identifying covariation patterns in F1 and F0 populations is that all loci are linked. 300 

This makes it difficult to determine which ASE genes truly co-express with DE genes. While incorporation 301 

of orthogonal F16 genotypes and phenotypes helps reduce false discoveries, a population with 302 

randomized genetic background for which we have expression data is needed to replicate these results. 303 

To that end, F2 animals were generated and Nnat and F2r gene expression levels were measured via 304 

qPCR (n=14). We found that F2r and Nnat are significantly co-expressed in high fat-fed female F2 animals 305 

(p= 0.012; Figure 4H). 306 

F2r expression significantly correlates with basal glucose levels in the RNA-sequenced F1 animals 307 

(r=0.514, FDR=0.01; Supplemental Table 5). F2r expression is also significantly correlated with basal 308 
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glucose in the combined F0/F1 population (p= 0.005; Figure 4F). A trend between Nnat expression and 309 

basal glucose level is observed but not statistically significant in the F0/F1 animals (p= 0.130; Figure 4G). 310 

Correlation of F2r’s and Nnat’s individual expression with basal glucose in F2 mice follows the same 311 

pattern as in the F0/F1’s. Bootstrapping to calculate confidence intervals shows that the correlation 312 

differences between F0/F1 and F2 are not significant (Figure 4I and J; Supplemental Figure 1). However, 313 

the product of Nnat and F2r expression (Nnat x F2r) is significantly predictive of basal glucose (p=0.045, 314 

R2=0.29). This indicates that expression of Nnat and F2r, as a function of their genotypes and allelic 315 

parent-of-origin, are not individually sufficient to explain variation in basal glucose levels. But together 316 

they are able to explain a significant amount of phenotypic variation. This is precisely what our epistatic 317 

model would predict. 318 

Finally, studying the F2 animals allows us to determine if maternal mitochondrial ancestry 319 

contributes significantly to Nnat or F2r expression or to variation in basal glucose. We find mitochondrial 320 

genome identity does not significantly covary with F2r expression (p=0.198), Nnat expression (p=0.365), 321 

or basal glucose (p= 0.388). 322 
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 323 

Figure 4. Nnat and F2r covary across generations. A. Breeding scheme for the F16 Advanced 324 
Intercross between the LG/J and SM/J inbred strains. B. Significant imprinting-by-imprinting epistasis 325 
associated with variation in basal glucose. The parent-of-origin effects of F2r on basal glucose depend 326 
on the parent-of-origin effects at Nnat. C. Expression of Nnat across genotypes in a combined F0/F1 327 
population. D. Expression of F2r across genotypes in a combined F0/F1 population. E. Significant 328 
correlation between Nnat and F2r expression in the F0/F1 mice. F and G. Correlations between basal 329 
glucose and Nnat and F2r in the F0/F1 mice. H. Significant correlation between Nnat and F2r expression 330 
in the F2 mice. I and J. Correlations between basal glucose and Nnat and F2r are not individually 331 
significant in the F2 mice. However, their interaction significantly correlates with basal glucose in the 332 
F2’s (p=0.032), as predicted by our model of epistasis. Alleles are ordered maternal | paternal within the 333 
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genotype classes. 334 
 335 

Single-cell RNAseq reveals that Nnat and F2r are negatively correlated in pre-adipocytes along an 336 

adipogenic trajectory 337 
To determine what cell types express Nnat and F2r and whether the directionality of the Nnat 338 

imprinted ! F2r target correlation persists along the adipogenic trajectory, we turned to single-cell 339 

RNAseq. We used publicly available scRNAseq data collected from stromal vascular cells isolated from 340 
C57BL/6J epididymal adipose tissue (RB et al. 2018). Cell type identity was assigned using previously 341 

reported markers for this data set (Adipoq = differentiating mesenchymal stem cells; Pdgfra = 342 
mesenchymal stem cells; Csf1r = macrophage; Cdh5 = vascular endothelial cells; Acta2 = vascular 343 

smooth muscle cells; Cd2 = B cells) (Supplemental Table 7; Supplemental Figure 2). The adipogenic 344 

trajectory refers to cells transitioning from pre-adipocytes (mesenchymal stem cells) to cells differentiating 345 
into adipocytes. Clusters along this trajectory were identified by the opposing expression patterns of 346 
Pdgfra and Adipoq (Figure 5A-D and I). We found that Nnat expression increases along the trajectory 347 
while F2r expression decreases (Figure 5E and F). Further there is a negative association between Nnat 348 

and F2r expression within adipocytes along the trajectory (Figure 5G). This pattern is consistent with the 349 

negative correlation we observe between Nnat and F2r in the bulk white adipose tissue. 350 

