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Editorial summary This protocol guides the user through normative modeling analysis using 
the Predictive Clinical Neuroscience toolkit (PCNtoolkit), enabling individual differences to be 
mapped at the level of a single subject or observation in relation to a reference model. 
 
Tweet New protocol by @being_saige for normative modeling analysis using the Predictive 
Clinical Neuroscience toolkit (PCNtoolkit) - an emerging and innovative framework for mapping 
individual differences at the level of a single subject or observation in relation to a reference 
model, moving computational psychiatry analyses away from noisy case-control comparisons. 
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Abstract 
Normative modeling is an emerging and innovative framework for mapping individual 

differences at the level of a single subject or observation in relation to a reference model. It 
involves charting centiles of variation across a population in terms of mappings between biology 
and behavior which can then be used to make statistical inferences at the level of the individual. 
The fields of computational psychiatry and clinical neuroscience have been slow to transition 
away from patient versus “healthy” control analytic approaches, likely due to a lack of tools 
designed to properly model biological heterogeneity of mental disorders. Normative modeling 
provides a solution to address this issue and moves analysis away from case-control comparisons 
that rely on potentially noisy clinical labels. In this article, we define a standardized protocol to 
guide users through, from start to finish, normative modeling analysis using the Predictive 
Clinical Neuroscience toolkit (PCNtoolkit). We describe the input data selection process, provide 
intuition behind the various modeling choices, and conclude by demonstrating several examples 
of down-stream analyses the normative model results may facilitate, such as stratification of 
high-risk individuals, subtyping, and behavioral predictive modeling. The protocol takes 
approximately 1-3 hours to complete. 
 
Keywords: normative modeling, computational psychiatry, individual differences, precision 

medicine, software tutorial, lifespan neuroscience, brain growth charting 

 

Introduction 

Clinical neuroscientists have recently acknowledged two realities that have disrupted the way 

research is conducted: first, that to understand individual differences it is necessary to move 

away from group average statistics 1–7 and, second, that the classical diagnostic labels of 

psychiatric disorders are not clearly represented in the underlying biology8–11. Initiatives such as 

RDoC9,12,13, HiTOP10,14,15, and ROAMER16,17 were established in response and seek to refine the 

nosology of mental disorders by mapping biobehavioral dimensions that cut across 

heterogeneous disorder categories. Despite this awareness and an increasing interest in 

quantifying individual differences, the field has still been slow to transition away from case-

control comparisons that aim to contrast patient versus healthy control groups and assume that 

clinical groups are distinct and homogenous. A key barrier that has impeded progress is a lack of 

alternative analysis methods, designed to model variation across individuals, also known as 

heterogeneity18. Nearly all existing techniques for connecting the brain to behavior operate at the 

group-level and provide no path to individual-level inference19–21. Normative modeling is a 
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framework for understanding differences at the level of a single subject or observation while 

mapping these differences in relation to a reference model (Figure 1). It involves charting 

centiles of variation across a population in terms of mappings between biology and behavior, 

which can then be used to make statistical inferences at the level of the individual, akin to the use 

of growth charts in pediatric medicine (Figure 1A). The practice of normative modeling in 

clinical neuroscience was developed to provide additional information beyond what can be 

learned from case-control modeling approaches (see ‘Development of the Protocol’ section 

below for further information). Case-control thinking assumes that the mean is representative of 

the population, when it may not be (e.g., if the clinical population is diffuse or comprised of 

multiple sub-populations). Therefore, normative modeling has become a leading tool for 

precision medicine research programs and has been used in many clinical contexts22 (see 

‘Applications’ section below for further examples).  

Figure 1 Conceptual Overview of Normative Modeling. A) Classical example of normative 
modeling: the use of height and weight growth charting in pediatrics. B) Case-control models 
(left) theoretically make assumptions that there is a boundary that can separate groups and that 
there is within-group homogeneity. In reality (right), there is nested variation across controls and 

se 
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patient groups and within-group heterogeneity, resulting in unclear separation boundaries. 
Normative modeling is well equipped to handle this reality. C) An example application of 
normative modeling in computational psychiatry using neuroimaging data. Mean cortical 
thickness (y-axis) is predicted from age (x-axis) using a training set consisting of multi-site 
structural MRI from neurotypical controls and a test set consisting of neurotypical controls and 
patient groups. Every dot indicates the deviation score for a single individual from normal 
development. D) Regression model equation and design matrix setup for the model shown in 
panel C.  
 

Neuroscience has historically brought together scientists from diverse educations, for 

example, some from a clinical background and others having a mathematics background. The 

interdisciplinary nature introduces a challenge in bridging the gap between technical and clinical 

perspectives. This is a key challenge that aligns with the aims of the open-science movement and 

brain-hack community23, in other words, to distill the essential components of the analytic 

workflow into a consistent and widely applicable protocol. This helps to avoid ‘research debt’, 

i.e., a lack of ideas being digested24. This distiller mindset is crucial for confronting research debt 

and embracing paradigm shifts in thinking, such as moving from case-control comparisons to the 

normative modeling framework.  

The purpose of this work is to distill the methods of normative modeling, an advanced 

analysis technique, into an actionable protocol that addresses these challenges in that it is 

accessible to researchers within the diverse field of clinical neuroscience. We distill the essential 

components of a normative modeling analysis and provide a demonstrative analysis from start to 

finish using the Predictive Clinical Neuroscience Toolkit software. We describe the input data 

selection process, give an overview of the various modeling choices, and conclude by 

demonstrating several examples of downstream analyses the normative model results may 

facilitate, such as stratification of high-risk individuals, subtyping, and behavioral predictive 

modeling.  

Development of the protocol  

Normative modeling has a long history that relates to statistics and measurement theory 

and has many applications from medicine to economics to neuroscience. Familiar use cases of 

normative modeling include growth charting in pediatrics, neurocognitive tests, and interpreting 

graduate school test score percentiles (i.e., scoring 90th percentile on the MCAT). The 

mathematical and computational development of normative modeling has been fine-tuned25–28 

and currently exists as an open-source software python package, the Predictive Clinical 

.CC-BY 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted June 1, 2022. ; https://doi.org/10.1101/2021.08.08.455583doi: bioRxiv preprint 

https://doi.org/10.1101/2021.08.08.455583
http://creativecommons.org/licenses/by/4.0/


Neuroscience toolkit (PCNtoolkit), which we focus on in this manuscript. This toolkit 

implements many commonly used algorithms for normative modelling and supports multiple 

industry standard data formats (e.g., NIFTI, CIFTI, text formats). Extensive documentation has 

been written to accompany this protocol and is available online through read the docs. This 

includes tutorials with sample data for all algorithm implementations, a glossary to help new 

users understand the jargon associated with the software, and a frequently asked questions page. 

An online forum for communicating questions, bugs, feature requests, etc. to the core team of 

PCNtoolkit developers is also available. We have developed these open-source resources to 

promote and encourage individual differences research in computational psychiatry using 

normative modeling.  

Applications and comparison with other methods 

Normative modeling has been applied to many research questions in computational 

psychiatry and other fields, including in autism spectrum disorder29–31, attention deficit 

hyperactive disorder32,33, Alzheimer’s disease34, bipolar disorder, and schizophrenia35–37. 

Crucially, these applications have shown that normative modelling can detect individual 

differences both in the presence of strong case-control differences (observed in schizophrenia)36 

and in their absence (observed in autism spectrum disorder)30. This highlights the value and 

complementary nature of understanding individual variation relative to group means.  These 

applications have primarily focused on predicting regional structural or functional neuroimaging 

data (i.e., biological response variables) from phenotypic variables (i.e., clinically relevant 

covariates) such as age and sex. Age creates a natural, time-varying dimension for mapping 

normative trajectories and is well suited to applications in which deviations of an individual 

manifest from a typical trajectory of brain development or ageing. However, other phenotypes 

that have been used in neuroimaging predictive modeling studies such as general cognitive 

ability38,39, social cognition, or sustained attention40,41 are also attractive possibilities to use as 

covariates, thereby defining axes for observing deviation patterns. Normative modeling has also 

been used to learn mappings between reward sensitivity and reward related brain activity42.  

It is important to emphasize that normative modeling is a general regression framework 

for mapping sources of heterogeneity, refocusing attention on individual predictions rather than 

group means (e.g., diagnostic labels), and detecting individuals who deviate from the norm. 

