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Abstract

We propose a pipeline for a synthetic generation of personalized Computer Tomography (CT)
images, with a radiation exposure evaluation and a lifetime attributable risk (LAR) assessment.
We perform a patient-specific performance evaluation for a broad range of denoising algorithms
(including the most popular Deep Learning denoising approaches, wavelets-based methods, meth-
ods based on Mumford-Shah denoising etc.), focusing both on accessing the capability to reduce
the patient-specific CT-induced LAR and on computational cost scalability. We introduce a par-
allel probabilistic Mumford-Shah denoising model (PMS), showing that it markedly-outperforms
the compared common denoising methods in denoising quality and cost scaling. In particular,
we show that it allows an approximately 22-fold robust patient-specific LAR reduction for infants
and a 10-fold LAR reduction for adults. Using a normal laptop the proposed algorithm for PMS
allows a cheap and robust (with the Multiscale Structural Similartity index > 90%) denoising of
very large 2D videos and 3D images (with over 107 voxels) that are subject to ultra-strong Gaus-
sian and various non-Gaussian noises, also for Signal-to-Noise Ratios much below 1.0. The code

is provided for open access.

One-sentence summary: Probabilisitc formulation of Mumford-Shah principle (PMS) allows

a cheap quality-preserving denoising of ultra-noisy 3D images and 2D videos.

Introduction

Computed tomography (CT) is one of the most frequently used medical imaging techniques, with over
100 million CT scans performed yearly worldwide [1]. An additional increase in the total number of
CT examinations could be observed in the recent COVID-19 epidemics [2, 3]]. However, distinguish-
ing subtle CT image features relevant for diagnostics purposes typically requires significant radiation
exposure and thus increases the patient’s radiation-imposed lifetime attributable risk (LAR). This, in
turn, leads to an additional chance of developing a radiation-exposure attributable cancer type [/1]].

The quantification of the LAR is a complex challenge and requires modeling the multifactorial in-

terplay of DNA damage and repair mechanisms, as well as incorporating random/stochastic effects
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that accumulate in the low-radiation regime. In silico simulations and analytical estimates for net ef-
fects of such stochastic radiation-triggered reactions imply a linear model for the dependence of LAR
from the accumulated radiation exposure [4, 5, 6, [7]] — with linear model coefficients being dependent
on the patient’s age and sex, as well as on the particular type of the CT. Despite some controversy
regarding the possible existence of low-radiation thresholds in the LAR models suggested by some
studies [8], the linear no-threshold models (LNT) are currently recommended for LAR assessment by
the committee for Biologic Effects of Ionizing Radiation (BEIR VII) of the National Academy of Sci-
ences of the USA [3]] and by the World Health Organisation [1]]. Several recent epidemiological and
methodological studies support the statement that a safe radiation dose does not exist [9, 10, [L 1}, [12]
and that the LAR of CT is exceptionally high for infants and children [10, 11} 12]]. The approximately
14 million pediatric CT scans of head, abdomen, pelvis, chest, or spine performed each year world-
wide [[10} 1] would therefore lead to approximately 12.000 fatal cases of cancer, of which 4800 are
attributable only to the USA.

The prognosis that the reduction of the highest 25% of doses to the median could prevent 43%
of these cancers [10] naturally suggests the increased use of low- and ultra-low radiation CT (for
radiation exposures down to 0.5 mGy). However, a reduction of radiation exposure results in in-
creased image noise and thus necessitates the application of reliable image denoising and feature
extraction tools. Facilitated by the rapid development of emergent machine learning (ML) and deep
learning (DL) algorithms, this research on the boundary between medical radiology and informatics
is attracting an increasing amount of attention over the past years [13]. The currently available CT
image denoising tools can be roughly subdivided into unsupervised and supervised methods. The
unsupervised approaches search for a hidden pattern without prior learning, whereas the supervised
techniques aim to identify features previously learned from the training data. Unsupervised methods
do not require previous training, allow high-speed computations, and belong to the most frequently-
used image denoising instruments [[14} [15]. They include methods based on local averaging of the
data (like Gaussian, weighted Gaussian, bilateral and mean average filtering) [16} (17, [18, [14] and
spectral methods (like Fourier-, wavelet- and PCA-denoising) [19, 20, 21} 22, [15]. Recent years

have also seen an active development of very successful CT denoising approaches based on semi-
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supervised ML ideas (for example, methods based on generative adversarial networks) [23) 24] and
Deep-learning algorithms for denoising- and image segmentation [25, 26, 13, 27]. The deep learning
methods have been shown to be very successful for denoising and the current convention says that
DL performs much better than traditional unsupervised regularized denoising algorithms.

However, recent evidences in the literature indicate that ML and DL tools can struggle when
dealing with the denoising of real images, either due to the lack of an adequate training sample or to
the increasing complexity (and computational cost) of the required network [28]]. This is particularly
true in medical imaging, where the approaches based on ML can sometimes lack accuracy [29], while
DL tools tend to rely too heavily on labeled datasets and on sufficiently large training sets [30} 31, 132].
The size of the training set plays a very central role also in the denoising of CT images, where the
number of instances in the training set 7' is significantly smaller than the feature space dimension
D, corresponding to the number of voxels. A problem characterised by D > T' pertains to the so-
called "small-data learning challenge" [33, 134, 135} 136/ 137], and represents a scenario in which ML
and DL approaches are prone to quickly overfit the small training set and to achieve an unsatisfactory
performance on the validation set 38,139,140, 41]. To tackle this issue, several alternative approaches
have been proposed [42, 43]], with transfer learning representing one of the most powerful alternatives
[44]]. Even the latter approach presents, however, some limitations that are particularly relevant in the
denoising of CT images: due to the individual variation of small-scale anatomical features and of
CT operation regimes, the structural similarity assumption between the source domain and the target
domain is usually not fulfilled, while remains unclear the amount and type of information that needs
to be transferred if we want to avoid potential drawbacks — like, e.g., negative transfer — that could
actually lead to a performance worse than the starting deep learning model [45, 46]. Thus, while a
combination of transfer learning and deep learning is being widely used to attempt the solution of
small data problems in the denoising of medical images [47, 48, 49|, the reported results can still be
dissatisfactory due to the lack of efficient strategies to systematically tackle these limitations [S0]].

The issues described above are not the only ones arising in the small data regime characteristic
for CT: a statistically-significant systematic comparison and benchmarking of the supervised learning

approaches can be strongly biased by the so-called "concept drift", i.e., a scenario in which the non-
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stationarity of the learning problem leads to a mismatch between the training data and the actual
application data [51} 152} 153,54, 55]. In CT imaging, such context-dependence of supervised ML and
DL tools becomes particularly problematic when there is a discrepancy between the type of patient
(age, sex, body size) and noise model tackled in the training set and those tested in the validation.
This context-dependence and "concept drift" can quickly lead to unfair comparisons and unsatisfying
performances of supervised learning methods. Last but not least, robustness of the learning methods
can be strongly confined by the existence of structural constraints inherent for the ML and DL tools in
the "small data challenge" regime: for example, while spectral filtering methods tend to outperform
other unsupervised denoising algorithms [14], they also have a fundamental difficulty in dealing with
high noise levels in the data [19, 20]. Recently, the existence of statistically-significant overfitting
boundaries has been shown empirically by employing high-performance facilities: e.g., in [S6], long
short-term memory (LSTM) deep neural networks [S7] have been shown to systematically overfit the
data and to produce results which are not statistically-significant if the condition 7" > 13.6D + 3.8 is
not satisfied (where 1’ is the size of data statistics and D is the number of features).

While regularised time series clustering approaches were recently demonstrated to operate in these
"small data, large noise" regimes, even when the noise is an order of magnitude larger than the true
signal [58, 159,160, [61]], these studies were only confined to one-dimensional denoising problems. A
systematic comparison with a broad range of supervised and unsupervised methods is still lacking.
Due to the stochastic nature of the noise in CT, a statistically-significant evaluation and comparison of
different CT image denoising methods has to rely on sufficiently large amounts of CT images taken
from the same patient under the same combination of controls (e.g., with the same tube current and
the same tube voltage). However, obtaining such an extensive set of reference-imaging data for a par-
ticular patient without a medical necessity would be unethical. A systematic comparison of methods
would additionally require combining such data for multiple patients in a sampled range of patient-
specific parameters (age, sex, body size, etc.) as well as for a large number of practically-relevant
combinations of CT controls. Furthermore, the standard quality measures like the Mean-Squared
Error (MSE), Peak Signal-to-Noise Ratio (PSNE), and the Multi-Scale Structural Similarity Index

(MS-SSIM) also rely on the availability of the reference image without noise but generated with the
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same set of underlying features [62, 63, 64]. Finally, combining existing CT data from different
sources in a metastudy is problematic as well, due to a very high level of the individuality of the more
subtle anatomic features of the human body on a small scale [65) 66] and would thus introduce a
strong bias into such a comparative study, which would also lack the reference images. Furthermore,
very few datasets containing CT projection data covering the low-radiation regime are currently avail-
able in open access, mainly due to the proprietary nature of this data and the (hidden) manufacturer-
specific processing of the raw data [67, 168, 169, [7/0]. Even, when this information is available, like in
the low-dose CT image and projection dataset described in [70], a systematic statistically-significant
comparison is problematic since for each of the patients only a couple of images (with and without
noise) are available, from overall 7' = 299 clinically performed patient CT exams - and with the radi-
ation exposures practically not going below 3 mGy. As we will show below, this ultra-low radiation
regime with radiation exposure down to 0.5 mGy and with SNR<1.0 imposes critical challenges for
the bulk of currently-available denoising methods and will receive a particular attention in the tests
performed below. To address these issues, we will lay two foundations in this manuscript.