 351 

 352 
Figure 5: Nnat and F2r are negatively correlated in pre-adipocytes along an adipogenic trajectory. 353 
A. Adipoq is a marker of adipocytes whose expression (purple) increases along the trajectory. B. Pdgfra 354 
is a marker of mesenchymal stem cells whose expression (pink) decreases along the trajectory. C. Cells 355 
in clusters expressing one or both Adipoq and Pdgfra fall along an adipogenic trajectory. D. Intensity of 356 
expression of Adipoq and Pdgfra indicated by coloration. E. Nnat expression (blue) increases along the 357 
trajectory. F. F2r expression (teal) decreases along the trajectory. G. Negative association between Nnat 358 
and F2r expression within adipocytes along the trajectory. H. Intensity of expression of Nnat and F2r 359 
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indicated by coloration. I. The adipogenic trajectory is broken into subclusters of cells with no Adipoq 360 
expression (cluster 0) to high Adipoq expression (cluster 2). 361 
 362 
 In addition to interrogating Nnat and F2r in single cells along an adipogenic trajectory, we found 363 

that 8 of the 9 genes comprising the epistatic POE network described above are differentially expressed 364 

along the trajectory, and they associate with cell types that are consistent with their respective roles in 365 

adipose tissue (Supplemental Figure 3, Supplemental Table 8). 366 

 367 

DISCUSSION 368 

Epistatic interactions between imprinted and non-imprinted genes can influence complex traits 369 

when the genotypic effects of one gene depends on the parent-of-origin of alleles at another (Lawson et 370 

al. 2013a; Wolf and Cheverud 2009). Here we examined epistatic interactions associated with parent-of-371 

origin effects on dietary-obesity traits in white adipose using a simple yet powerful F1 reciprocal cross 372 

mouse model. Although these parent-of-origin dependent allele-specific expression biases are consistent 373 

with imprinting mechanisms, we cannot rule out that maternal and/or paternal effects also contribute to 374 

the phenomena we observe (Hager et al. 2008). 375 

Interactions between imprinted and non-imprinted genes have previously been shown to 376 

contribute to variation in metabolic phenotypes. For example, the maternally expressed transcription 377 

factor KLF14 (kruppel-like factor 14) regulates biallelic gene expression related to adiposity (Parker-378 

Katiraee et al. 2007; Small et al. 2011). Mapping studies have identified two SNPs (rs4731702, rs972283) 379 

upstream of KLF14 associated with type II diabetes and cholesterol levels (Voight et al. 2010; Teslovich 380 

et al. 2010). Both variants have maternally-restricted cis-regulatory associations with KLF14 expression 381 

in adipose tissue (Kong et al. 2009). eQTL analysis found that rs4731702 is also enriched for trans-382 

associations with KLF family transcription factor binding sites in subcutaneous white adipose tissue, 383 

suggesting that KLF14 may be a master transcriptional regulator in adipose tissue (Small et al. 2011). 384 

Whether additional pairs of imprinted and biallelic genes are similarly co-expressed and associate with 385 

phenotypic variation remains an open question that has not been thoroughly investigated in large 386 
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landmark functional genomics studies including ENCODE, GTEx, and GWAS, leaving a significant gap 387 

in our knowledge. Interactions between imprinted and biallelic genes could explain some of the observed 388 

parent-of-origin effect patterns associated with regions lacking obvious candidate genes, as described in 389 

a recent survey of 97 complex traits measured in outbred mice (Mott et al. 2014). 390 

Our model asserts that parent-of-origin effects start at ASE genes and are transduced through 391 

DE genes onto phenotype. This is illustrated in the interaction between Nnat and F2r. If a cis-regulatory 392 

effect interacts with epigenetic modifications (i.e. imprinting) at Nnat, then Nnat expression of genotypic 393 

classes are affected by paternal allele identity (Lawson et al. 2013b). Between the LG/J and SM/J alleles 394 

at Nnat, the LG/J allele is more highly expressed. If our model is correct, the downstream DE gene should 395 

show a corresponding pattern (Figure 1B). In the case of Nnat and F2r, which have strong negative 396 

correlated expression, when the LG/J allele is inherited paternally at Nnat, the higher expression of Nnat 397 

should correspond with lower expression of F2r. This is what we observe (Figure 4). If this relationship 398 

is true, we should see persistent co-expression of Nnat and F2r across genetic backgrounds (F0, F1, F2), 399 

which we do (Figure 4). This supports a biologically meaningful relationship between Nnat and F2r. Our 400 

model further predicts that the DE genes should more closely affect phenotype. In the case of Nnat and 401 