Therefore, it is not limited to a specific algorithm or mathematical model, although we 
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recommend certain algorithms based on the research question and available input data. The 

algorithms in the PCNtoolkit tend to favor Bayesian over frequentist statistics, as there are 

certain features of Bayesian approaches that facilitate better normative modeling estimation. For 

example, having a posterior distribution over the parameters help to better separate different 

sources of uncertainty, e.g., separating variation (‘aleatoric uncertainty’ – cannot be reduced by 

adding more data) from modeling (or ‘epistemic’) uncertainty which can be reduced by adding 

more data. These different use cases of normative modeling (algorithm selection, predicting 

brain from behavior or behavior from the brain) are explained in-depth in the ‘Experimental 

Design’ section, below.  

There is a long history of using regression methods to learn mappings between brain and 

behavior43,44. Principle Component Regression (PCR)20,45,46, Connectome predictive modeling 

(CPM)19,47, and canonical correlation analysis (CCA)48,49 have become mainstream methods for 

linking brain and behavior. These methods have demonstrated the feasibility of brain-behavior 

mapping and laid the foundation for individual differences research to thrive. While these 

approaches have generated much curiosity and excitement, they are limited in their ability to 

provide inference at the level of the individual, providing only point estimates (i.e., without 

associated centiles of variation). Most papers using these tools only report the mean predictive 

model performance, collapsing information across hundreds or thousands of people into a single 

number (e.g. model accuracy or regression performance)46,47,50,51. The normative modeling 

framework takes these ideas a step further to quantify and describe how individuals differ 

statistically, with respect to an expected pattern. In this way, normative modelling breaks the 

symmetry inherent in the case control paradigm.  In more detail, PCR and CPM differ from 

normative modeling in terms of how the prediction model is formulated. PCR and CPM setup the 

regression model such that, Y, a n_subjects x 1 vector (i.e., age or fluid intelligence), is predicted 

from X, a matrix with n_subjects x n_brain dimensions, where n_brain is typically a reduced 

feature space selected via a regularization step. This setup makes interpretating which brain 

features are related to the behavior very challenging. Studies using PCR or CPM attempt to 

interpret the brain feature weights, but as these methods typically use fMRI connectomic data, 

consisting of connections and nodes, interpretation often yields a complex whole-brain 

visualization that is not very informative. The individual-level output of these models is a single 

point estimate, a predicted behavior score for each subject. These individual point estimates are 
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then summarized by correlating the predicted and true behavior scores, reporting explained 

variance (R2), and calculating accuracy (mean squared error). Compared to PCR and CPM, 

normative modeling inverts the regression setup around to predict brain region Y, a n_subjects x 

1 vector from X, a matrix with n_subjects x n_covariates (i.e., age, sex, fluid intelligence, site, 

data quality metric). There is a separate regression model for each brain region. The individual-

level outputs of normative modeling are the predicted brain score, the predictive variance 

(separated into modeling and noise components), a deviation score (Z-score, how much each 

subject deviate from the normative range). The overall performance is evaluated by correlating 

predicted and true values, calculating explained variance, standardized mean squared error, and 

mean standardized log loss. In contrast, CCA estimates a doubly multivariate relationship in that 

both X and Y are matrices (X is n_subjects x n_brain matrix and Y is n_subjects x n_behavior). 

Whilst CCA is well suited to detecting that a mapping exists, this still leads to difficult 

interpretation of feature importance and, moreover, CCA is highly prone to overfitting and 

requires careful assessment of out of sample metrics with respect to an appropriate null 

distribution, which is not always done in practice. Like PCR and CPM, CCA also does not 

provide individual measure of uncertainty or deviation scores. 

Case-control inference (e.g., mass univariate group t-testing and classification of patient 

vs. control) examples are perhaps the most interesting comparison to the normative modeling 

framework. Case-control methods typically require there to be a homogeneous within-group 

spatial signature and their success relies on obtaining statistical significance (p-value < 0.05). We 

clarify this point with an example of the assumptions of case-control inference. To detect a group 

difference in amygdala activation between a control group and a group of individuals with post-

traumatic stress disorder during a fMRI task, all individuals in the control group need a similar 

value of amygdala activation and all individuals in the PTSD group need a similar value of 

amygdala activation. Then, the mean amygdala activation signal of the control group must be 

statistically different from the mean amygdala activation signal of the PTSD group after stringent 

multiple comparison testing correction. These assumptions ignore the fact that different 

biological processes (i.e., some people have increased activation and others decreased) can lead 

to similar external behavior. Normative models reveal a different side of the data -- that the 

classical diagnostic labels of psychiatric disorders are not clearly represented in the underlying 

biology, meaning patient groups are not well defined by a unifying neurosignature -- and provide 

.CC-BY 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted June 1, 2022. ; https://doi.org/10.1101/2021.08.08.455583doi: bioRxiv preprint 

https://doi.org/10.1101/2021.08.08.455583
http://creativecommons.org/licenses/by/4.0/


clear evidence for the limitations of case-control paradigms. Brain age models are also in the 

same family as normative models but generally have a narrower focus on interpreting 

accelerated/decelerated aging52,53 or improving prediction accuracy54. Brain age models only 

allow for interpreting centiles of variation in terms of age, which is limited and does not have a 

clear interpretation in terms of biological variation across individuals.  

 “All models are wrong, but some are useful” -- George E.P. Box.  

There is not one ‘best’ modeling approach and many of the methods presented in this section can 

be complimentary in that they investigate different questions. Before embarking on a 

computational modeling journey, it is always important to ask questions such as: What are the 

assumptions made by this model? What type of inference do you want to make (group-level, 

individual-level)? What aspect of the predictive model is most important (accuracy, quantifying 

uncertainty, statistical significance)? Allow your research question to guide the answers and 

model selection.  

Expertise needed to implement the protocol 

We aimed to make this protocol user-friendly to the diverse community of neuroscience, 

including those with a non-technical background. The fundamental objective of this protocol is 

to learn how to implement the normative modeling framework via the PCNtoolkit software 

without being an expert in statistics and machine learning. You will be given enough knowledge 

to set up training and test sets, understand what data should be going into the model, interpret 

results, and make inferences based on the results. Prerequisites of this protocol are basic 

familiarity with the Python programming language and a computer with a stable internet 

connection. Complete code, example data, and extensive documentation accompany this 

protocol; thus, writing code from scratch is unnecessary. Of course, it is our intention for readers 

to be inspired by this protocol and to use the normative modeling framework in more ways than 

presented here. If you wish to use the framework presented in this protocol beyond the provided 

code, familiarity with the Linux command line, bash scripting, setting up virtual environments, 

and submitting jobs to high-performance clusters would also be helpful.  

Limitations 

Big data requires automated QC 

As datasets grow to meet the requirements of becoming population-level or big data, 

there is typically a need to rely on automated quality control metrics55. This means there is 
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potential to unintentionally include poor quality data, which could, in turn, affect the results. The 

training and test dataset used in this protocol has been manually quality checked by visualizing 

every subject’s raw T1w volume with their corresponding Freesurfer brain-mask as an overlay 

using an online (JavaScript-based) image viewer. Quality checking code and further instructions 

for use is made available on GitHub. These images were inspected for obvious quality issues, 

such as excess field-of-view cut-off, motion artifacts, or signal drop-out. Subjects that were 

flagged as having quality issues were excluded from the sample. Users should consider manually 

quality checking their own data if they wish to add on additional samples to the dataset. 

Multi-site confounds and data availability 

Pooling data from multiple sites is often a necessary step to create diverse datasets and 

reach sufficient sample sizes for machine learning analyses. When combining data from different 

studies, several challenges arise. First, there are often different MRI scanners at each site that 

also have different acquisition parameters. These MRI hardware and software divergences give 

rise to substantial nuisance variance that must be properly accounted for when modeling the data. 

Second, there may be sampling differences, for example due to different inclusion criteria and 

definitions of diagnostic labels at each site. For example, if one site uses the Structured Clinical 

Interview for DSM-5 (SCID-5) administered by a trained mental health professional who is 

familiar with the DSM-5 diagnostic criteria, while another site relies on self-report questionnaire 

data to define clinical labels. This increases the heterogeneity within the clinical groups (e.g., by 

mixing inclusion criteria across cohorts) and could also add noise to the diagnostic labels (e.g., if 

diagnostic assessments have different reliability across studies). This is important to consider if 

clinical labels are used to separate data into training and testing sets (i.e., controls only in the 

training set) and when comparing the outputs of normative modeling across patient groups from 

different sites. 

Furthermore, there is likely to be dissimilarities in the available demographic, cognitive, 

and clinical questionnaire data across sites as well which needs to be considered when deciding 

which studies to include and which covariates to use in modeling. If the goal is to share the 

model, allowing transfer to new samples, using unique covariates that are specific to your sample 

(and not commonly collected) will hinder the ability of others to use your model on their own 

data. There is a careful balance that should be considered regarding the benefits gained from a 
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new site joining the sample versus the site related nuisance variance that accompanies the 

addition of new sites. 