First, we propose a pipeline for the automated patient-specific generation of synthetic CT images,
radiation exposure estimatition and LAR computation, herewith following the strengthening move-
ment in radiological research and using the synthetic images (e.g., like in the software tool CatSim)
[67]. The created images are based on a data-driven estimation of CT image noise intensities and their
relationship to CT control parameters(/1, 66, (72, [73]. For this purpose, we combine the LNT model
for the CT-induced lifetime attributable risk [15, 9} [10, [11}, [12]] with the data-driven models that relate
CT noise variance to the CT voltage, current and the amount of radiation exposure [71, [74]. Sec-
ond, we introduce the Probabilistic formulation of the Mumford-Shah formalism (PMS) and propose
a regularized Scalable Probabilistic Approximation algorithm (rSPA) and its parallel extension DD-
rSPA as new methods for denoising of 3D images, comparing their computational cost and denoising
performances with the state-of-the-art methods in this field. Particular focus thereby is to investigate
the possibility of reducing personalized LAR through improving the denoising performance in the

ultra-low radiation regime (down to 0.1-0.5 mGy, with Signal-to-Noise Ratios below 1.0).
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Results

Patient-specific generation of synthetic CT images, radiation exposure estimation

and LAR computations

In the first step of the proposed pipeline we provide algorithms for generating synthetic noisy CT
images for every relevant combination of CT control parameters, image parameters and patient de-
pendent variables. Regarding the CT control parameters, we focus on the two most relevant ones that
can be adjusted on the computer tomograph, which are the tube voltage, kVp and the tube current,
mA . The CT image parameters are the standard deviation of the CT quantum noise, o, and the CT
feature contrast in Hounsfield Units (HU). The patient-dependent variables for computing the overal
CT-quantum noise as well as the CT-induced additional cancer risk, r, are the patient’s age, sex, the
subject’s size, d, in c¢m, as well as the absorbed radiation dose density CTDI,,; in milligray (mGy).
The initial reference data for the automated generation of a battery of synthetic test-images can be
either a set of real CT-data generated using high-dose radiation (Fig. 1A), or artificially simulated
data, respectively. These reference data have to be characterized by high image quality and low quan-
tum noise (visualized in Fig. 1B), as compared to the (ultra) low-dose CT images (Fig. 1C) that
naturally contain a massive amount of noise and thus result in low CT-image quality. Figure 1D
gives a graphical abstract of the workflow from image generation to the subsequent comparison of
the various ML/DL-denoising methods based on the accuracy of the denoised image data. Starting
with high-quality reference data, a broad range of typical CT image noises is imposed in a multitude
of combinations from patient-specific and CT control variables. The obtained noisy CT images are
subsequently denoised using various state-of-the-art methods. Processed and denoised images are
compared to the original reference data. To model the effect of noise in CT images, we deploy and
compare three different alternatives: (i) an additive Gaussian noise model that was shown to provide
an adequate description of quantum noise effects in real CT images on a small scale of several cen-
timeters [71,175]; (ii) the non-Gaussian multiplicative noise model where the quantum noise variances
change with the underlying feature color; and (iii) the empirical CT noise model sampled from the

real patient data.
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Computation of the noise variance o is performed for given CT control parameters (tube current
mA, tube voltage kVp) and patient-specific parameter (water-equivalent patient diameter d) using
the non-linear regression model introduced in [[71] (see equation (I). Equation (2)) of the workflow
computes the effective absorbed radiation dose density CTDI,,, for a volume unit from the tube con-
trol parameters mA and kVp using the data-driven regression model established in [74]. Equation
(@) of the image generation workflow computes the resulting lifetime attributable risk for a patient

(LAR) utilizing the linear no-threshold model (LNT) proposed by the committee for Biologic Effects

of Ionizing Radiation (BEIR VII) of the National Academy of Sciences of the USA [5} 76l

In(o) =ao(kVp) + oy (kVp)d + as(kVp)in(mA) + as(kVp)d® + au(kVp)In*(mA)+, (1)

as(kVp)din(mA),
CTDIyo =7 (kVp, CT type) + 11 (kVp, CT type)ymA, (2)
LAR =py(age, sex, organ) + p1(age, sex, organ)CT DI,,. 3)

3D regularized Scalable Probabilistic Approximation algorithm:

In the following, we introduce the 3D regularized Scalable Probabilistic Approximation algorithm
(rSPA). More algorithmic details and a complete derivation with mathematical proofs can be found in
the paper supplement. rSPA (see Fig. [2|for a graphical representation) seeks a simultaneous solution
of image segmentation and noise elimination problems and aims to find the spatially most-persistent
decomposition of the image in terms of K latent features. Direct application of popular segmentation
and clustering methods from ML to the denoising problem results in computatinally-tractable tools
with a favourable linear scaling of computational cost - but resulting in suboptimal irregular segmen-
tations that disregard the spatial ordering of the data [[/7,[/8,(/9]. Application of regularized clustering
and segmentation tools that take into account the spatial ordering and regularity of the data and fea-
tures (e.g., methods based on Mumford-Shah functional optimization) have unfavourable polynomial

cost scaling, limiting their application to very small images or requiring very extensive computational

8


https://doi.org/10.1101/2021.08.10.455778
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2021.08.10.455778; this version posted August 11, 2021. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

available under aCC-BY-NC-ND 4.0 International license.

B high dose - low quantum noise

C low dose - high quantum noise

STEP 1: STEP 2: STEP 3:

—)

K Calculate radiation dose density using (2) and Life attributable risk using (3) for each step

Reference selection Applying image noise using (1) Applying ML / DL denoising algorithms

STEP 4:
Comparison
to reference

/

Figure 1: Graphical representation of our proposed pipeline’s workflow for automated genera-
tion and risk assessment of CT images A: Initial reference data can be either a set of real CT-data
generated using high-dose radiation or artificially simulated data. B: Exemplary high-quality and low-
quantum noise image of lung vessels. C: exemplary low-dose CT images with high quantum noise. D:
Workflow from image generation to subsequent benchmarking of ML/DL-denoising methods. Start-
ing with high-quality data or artificially generated reference data, respectively, a spectrum of image
noise o is added for a multitude of combinations from patient-specific and CT control variables,
as suggested in equation (I). The noisy images were then denoised using various state-of-the-art

methods, and the processed images are compared to the original reference data.


https://doi.org/10.1101/2021.08.10.455778
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2021.08.10.455778; this version posted August 11, 2021. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-NC-ND 4.0 International license.

resources [80, 158,159,160, 61]. In the following, the key challenge we will address with the proposed
rSPA algorithm simultaneously achieving a qualitative(in terms of low error and sufficient spatial reg-
ularity of latent features) and computationally-tractable (linearly scalable) solution of the underlying
optimization problem.

We consider a 3D image to be provided as an array V' = {V (1), V(2),...,V(T)} of D-dimensional
patch value vectors for all 7' of three-dimensional CT voxels, with patch values V() € R being,
for example, the grey-color intensities V;(t),d = 1,..., D of the D-dimensional voxel patch with
an index ¢. Without a loss of generality, in the following applications, we will consider the common
grayscale CT images with one-voxel patches (D = 1) and T being of the order 10°> — 10”. The prob-
lem of denoising can then be considered as a numerical problem of searching for /' D-dimensional
latent features characterized by K D-dimensional distinct feature vectors {C' ,...,Cp}, with k
taking values between 1 and K. Spatial characteristics of these K latent features we will be searching
for will be provided by (a priori unknown) latent feature probabilities I'y(¢), representing the proba-
bilities of an actual (noisy) voxel V' (¢) to belong to a particular latent (noiseless) feature with an index
k. Such numerical procedure can be performed by a broad range of clustering and segmentation al-
gorithms from ML (e.g., K-means, Scalable Probabilistic Approximation and others) [[77, 78,79, 81].
For example, the Scalable Probabilistic Approximation algorithm [81] would minimize the sum of

the errors L,(C,I'(t)) when approximating every vector V' (¢) with its probabilistic representation

Ver(t) = Y, Th(t)Cr:

T
[C*,T%] = arg min % ; Li(C,T(t)), (4)

where L;(C,I'(t)) = ||V (t) — Vor(t))|3. It is straightforward to see that, when C' is fixed, the
solution of the minimization problem (4) is equivalent to 7" independent minimizations of individual
errors L, with respect to their particular I'(¢) - and can be performed independently for each ¢. This
allows a very efficient - independent and parallel - numerical treatment of problem () and results in a
favourable linear scaling of the computational cost with growing size and dimension of the data [81].