F2r, we expect that F2r more strongly associates with basal glucose than Nnat, which we observe (Figure 402 

4).  403 

We identified a putative network coordinated by interactions between ASE and DE genes, and 404 

from the literature we found that this epistatic network is comprised of key steps in a pathway regulating 405 

differentiation and survival of adipocytes in response to nutritional environment (Figure 3B). Specifically, 406 

there is evidence that it plays a critical role in the induction of adipogenesis. This alone demonstrates 407 

how parent-of-origin effects can move through networks along molecular pathways. Beyond proof-of-408 

principle this network provides a clue to the puzzle of the prevalence of parent-of-origin effects. 409 

The constituents of this single network appear to play vastly different physiological roles 410 

depending on the tissue. In white adipose the network appears to play some role in balancing 411 

proliferation, differentiation, and apoptosis as we describe above. In pancreatic ß-cells, members of this 412 
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network affect secretion of insulin (SJ et al. 2018). In bone, members of this network affect the balance 413 

of cartilage/bone growth and reabsorption. These three physiological processes may at first seem 414 

unrelated, but they share one key commonality – they are jointly critical to growth. This is consistent with 415 

the sexual conflict hypothesis attributed to parent-of-origin effects (Patten et al. 2014; Babak et al. 2015). 416 

This hypothesis asserts that the size of progeny in placental mammals has opposing fitness 417 

consequences for mothers and fathers. The fitness of fathers, particularly in the case of multi-paternity 418 

litters, is improved with larger progeny. This comes at a fitness disadvantage to the mother. The fitness 419 

of mothers is improved by progeny of a manageable size, allowing her to produce multiple litters. 420 

According to this model, imprinting evolved to allow one parent to hijack parts of a nutritional 421 

environment response pathway driving growth in a direction favorable to maximize their fitness.  Key 422 

processes in such a pathway driving growth would include the secretion of growth factors, construction 423 

of cartilage and bone, and the accumulation of energy stores. We present a network that appears to play 424 

a role in all three processes. If the sexual conflict hypothesis is true, then the most parsimonious place 425 

for imprinting to evolve would be in key regulatory points that affect as many aspects of growth as 426 

possible. This is consistent with the network we identified, a single pathway affecting many aspects of 427 

growth. This hints at the possibility that parent-of-origin effects are common because of the multi-purpose 428 

nature of the pathways in which genomic imprinting manifests and parent-of-origin effects propagate. 429 

By leveraging the reciprocal F1 hybrids, we are able to integrate parent-of-origin-dependent allele-430 

specific expression and parent-of-origin-dependent differential expression with F16 phenotypes. By doing 431 

so, we identify plausible candidates for functional validation and describe discrete molecular networks 432 

that may contribute to the observed parent-of-origin effects on metabolic phenotypes. The genes and 433 

interactions we present here represent a set of actionable interacting candidates that can be probed to 434 

further identify the machinery driving these phenomena and make predictions informed by genomic 435 

sequence. The frameworks we have developed account for the genetic, epigenetic, and environmental 436 

components underlying these parent-of-origin effects, thereby improving our ability to predict complex 437 
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phenotypes from genomic sequence. We focused on metabolic phenotypes in this study, but the patterns 438 

we identified may translate to other complex traits where parent-of-origin effects have been implicated. 439 

 440 

METHODS 441 

Mouse husbandry and phenotyping 442 

LG/J and SM/J founders (F0) were obtained from The Jackson Laboratory (Bar Harbor, ME). F1 443 

reciprocal cross animals were generated by mating LG/J mothers with SM/J fathers (LxS) and the inverse 444 

(SxL). F2 reciprocal cross animals were generated by mating LxS mothers with SxL fathers and the 445 

inverse. At three weeks of age, animals were weaned into same-sex cages and randomly placed on high-446 

fat (42% kcal from fat; Teklad TD88137) or low-fat (15% kcal from fat; Research Diets D12284) isocaloric 447 

diets. Animals were weighed weekly until sacrifice. At 19 weeks of age, body composition was determined 448 

by MRI and a glucose tolerance test was performed after a 4 hour fast. At 20 weeks of age, animals were 449 

given an overdose of sodium pentobarbital after a 4 hour fast and blood was collected via cardiac 450 

puncture. Euthanasia was achieved by cardiac perfusion with phosphate-buffered saline. After cardiac 451 

perfusion, the reproductive fat pad was harvested, flash frozen in liquid nitrogen, and stored at -80°C. 452 