Overview of the procedure 

Experimental design 

There are many choices and considerations that should be carefully planned before 

embarking on a normative modeling analysis – the decision points can be grouped into the 

following stages: data selection, data preparation, algorithm/modeling, and 

evaluation/interpretation. These stages, and the corresponding step numbers of the procedure are 

summarized in Figure 2. There are additional resources and support for running normative 

modeling analysis that are summarized in Figure 3.  

Figure 2 Practical Overview of Normative Modeling Framework. The workflow consists of 
four stages: data selection, data preparation, algorithm & modeling, and evaluation & 
interpretation, which are visualized by the numbered shaded blue boxes. The steps involved at 
each of these stages are summarized in the box below and highlighted in the images above. 

re 

 

.CC-BY 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted June 1, 2022. ; https://doi.org/10.1101/2021.08.08.455583doi: bioRxiv preprint 

https://doi.org/10.1101/2021.08.08.455583
http://creativecommons.org/licenses/by/4.0/


Figure 3 Overview of Resources for Running a Normative Modeling Analysis. A) Detailed 
documentation, including installation instructions, input/output descriptions of all classes and 
functions implemented in the python package, tutorials for all algorithms, frequently asked 
questions, a glossary explaining acronyms and other jargon, references to existing normative 
modeling literature, and a citation guide, is available online. B) Example of the documentation 
showing the required input, expected output of the main function used in the pcntoolkit software, 
the estimate function. C) All of the code and data used in this protocol is available to run in the 
cloud via Google Colab. Additional tutorials (shown under the tutorials header in panel A) are 
also available to run in Google Colab. 
 
Data selection – reference cohort inclusion criteria 

Creating the training dataset that will serve as the “normative” reference cohort is the first

important decision. Ideally, the training dataset will be a large and representative sample, and the 

included subjects should not be missing vital demographic (age, sex) or biological 

(neuroimaging) data. However, data imputation may be used if necessary but should be used 

cautiously. In most research studies, data are missing not at random, and we interpret more than 

just mean effects. In this case, mean imputation may bias results and other forms of imputation 

should be considered56,57. It is important that the reference cohort provides good coverage 

(complementary covariates) of the test set (e.g., clinical) population.  

The sample size of the reference cohort (training set) is important to consider in 

normative modeling, although we emphasize that the focus is different to classical power 
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calculations, which target a fundamentally different question (i.e., determining a required sample 

size to detect a group level comparison of a specified effect size at a given significance level). In 

contrast, in normative modeling, the focus is usually on quantifying deviations from a reference 

model at the individual level. In this context, the size of the reference cohort primarily influences 

the test set deviation scores by influencing the accuracy and precision with which the target 

phenotype (i.e., response variable) can be predicted. As the sample sizes increase, the predictive 

intervals will shrink, which results in an increased sensitivity to detect individual differences. 

However, there is not a specific cutoff that represents an ideal sample size, and we emphasize 

that context is key. For instance, you could build a clinical normative model for a sample of 

individuals with major depression disorder (MDD) for the purpose of stratification or detecting 

subgroups (individuals who have recurrent episodes or individuals who do not respond to 

medication). In this case, the reference cohort might consist of individuals that have experienced 

single MDD episodes and those that have responded well to medication. The sample size for this 

normative modeling research question would likely be relatively small due to data availability 

(e.g., clinical datasets typically have stricter data sharing requirements). The main takeaway from 

this MDD example is that sample size is highly dependent on the research question which in turn 

guides the inclusion criteria for the reference cohort you want to measure deviations from.  If 

you are modeling “healthy” lifespan populations, the sample size will likely be large (on the 

order of thousands) because of the plethora of publicly shared data that can be leveraged. On the 

other hand, if you want to model a specific clinical population or a specific functional task, the 

sample size will be smaller due to availability of data. A smaller dataset that properly addresses 

the research question at hand is completely acceptable. 

Data selection - covariate selection 

 The next choice should be regarding which covariates to include. One of the main 

criteria to include a covariate is the relevance to the posed research question. In normative 

modeling, usually we are interested in studying the deviations from the norm of the population, 

in other words, we are more interested in residuals. Thus, when we include a covariate in the 

design matrix for estimating the normative model, we are mainly interested in removing its effect 

from the residuals (thus deviations) than investigating its effect on the neuroimaging variable. 

Normative modeling is a tool to study unknowns (that are encoded in the deviations). To do so, 

we need to first account for known variation in the data by regressing them out of the data (thus 
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we include the knowns in the covariates), and then we interpret the residual variation in the 

deviation scores. For example, if you want to know the effect of smoking on the ventral striatum, 

that is not confounded by other substance use, you should include substance use variables (e.g., 

drinks per week, etc.) in the covariate matrix, estimate the normative model, and then correlate 

the ventral striatum deviation score (that has the effect of drinking removed from it) with 

smoking frequency. When pooling data from multiple sites, the available measures across sites 

may influence the selection of covariates because ideally, the variables should be consistent 

across sites. For example, you should not use different versions of a cognitive test, as they could 

test for different dimensions of general cognitive ability. For neurodevelopmental or lifespan 

model, the suggested minimum covariates to include are age, sex, site (using random- or fixed-

effects), and optionally a metric of data quality (i.e., mean framewise displacement or Freesurfer 

Euler number). Modeling site is very important; however, an exhaustive explanation is outside 

the scope of this protocol but see 20,21 for an in-depth account of modeling site variation. 

Diagnostic labels could also be included as covariates to utilize the variance explained by these 

labels without constraining the mapping to only reflect case-control differences. Furthermore, 

additional biological covariates could also be included, for example blood biomarkers, or 

structural brain measures if predicting functional brain measures. Additional or alternative 

covariates may include other demographics (race, ethnicity, gender, education level, marital 

status, household income) and cognitive variables.  

Data Selection – MRI modality and spatial resolution of brain data 

Next, it is necessary to decide on the modality of brain imaging to model. In this 

protocol, we use cortical thickness and subcortical volume measurements from structural MRI 

(T1-weighted) images. However, other modalities such as resting-state and task-based functional 

MRI or diffusion weighted MRI could also be selected in this step (data for these modalities is 

not provided with this protocol). The resolution of brain data is important to consider while 

keeping in mind the increasing computational complexity with modeling smaller units. Vertex or 

voxel-level modeling of brain data provides high-resolution deviation maps. Still, region of 

interest (ROI) level modeling may allow for easier interpretation/visualization of the output 

deviation maps and will have a lower penalty in multiple comparison correction (if doing post-

hoc analysis) on the deviation maps. The PCNtoolkit can run models in parallel to speed up 

computation time; however, there is still a univariate nature, meaning a separate model is fit for 
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each brain region. This univariate approach does not address the spatial autocorrelation58–65 or 

functional heterogeneity (functional mis-registration) present in (f)MRI data66. Spatial 

autocorrelation refers to the complex spatial correlation patterns present in MRI data. Nearby 

regions are often more correlated than distant regions, thus they are not statistically independent. 

Spatial correlations are difficult to model due to their heterogeneity, complexity and high 

dimensionality with a limited sample size. Techniques such as Markov Random Fields62,63, 

network/graph theory (topology)58,59,64,65, and spatial Bayesian latent factor methods61,67 have 

been applied to address the problem of spatial autocorrelation in raw or preprocessed MRI data. 

Progress in addressing spatial autocorrelation in the context of normative modeling has also been 

made in which Kronecker algebra and low rank approximations are used to build multivariate 

normative models68,69. In the context of normative modeling, we recommend paying extra 

attention to image registration in order to properly model the functional regions, as the spatial 

overlap of regions across individuals is not guaranteed with functional areas. In addition to 

taking extra measures to align the fMRI data, rather than modeling single voxels or parcels (as is 

often done in structural MRI), it may be beneficial to model brain networks as these features 

better capture the spatial patterns of functional units.  

Data preparation – Preprocessing and quality checking 

 Example data has been curated and shared for the purposes of this protocol. As 

mentioned in the data selection – MRI modality section above, we use structural MRI and have 

run Freesurfer to extract cortical thickness and subcortical volume measures. If using other data 

than the provided protocol data (i.e., your own data) then you will be to preprocess it accordingly 

and quality check the data to ensure only high-quality data is included. If you are new to working 

with MRI data, we recommend Andy’s Brain Book70 that includes videos and code tutorials for 

most neuroimaging software (i.e., Freesurfer, FSL, SPM).  

Data preparation – Setup computational environment 

In this stage you will create a python virtual environment and install the required python 

packages. Then you will clone the GitHub repository which contains all the code and data 

required to follow along with the procedure section. You can run the entire protocol in the cloud 

using Google Colab or chose to run the code on your own computer or server.  