The downside of this nice independent and additive structure of optimization problem is that it

10
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results in solutions that are independent of any spatial permutation of the original data V', since the
right-hand side of expression () is clearly invariant with respect to any arbitrary re-ordering of the
summation indices . This indicates that the solutions of such an optimisation problem will not change
if we arbitrarily change the spatial ordering of the voxels in the original image. This invariance of the
clustering outcomes with respect to the data ordering is a common characteristics of a broad class of
ML methods, including, for example, Kmeans- and Fuzzy-Kmeans-clustering-methods that belong
to the most popular ML algorithms, with over 3 Mio. citations according to Google-Scholar [81].
While analysing spatially-ordered data, in addition to a simple segmentation (4] of the image into K
latent probabilistic features, we would like to enforce a spatial persistence of underlying features. To
achieve this, we can enforce any two voxel points V' (¢) and V' (¢') to have similar latent probabilities
of belonging to the same features if their positions are close enough to each other. In order to deal
with the relative position of the voxels, we can use the kernel function, a very popular concept in ML.
The simplest alternative to measure the "closeness" of two different voxels would be provided by the

Euclidean kernel, defined as a distance function o, between two distinct points with indices ¢ and ¢’

1 ifdist™ (¢, ) < ay,
Qg pr = (5)
0 ifdist™(¢, ) > ay,
where o is some user-defined threshold (e.g., oy = 1 in this paper’s applications).
Then, following the idea behind the Mumford-Shah functional formulation [80], spatially-persistent

optimal probabilistic approximation VC*7F* of the original image data V' can be computed via the nu-

merical minimization of the regularized form of the original clustering problem (#):

[C*T*] = arg mln— ZLt+ Zatt/HVCF S (I HE (6)
ar Ztt’ 1M ¢y

The second term in the right-hand side of this functional controls the spatial regularity and smoothness
of the obtained solutions. Please note, that, in contrast to the original clustering problem (4}, problem
(6) is not invariant with respect to permutations of 1/, and allows to optain spatially-regular solutions

[C*,T*], with the persistence that grows when increasing the scalar control parameter £. However,

11
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these nice features of the regularized problem come at a price of losing the very-favourable linear
scalability of the computational cost of problem (4): optimization with respect to different I'(¢) can
not be performed independently when C' is fixed - as it is the case for the clustering problem like SPA
(E[), where one solves T independent K -dimensional optimization problems for I'(¢) with fixed C.
The second term in (6) - that aimed at enforcing spatial regularity and persistence - at the same time
introduces the global coupling between different I'(¢) and requires the solution of very large coupled
K'T-dimensional nonlinear optimization problems [80, 58, |59)]. This confines the applicability of
the image analysis methods based on (6)) when working on common hardware (e.g., workstations) to
relatively-small images, with KT not larger then 50°000-100°000 [58| [59]. Direct solution of (6]) - as
well as indirect Bayesian solutions of (6) based on Markov Chain Monte Carlo sampling (MCMC)
- are costly beyond 1D and would require extensive use of High-Performance Computing facilities
(HPC) for large realistic 3D images with KT ~ 10° — 107 [82, 61

One of the key methodological insights of this work is that one can systematically derive an exact
upper bound approximation of the regularized problem (6)) that can be solved with a linearly scalable
and parallelizable numerical algorithm for realistic 3D images (with 106 —107 voxels), while requiring

few minutes on a common laptop:

T

K T
, 1 el|Crl]?
[C*.T*] = arg min) n S TRV () = Cil* + 7”—’“” D o (Th(t) — Tu(t))?
or k=1 t=1 Zt,t/zl Qtt! 4 p—1
T
such that min(V') < C < max(V), ZFk(t) = land I'y(¢) > O for all ¢, k. (7)
k=1

As proven in Lemma 1 of the paper supplement, solutions of problem ([/)) are also exact solutions of
the original regularized problem (6)) if the segmentations are discrete (i.e., if [';(¢) take only discrete
values 0 or 1). These solutions provide upper bound approximate minimizers of the problem (6)) if
() take fuzzy values between 0 and 1. In contrast to the original clustering SPA-functional (),
problem (7)) has I'(¢) outside of the norm in the first (clustering) term - and the analytical structure
of the second (regularizing) term is very different from the structure that one would obtain by di-

rectly deploying common regularization tools (like Ridge, Lasso and elastic net regularizations) to
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the original clustering problem (4}’

The numerical solution of the obtained optimization problem (/) can be computed with the monotonically-
convergent rSPA algorithm: starting with some arbitrarily chosen K feature vectors C, one iterates
solving the above problem for I' (with fixed C') and minimizing of (7)) for C' (with fixed I'). As proven
in Lemma 2, 3 and in Theorem 1 of the paper supplement, rSPA always results in the monotonic
minimization of , with a linear iteration cost scaling O(K DT'). rSPA algorithm can be efficiently
parallelized deploying the Domain Decomposition idea (DD) widely used in various areas. Graphical
representation of the idea underlying the resulting parallel DD-rSPA algorithm is shown in the Fig. 2]
a detailed description of the DD-rSPA algorithm is provided in the Section 2 of the paper supplement.
Commented computer code implementing both algorithms is provided for open access at https://
www .dropbox.com/sh/rwdt6ydkpi6dw8y/AAA9katysG09w7]1 jsvUgPwwna?d1l=0/and
can be run on a laptop with MATLAB installation. Numerical tests on noisy images with different
sizes and noise levels reveal that the overall computational cost of both the sequential rSPA and paral-
lel DD-rSPA algorithms grows linearly withthe image size and with decreasing Signal-to-Noise ratios

(corresponding to increasing noise levels), as we can see in the panel A of the Fig. [5

Relation of Probabilistic Mumford-Shah and rSPA algorithm to Regularized Mumford-

Shah framework (MS) and Rudin-Osher-Fatemi (ROF) Total Variation model:

Mumford-Shah formalism originally introduced in [80] is one of the most well-understood and elabo-
rated theoretical and algorithmic frameworks for edge-preserving image denoising. It aims at finding
the optimally-denoised image V¢ that is simultaneously smooth and close enough to the original noisy
image V. Then, keeping the previously introduced notation, in the most common discrete Mumford-

Shah formulation such a denoised image V' can be found as a solution to the following optimization

' Applying Ridge, Lasso and elastic net regularizations with respect to both variables C' and T in problem @ would
result in regularization terms of the form +e¢|Cy|| + er||T'x|| and would require tuning at least the two regularization
parameters ec and er.
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problem:

VY = g min g S (V) — VO + 219V ®

v t=1

where the first term measures the "closeness" of the original and the denoised images, the second term
regularizes the "smoothness" of the denoised image by penalizing the norm of its average gradient.
One of the key theoretical insights to this problem (8) was provided in the work by Rudin, Osher and
Fatemi [83]]: deploying the Euler-Lagrange principle they shown that the solution to the minimization
problem is equivalent to solving a parabolic Partial Differential Equation (PDE). This opened a
way of deploying the very efficient PDE solvers and the so-called level-set methods to the image
denoising problem. The numerical solution of both the original MS-formulation (§)) and of the PDE-

based ROF-formalism is commonly achieved by deploying the Galerkin ansatz:

K
Vi) = ) CTw(t), 9)
k=1

where T’y (1) is a fixed set of known basis functions (e.g., mesh functions, finite element functions,
wavelet basis functions, Fourier basis functions, etc.) and C}, are the unknown coefficients that are
found numerically [83} 184, 85, 186, 187, 88l

The most important difference between the Probablistic Mumford-Shah (PMS) problem formu-
lation (7) and the common MS- and ROF-methods is the form of the Galerkin expansion (9): (i)
PMS problem deploys the probabilistic expansion @) with unknown C' and I'(¢) being a priori
unknown non-parametric probability density vectors - whereas common MS and ROF-tools dwell
on a priori fixed parametric sets of non-probabilistic basis functions I'. Hence, in contrast to the
parametric optimization problem (8) that allows a straightforward Euler-Lagrange reformulation in
form of the parabolic PDE, the introduced PMS-formulation deals with a non-parametric variational
problem (7) subject to both equality and inequality constraints, that do not allow a straightforward
Euler-Lagrange reformulation - and do not allow deploying the very efficient algorithms from PDE

numerics for its solution. One of the central methodological developments of this manuscript was
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showing that despite of this presumed limitation, it is possible to efficiently solve the PMS problem
numerically (7)) , with an iterative algorithm that has a linear scalability of computational cost. Direct
numerical comparison of PMS and the common MS- and ROF-tools [83} [88]] reveals very significant

differences in denoising performance, cost and parallel scalability (see Fig. [5] A-C).