 453 

Genomes and annotations 454 

LG/J and SM/J indels and SNVs were leveraged to construct strain-specific genomes using the 455 

GRC38.72-mm10 reference as a template (Nikolskiy et al. 2015). This was done by replacing reference 456 

bases with alternative (LG/J | SM/J) bases using custom python scripts. Ensembl R72 annotations were 457 

adjusted for indel-induced indexing differences for both genomes. 458 

 459 

RNA sequencing 460 

 Total RNA was isolated from adipose and hypothalamus tissues using the RNeasy Lipid Tissue 461 
Kit (QIAgen) and from liver using TRIzol (n = 32, 4 animals per sex/diet/cross cohort). RNA 462 
concentration was measured via NanoDrop and RNA quality/integrity was assessed with a BioAnalyzer 463 
(Agilent). RNA-Seq libraries were constructed using the RiboZero kit (Illumina) from total RNA samples 464 
with RIN scores >8.0. Libraries were checked for quality and concentration using the DNA 465 
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1000LabChip assay (Agilent) and quantitative PCR, according to manufacturer’s protocol. Libraries 466 
were sequenced at 2x100 paired end reads on an Illumina HiSeq 4000. After sequencing, reads were 467 
de-multiplexed and assigned to individual samples.  RNAseq data are available through the NCBI-468 
SRA, accession: PRJNA753198. 469 
 470 

 471 

Library complexity 472 

 Complexity was measured by fitting a beta-binomial distribution to the distribution of Lbias values 473 

using the VGAM package (Yee 2010). The shape parameters (α, β) of beta-binomial distributions were 474 

estimated and used to calculate dispersion (ρ). Dispersion values less than 0.05 indicate our libraries are 475 

sufficiently complex (Supplemental Figure 4 ). 476 

𝜌! =
1

1 + 𝛼! + 𝛽!
 477 

One library was found to have insufficient complexity and was removed from the analyses. 478 

 479 

Allele-specific expression 480 

 FASTQ files were filtered to remove low quality reads and aligned against both LG/J and SM/J 481 

pseudo-genomes simultaneously using STAR with multimapping disallowed (Dobin et al. 2013). Read 482 

counts were normalized via upper quartile normalization and a minimum normalized read depth of 20 483 

was required. Alignment summaries are provided in Supplemental Table 9 and Supplemental Figure 484 

5. 485 

For each gene in each individual, allelic bias (Lbias) was calculated as the proportion of total reads 486 

for a given gene with the LG/J haplotype. Parent-of-origin-dependent allele-specific expression was 487 

detected by ANOVA using one of a number of models in which Lbias is responsive to cross and the 488 

interaction of cross with some combination of sex and diet: 489 

𝑀𝑜𝑑𝑒𝑙	 -

𝑖𝑓	𝑒𝑎𝑐ℎ	𝐶𝑟𝑜𝑠𝑠	𝑐𝑜𝑛𝑡𝑒𝑥𝑡	ℎ𝑎𝑠 ≥ 2	𝑠𝑎𝑚𝑝𝑙𝑒𝑠, 	𝐿𝑏𝑖𝑎𝑠~𝐶𝑟𝑜𝑠𝑠 
𝑖𝑓	𝑒𝑎𝑐ℎ	𝐶𝑟𝑜𝑠𝑠: 𝑆𝑒𝑥	𝑐𝑜𝑛𝑡𝑒𝑥𝑡	ℎ𝑎𝑠 ≥ 2	𝑠𝑎𝑚𝑝𝑙𝑒𝑠, 	𝐿𝑏𝑖𝑎𝑠~𝐶𝑟𝑜𝑠𝑠 + 𝐶𝑟𝑜𝑠𝑠: 𝑆𝑒𝑥 
𝑖𝑓	𝑒𝑎𝑐ℎ	𝐶𝑟𝑜𝑠𝑠: 𝐷𝑖𝑒𝑡	𝑐𝑜𝑛𝑡𝑒𝑥𝑡	ℎ𝑎𝑠 ≥ 2	𝑠𝑎𝑚𝑝𝑙𝑒𝑠, 		𝐿𝑏𝑖𝑎𝑠~𝐶𝑟𝑜𝑠𝑠 + 𝐶𝑟𝑜𝑠𝑠: 𝐷𝑖𝑒𝑡