Data preparation – Format design matrix (site effects) 
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It is rare for a single scanning site to acquire large enough samples that are an accurate 

representation of the general population. Therefore, it is common to pool data obtained across 

multiple MRI centers. Some projects, such as the ABCD study71, have begun to harmonize 

scanning protocols because multi-site pooling was planned prior to data collection. In contrast, 

other projects, such as ENIGMA72, combine data post-collection and not have harmonized 

scanning sessions prior to data collection. If possible, to eliminate additional sources of variance, 

multi-site pooled data should be preprocessed using identical pipelines and software versions. 

However, due to data sharing restrictions and privacy concerns regarding health data, raw data 

may be unavailable, making pre or post data collection harmonization efforts impossible. Data 

harmonization techniques, such as COMBAT73–76, aim to remove site-related variance from the 

data as a preprocessing step before further analyses are run. There are some issues with 

harmonization, principally that all sources of variance that are correlated with the batch-effects 

(i.e., site-related variance) are removed which can unintentionally remove important, unknown, 

clinically relevant variance from the data. COMBAT also requires that the user have access to all 

the data when harmonizing which may have implications for data privacy. We therefore do not 

recommend users focus on data harmonization techniques when preparing their data sets for 

normative modeling. Hierarchical Bayesian Regression (HBR)27,28 implemented in the 

PCNtoolkit has been thoroughly developed and tested to address these challenges when using 

multi-site data in normative modeling. HBR estimates site-specific mean effects and variations in 

the normative model estimation stage using a Bayesian hierarchical model, which produces site-

agnostic deviation scores (z-statistics). This distinction between harmonization techniques (i.e., 

COMBAT) and HBR-normative modeling is very important when using deviation scores as 

features in subsequent interpretation analyses, as harmonization has been shown to 

overexaggerate confidence in downstream analyses77.  

Data preparation - Train-test split 

Whilst there are no hard rules for selecting the relative proportion of training and test 

data, some general guidelines that may help this decision can be considered. On the one hand, it 

is important to ensure the training set be sufficiently large to model the target phenotype with 

sufficient accuracy and precision. On the other hand, ensuring the test set is not too small is also 

important to provide sufficient sensitivity to detect downstream differences (which may depend 

on the expected frequency of clinically relevant deviations in the test set).  In practice a 70% 
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train, 30% test or 80% train, 20% test split often provides a reasonable balance between these 

competing objectives, but in certain applications it may be necessary to deviate from these 

recommendations.  The main purpose of the train-test split is to establish out of sample 

generalizability and whether there is over (or under) fitting occurring. More important than the 

exact ratio of the train/test split, we believe it is critical to focus on preserving the sample 

characteristics across the train/test split. For example, it would not be sensible to model age 

ranges of childhood and adolescence in the reference cohort and have the test cohort consist of 

late adulthood ages. This scenario would detect high deviations in this test set due to not properly 

modeling the target population. If you want to investigate the hypothesis that a certain clinical 

group (e.g., individuals with a psychosis diagnosis) have more extreme deviation patterns than a 

control group (individuals with no psychiatric diagnosis), you need to verify that it is because 

they are patients not because they are in the test set. In order to verify this, it is important to also 

include some controls (from the same imaging site as the patients) in the test set. In other words, 

you cannot separate site variation from diagnostic variation if you do not have control reference 

data.  

The train-test ratio decision naturally relates to the sample size requirements of the 

reference cohort mentioned in the data selection – reference cohort inclusion criteria section 

above, and the same consideration of the context needs to be taken when creating the train-test 

split. Does this split align with the research question being asked? More specifically, does the 

training set adequately match the reference (“normative”) cohort and does the testing set 

represent the target cohort in which deviations (from the reference cohort) will be interpreted? 

We discourage cross validation, or iteratively resampling of the data set into train and test sets, 

unless the dataset is very small, and if it is used then practitioners should be aware of the 

problems it introduces. Ideally, the train/test split of the dataset will only be done once. While 

cross validation is useful for testing stability and sensitivity of models to perturbations, it also 

leads to having multiple models which are not easy to combine and interpret and it induces 

dependence between folds which violates most parametric statistical tests78. 

Algorithm & Modeling - algorithm selection 

After the data have been carefully chosen and curated, it is time to move onto the 

normative modeling implementation. There are several algorithms for implementing a normative 

model including Gaussian process regression79, Bayesian linear regression25,67, hierarchical 
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Bayesian regression27,28, generalized additive models of location, scale, and shape26, neural 

processes68, random feature approximation80, quantile regression81 and many of these are 

implemented in the PCNtoolkit software package (Table 1). The algorithms have different 

properties depending on their ability to model non-linear effects, scaling to large data sets (in 

terms of computation time), handling of random or fixed effects (e.g., to model site effects), their 

ability to model heteroscedastic or non-Gaussian noise distributions and their suitability for use 

in a federated or decentralized learning environment. An overview of these algorithm 

implementations is covered in Table 1. Gaussian process regression (GPR) was widely used in 

the beginning phases of normative modeling, which can flexibly model non-linear effects but 

does not computationally scale well when the training data increases (i.e., beyond a few thousand 

data points). In this work, we focus on Bayesian linear regression (BLR), which is highly 

scalable (fast compute time with large samples) and flexible (can be transferred to new sites not 

included in the training sample and can be combined with likelihood warping to model non-

Gaussian effects). Hierarchical Bayesian regression (HBR) is another appealing choice as it has 

been used to better address multi-site datasets and allows for transfer learning (e.g., prediction 

for unseen sites) and can be estimated in a federated learning framework which is useful if there 

are privacy concerns and/or sharing restrictions meaning data cannot easily be pooled at a single 

computing site. 

The remaining steps including estimating the normative model, evaluation the model 

performance, interpretating the model fit, and ideas for post-hoc analysis of the normative 

modeling outputs are covered in more detail in the protocol section.  

Table 1. PCNtoolkit Normative Modeling Algorithm Overview*.   

Algorithm Implemented 
in PCNtoolkit? 

Transfer to 
new sites? 

Fast compute 
time with large 
sample sizes? 

Model non-
Gaussianity? 

Federated 
learning 
framework? 

Gaussian Process 
Regression 
(GPR)** 

yes no no no no 

Hierarchical 
Bayesian 
Regression (HBR) 

yes yes yes yes yes 

Bayesian Linear 
Regression (BLR) 

yes yes yes yes no 

Generalized 
additive models of 

no yes yes yes no 

.CC-BY 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted June 1, 2022. ; https://doi.org/10.1101/2021.08.08.455583doi: bioRxiv preprint 

https://doi.org/10.1101/2021.08.08.455583
http://creativecommons.org/licenses/by/4.0/


location, scale, and 
shape 
(GAMLSS)*** 
* Random feature approximation and neural processes algorithms are not well documented in the 
PCNtoolkit and do not have tutorials available, thus these algorithms are not included in the table 
and are only recommended for advanced users who can implement the code on their own.  
**The vanilla GPR algorithm implemented in the PCNtoolkit cannot model non-Gaussianity and 
does not scale well to large datasets. However, this is a question of implementation, and there are 
versions of GPs algorithms that satisfy these criteria82,83.  
***Implemented in R, see this GitHub repository. 
 

Materials 

Equipment 

• Computing infrastructure: a Linux computer or HPC (SLURM or Torque) with enough 

space to store the imaging data of the train and test set. 

• If a Linux computer or server is unavailable, this protocol can also be run in 

Google Colab (for free). If using Google Colab, only a computer with an internet 

connection and modern internet browser (e.g., Chrome or Firefox) installed is 

necessary.  

• Python installation (https://www.python.org/downloads/).  

• Recommended: Anaconda or virtual environment to manage the required python 

packages (https://www.anaconda.com/ or https://virtualenv.pypa.io/en/latest/). 

• PCNtoolkit python package version 0.20 (and dependencies) installed via pip 

(https://pcntoolkit.readthedocs.io/en/latest/pages/installation.html). 

• Covariates and response variables. Examples of these are provided with this protocol. 

• Demographic and behavioral data used as predictor variables 

• Age, sex/gender, site/scanner ID, race/ethnicity, cognition, data quality 

metric (Euler number if structural, mean framewise displacement if 

functional) 

• Biological data to be modeled. An example structural MRI dataset is provided 

with this protocol. 