Application and comparison of the rSPA method with standard methods:

Next, we compare the denoising performance for a broad selection of supervised and unsupervised
algorithms using the synthetic CT images generated with the above-introduced pipeline. As a noise-
less CT reference we first use the patient data exemplified in Fig. [3A. It has 274’625 voxels and
represents a cubic CT area of around Hem X 5em x 5em. The data came from a high-radiation CT
(180 mA tube current, CTDI,, 15.4 mGy, section from a thorax CT of a 19 year old female pa-
tient). For each particular combination of tube-specific and patient-specific parameters, we used this
reference image to create statistics of 100 different independent noisy synthetic CT images for every
parameter combination.Fig. shows the increase in noise when reducing radiation exposure. To
illustrate the performance of DL on these data we first apply one of the most widely-used DL denois-
ing networks: the Convolutional Neuronal Network DnCNN-3 from [25], with over 3264 citations
according to Google Scholar. It was trained on a comprehensive collection of imaging datasets (in-
cluding the Berkeley segmentation dataset, with over a million of image pairs for training) in a very
broad range of Signal-to-Noise ratios and noise types (both Gaussian and non-Gaussian). Figures
BIC and 3D show the effects of denoising by DL DnCNN-3 from [25] and rSPA, respectively in low-
and ultralow-radiation CT. Fig. [3E) shows a 3-dimensional segmentation obtained from a stack of
such high-radiation CT data whereas Figures 3F and 3]G give the segmentation based on the images
denoised using DnCNN-3 and rSPA, respectively. Figures 3E-F are all obtained from two feature
isosurfaces at 625 and 200 Hounsfield Units (HU), respectively, representing the interior of blood
vessels in the lung volume segment.

Apparently, rSPA provides denoised images and segmentations that are much closer to the high-
radiation reference images. Particularly, we observe that - as the noise increases - DL denoising

methods start recognizing features from noise artifacts that were not part of the true reference images.
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Figure 2: Graphical overview of the regularized Scalable Probablistic Approximation (rSPA)
and its parallel extension DD-rSPA: A) Summary of the parameters and variables. b) Core rSPA
algorithm idea: 3D-denoising with the regularized Scalable Probabilistic Approximation algorithm
(rSPA). Given the (noisy) CT voxel data V, rSPA minimizes the function L(C,I") and seeks for the
optimal segmentation of V' in terms of the K spatially-persistent latent features characterized by the
latent feature probabilities in /' rows of the matrix I' as well as by the latent colors as K columns
of the latent color matrix C. Persistency of the feature segmentation is imposed by the second term
of the right-hand side of the function L(C,T"), that penalizes the differences in the feature proba-
bility values in the spatially-neighboring points. C): Denoising idea: latent feature probabilities are
persistent (slowly-changing) 3D functions. D): graphical representation of the overlapping Domain
Decomposition used in the parallel DD-rSPA algorithm.
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As already mentioned above, such deterioration of the performance of ML and DL methods can be
attributed to various reasons, including, on one hand, the insufficient training data set and a "small
data challenge" 38, 39,40, 41]] and, on the other hand, induced by the "concept drift", stemming from
the mismatch between the type of image features and the noise model used in model training and the
noise model in the validation data [51} (52} [53]].

To discern the potential impact of "concept drift" - and to rule-out the possibility that the "hal-
lucinations" observed for DL CNN in Fig. [3] in the ultra-low radiation regime are induced by the
insufficient training dataset - we additionally train the DnCNN-3 from [235] first with 10’000 image
pairs (with and without noise) of spheres and circles of various sizes - and then with further 40’000
image pairs. We performed this two-stage training procedure to evaluate the performance improve-
ment induced by providing more training data. The complete additional training took around 8 days
on a machine with 28 CPUs (Intel Xeon Gold 6240R 2.4G, 14C/28T) and 384 GB RAM (DDR4-
2933) using up to 90% of the physical cores and 120GB of memory. The resulting denoising net-
work is provided for open access at https://www.dropbox.com/s/1ia69h9fhgud2vpt/
additionallytrained_DnCNN-3_network.mat ?d1=0. We found that using a larger train-
ing dataset (with further 40’000 image pairs) can only bring negligible improvements, confirming the
earlier finding reported in [25]. Noisy images in every pair were created using the empirically sampled
non-Gaussiann CT noise at various levels, covering low and ultra-low radiation regimes (down to 0.2
mGy, corresponding to the Signal-to-Noise ratios between 5 and 0.1). In the Figure[d we show some of
the results obtained from the application of additionally trained DnCNN to the noisy images of circles
and spheres that were not used in the training, deploying the same empirically-sampled non-Gaussian
CT noise model as used in the training at the medium noise level (SNR=5, corresponding to the low-
radiation CT) and at the high noise level (SNR=0.5, corresponding to the ultra-low radiation CT).
Complete comparisons are provided as movie files and are available at https: //www.dropbox.
com/sh/n2dbl4h9p400p92/AABRkAalhX0aiKF07ixsSzKga?dl=0. In the Fig. [ we ob-
serve the same effect of a quick deterioration of DL denoising quality with the increasing noise as in
the Fig.[3} at the medium noise level DL provides high-quality denoising, outperforming a very pop-

ular unsupervised 3D wavelets denoising tool [19, 20, 21} 22} |15]. However, at the high noise levels
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DL is getting outperformed by the 3D wavelet denoising. Interestingly, the best performance, in both
cases, is achieved when applying the DL denoising to the data that has been previously denoised by
rSPA.

Making an interim assessment of these results, we can conclude that the deteriorating performance
of DL denoising is neither a result of a "concept drift" (since the type of features and the noise model
deployed in the training and in validation were the same) - neither a consequence of the training
data set insufficiency (since we observed only negligible performance improvements of DL when
expanding the additional training data from 10K to SOK image pairs). A possible explanation can be
given by the fact that here we observe a fundamental robustness boundary of DL denoising in the high
noise regime, similar to the Donoho-boundary for wavelets methods [[19, 20]. As we will see in the
following, further numerical results provided below give additional support to this hypothesis.

In the next step, we compare the computational cost scaling, denoising performance scaling
and parallelisability scalings for DL, TV-regularized Mumford-Shah denoising from [88], sequen-
tial rSPA, parallel DD-rSPA and parallel DD-rSPA followed by DL. We are particularly interested in
analysing the dependence of these characterstics from the image size and noise intensity. For every
combination of image size and noise level, we create 10 randomly-generated images of spheres and
circles with the non-Gaussian noise - matching the characteristics of the additionally trained DnCNN-
3 to avoid the bias through "concept drift". The code reproducing these results is available at ht tps :
//www.dropbox.com/sh/6p3g62zaelcyugz/AACkE jggyKcIAdgt oHGWC1WPa?d1=0.
The results are summarized in Fig.[5] and their computation of results required around 30 hours on a
laptop with a MacBook Pro 3,1 GHz Quad-Core Intel Core i7 (4 cores) with 16 GB RAM. The mea-
surement of the computational cost for DL considered only the pure time of applying the fully-trained
DL network to a noisy image - and did not include the time needed for the additional training (that was
around 8 days on the workstation as mentioned above). As it can be seen from Fig.[5] the overall costs
of all considered methods scale linearly with the image size - and parallel DD-rSPA demonstrating
the weak scaling of parallel computation cost (see Fig. [5IC). DD-rSPA allows the denoising of a 3D
image with 107 — 10® voxels in the ultra-low radiation regime (SNR = 0.5) at around 3-10 minutes

on a MacBook Pro laptop with 4 cores. Interestingly, the costs of DL and common MS denoisings
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practically do not depend on the noise level, whereas the cost of rSPA and DD-rSPA grows linearly
with the decreasing SNR. According to the Theorem 1 of the paper supplement, the iteration cost of
rSPA and DD-rSPA does not depend on the noise intensity - and this linear dependence of the overall
cost on noise is solely explained by the linear increase in the number of rSPA and DD-rSPA iterations
required to achieve the solution of the minimization problem (/) with the linearly reducing SNR. In
another words, these results show that DL and common MS-denoising invest the same amount of work
at different noise levels, whereas rSPA and DD-rSPA invest work linearly-proportional to the SNR -
and increasing with the relative increase of the noise. A comparison of the denoising quality scalings
in Fig. [5| provides additional evidence towards the hypothesis formulated above: deterioration of the
denoising performance of DL in the area of large noise (small SNR) and smaller image sizes - where
DL is getting outperformed by the 3D Wavelet-Denoising - is not the result of an insufficient train-
ing dataset or the "concept drift". It can be explained with the existence of a fundamental robustness
boundary of DL denoising in the high noise regimes, with SNR<1.0. This finding is also confirmed by
inspecting the performance of the DL when it is applied to the images that were previously denoised
by DD-rSPA (light blue surface in Fig. [5B): this combination of unsupervised DD-rSPA followed by
the supervised DL exhibits the best performance among all the considered methods in this high noise
regime.