	𝑖𝑓	𝑒𝑎𝑐ℎ	𝑐𝑜𝑛𝑡𝑒𝑥𝑡	ℎ𝑎𝑠 ≥ 2	𝑠𝑎𝑚𝑝𝑙𝑒𝑠, 		𝐿𝑏𝑖𝑎𝑠~𝐶𝑟𝑜𝑠𝑠 + 𝐶𝑟𝑜𝑠𝑠: 𝑆𝑒𝑥 + 𝐶𝑟𝑜𝑠𝑠: 𝐷𝑖𝑒𝑡 + 𝐶𝑟𝑜𝑠𝑠: 𝑆𝑒𝑥: 𝐷𝑖𝑒𝑡 

 490 
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Accurately estimating the significance of these effects and correcting for multiple tests is 491 

challenging for two reasons: 1) the complexity of the many environmental contexts, and 2) the correlation 492 

of allelic bias within and between imprinted domains breaks assumptions of independence. A permutation 493 

approach is an effective way to overcome these challenges. The context data was randomly shuffled for 494 

each gene independently and analyses were rerun to generate a stable null distribution of p-values 495 

(Supplemental Figure 6). False discovery rates were estimated for a given significance threshold as the 496 

proportion of significant tests under the permutated null model relative to significant tests under the real 497 

data model. A value of 1 meaning that 100% of tests at a given significance threshold are likely false 498 

positives. An FDR £ 0.1 was considered significant (Supplemental Table 1, Supplemental Figure 7). 499 

 To determine the parental direction and size of expression biases, a parent-of-origin effect POE 500 

score was calculated as the difference in mean Lbias between reciprocal crosses (LxS or SxL). POE scores 501 

range from completely maternally-expressed (-1), to biallelic (0), to completely paternally-expressed (+1). 502 

POE score thresholds were calculated from a critical value of α = 0.01, determined from a null distribution 503 

created by permutation Genes with significant allele-specific expression and parent-of-origin scores 504 

beyond the critical value were considered to have significant parent-of-origin-dependent allele-specific 505 

expression (Supplemental Figure 8). 506 

 507 

Differential expression 508 

 Differential expression by reciprocal cross was determined by first aligning reads against the LG/J 509 

and SM/J genomes simultaneously with multimapping permitted. Reads were normalized by TMM and a 510 

minimum normalized read count of 10 was required. Generalized linear models accounting for diet, sex, 511 

and diet-by-sex were fit in EdgeR (Robinson et al. 2010). Differential expression was detected by a 512 

likelihood ratio test. Significance was determined for five models for each gene: 513 

1. 𝐸𝑥𝑝𝑟𝑒𝑠𝑠𝑖𝑜𝑛	~	𝐶𝑟𝑜𝑠𝑠 514 
2.			𝐸𝑥𝑝𝑟𝑒𝑠𝑠𝑖𝑜𝑛	~	𝐶𝑟𝑜𝑠𝑠: 𝑆𝑒𝑥 515 
3. 𝐸𝑥𝑝𝑟𝑒𝑠𝑠𝑖𝑜𝑛	~	𝐶𝑟𝑜𝑠𝑠: 𝐷𝑖𝑒𝑡 516 

4. 𝐸𝑥𝑝𝑟𝑒𝑠𝑠𝑖𝑜𝑛	~	𝐶𝑟𝑜𝑠𝑠: 𝑆𝑒𝑥: 𝐷𝑖𝑒𝑡	 517 
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5. 𝐸𝑥𝑝𝑟𝑒𝑠𝑠𝑖𝑜𝑛	~	𝐶𝑟𝑜𝑠𝑠 + 𝐶𝑟𝑜𝑠𝑠: 𝑆𝑒𝑥 + 𝐶𝑟𝑜𝑠𝑠: 𝐷𝑖𝑒𝑡 + 𝐶𝑟𝑜𝑠𝑠: 𝑆𝑒𝑥: 𝐷𝑖𝑒𝑡	 518 
 519 

Multiple test corrections were performed by implementing the “qvalue” R package to estimate 520 

false discovery rates (Supplemental Figure 9). Genes with a FDR of £ 0.1 and a |𝑓𝑜𝑙𝑑	𝑐ℎ𝑎𝑛𝑔𝑒| ≥ 1.5 521 

were considered significantly differentially expressed by reciprocal cross (Supplemental Figure 10 and 522 