• Structural MRI: cortical thickness, surface area, subcortical volume 

• Functional MRI: parcellated task activation maps, resting-state networks 
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Procedure 

The data selection stage (Figure 2, panel 1) does not require code, as it is more of a 

research question formulation stage (i.e., choosing inclusion criteria and what type of imaging 

modality to model). Data preprocessing (running Freesurfer) and quality checking have also 

already been performed, and code for running Freesurfer or other preprocessing is not included 

in this protocol. Thus, for this protocol, the procedure begins at the data preparation – setting up 

computational environment stage. See the experimental design section for guidance on the data 

selection stage and preprocessing if using different data than what is provided with the protocol. 

Data Preparation: Prepare computational environment  

Timing: 1-3 minutes 

1. Begin by cloning the GitHub repository using the following commands. This repository 

contains the necessary code and example data. Then install the python packages using pip 

and import them into the python environment (either Google Colab or using a local 

python installation on your computer), as follows: 
git clone https://github.com/predictive-clinical-neuroscience/PCNtoolkit-demo.git 
# set this path to the git cloned PCNtoolkit-demo repository --> Uncomment whichever line you 
need for either running on your own computer or on Google Colab. 
#os.chdir('/Users/saigerutherford/repos/PCNtoolkit-demo/') # if running on your own computer, use 
this line (change the path to match where you cloned the repository) 
#os.chdir('PCNtoolkit-demo/') # if running on Google Colab, use this line 
import os 
pip install -r requirements.txt 
 
import pandas as pd 
import numpy as np 
import matplotlib.pyplot as plt 
import seaborn as sns 
import joypy 
from sklearn.model_selection import train_test_split 
from pcntoolkit.normative import estimate, evaluate 
from pcntoolkit.utils import create_bspline_basis, compute_MSLL 

 

Data Preparation: Prepare covariate data  

Timing: 5-8 minutes 

2. The data set (downloaded in Step 1) includes a multi-site dataset from the Human 

Connectome Project Young Adult study, CAMCAN, and IXI. It is also possible to use 

different datasets (i.e., your own data or additional public datasets) in this step. If using 

your own data here, it is recommended to load the example data to view the column 

names in order to match your data to this format. Read in the data files using pandas, then 

merge the covariate (age & sex) data from each site into a single data frame (named cov). 
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The columns of this covariate data frame represent the predictor variables. Additional 

columns may be added here, depending on the research question.  
hcp = pd.read_csv('data/HCP1200_age_gender.csv') 
cam = pd.read_csv('data/cam_age_gender.csv') 
ixi = pd.read_csv('data/IXI_age_gender.csv') 
cam_hcp = pd.merge(hcp, cam, how='outer') 
cov = pd.merge(cam_hcp, ixi, how='outer') 
sns.set(font_scale=1.5, style='darkgrid') 
sns.displot(cov, x="age", hue="site", multiple="stack", height=6) 
cov.groupby(['site']).describe() 

 

Data Preparation: Prepare brain data 

Timing: 10-15 minutes 

3. Next, format and combine the MRI data using the following commands. The example 

data contains cortical thickness maps estimated by running recon-all from Freesurfer 

(version 6.0). The dimensionality of the data was reduced by using ROIs from the 

Desikan-Killiany atlas. Including the Euler number as a covariate is also recommended, 

as this is a proxy metric for data quality. The Euler number from each subject's recon-all 

output folder was extracted into a text file and is merged into the cortical thickness data 

frame. The Euler number is site-specific, thus, to use the same exclusion threshold across 

sites it is important to center the site by subtracting the site median from all subjects at a 

site. Then take the square root and multiply by negative one and exclude any subjects 

with a square root above 10.  
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cam = pd.read_csv('data/CAMCAN_aparc_thickness.csv') 
hcpya = pd.read_csv('data/HCP1200_aparc_thickness.csv') 
ixi = pd.read_csv('data/IXI_aparc_thickness.csv') 
hcpya_cam = pd.merge(hcpya, cam, how='outer') 
brain_all = pd.merge(ixi, hcpya_cam, how='outer') 
hcp_euler = pd.read_csv('data/hcp-ya_euler.csv') 
cam_euler = pd.read_csv('data/cam_euler.csv') 
ixi_euler = pd.read_csv('data/ixi_euler.csv') 
hcp_euler['site'] = 'hcp' 
cam_euler['site'] = 'cam' 
ixi_euler['site'] = 'ixi' 
hcp_euler.dropna(inplace=True) 
cam_euler.dropna(inplace=True) 
ixi_euler.dropna(inplace=True) 
hcp_euler['rh_euler'] = hcp_euler['rh_euler'].astype(int) 
hcp_euler['lh_euler'] = hcp_euler['lh_euler'].astype(int) 
cam_euler['rh_euler'] = cam_euler['rh_euler'].astype(int) 
cam_euler['lh_euler'] = cam_euler['lh_euler'].astype(int) 
ixi_euler['rh_euler'] = ixi_euler['rh_euler'].astype(int) 
ixi_euler['lh_euler'] = ixi_euler['lh_euler'].astype(int) 
hcp_cam_euler = pd.merge(hcp_euler, cam_euler, how='outer') 
df_euler = pd.merge(ixi_euler, hcp_cam_euler, how='outer') 
df_euler['avg_euler'] = df_euler[['lh_euler','rh_euler']].mean(axis=1) 
df_euler.groupby(by='site').median() 
df_euler['site_median'] = df_euler['site'] 
df_euler['site_median'] = df_euler['site_median'].replace({'hcp':-43,'cam':-61,'ixi':-56}) 
df_euler['avg_euler_centered'] = df_euler['avg_euler'] - df_euler['site_median'] 
df_euler['avg_euler_centered_neg'] = df_euler['avg_euler_centered']*-1 
df_euler['avg_euler_centered_neg_sqrt'] = 
np.sqrt(np.absolute(df_euler['avg_euler_centered_neg'])) 
brain = pd.merge(df_euler, brain_all, how='inner') 
brain_good = brain.query('avg_euler_centered_neg_sqrt < 10') 

 
 

CRITICAL STEP: If possible, data should be visually inspected to verify that the data 

inclusion is not too strict or too lenient. Subjects above the Euler number threshold 

should be manually checked to verify and justify their exclusion due to poor data quality. 

This is just one approach for automated QC used by the developers of the PCNtoolkit. 

Other approaches such as the ENIGMA QC pipeline or UK Biobank’s QC pipeline 55 are 

also viable options for automated QC.  

Data Preparation: Check that subjects (rows) align across covariate and brain dataframes 

Timing: 3-5 minutes 

4. The normative modeling function requires the covariate predictors and brain features to 

be in separate text files. However, it is important to first (inner) merge them together, 

using the following commands, to confirm that the same subjects are in each file and that 

the rows (representing subjects) align. This requires that both data frames have 

‘subject_id’ as a column name. Once this is confirmed, exclude rows with NaN values 

and separate the brain features and covariate predictors into their own dataframes, using 

the commands below.  
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# make sure to use how="inner" so that we only include subjects that have data in both the 
covariate and the cortical thickness files  
all_data = pd.merge(brain_good, cov, how='inner') 
# Create a list of all the ROIs you want to run a normative model for 
roi_ids = ['lh_MeanThickness_thickness', 
           'rh_MeanThickness_thickness', 
           'lh_bankssts_thickness', 
           'lh_caudalanteriorcingulate_thickness', 
           'lh_superiorfrontal_thickness', 
           'rh_superiorfrontal_thickness'] 
from sklearn.model_selection import train_test_split 
all_data = all_data.dropna() 
all_data_features = all_data[[subset=roi_ids]] 
all data covariates = all data[['age','sex','site']] 

 

CRITICAL STEP: roi_ids is a variable that represents which brain areas will be 

modeled and can be used to select subsets of the data frame if you do not wish to run 

models for the whole brain.  

Data Preparation: Add variable to model site/scanner effects 

Timing: 3-5 minutes 

5. Currently, the different sites are coded in a single column (named ‘site’) and are 

represented as a string data type. However, the PCNtoolkit requires binary variables. Use 

the pandas package as follows to address this, which has a built-in 

function, pd.get_dummies, that takes in the string ‘site’ column and dummy encodes the 

site variable so that there is now a column for each site and the columns contain binary 

variables (0=not in this site, 1=present in this site). 
all_data_covariates = pd.get_dummies(all_data_covariates, columns=['site']) 
all_data['Average_Thickness'] = 
all data[['lh MeanThickness thickness','rh MeanThickness thickness']].mean(axis=1) 

 

Data Preparation: Train/Test split 

Timing: 5-10 minutes  
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6. In this example, we use 80% of the data for training and 20% for testing. Please carefully 

read the experimental design section on train/test split considerations when using your 

own data in this step. Using a function from scikit-learn (train_test_split), stratify the 

train/test split using the site variable to make sure that the train/test sets both contain data 

from all sites, using the following commands. Next, confirm that your train and test 

arrays are the same size (rows), using the following commands. You do not need the 

same size columns (subjects) in the train and test arrays, but the rows represent the 

covariate and responses which should be the same across train and test arrays.  