Next, from synthetic CT images generated from circles and spheres, we come back to the analysis
of CT images generated from real anatomical features. Using the CT image generation and LAR-
assessment pipeline, we compare the performance of denoising methods in a broad range of absorbed
radiation dose densities. This comparison is made for two synthetic noise models (Fig. [6]A and Fig.
[6B, with Gaussian and non-Gaussian noise) and for the empirical nonparametric CT noise model ob-
tained from the real patient data (Fig. [f)C). The results of this comparison are shown in terms of three
major image quality measures. As expected, the Gaussian 3D filtering exhibits the best performance
among the common tools for all three additive Gaussian noise scenarios from Fig. [6/A. On the other
hand, the non-Gaussian deep learning DnCNN denoising outperforms the other tools (except rSPA)
in the non-Gaussian and empirical noise situations, as can be seen in Figs. [6B and [C. However,

in the overall comparison, the rSPA method markedly outperforms all considered denoising tools in
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Figure 3: Radiation exposure, quantum noise and denoising performance of CNNs and rSPA
in low-radiation and ultralow-radiation thorax CT regimes A: Reference Data of a thorax CT
voxel fragment (approx. 5cm?) of a 19 y.o. female with the BMI 27.5, acquired with the Somatum
Emotion 16 2007 (Siemens) at 130 kV tube voltage. B: Simulated decreasing of the radiation exposure
CTDI,,; from 15.6 mGy (reference frame) to 3.3mGy (for low-radiation simulations) and 0.5 mGy
(ultra-low-radiation) results in a significant increase of quantum noise. C: Reconstructed images using
CNNs. D: Reconstructed images using rSPA. E: 3D segmentation of the original reference frame. F:
3D segmentation based on the images denoised using CNNs. G: 3D-segmentation of the images

denoised by rSPA.
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A. Synthetic CT with Spheres and Circles, medium noise (low radiation)
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B. Synthetic CT with Spheres and Circles, high noise (ultra-low radlatlon)
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Figure 4. Comparing denoising performance on synthetic CT images of noisy circles, with DL
from Fig. 3| additionally trained to recognize circles for non-Gaussian noise model: A: medium
noise scenario, corresponding to low-radiation regime with around 3.3 mGy; B: high noise scenario,
corresponding to ultra-low radiation regime with 0.5 mGy.
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all image quality measures for all three noise models. As can be seen from Fig. [6] rSPA allows to
achieve the same quality of the denoised image obtained with DnCNN (3D MS — SSIM around
0.9) with around 15-fold smaller absorbed radiation dose density (CTDI,, = 0.95mGy for rSPA
vs. CTDI,, = 15mGy for DnCNN).

In Fig. [/, we compared the average denoising performances measured with the 3D MS — SSIM
image quality measure for a range of practically-relevant CT feature color intensity differences, life-
time attributable risks (LAR), and absorbed radiation dose densities. The results again demonstrate,
that rSPA is superior to all other considered tools in all analyzed regimes. 3D MS — SSIM of
the blue surfaces corresponding to rSPA is close to 1.0 almost everywhere, indicating that the de-
noised images are very close to the reference CT images without noise. The powerful effect of image
quality-preserving LAR reduction by denoising, especially in the female infants, is visible in Fig.
Fig. [IB. Denoising with rSPA allows achieving the same imaging quality as using DnCNN (3D
MS — SSIM around 0.97 for feature color differences around 50-100 HU) with a 22.6-fold smaller
LAR (LAR = 0.015% for rSPA vs. LAR = 0.34% for DnCNN).

Finally, in Fig. [§] we evaluate the performance of DL with and without preliminary DD-rSPA
denoising, comparing it to the denoising performance of DD-rSPA for the synthetic noisy CT im-
ages generated with real anatomic features from thorax CT. The noiseless thorax CT image used
as reference in this performance comparison is available at https://www.dropbox.com/s/
29x0xivg8180gl0/female_lung thorax_CT_image_section_v2.mat?dl1=0. The
dotted lines show a 95% nonparametric confidence intervals (c.i.) obtained for every value of CTDI,;
from 100 different independently-generated noisy synthetic CT images, using the MATLAB-function
quantile(). These results support our previous findings: applying DL to the image previously denoised

with DD-rSPA provides a statistically-significant improvement of DL denoising performance.

Discussion

We introduced an algorithmic pipeline for the generation of synthetic patient-specific CT images and

radiation-induced risk assessment. We used it to compare various CT image denoising approaches in
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Figure 6: Comparing CT image denoising performances for three CT noise models: (A) additive
Gaussian noise model (CT noise variance is independent of the feature color); (B) multiplicative non-
Gaussian noise model (CT noise variance changes with the amplitude of the underlying color signal);
(C) empirical noise obtained from the thorax CT patient data. In (A) and (B), generation of synthetic
images was performed for a patient with a water-equivalent diameter of 30 cm, which is subject to
a Thorax CT with a typical tube voltage of 120 kV in the range of tube currents between 5 mA-180
mA and a set of artificial anatomic features from Fig.2A (with a feature contrast of 200 HU). In (C),
real patient data were used. Comparison is performed with three primary image quality criteria: (left
panels) with the mean squared error; (middle panels) with the Peak Signal-to-Noise Ratio; (right
panels) with the 3D Multiscale Structural Similarity Index.
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Figure 7: Comparing denoising methods with the average Multiscale Structural Similarity Index
(3D MS-SSIM): (A) varying the true underlying feature contrast and LAR for a synthetic 30 y.o.
female patient with a water-equiv. cross-section of 27cm; (B) varying the true underlying feature
contrast and LAR for a synthetic 1 year old female infant patient with a water-equiv. cross-section
of 12.7cm; (C) denoising performance comparison when varying the patient size and the effective
absorbed radiation dose density, with the 200 Hounsfield Units (HU) feature contrast differences.

arange of practically-relevant CT regimes. The ultra-low radiation CT regime represents a three-fold
challenge for all of the standard denoising methods: (i) reduction of the radiation exposure leads to
a substantial increase of the noise, eventually making it impossible for standard unsupervised and
spectral denoising tools (e.g., based on wavelets) to separate the noise from the underlying true image
signals; (i) heterogeneity and a high level of the individuality of anatomic features (e.g., of blood
vessel networks) on a small scale - as well as the variability of patient sizes, CT conditions and
a "small data challenge"- can lead to a problem of "concept drift" common for supervised methods,
making the identification of some pre-trained features and patterns in the noisy CT images particularly
difficult; (iii) as was shown in Fig. [3] in the ultra-low radiation regime performance of one of the most
popular supervised denoising CNNs trained in a wide range of noise regimes [25] quickly deteriorates.
To discern the potential impact of "concept drift" - and to rule-out the possible insufficiency of the
training dataset - we additionally trained the DnCNN-3 from [25] first with 10’000 image pairs (with
and without noise) - and then with 40’000 image pairs. We found that using a larger training dataset
(with further 40’000 additional image pairs) only brought negligible improvements, thus confirming

the earlier findings reported in [25]].
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Figure 8: Comparing denoising methods with the average Multiscale Structural Similarity
Index (3D MS-SSIM) for simulated thorax CT: (A) varying the absorbed radiation dose for a
synthetic 30 y.o. female patient with a water-equiv. cross-section of 27cm; (B) varying the ab-
sorbed radiation dose for a synthetic 1 year old female infant patient with a water-equiv. cross-
section of 12.7cm. Noiseless thorax CT image used as reference in this performance compari-
son is available at https://www.dropbox.com/s/29x0xivg8180gl0/female_lung_
thorax_CT_image_section_v2.mat?dl=0. Dotted lines show 95% nonparametric con-
fidence intervals (c.i.) obtained for every value of CTDI,, from 100 different independently-
generated noisy synthetic CT images, using the MATLAB-function quantile().

26


https://www.dropbox.com/s/29x0xivg8l80q10/female_lung_thorax_CT_image_section_v2.mat?dl=0
https://www.dropbox.com/s/29x0xivg8l80q10/female_lung_thorax_CT_image_section_v2.mat?dl=0
https://doi.org/10.1101/2021.08.10.455778
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2021.08.10.455778; this version posted August 11, 2021. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-NC-ND 4.0 International license.