Supplemental Table 2). 523 

 524 

Gene-gene interactions 525 

 Networks were constructed in each tissue by pairing genes showing parent-of-origin-dependent 526 

allele-specific expression with biallelic genes that are differentially expressed by cross. Pairs were 527 

predicted by modeling the expression of biallelic genes as a function of parent-of-origin-dependent allele-528 

specific expression, Lbias, sex, diet, and sex-by-diet. The strength of a prediction was measured through 529 

model fit, which was estimated as a mean test error with 10-fold cross-validation employed to prevent 530 

overfitting. Significance was estimated by likelihood ratio test using a chi-square distribution. Given the 531 

complexity of contexts, false discovery rates were determined by permuting the context and expression 532 

data to generate a stable null-distribution of p-value (Supplemental Figure 11). Null distribution stability 533 

was evaluated by calculating the critical value for alpha = 0.05 at each genome wide iteration. The 534 

standard deviation of critical values was calculated after each iteration for the last 5 iterations. Genome-535 

wide shuffling was done 500 times, with 759 independent randomized tests per iteration, meaning the 536 

stable null model is composed of 379,500 randomized observations. Using the null model, the “qvalue” 537 

package estimated a 𝜋"L. This estimate was then used to estimate false discovery rates in the real data.  538 

MTE score thresholds were calculated from a critical value of α = 0.01, determined from a null distribution 539 

created by permutation (Supplemental Figure 12). Connections with an FDR £ 0.1 (Supplemental 540 

Table 10) and MTE below the critical value were considered significant (Supplemental Figure 13). 541 

 542 

Functional enrichment analysis 543 
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 Functional enrichment of interacting genes showing parent-of-origin-dependent allele-specific 544 

expression with biallelic genes that are differentially expressed by cross was tested by over-545 

representation analysis in the WEB-based Gene Set Analysis Toolkit v2019 (Zhang et al. 2005). We 546 

performed analyses of gene ontologies (biological process, cellular component, and molecular function), 547 

pathway (KEGG), and phenotype (Mammalian Phenotype Ontology). The list of all unique interacting 548 

genes was analyzed against the background of all unique genes expressed in white adipose. A 549 

Benjamini-Hochberg FDR-corrected p-value £ 0.01 was considered significant (Supplemental Table 4).  550 

 551 

Phenotype correlation 552 

In order to identify which phenotypes might be affected by genes in the POE network, gene expression 553 

was correlated with metabolic phenotypes collected for F1 animals. Phenotypes were log transformed 554 

when necessary, as determined by Shapiro Wilkes test to approximate normality (Supplemental Figure 555 

14). Additionally, the effects of sex and diet were residualized out leaving only the effect of cross. This 556 

was done to mirror later residualizing of phenotypes in the F16 population when testing for epistasis. 557 

Multiple test corrections were performed by implementing the “qvalue” R package to estimate false 558 

discovery rates (Supplemental Figure 15). The minimum Pearson’s correlation coefficient threshold was 559 

set to |0.5|. Connections with an FDR £ 0.05 (Supplemental Table 5) and MTE below the critical value 560 

were considered significant (Supplemental Figure 16). 561 

 562 

Epistasis testing 563 

 The F16 LxS advanced intercross population, phenotypes, genotypes, genotypic scores, and QTL 564 

mapping methods are described elsewhere (Cheverud et al. 2011; Lawson et al. 2011a, 2011b, 2010). 565 

We tested for epistasis in interacting pairs between genes showing parent-of-origin-dependent allele-566 

specific expression and biallelic genes that are differentially expressed by cross. We selected F16 567 

genotyped markers that fall within 1.5 Mb up- and downstream from the geometric center of each gene, 568 
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defined as the genomic position halfway between the transcription start and stop position of that gene 569 

(Supplemental Table 11). For every F16 animal, an “imprinting score” was assigned to each marker 570 

based on that animal’s genotypic values (LL = 0, LS = 1, SL = -1, SS = 0; maternal allele is depicted first). 571 