X_train, X_test, y_train, y_test = train_test_split(all_data_covariates, all_data_features, 
stratify=all_data['site'], test_size=0.2, random_state=42) 
tr_cov_size = X_train.shape 
tr_resp_size = y_train.shape 
te_cov_size = X_test.shape 
te_resp_size = y_test.shape 
print("Train covariate size is: ", tr_cov_size) 
print("Test covariate size is: ", te_cov_size) 
print("Train response size is: ", tr_resp_size) 
print("Test response size is: ", te resp size) 

 

CRITICAL STEP: The model would not learn the site effects if all the data from one 

site was only in the test set. Therefore, we stratify the train/test split using the site 

variable. 

7. When the data were split into train and test sets, the row index was not reset. This means 

that the row index in the train and test data frames still correspond to the full data frame 

(before splitting the data occurred). The test set row index informs which subjects belong 

to which site, and this information is needed to evaluate per site performance metrics. 

Resetting the row index of the train/test data frames fixes this issue. Then extract the site 

row indices to a list (one list per site) and create a list called site_names that is used to 

decide which sites to evaluate model performance for, as follows: 
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x_col_names = ['age', 'sex', 'site_cam', 'site_hcp', 'site_ixi'] 
X_train = pd.read_csv('data/covariate_files/cov_tr.txt', sep='\t', header=None, 
names=x_col_names) 
X_test = pd.read_csv('data/covariate_files/cov_te.txt', sep='\t', header=None, names=x_col_names) 
y_train = pd.read_csv('data/response_files/resp_tr.txt', sep='\t', header=None) 
y_test = pd.read_csv('data/response_files/resp_te.txt', sep='\t', header=None) 
X_train.reset_index(drop=True, inplace=True) 
X_test.reset_index(drop=True, inplace=True) 
y_train.reset_index(drop=True, inplace=True) 
y_test.reset_index(drop=True, inplace=True) 
cam_idx = X_test.index[X_test['site_cam' ]== 1].to_list() 
hcp_idx = X_test.index[X_test['site_hcp'] == 1].to_list() 
ixi_idx = X_test.index[X_test['site_ixi'] == 1].to_list() 
 
# Save the site indices into a single list 
sites = [cam_idx, hcp_idx, ixi_idx] 
 
# Create a list with sites names to use in evaluating per-site metrics 
site_names = ['cam', 'hcp', 'ixi'] 

 

Data Preparation: Setup output directories 

Timing: 1-3 minutes  

8. Save each brain region to its own text file (organized in separate directories) using the 

following commands, because for each response variable, Y (e.g., brain region) we fit a 

separate normative model. 
for c in y_train.columns: 

y_train[c].to_csv('resp_tr_' + c + '.txt', header=False, index=False) 
X_train.to_csv('cov_tr.txt', sep = '\t', header=False, index = False) 
y_train.to_csv('resp_tr.txt', sep = '\t', header=False, index = False) 

for c in y_test.columns: 
y_test[c].to_csv('resp_te_' + c + '.txt', header=False, index=False) 
X_test.to_csv('cov_te.txt', sep = '\t', header=False, index = False) 
y_test.to_csv('resp_te.txt', sep = '\t', header=False, index = False) 

! if [[ ! -e data/ROI_models/ ]]; then mkdir data/ROI_models; fi 
! if [[ ! -e data/covariate_files/ ]]; then mkdir data/covariate_files; fi 
! if [[ ! -e data/response_files/ ]]; then mkdir data/response_files; fi 
! for i in `cat data/roi_dir_names`; do cd data/ROI_models; mkdir ${i}; cd ../../; cp 
resp_tr_${i}.txt data/ROI_models/${i}/resp_tr.txt; cp resp_te_${i}.txt 
data/ROI_models/${i}/resp_te.txt; cp cov_tr.txt data/ROI_models/${i}/cov_tr.txt; cp cov_te.txt 
data/ROI_models/${i}/cov_te.txt; done 
! mv resp_*.txt data/response_files/ 
! mv cov_t*.txt data/covariate_files/ 

 

Algorithm & Modeling: Basis expansion using B-splines 

Timing: 1-3 minutes  

9. Now, set up a B-spline basis set that allows us to perform nonlinear regression using a 

linear model, using the following commands. This basis is deliberately chosen to not to 

be too flexible so that it can only model relatively slowly varying trends. To increase the 

flexibility of the model you can change the parameterization (e.g., by adding knot points 

to the B-spline basis or increasing the order of the interpolating polynomial). Note that in 

the neuroimaging literature, it is more common to use a polynomial basis expansion for 
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this. Piecewise polynomials like B-splines are superior to polynomial basis expansions 

because they do not introduce a global curvature. For further details on the use of B-

splines see Fraza et al25.  
# Create a cubic B-spline basis (used for regression) 
xmin = 10#16 # xmin & xmax are the boundaries for ages of participants in the dataset 
xmax = 95#90 
B = create_bspline_basis(xmin, xmax) 
# create the basis expansion for the covariates for each of the  
for roi in roi_ids:  
    print('Creating basis expansion for ROI:', roi) 
    roi_dir = os.path.join(data_dir, roi) 
    os.chdir(roi_dir) 
    # create output dir  
    os.makedirs(os.path.join(roi_dir,'blr'), exist_ok=True) 
    # load train & test covariate data matrices 
    X_tr = np.loadtxt(os.path.join(roi_dir, 'cov_tr.txt')) 
    X_te = np.loadtxt(os.path.join(roi_dir, 'cov_te.txt')) 
    # add intercept column  
    X_tr = np.concatenate((X_tr, np.ones((X_tr.shape[0],1))), axis=1) 
    X_te = np.concatenate((X_te, np.ones((X_te.shape[0],1))), axis=1) 
    np.savetxt(os.path.join(roi_dir, 'cov_int_tr.txt'), X_tr) 
    np.savetxt(os.path.join(roi_dir, 'cov_int_te.txt'), X_te) 
     
    # create Bspline basis set  
    Phi = np.array([B(i) for i in X_tr[:,0]]) 
    Phis = np.array([B(i) for i in X_te[:,0]]) 
    X_tr = np.concatenate((X_tr, Phi), axis=1) 
    X_te = np.concatenate((X_te, Phis), axis=1) 
    np.savetxt(os.path.join(roi_dir, 'cov_bspline_tr.txt'), X_tr) 
    np.savetxt(os.path.join(roi dir, 'cov bspline te.txt'), X te) 

 

Algorithm & Modeling - estimate normative model 

Timing: 3-5 minutes per model (multiply by number of ROIs/models) 

10. Set up a variable (data_dir) that specifies the path to the ROI directories that were 

created in Step 7. Initiate two empty pandas data frames where the evaluation metrics are 

the column names, as follows; one will be used for overall test set evaluation 

(blr_metrics) and one will be used for site-specific test set evaluation 

(blr_site_metrics). After the normative model has been estimated, these data frames will 

be saved as individual csv files. 

# set this path to wherever your ROI_models folder is located (where you copied all of the 
covariate & response text files to in Step 4) 
data_dir = '/Users/saigerutherford/repos/PCNToolkit-demo/data/ROI_models/' 
# Create pandas dataframes with header names to save out the overall and per-site model 
evaluation metrics 
blr_metrics = pd.DataFrame(columns = ['ROI', 'MSLL', 'EV', 'SMSE', 'RMSE', 'Rho']) 
blr_site_metrics = pd.DataFrame(columns = ['ROI', 'site', 'y_mean', 'y_var', 'yhat_mean',  

'yhat_var', 'MSLL', 'EV', 'SMSE', 'RMSE', 'Rho']) 
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11. Estimate the normative models using a for loop to iterate over brain regions. The estimate 

function uses a few specific arguments that are worthy of commenting on:  

• alg = 'blr': specifies we should use Bayesian Linear Regression. See Table 1 for 
other available algorithms.  

• optimizer = 'powell': use Powell's derivative-free optimization method (faster in 
this case than L-BFGS)  

• savemodel = False: do not write out the final estimated model to disk  

• saveoutput = False: return the outputs directly rather than writing them to disk 

• standardize = False: Do not standardize the covariates or response variables 

An important consideration is whether to re-scale or standardize the covariates or 

responses. Whilst this generally only has a minor effect on the final model accuracy, it 

has implications for the interpretation of models and how they are configured. If the 

covariates and responses are both standardized (standardize = True), the model will 

return standardized coefficients. If (as in this case) the response variables are not 

standardized (standardized = False), then the scaling both covariates and responses will 

be reflected in the estimated coefficients. Also, under the linear modeling approach 

employed here, if the coefficients are unstandardized and do not have a zero mean, it is 

necessary to add an intercept column to the design matrix (this is done above in step 9 

(B-spline)). 