To tackle those challenges, we introduced the Probabilistic Mumford-Shah formalism (PMS)
and shown that it can be efficiently solved numerically, by means of the an unsupervised regularized
Scalable Probabilistic Approximation method (rSPA) that seeks a simultaneous solution of image
segmentation and noise elimination problems. We could prove that it provides a computationally-
cheap (with a linear cost scaling, see Fig. [5] Lemma 1-3 and Theorem 1 of the paper supplement)
exact upper bound approximation of the numerically much more expensive regularized probabilistic
segmentation problem (6). We also introduced DD-rSPA, a parallel extension of the rSPA algorithm
based on the decomposition of the 3D-domain in overlapping subdomains (see Fig. 2] for a graphical
overview, while a detailed description of the DD-rSPA algorithm is given in the Section 2 of the paper
supplement). Commented code for both algorithms was provided for open access. Numerical tests
with noisy images of different sizes and noise levels were summarized in the Fig. [5] revealing that
: (1) the overall computational cost of both the sequential rSPA and the parallel DD-rSPA algorithms
grows linearly with the image size and with the decreasing Signal-to-Noise ratios (corresponding to
increasing noise levels), whereas the common Mumford-Shah and DL-denoising tools (as well as the
methods like 3D wavelets denoising) "invest" the same amount of computational work independently
of image SNR; (ii) the deteriorating performance of the DL denoising observed in Figs. [3|4] and [5]
is neither a result of a "concept drift" (since the type of features and the noise model deployed in the
training and in validation were the same) - nor a consequence of the training dataset insufficiency
(since we observed only negligible performance improvements of DL when expanding the additional
training data from 10K to 50K image pairs). The scaling of DL performance decay observed in Fig. [3]
exhibits a much steeper robustness boundary than the Donoho-boundary [[19, 20] of the wavelets
denoising robustness (compare magenta and orange surfaces in Fig. [SE).

We deployed further tests that included artificial and real data, Gaussian and non-Gaussian, addi-
tive (Fig. [pA), multiplicative (Fig. [6B) and nonparametric empirical CT noise scenarios (Fig. [6C) as
well as continuous and discontinuous feature boundaries. These results show that rSPA outperformed
all of the other considered denoising methods in all evaluated performance measures.

The favourable linear scaling and parallelization opportunity provided by the DD-rSPA algorithm

allow using a normal laptop for the tasks that would otherwise required extensive hardware (e.g.,
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workstations and HPC facilities): as can be seen from the Fig. [5 DD-rSPA allows qualitative (with
3DMS — SSIM around 0.9) denoising of a 3D image with 107 voxels in ultra-low radiation regime
(SNR=0.5) at around 3 minutes on a MacBook Pro Laptop with 4 cores. Non of the other denoising
methods tested was able to come even close to this performance.

Results summarized in Figs. [6] [7] and [§] show that using rSPA and DD-rSPA opens a possibility
to gain a significant patient-specific reduction of the radiation-imposed risks, allowing an around 20-
fold estimated reduction of LAR for infants and an around 10-fold LAR reduction for adults. Based
on the risk assessment protocol introduced in [10], the results from Fig[7| B indicate that adopting
this personalized denoising methodology for ultra-low radiation CT in the pediatric praxis might be
the key to prevent around 90% of the deadly cancers induced by pediatric CTs. This could be up to
11°000 cases yearly worldwide that can be potentially prevented.

As can be seen from Figs. [ [5| and [8] applying DL to the images previously denoised with DD-
rSPA provides a statistically-significant improvement of DL denoising. This opens a possibility to
boost the performance of the supervised DL and ML methods recently developed in CT imaging.
Many of the existing tools were trained in the regimes with moderate and low noise levels - and
preliminary unsupervised denoising with DD-rSPA can extend their applicability to the ultra-low
radiation regimes with very high noise levels.

The sequential rfSPA and the parallel DD-rSPA algorithms can also be directly applied to the
denoising and segmentation of ultra-noisy 2D and 3D movie data from different areas. In a case
of 2D movies, time axis of a movie can be considered as the a third image dimension in rSPA.
Another possible application area - the 3D movies - emerge for example in fMRI applications in
various biomedical areas (e.g., in cardiology), where the main challenge is detecting the moving
boundary of the inner organ and distinguishing it from other eventual shapes in a time-resolved noisy
dynamics [89]. Some examples of such DD-rSPA movie denoising are available at ht tps: //www.
dropbox.com/sh/n2dbl14h9p400p92/AABRkAalhX0aiKFO71xsSzKga?dl=0. Finally,
beyond CT data denoising and segmentation, we also see direct application possibilities for other
imaging techniques, such as: fiber-optic fluorescence imaging, diffusion tensor imaging and for large-

scale 3D segmentation tasks from electron microscopy images.
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Methods

Synthetic CT image generation model

To create the additive Gaussian CT noise, we used the parameter value ’gaussian’, non-Gaussian mul-
tiplicative noise images were created using the function imnoise() with the parameter value "speckle’

The variants parameter o is in both cases selected according to the description below. MATLAB code
implementing this CT image generation workflow is available at
https://www.dropbox.com/sh/rrOno9vdo8osx44/AAAHQxXInxT8POLPs7wTRBv7a?dl=0. Genera-

tion of the nonparametric empirical CT noise was implemented in the function create_CT _image_noise()
available athttps://www.dropbox.com/s/xbwwrk9y2napgpy/create CT_image_noise.

m?dl1=0.

Common CT image denoising and image quality assessment methods

We used the same software platform (MATLAB) and the same hardware (Mac workstation with
28 CPU cores) for all calculations to guarantee a fair comparison of the denoising methods and
to rule-out the software- and platform-induced differences that can bias this comparison. All de-
ployed common denoising and image quality assessment tools are available in the MATLAB func-
tions from the "Image Processing", "Deep Learning", "Machine Learning" and "Wavelets" toolboxes
of MathWorks. We used denoising methods based on local window filtering of the data (3D Gaussian
filtering with the MATLAB-function imgauss filt3(), 3D local median filtering with the MATLAB-
function medfilt3() and bilateral filtering with the MATLAB-function imbilat filt()) [16}[17, [18]14],
spectral denoising methods (the 3D wavelets denoising with the MATLAB-function wavedec3())
(19} 205 21} 22| [15)] and a deep learning denoising method based on pre-trained feed-forward de-
noising convolutional neural networks (DnCNNs, with the MATLAB-functions denoiselmage() and
denoisingNetwork()) [25, 26} 13, 27]]. For each of the considered images, the standard deviation of
the local Gaussian smoothing kernel o was changed in the range o = [0.2,0.4,0.6, . .., 2]. The value

leading to the least MSE deviation between the denoised and the original CT image was taken to com-
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pute the curves in Fig. 4 and Fig.5. Similarly, for the optimal 3D wavelet filtering all of the wavelet
bases available in MATLAB were checked for all of the possible depths of level decompositions - and
the wavelet decomposition with the minimal MSE error was taken. Pre-training of DnCNN was done
with over 20 Mio images and was provided in the "Deep Learning Toolbox". Image quality measures
plotted in Fig.4 and Fig.5 were computed using the MATLAB-functions from the "Image Process-
ing Toolbox": 3D mean-squared error (MSE) [62]] was computed as the average over the 2D MSE
errors obtained with the MATLAB-function immse(); 3D Peak Signal-to-Noise Ration (PSNR) was
obtained as an average over the 2D PSNR image error measures [63] implemented in the MATLAB-

function psnr(); 3D Multi-Scale Structural Similarity Index Measure (3D MS-SSIM) [64] with the

3D image volume measure MATLAB-function multissim3().

Statistical post-processing

The curves in Figures 6-8 show averages over individual denoising results obtained for 100 different
independently-generated noisy synthetic CT images that were obtained for every particular combi-
nation of tube-specific and patient specific parameters. In Figure 5, the surfaces represent averages
over 10 randomly-realized noisy CT images. To provide a fair comparison, same random CT im-
age realizations were used with every denoising method. Dotted lines in Figures 6 and 8 show 95%

nonparametric confidence intervals (c.i.) computed with the MATLAB-function quantile().

Data and code availability

Code is available for open access at https://www.dropbox.com/sh/rwdt6ydkpi64w8y/

AAA9katysGO09w71JsvUgPwwna?d1=0/under the BSD 3-Clause License.
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Supplementary materialforctbeaivadtiseriptientitled:
Quality-preserving low-cost probabilistic 3D denoising with
applications to Computed Tomography

Illia Horenko, Lukas Pospisil, Edoardo Vecchi, Steffen Albrecht, Alexander Gerber, Beate Rehbock,
Albrecht Stroh, and Susanne Gerber

This document provides supplementary material for the manuscript entitled: Order of magnitude risk
reduction in Computed Tomography with the unsupervised machine learning denoising. In particular, we
provide the complete mathematical formulation of 3D regularized Scalable Probabilistic Approximation
(rSPA) optimization problem and present:

e Lemma 1 - derivation of the rSPA problem formulation,

e Algorithm 1 - a subspace algorithm for solving rSPA optimization problem in pseudo-code. The
algorithm consists of two consequent inner optimization problems; namely so-called C-problem and
I-problem.

e Lemma 2 - the solvability and the computational cost of solving the C-problem,
e Lemma 3 - the solvability and the computational cost of solving the I'-problem,

e Theorem 1 - the properties and the computational cost of solving rSPA problem. The proof is
based on Lemma 2 and Lemma 3.
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Regularized ScalidterdrrerabilistictApproxemation Algorithm
(rSPA)

Formulation: Let ¢t € N? be a multi-index of 3D voxel coordinates and
Vi=[V(Q),...,V(T) e RP”T

be a 3D CT image represented as a matrix of given D-dimensional voxel colours at 3D coordinates
X :=[X(1),...,X(T)] € R>T.