Non-normally distributed phenotypes (as evaluated by a Shapiro-Wilk test) were log10-transformed to 572 

approximate normality (Supplemental Figure 17). Because of the number of epistasis tests performed 573 

and the number of contexts represented in the data, we removed the effects of sex, diet and their 574 

interaction from each F16 phenotype with a covariate screen. We tested for epistasis on the residualized 575 

data using the following generalized linear model: 576 

𝑅#$%&'~	𝐵𝐷𝐸()* + 𝐴𝑆𝐸()* + 𝐵𝐷𝐸()*: 𝐴𝑆𝐸()* 577 

Where Rpheno is the residual phenotype, BDEIMP is the imprinted genotypic score for the biallelic gene that 578 

is differentially expressed by cross, ASEIMP is the imprinted genotypic score for the gene showing parent-579 

of-origin-dependent allele-specific expression bias, and BDEIMP:ASEIMP is the interaction between the two 580 

genes’ imprinted genotypic score. We employed a permutation approach to accurately estimate 581 

significance given the linkage of proximal markers. Imprinted genotypic values were randomly shuffled 582 

to generate a stable null model of p-values (Supplemental Figure 18).  False discovery rates were 583 

estimated for a given significance threshold as the proportion of significant tests under the permutated 584 

null model relative to significant tests under the real data model (Supplemental Figure 19). An FDR £ 585 

0.1 was considered significant. Epistasis was considered significant if the BDEIMP : ASEIMP interaction 586 

term met the significance threshold (Supplemental Table 6). 587 

 588 

Validation of Nnat and F2r expression patterns 589 

 Expression patterns of Nnat and F2r in white adipose were validated by qRT-PCR in LG/J and 590 

SM/J mice and in biological replicates of F1 reciprocal cross animals (n = 6 LG/J homozygotes, n = 10 591 

LxS and 10 SxL reciprocal heterozygotes, n = 6 SM/J homozygotes). Total RNA was extracted from 592 

adipose samples using the Qiagen RNeasy Lipid Kit. High-Capacity cDNA Reverse Transcription Kit 593 
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(Thermo Fisher) was used for reverse transcription. Quantitative RT-PCR was performed with an Applied 594 

Biosystems (USA) QuantStudio 6 Flex instrument using SYBR Green reagent. Results were normalized 595 

to L32 expression using the DDCt method. Nnat forward primer – CTACCCCAAGAGCTCCCTTT and 596 

reverse primer – CAGCTTCTGCAGGGAGTACC. F2r forward primer – TGAACCCCCGCTCATTCTTTC 597 

and reverse primer – CCAGCAGGACGCTTTCATTTTT. L32 forward primer – 598 

TCCACAATGTCAAGGAGCTG and reverse primer – GGGATTGGTGACTCTGATGG. Data points were 599 

considered outliers if they led to violation of normality assumptions or were considered outliers by box 600 

and whisker plots. ANOVA was used to estimate significance of differential expression by cross (1), 601 

paternal allele identity (2), mitochondrial ancestry (3). 602 

1. 𝐸𝑥𝑝𝑟𝑒𝑠𝑠𝑖𝑜𝑛	~	𝐶𝑟𝑜𝑠𝑠	 ∈ 	-

𝐿𝐿, 0
	𝐿𝑆, −1
	𝑆𝐿, 1
𝑆𝑆, 0

 603 

2. 𝐸𝑥𝑝𝑟𝑒𝑠𝑠𝑖𝑜𝑛	~	𝑃𝑎𝑡𝑒𝑟𝑛𝑎𝑙	𝐴𝑙𝑙𝑒𝑙𝑒	 ∈ 	-

	𝐿𝐿, 0
	𝐿𝑆, 1
𝑆𝐿, 0	
𝑆𝑆, 1

 604 

3. 𝐸𝑥𝑝𝑟𝑒𝑠𝑠𝑖𝑜𝑛	~	𝑀𝑖𝑡𝑜𝑐ℎ𝑜𝑛𝑑𝑟𝑖𝑎𝑙	𝑎𝑛𝑐𝑒𝑠𝑡𝑟𝑦	 ∈ 	 U	𝐿𝑥𝑆	𝑥	𝑆𝑥𝐿, 0	𝑆𝑥𝐿	𝑥	𝐿𝑥𝑆, 1 605 

Expression patterns were also validated by qRT-PCR in F2 animals (n = 14). Co-expression was 606 

determined by fitting a general linear model and estimating significance using the Wald test 607 

approximation of the LR test. Correlation with basal glucose was determined by fitting a general linear 608 

model and estimating significance using the Wald test approximation of the LR test. Pearson’s correlation 609 

coefficients were calculated for each gene with basal glucose. To test whether patterns in these 610 

correlations was significantly different between F0/F1 and F2 populations, bootstrapping was used to 611 

calculate 90% confidence intervals for the Pearson’s correlation coefficients. 5,000 iterations were run 612 

with 10 individuals randomly selected with replacement.  613 

 614 

scRNA analysis of Nnat and F2r 615 
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scRNAseq data was downloaded from SRA: SRP145475 (RB et al. 2018).  Data were processed 616 

and aligned to the C57BL/6J reference (mm10) using Cell Ranger (Zheng et al. 2017). Analysis and cell 617 

quality control was performed using the Seurat (3.2.2)(T et al. 2019) package in R (3.6.1)(R Core Team 618 