CRITICAL STEP: This code fragment will loop through each region of interest in the 

roi_ids list (created in step 4) using Bayesian Linear Regression and evaluate the model 

on the independent test set. In principle, we could estimate the normative models on the 

whole data matrix at once (e.g., with the response variables stored in a n_subjects by 

n_brain_measures NumPy array or a text file instead of saved out into separate 

directories). However, running the models iteratively gives some extra flexibility in that it 

does not require that the included subjects are the same for each of the brain measures.  
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# Loop through ROIs 
for roi in roi_ids:  
    print('Running ROI:', roi) 
    roi_dir = os.path.join(data_dir, roi) 
    os.chdir(roi_dir) 
      
    # configure the covariates to use. Change *_bspline_* to *_int_* to  
    cov_file_tr = os.path.join(roi_dir, 'cov_bspline_tr.txt') 
    cov_file_te = os.path.join(roi_dir, 'cov_bspline_te.txt') 
     
    # load train & test response files 
    resp_file_tr = os.path.join(roi_dir, 'resp_tr.txt') 
    resp_file_te = os.path.join(roi_dir, 'resp_te.txt')  
     
    # run a basic model 
    yhat_te, s2_te, nm, Z, metrics_te = estimate(cov_file_tr,  
                                                 resp_file_tr,  
                                                 testresp=resp_file_te,  
                                                 testcov=cov_file_te,  
                                                 alg = 'blr',  
                                                 optimizer = 'powell',  
                                                 savemodel = False,  
                                                 saveoutput = False, 
                                                 standardize = False) 
# display and save metrics 
    print('EV=', metrics_te['EXPV'][0]) 
    print('RHO=', metrics_te['Rho'][0]) 
    print('MSLL=', metrics_te['MSLL'][0]) 
    blr_metrics.loc[len(blr_metrics)] = [roi, metrics_te['MSLL'][0],  

metrics_te['EXPV'][0], metrics_te['SMSE'][0], metrics_te['RMSE'][0],  
metrics_te['Rho'][0]] 

     
    # Compute metrics per site in test set, save to pandas df 
    # load true test data 
    X_te = np.loadtxt(cov_file_te) 
    y_te = np.loadtxt(resp_file_te) 
    y_te = y_te[:, np.newaxis] # make sure it is a 2-d array 
     
    # load training data (required to compute the MSLL) 
    y_tr = np.loadtxt(resp_file_tr) 
    y_tr = y_tr[:, np.newaxis] 
     
    for num, site in enumerate(sites):      
        y_mean_te_site = np.array([[np.mean(y_te[site])]]) 
        y_var_te_site = np.array([[np.var(y_te[site])]]) 
        yhat_mean_te_site = np.array([[np.mean(yhat_te[site])]]) 
        yhat_var_te_site = np.array([[np.var(yhat_te[site])]]) 
         
        metrics_te_site = evaluate(y_te[site], yhat_te[site], s2_te[site],  

y_mean_te_site, y_var_te_site) 
         
        site_name = site_names[num] 
        blr_site_metrics.loc[len(blr_site_metrics)] = [roi, site_names[num],  

y_mean_te_site[0], 
y_var_te_site[0], 
yhat_mean_te_site[0], 
yhat_var_te_site[0], 
metrics_te_site['MSLL'][0], 
metrics_te_site['EXPV'][0], 
metrics_te_site['SMSE'][0], 
metrics_te_site['RMSE'][0], 
metrics_te_site['Rho'][0]] 
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Evaluation & Interpretation - evaluate normative model performance 

Timing: 5-10 minutes 

12. In step 11, when we looped over each region of interest in the roi_ids list (created in step 

4) and evaluated the normative model on the independent test set, it also computed the 

evaluation metrics such as the explained variance, mean standardized log-loss and 

Pearson correlation between true and predicted test responses. The evaluation metrics 

were calculated for the full test set and calculated separately for each scanning site. The 

metrics were saved out to a csv file. In this step we load the evaluation metrics into a 

panads data frame and use the describe function to show the range, mean, and standard 

deviation of each of the evaluation metrics. Table 2 shows how to interpret the 

ranges/directions of good model fit.  
metrics_te(['EXPV']).describe() 
metrics_te(['MSLL']).describe() 
metrics_te(['SMSE']).describe() 
metrics_te(['Rho']).describe() 
 
metrics_te_site(['EV']).describe() 
metrics_te_site(['MSLL']).describe() 
metrics_te_site(['SMSE']).describe() 
metrics_te_site(['Rho']).describe() 

 

Evaluation & Interpretation - visualize normative model outputs 

Timing: 15-20 minutes 

13. In this step we look at different ways of visualizing the evaluation metrics from step 12. 

There are typically many models fit across the different brain regions and it can be a lot 

of effort to keep track of the performance across all the brain regions. Data visualization 

will help to understand if there are any emerging patterns and find if there are any brain 

areas (or certain sites) where the model does not fit well. We summarize the deviation 

scores in the test set by counting how many subjects have an ‘extreme’ deviation (either 

positive or negative) and visualize the count of extreme negative and positive deviations 

by plotting them on a 3D brain plot. This step requires using a separate python notebook 

(https://github.com/predictive-clinical-neuroscience/PCNtoolkit-

demo/blob/main/tutorials/BLR_protocol/visualizations.ipynb) 

Evaluation & Interpretation – post-hoc analysis ideas using normative modeling outputs 

Timing: 1-2 hours 
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14. There are many interesting analyses that can be conducted using the outputs of normative 

modeling (deviation scores). An in-depth tutorial on each of these analyses is outside the 

scope of this protocol. However, on GitHub, we include code examples (python 

notebooks that can be run via Colab) of the following post-hoc analysis: 

(https://github.com/predictive-clinical-neuroscience/PCNtoolkit-

demo/blob/main/tutorials/BLR_protocol/post_hoc_analysis.ipynb) 

• Using deviation scores as predictors in a regression and classification and comparing 
the performance to using the true data as predictors. Code for implementing several 
common predictive modeling frameworks (that are mentioned in comparison to other 
methods section) is provided. Deviation scores from normative modeling could be 
used as input features to any of these predictive modeling frameworks. 

• Using a pre-trained normative model and transferring it to a new, unseen data set. 
• Classical case-control testing (univariate t-tests) on deviation maps compared to 

univariate t-tests on the true data.  
 

Timing  

The normative modeling portion of this protocol (including evaluation and visualization) 

can be completed in approximately 57-72 minutes. If using the additional code for post-hoc 

analysis of the normative modeling outputs, you would add approximately 1-2 hours to the 

estimated normative modeling time. These timing estimates are if using the Google Colab 

platform to run the code. If running this protocol on your own computer (where you need to 

install python and dependencies), this will add extra time to the protocol.  

Anticipated Results 

There are multiple end products created from running a normative model analysis. First, 

the evaluation metrics for each model (brain region) are saved to a file. In this protocol, we saved 

the metrics to a CSV file format, however, in the pcn.estimate() function you could set the 

argument ‘binary = True’ which would save the metrics in pickle (.pkl) format. Pickle format is 

good to use if you are estimating many models in parallel on a large dataset, as it is faster 

because it avoids reading/writing intermediate text files. These metrics are further summarized 

into per site metrics to check model fit for each site included in the test set. The short and full 

names of the evaluation metrics and a brief interpretation guide is summarized in Table 2. The 

evaluation metrics can be visualized in numerous formats, histograms/density plots, scatter plots 

with fitted centiles, or brain-space visualizations. Several examples of these visualizations are 
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shown in Figure 4 and code for creating these plots is shared on GitHub. Quality checking the 

normative model evaluation metrics should be done to ensure proper model estimation. If a 

model fits well to the data, the evaluation metrics should follow a Gaussian distribution. The 

model estimation (Procedure step 11) should properly handle confounding site effects, 

nevertheless, it is also a good idea to check per site metrics to make sure the model is fitting all 

sites equally well and that there are no obvious site outliers. In addition to the summary level 

evaluation metrics, there are also many individual metrics (one value per subject for each 

model/brain region). These individual-level outputs can be very helpful for interpretation 

because they precisely quantify the uncertainty of each individual predicted value at every 

location across the brain. If a given individual is identified as having an ‘extreme’ deviation, and 

there is low uncertainty you can be confident this is a biologically valid finding and not due to 

modeling errors. Vice versa, if there are extreme deviations and high levels of uncertainty, more 

caution should be given to interpretating these results and the deviations may be due to modeling 

errors rather than true biological variation. The uncertainty estimates are separated into two 

components (noise and modeling, described in Table 2) to help pinpoint the sources of 

uncertainty. 