We will be searching for a probabilistic approximation VCyI‘ of the image in terms of K latent features
characterized by K distinct color vectors {C1 k, ..., Cp i}, with k taking values between 1 and K. Spatial
characteristics of these K latent features that we will be searching for will be provided by (a priori
unknown) latent feature probabilities T'x(t), being the probabilities of an actual (noisy) voxel V(¢) to
belong to a particular latent (noiseless) feature with an index k:

K
VCJ‘ = [Z Fk(l)Ck, .. ZFk Ck E RDPT

k=1

Then, following the idea behind the Mumford-Shah functional formulation [6], spatially-persistent op-
timal probabilistic approximation Ve« p« of the original image data V' can be computed via the numerical
minimization of the function:

(G R L(OT) =
[C™,T7] arg pealin (C,1)
[ Z = T
= ar min — diStQVt,f/c t) + —— v dist? VC t,f/c ' ,
U e, |7 2 BV O Ter®) + S 3 audist(Fr (), P (1)

(1)

where distz(-7 -) is a square of some distance (e.g., Euclidean distance, [;-distance, etc.), feasible sets are

given as
K
Or = {T=[1),....T(M] eRST: T>0andVt: Y Ty(t) =1}, (2)
k=1
Qc = {C=][Cy,...,Ck] e RPE . min(V) < C < max(V)}, (3)

and function a4 4 is the indicator function of the voxel neighborhood defined as

1 ifdist(X(t), X(t)) < ao,
YT 00 i dist(X (1), X(#)) > ao,

with £ > 0 and g > 0 being some user-defined parameters.

Lemma 1. (rSPA as an approximate upper bound formulation for probabilistic segmentations with Fu-
clidean distance) Approzimate solutions of the problem (1,2,3) with Eulidean distance

dist(z,y) = [z = yll2, (4)

can be found minimizing its upper bound

e = ?}rlg reonCene Ler) =
K T T
1 ElICk 113 2
= arg STHEDTdIVE) = Crlld + =—2— > arw(Ti(t) — Tk(t)
cr FEQF’CEQCk ol = Zt =1 Ot ¢ —1

()
Moreover, L(C,T) > L(C,T) ( for all C,T" ).
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Proof. Since the square of any 2Y8IaRISURAES R BNINGIDR 4:9dH8inalignallicense. | T coefficients I'y (t) forms

the coefficients of convex combination, we can apply Jensens inequality to the first term of (1) and obtain

K 2

> Tt (V(1) - Cy)

k=1

K

Z OV () = Crll3

2 =1

dist*>(V (t), Ver(t)) =

k=1 2

In the case of the second term, we use the properties of the norm

Yu,0 €V |u+o| < |lul + vl
VueV,VaeR: |ou||=lal-|ul,

and we get

2

K
> (T(t) = Te(t)) Ci

k=1
T ()2 1| Ckll3 -

s (Ter(0.7er@) = (£ o) - (£ o)

2

IA
M=
=
z
_
ol
=
Q
=
[ORN
A
Ny
=
ol
=
|

O

Algorithm: Approximate solutions of the optimization problem (5,2,3) can be found using the iterative
subspace algorithm, i.e., it is solved as a sequence of split optimization problems, see Algorithm 1.

Let V' be given vozel data, K be a fized number of latent features, and & > 0 be a priori chosen regularization
parameter.
Choose a feasible initial approzimation T° € Qr and set iteration counter it = 0.

while ||L(C,T%) — L(C*™ T%1)|| is not sufficiently small
solve the problem with fived T'*~" (C-problem)

it : it—1
" = arg CHEI}IHCL(C7F ) (6)

solve the problem with fived C'* (I-problem)

rt =arg mlnL(Clt I) (7)

reQr

it=it+1
endwhile

Return an approzimation of the latent features color C™ and an approzimation of latent feature affiliation
probability vectors T,

Algorithm 1: Regularized Scalable Probabilistic Approximation algorithm (rSPA).

Lemma 2. (The properties of C-problem (6))

1. the optimization problem (6) has always solution,

2. (6) is a boz-constrained conver Quadratic Programming problem (QP) with diagonal Hessian matriz
and it has analytical solution,

3. evaluation of analytical solution for solving problem (6) is O(TKD).

Proof.

1. Let I' = T' be fixed. We are dealing with minimization problem with continuous convex objective
function on closed set, therefore by Weierstrass Extreme value theorem [3], the problem has always
solution.
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2. The objective function o®@i8RRHIdES PGSR YENcINR4:? IEHGHRNF4iIFs8Seven by

K T
D= (T Y DIV Ckll%) + Hkllckllzl (8)
k=1 t=1
where we denoted constant
- T
k= > o (Tk(t) = Tk(¥)?, k=1,...,K. 9)
Zt,t’:l At ¢ =1
Since the minimization of (8) with respect to (3) is separable in k =1, ..., K, we have
T
Cr = WV () = Crl3 ] + kil|Crl* = fC’TAC —Cfb (10
P lerelgznck< Z: ol k|2> FillCul” = arg min SC{AxCi —Cybe (10)
=fk(Ck)
with
Qc, = {Cr €RP . min(V) < Cy < max(V)}
and
T T
Ay =oklp, oy (T ;F ) + kg, bk = ;Fk(t)v(t)7 (11)

T
where Ip € RP is identity matrix. Please, notice that for any non-empty cluster (i.e., Y ['y(t) >

0) or > 0 and therefore (10) is stricly convex optimization problem on closed convex set and
consequently (10) has unique solution. If the cluster is empty, then (10) can be simplified to

C; =arg min 0
k
Cp Cr€Qcy, ’

which has infinite number of solutions, i.e., any C} € ¢, solves the problem.

The problem (10) is (again) separable in d = 1,..., D and we can write

b
Ci, = arg min *O’kcs i — baxCa, = arg _ min 1 C’g g — —k Cdk
’ Cap Can€lcy ' Ca Cd. keQOdk '

b b
= Cy o — 2Lk P (A)
e o iy [Cas = e = P, (%

with interval
Qo , = min(V), max(V)] C R

and projection onto this interval Po,, R — Q¢,, given by
Po,, . (1) = min {max(V'), max {min(V), 7}} . (12)
3. The computation of K sums of T vectors of dimension D in (11) and (9) followed by the computation
of projection (12) is O(TK D).
O

Lemma 3. (The properties of T-problem (7))

1. Problem (7) is a convexr QP on separable simplexes (i.e., with bound inequality and linear equality
constraints).

2. Assembling the objects of problem (7) is O(TKD).

3. One iteration of Spectral Projected Gradient method for QP (SPG-QP, [7]) for solving problem (7)
is O(TK).
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1. Let C' = C be fixed. The objective function of problem (5) with Euclidean measure (4) is given by

K T T
LICT) =) |- (Z fk(t)wk7t> +& Y e (Th(t) - T (t))° (13)

k=1 t,t'=1

with constants
£ dist?(Cy, 0)

== _
D= it

In the following, we simplify the objective function (13) into the standard QP form.

1 ~
Wt = —THV(t) - Cill3, & (14)
Let us denote the diagonalization of matrix into vector
v = vee(I'T),
and introduce multi-index (¢, k) of vector v by
Yitk) = V—1)T+t = Li(t),

where v; is j-th component of v € RET. At first, notice that quadratic term

o (T(t) = Te(t)? = app [Tr (), Ti(t')] { _11 _11 } { 11::((;/)) ] = e HE ) V),

where (1) = [Y(1.6)s-- > Y1k € RT and the components of matrix H(t,t') € R™" are given by

Qi ¢/ if t1 =1 and to = t,
(07R% if tl =t and tQ = t/,
Hy (6 t) =8 —appy  ifty=tand t =1,
—apy ity =t and to =1t,
0 elsewhere.

Using this notation, we are able to simplify the quadratic term of (13) into

K T T K T T
1 _ .
&> Y e (Tr(t) = Th(t)* =D &ty <Z > H(, t')) Vek) = §7T (: ® (2A>> 75
k=1 t=1t'=1 k=1 t=11'=1 —_——
=A
=A
where = = diag(¢y,...,¢x) € REK is diagonal matrix and ® denotes matrix Kronecker product.

Matrix A € RET-ET g a block-diagonal matrix of K diagonal blocks 2@21 € RT'T. Let us remark

that the matrix .