2013). Cell quality was controlled using three metrics (Luecken and Theis 2019): 1) number of features, 619 

2) number of counts, 3) covariation of features and counts. High quality cells were required to have 620 

between 500 and 3,000 features and read counts between 1,000 and 30,000. As sequencing is a process 621 

of random sampling, the number of features and the number of counts should covary. This relationship 622 

was fit to a generalized additive model. Deviation from this relationship (residuals) were computed for 623 

each cell. High quality cells were required to have a residual within 3 standard deviations of the mean 624 

residual of all cells (Supplemental Figure 20). 625 

Seurat normalization with a scale factor of 10,000 was performed. Dimensionality reduction 626 

(UMAP) was performed (dims = 1:10, resolution = 0.15). Resolution was chosen using the clustree (0.4.3) 627 

package (Zappia and Oshlack 2018). A range of resolutions from 0.06 to 0.18 were tested, and the 628 

highest resolution with stable clustering was chosen (Supplemental Figure 21). Cell type markers were 629 

identified by differential expression analysis using the “MAST” hurdle-model test (Finak et al. 2015). 630 

Genes overexpressed in a given cell type relative to all other cell types were considered cell type 631 

“markers”. Cell type identity was assigned using previously reported markers for this data set 632 

(Supplemental Figure 2).  633 

Cells along the adipogenic trajectory were subset and subjected to dimensionality reduction 634 

(UMAP, dims=1:10, resolution=0.17). A range of resolutions from 0.01 to 0.25 were tested. Using Adipoq 635 

as a marker of differentiation, we sought to identify the set of clusters that would best encapsulate the 636 

stages of differentiation. To this end for every level of resolution we calculated the mean count variance 637 

(𝐶+VVV). This is done by calculating the standard deviation (𝜎) of Adipoq expression (E) within each cluster 638 

(G), referred to as the count variance (𝐶+). Cells with no expression of Adipoq were excluded. The mean 639 

of count variances for all clusters is calculated. This process is similar to k-means clustering, where the 640 

goal is to find that parameters which minimize the within group variation. 641 
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𝐶𝑜𝑢𝑛𝑡	𝑉𝑎𝑟𝑖𝑎𝑛𝑐𝑒 = 	
∑ 𝜎(𝐸,)&
,-.

𝑛
 642 

We also calculated the percent expressing variance (𝑃+VVV). This was taken as the mean of the 643 

standard deviation in the percent of cells expressing Adipoq. 644 

𝑃𝑒𝑟𝑐𝑒𝑛𝑡	𝐸𝑥𝑝𝑟𝑒𝑠𝑠𝑖𝑛𝑔	𝑉𝑎𝑟𝑖𝑎𝑛𝑐𝑒 = 	
∑ 𝜎(%𝐸 > 0,)&
,-.

𝑛
 645 

The resolution 0.17 was chosen as the lowest resolution where variation is minimized and no 646 

longer significantly changes (Supplemental Figure 22). Using Adipoq as a marker of adipogenesis, 647 

clusters 1 and 2 were identified as pre- and post-differentiated cells, respectively. Differential expression 648 

was analyzed using the “MAST” test. Expression was compared between clusters 1 and 2 only. Multiple 649 

tests correction was performed using the Bonferroni method. We required changes in expression to show 650 

either a sufficiently large fold change ( |log/ 𝐹𝑜𝑙𝑑𝐶ℎ𝑎𝑛𝑔𝑒| ≥ 0.3 ) OR a sufficiently large change in the 651 

percent of cells expressing the gene in question ( 𝑝𝑐𝑡. ∆≥ 0.4 ). The change in percent of cells expressing 652 

a gene was calculated as the difference in percent of cells expressing the gene between the clusters and 653 

scaled by dividing by the larger percentage. 654 

 655 

𝑝𝑐𝑡. ∆	= 	
𝑝𝑐𝑡. 2 − 𝑝𝑐𝑡. 1

max	(𝑝𝑐𝑡. 1, 𝑝𝑐𝑡. 2)
 656 
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