Figure 4 Visualization of Normative Model Evaluation Metrics. A) A ridge plot showing the 
distribution across all brain regions of the standardized mean squared error (SMSE), an 
evaluation metric that represents accuracy, visualized for each site in the test set. Visualizing for 

d 

g 
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each test site can help identify if there are sites where the model is performing poorly. Ideally, 
the distribution will be Gaussian and should look similar across all sites. Small shifts in the mean 
across sites is to be expected and is acceptable. B) Explained variance is shown for cortical 
thickness of every brain region in the Destrieux parcellation) and volume of subcortical regions. 
Visualizing the evaluation metrics in brain space helps to identify patterns and see the big 
picture. C) The number of extreme deviations (both positive and negative) are counted for each 
individual in the test set, group ID is used to plot the distribution of the extreme deviation count 
for each group. A statistical test can be done on the count to determine if there is a significant 
difference between groups. Testing group differences in the count of deviations does not require 
there to be spatial overlap of the deviations within the group (i.e., this test can account for 
within-group heterogeneity of deviations). D) The normative trajectory for an example brain 
region (lateral ventricle) showing age (x-axis) versus the predicted volume (y-axis). The centiles 
of variation are shown by the lines and shaded confidence intervals. Each subject in the test set is 
plotted as a single point. E-F) Extreme deviations, separated into positive (E) and negative (F), 
are summarized for each group. For each brain region, the number of subjects with an extreme 
deviation in that region is counted, then divided by the group sample size, to show the percent of 
subjects with an extreme deviation. These visualizations demonstrate the benefit of normative 
modeling as there is within group heterogeneity that other methods (i.e., case-control group 
difference testing) are not equipped to handle. Abbreviations: HC = Controls, MDD=Major 
Depressive Disorder, SZ=Schizophrenia, SAD=Social Anxiety Disorder, EP=Early Psychosis. 

 

A benefit of the PCNtoolkit software for normative modeling, that sets our approach 

apart from other normative modeling implementations84, is the fine-scale resolution allowed by 

the model. Other normative modeling work84 has focused on modeling gross features such as 

total brain volume or gray matter volume, which is not adequate for normative modeling applied 

to mental health conditions and neurodevelopmental disorders, where the effects are subtle and 

widespread (individuals within a patient group tend to deviate in different regions, see Figure 

4E-F) across the cortex and subcortex and averaging over large brain areas usually overlooks 

these elusive psychiatric effects. This resolution also allows for a better mechanistic 

understanding because you can quantify the deviation and associated uncertainty for each 

individual with high spatial precision.  

Reliability (the extent to which a measurement gives results that are very consistent) and 

validity (the degree to which a measurement measures what it is supposed to measure) are 

important constructs to keep in mind when interpreting results. In recent work, reliability of 

normative modeling in schizophrenia and bipolar disorder using structural MRI measures was 

established via replication37. Validity is arguably more challenging to assess but should be 

established by means of out of sample model fit. In other recent work, normative models were fit 
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using a lifespan (age 3-100) big data sample (N=58,836) and carefully tested out-of-sample 

(variance explained, skewness, kurtosis, and standardized mean squared error) showing excellent 

model fit (12-68% variance explained) in an independent test set from a sample (and site) that 

was not included in the training set85. This work suggests validity, but this is an on-going 

evaluation and out of sample model fit must always be considered and reported.  

Table 2: Normative Model Metrics. The ‘Individual or summary?’ column refers to whether there is a 
value for every subject or if the metric is summarized across all subjects. For summary metrics, there is one value 
per brain region (model), and for individual metrics there are n_subjects x n_brain_regions values.  

Variable 
name 

Full name Definition Interpretation Individual or 
summary?  

�� True data   individual 

��� Predictive mean   individual 

��
� Predictive noise 

variance  
Represents uncertainty in the data.  individual 

���
��� Predictive 

modeling variance  
Represents uncertainty in model 
estimation. 

 individual 

Z Deviation score A statistical estimate (Z-score) of 
how much each subject deviates 
from the normative range.  

Z > 2 ‘extreme’ 
positive deviation 

Z < -2 ‘extreme’ 
negative deviation 

individual 

Rho Pearson correlation 
between true and 
predicted responses 

A measure of linear correlation 
between true and predicted 
responses. It is the ratio between 
the covariance of true and 
predicted values and the product of 
their standard deviations.  

Ranges between -1 and 
1. Closer to 1 = better 
model performance.  

summary 

pRho Parametric p-value 
for the Pearson 
correlation 

The probability of obtaining test 
results at least as extreme as the 
results actually observed, under the 
assumption that the null hypothesis 
is true. 

Ranges between 0 and 
1. Closer to 0 = more 
statistically significant. 

summary 

SMSE Standardized mean 
squared error 

The square root of the squared 
residual between the mean 
prediction and the target at each 
test point, averaged over samples 
in the test set, normalized by the 
variance of the targets in the test 
set.  

Closer to 0 = better 
(more accurate) model 
performance.  

summary 

EV Explained variance 
The proportion to which the 
predicted value accounts for the 
variance of the true value. 
Sensitive to the mean fit, 
dependent on flexibility of the 
model.  

Closer to 1 = better 
model performance.  

summary 
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MSLL Mean standardized 
log-loss 

The log loss minus the loss that 
would be obtained under the trivial 
model which predicts using a 
Gaussian with the mean and 
variance of the training data, 
averaged over the test set. 
Sensitive to the variance, penalizes 
the flexibility of the model.  

More negative = better 
model performance.  

summary 

 

Troubleshooting 

We re-iterate that there is additional documentation available online through read the docs 

including additional tutorials for other algorithm implementations (Gaussian Process Regression 

and Hierarchical Bayesian Regression), a glossary to clarify the jargon associated with the 

software, a reference guide with links to normative modeling publications, and a frequently 

asked questions page where many common errors (and their solutions) are discussed in detail. 

The problems encountered when troubleshooting a normative modeling analysis can fall into 

three categories: computing errors, data issues, and misunderstanding or misinterpreting the 

outputs.  

Computing errors 

The computing errors might involve python or the computer hardware. Potential python 

errors may include installation of python or installation of the necessary packages and their 

dependencies. We recommend using Anaconda to install python 3.8 (required for this protocol) 

on your system, and the use of a virtual environment for the PCNtoolkit to ensure that the 

packages required for normative modeling do not interfere with other python versions and 

packages you may have installed on your system. In general, it is good to have a virtual 

environment setup for each project or analysis. If you are unfamiliar with setting up virtual 

environments, and run into issues with python, it is always an option to run the analysis in the 

cloud via Colab which eliminates the need to setup python on your own system. Hardware 

problems might include lack of memory to store the data or models running very slowly due to 

outdated hardware. These hardware errors do not have an easy solution, and we recommend 

using Google Colab to run normative modeling analysis if your personal computer or server is 

very slow or lacks the storage space.  

Data issues 
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Data issues that may be encountered are data missing not at random (see Experimental 

Design section regarding caution using data imputation), improperly coded data (i.e., strings 

instead of integers or floats, NaN values coded incorrectly), collinearity of columns in the 

covariate design matrix, or outlier data that does not make biological sense (i.e., negative cortical 

thickness values, negative age values). While these data errors can be incredibly frustrating to 

troubleshoot, they can typically be fixed by careful quality checking of the input data and 

removal of bad ROIs or subjects as needed.  

Interpretation confusion 

Finally, an example of interpretation confusion may be poor model performance on a certain 

brain region or site. This can usually be addressed by returning to the input data for additional 

quality checking to confirm that the poor performance is not due to data quality issues. If there 

are no data quality issues, then it may be the reality that the model does not fit well some brain 

regions, and you may want to consider including additional covariates in the model to help 

explain more variance. Another interpretation confusion may arise when seeing negative 

explained variance values. When testing out of sample, the explained variance is not restricted to 

be positive, if it is negative this mean that the model fit is very poor (it is worse than an 

intercept-only model).   

 

Code Availability Statement 

All code is available on GitHub in the format of python notebooks that can be run in the cloud 

(for free) using Google Colab. We have also shared the GitHub repository on Zenodo to create a 

citable DOI for this software that also allows versions which are necessary as additional code 

and tutorials may be added over time86.  

 

Data Availability Statement 

All data used in this protocol are available on GitHub and Zenodo86 in csv files. We also include 

a template csv file to help format user’s own data into the correct form for running the protocol 

using their own data set. 
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