> H(t,t)

t'=1
forms the Laplace matrix corresponding to graph of neighborhood of vortex ¢ (stencil). Conse-
quently, matrix A is composed from contributions from all stencils constructed in vortexes in the
system. Such a matrix is symmetric positive semidefinite.

The objective function can be written in the form of convex quadratic function

N 1
L(5,T) = §7TA7 —wTy. (15)
The feasible set (2) defines the lower bound constraints and equality constraints of the optimization
problem. This feasible set is closed and convex, the objective function (15) is continuous, therefore
using the Weierstrass Extreme value theorem [3], the optimization problem has always solution.

2. Before solving the QP problem (15), we assemble the Hessian matrix A, linear term b, and con-
straints Qr (2). The assembly of the linear term (14), where one has to sum TK values of distance
functions between vectors of dimension D. If the complexity of chosen distance function evaluation
is O(D), then the overall complexity is O(TK D).
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3. Spectral Projected GradivailaRiedtifsd afcr-BYFNEIRCLQ)Plermationaliisenserative algorithm for solving
minimization problems of convex quadratic function f(x) := %xTAx — b7z, f : R® = R on closed
convex feasible set ) C R™ defined by separable constraints with simple projections

Po(x) :argr;leigIISE*yH- (16)
From the initial approximation 20 € €2, the process is generating the approximations z'* by
A = 24 g it (17)
where d' € R" is projected gradient computed as
d = 2™ — Po(z — s Vf(2')). (18)

The step-size oy, is computed by Barzilai-Borwein rule [1]

(it — b= it git=1)
(Vf(zit) = Vf(zit-1), zit — git—1)
and the step-size i is a result of Grippo, Lampariello, and Lucidi line-search method [5] for
satisfying so-called gemneralized Armijo criteria

F@™ + Bied™) < frnaxBie(V f (), @) (20)

with safeguarding parameter 7 € (0,1) and fiax is @ maximum function value in previous m > 1
iterations. The original SPG algorithm has been proposed by [2] for solving general optimization
problems and the convergence is based on satisfaction of condition (20). Recently, [7] show that in
the case of quadratic objective function, the line-search algorithm can be replaced by direct formula
which satysfies (20)

B‘t_mln{l,(lT)£+\/(1T)2§2+W} with 5—% (21)

Qiy =

(19)

The algorithm non-monotonically decreases the norm of projected gradient and the function value
until the stopping criteria is satisfied.

In the general case, the most time-consuming operation is the multiplication by Hessian matrix A,
all other computations includes the evaluation of scalar products. In our case, the matrix has a
special pattern; it is a block-diagonal matrix of K diagonal blocks of band matrices. Computational
complexity of multiplication with such a matrix is O(KT). Please notice that the feasible set (2)
is separable in T and the projection onto the set can be computed independently for each column
of matrix '

K
F:,te{'}/ERK: ’yZOand Z’ykzl}
k=1
The projection onto each individual simplex is O(K), [4].

Summing up all the operations performed during one iteration of SPG-QP algorithm, the overall
computation complexity is O(TK).

O
Theorem 1. (The computational complexity of Algorithm 1)

1. Algorithm 1 generates the approximations with monotonically non-increasing objective function.
2. Let dist be Eulidean distance (4). One iteration of Algorithm 1 is O(TKD).
Proof.
1. Since the iterations solves the optimization problems (6) and (7), we have
vC e RPK . L, 1Y) > L(C*, T ) and VI € Qp: L(C,T) > L(C™,T™).
Choosing C' = C*~! and I = T'*~1 we get
L(CH1 i1y > [(Ct T 1) > (O, TY).

2. The statement is the consequence of Lemma 2 and Lemma 3.
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2 Parallel Regularisied SeatabledProbedilistierdpproximation Al-
gorithm based on overlapping Domain Decomposition (DD-
rSPA)

In the case of the computation in real-world applications, we are dealing with two main challenges: the
computational demand (the number of operations that have to be performed to obtain the solution) and
the memory limitation (the amount of information which can be processed by given machine). Both of
these issues can be solved by High-Performance Computing (HPC). In this case, the algorithm runs on the
machine which consists of several computational units (cores, processors, graphics processing unit) which
are operating with distributed memory. The computational capacity of the largest supercomputers in the
world can achieve more than 10’7 FLOPS (floating-point operations per second) and can operate with
several petabytes of memory. However, the massively parallel architectures cannot be efficiently utilized
without appropriate massively parallel algorithms. For example in the case of discretized solution of
partial differential equations with a huge number of variables, the original problem can be decomposed
into smaller independent subproblems using so-called Domain Decomposition methods (DD). The idea
is to solve subproblems in parallel using the individual computational units of the machine (i.e., nodes,
cores, GPUs) and the only limitations arise in the case of global communication for the satisfaction of the
continuity of global solution through domains. In practice, two different approaches are commonly used:
overlapping DD, where the subdomains overlap by more than the interface (e.g., Schwarz alternating
method or additive Schwarz method), and non-overlapping methods, where the subdomains intersect
only on their interface (e.g., Balancing domain decomposition (BDDC), or Finite Element Tearing and
Interconnecting (FETT)).

To analyze the problem of the global continuity and non-separability, suppose that we decompose the
solution into two disjoint parts I'f1y and I'{z;. Then the objective function of corresponding quadratic
optimization T'-problem (15) can be written as (after appropriate permutation of indexes)

A A
_ _ 17T T 1,1} {1,2} Yy | T T Y{1}
f('Y) f(7{1}77{2}) 2[’7{1}77{2}] A%l,Q} A{2’2} :| [ Yz :| [w{1}>’w{2}] |: i) ]

1 1
= 57?1}14{1,1}7{1} - w{T1}7{1} + 57{2}14{2,2}7{2} - w{Tz}V{z} +7{Tl}z4{1,2}7{2}-

=fry(vqay) =fi2y (vq2})
(22)
Using this equality, we can observe that the original minimization problem is separable into two disjoint
minimization problems except the coupling term ’Y{l}A{l’g}’}/{Q}. If we solve the problem separably to
obtain 71} and 72y on separated computational units, we have to additionally handle with this term.

overlap

1) <

\

{2}
Figure 1: The overlapping Domain Decomposition: the domain is separated into continuous

overlapping parts. Fach computational unit computes the corresponding local solution, however, the in-
formation in overlap have to be communicated to satisfy the continuity of global solution through domains.

In our case, we implement the Schwartz Domain Decomposition method and separate the domain into
overlapping domains, see Figure 1. For the demonstration, the figure presents the DD into two domains
in 1D, but the approach is easily extendable to 3D and multiple domains in each direction, see Figure 2.

In the first step of algorithm, we solve the problem in each domain separately, i.e., we solve corre-
sponding QP problem with appropriate block of the Hessian matrix and the block of linear term. Each
domain sends the solution in overlap to the neighbouring domains and this vector is used for the com-
putation of coupling term in local objective function. This operation can be written in terms of (22) -
suppose that the local unknown part of the solution is 4y and the rest of the solution is v ;. Then the
objective function can be decomposed into (using the appropriate permutation of indexes)

f(vayvy) = %WTd}A{d,d}W{d} — wipVay + f{.}(V{.%) + (A0
= VayAtea iy — (wiay — Agaavey) var + fra ()
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Figure 2: The overlapping Domain Decomposition in 3D: the simplest way how to decompose the
3D domain into domains is to introduce overlapping rectangular cuboids. Such a decomposition simlifies
the implementation and follows the sparsity of Hessian matrixz in T' problem.

In the local domain, the unknown of the problem is the local y;4;, therefore the term fy y (7{_}) is constant,
does not have any impact on the optimizer, and can be ignored. Please notice that the coupling matrix
Ayq,y is a block of a sparse matrix and if the size of the overlap is sufficiently larger than the radius of
the indicator function of the voxel neighborhood g, then the overlap information from the neighboring
domains is sufficient information for assembling the correct overall objective function. In the iterative
process, we update the linear term using the information from neighbours, solve a new QP problem, and
communicate the update of overlap to neighbours, see Algorithm 2. In each iteration, we compare the
local solution in overlap with the solution obtained from neighbours and if the difference is sufficiently
small, we stop the algorithm.

Let A, w be data of optimization problem (15) and let {1},...,{Np} denote the domains.
Let Vd : ﬁ){d} = w{d}.

repeat

in parallel: solve the local problem

1
Y4 = arg min 57{d}A{d AV{dy — Ofayviay (23)
Y(ay Ty E9T

communication: send and receive the solution in overlap from neighbouring domains vy .y
in parallel: update linear term

Wiay = wiay — A{a, 371} (24)

until ||V{a},overtap — V{.}|| s not sufficiently small

Return an globally continuous parallel solution vy(1y,...,Y{Np}-

Algorithm 2: Schwartz Domain Decomposition method for solving I'-problem in parallel.
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