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Abstract—EEG signals have been successfully used in affective
detection applications, which could directly capture brain dynam-
ics and reflect emotional changes at a high temporal resolution.
However, the generalized ability of the model across individuals
has not been thoroughly developed yet. An involvement of
other data modality, such as audio-visual information which
are used for emotion triggering, could be beneficial to estimate
intrinsic emotions in video content and solve the individual
differences problem. In this paper, we propose a novel deep
affective detection model, named as EEG with audio-visual
embedding (EEG-AVE), for cross-individual affective detection.
Here, EEG signals are exploited to identify the individualized
patterns and contribute the individual preferences in affective
detection; while audio-visual information is leveraged to estimate
the intrinsic emotions involved in the video content and enhance
the reliability of the affective detection performance. For EEG-
based individual preferences prediction, a multi-scale domain
adversarial neural network is developed to explore the shared
dynamic, informative, and domain-invariant EEG features across
individuals. For video-based intrinsic emotions estimation, a deep
audio-visual feature based hypergraph clustering method is pro-
posed to examine the latent relationship between semantic audio-
visual features and emotions. Through an embedding model,
both estimated individual preferences and intrinsic emotions
are incorporated with shared weights and further are used
together to contribute to affective detection across individuals.
We conduct cross-individual affective detection experiments on
MAHNOB-HCI database for model evaluation and comparison.
The results show our proposed EEG-AVE model achieves a better
performance under a leave-one-individual-out cross-validation
individual-independent evaluation protocol, with the accuracies
of 90.21% and 85.59% for valence and arousal using aggregated
labels and 71.13% and 66.47% for valence and arousal using
non-aggregated labels. Hence, EEG-AVE is an effective model
with good generalizability, which makes it a power tool for cross-
individual emotion detection in real-life applications.

Index Terms—Electroencephalography; Individual Differ-
ences; Affective Detection; Audio-Visual Embedding; Deep Do-
main Adaptation.

I. INTRODUCTION

ELECTROENCEPHALOGRAPHY (EEG) provides a na-
ture way to record human brain activities and has been

widely used in the affective intelligence studies [1]–[5]. In
recent years, deep neural network learning methods have

provided an effective and efficient approach to characterize
informative deep features from EEG data and have achieved
promising results in EEG-based affective detection applica-
tions. For example, a novel dynamic graph convolutional
neural network (DGCNN) was proposed in [1] to learn the
discriminant and hidden EEG characteristics in a non-linear
approach for solving the multi-channel EEG based emotion de-
coding problem. Jirayucharoensak et al. [6] adopted a stack of
several autoencoder structures to perform EEG-based emotion
decoding and showed the deep learning network outperformed
the traditional classification models such as support vector
machine (SVM) and naı̈ve Bayes classifiers. The valid, useful
and optimal EEG information can be explored in a deep
belief network (DBN) structure, which was demonstrated to
be beneficial to the decoding performance [7]. Cui et al.
[8] proposed an end-to-end regional-asymmetric convolutional
neural network (RACNN) to capture the discriminant EEG
features covering temporal, regional and asymmetric infor-
mation. Based on a series of pretrained state-of-the-art CNN
architectures, Cimtay and Ekmekcioglu [4] improved the fea-
ture extraction performance and classification capability based
on raw EEG signals. The existing literature has showed deep
learning is a powerful tool in EEG processing, which captures
the abstract representations and disentangle the semantic gap
between EEG signals and emotion states.

However, due to the problem of individual differences, the
stability and generalizability of EEG-based affective detection
models are of great challenge. Especially, EEG data are
very weak signals and easily susceptible to interference from
undesired noises, making it different to distinguish individual-
specific and meaningful EEG patterns from noise. The key
to solve the individual differences problem is to minimize
the discrepancy in feature distributions across individuals. To
improve model generalization to the variance of individual
characteristics, transfer learning methods have been introduced
and a fruitful line of prior studies has been explored [2], [9]–
[11]. Based on feature distribution and classifier parameters
learning, Zheng and Lu [10] developed two types of subject-to-
subject transfer learning approaches and showed a significant
increase in emotion recognition accuracy (conventional generic
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classifier: 56.73%; the proposed model: 76.31%). Lin and
Jung [11] proposed a conditional transfer learning framework
to boost a positive transfer for each individual, where the
individual transferability was evaluated and effective data from
other subjects were leveraged. Li et al. [2] developed a multi-
source transfer learning method, where two sessions (calibra-
tion and subsequent) were involved and the data differences
were transformed by the style transfer mapping and integrated
classifier. Among various transfer learning strategies, domain
adaptation is a popular way to learn common feature represen-
tations and make the feature representations invariant across
different domains (source and target domains). Ganin et al.
[12] proposed an effective domain-adversarial neural network
(DANN) to align the feature distributions between source
domain and target domain and also maintain the information
of the aligned discriminant features which are predictive of the
labels of source samples. Instead of the conventional domain
adaptation methods that adapted a well-trained model based on
a specific domain to another domain, DANN could well learn
the shareable features from different domains and maintain
the common knowledge about the given task. Inspired by
this work, Li et al. [13] proposed a bi-hemisphere domain
adversarial neural network (BiDANN) model for emotion
recognition using EEG signals, in which a global and two local
domain discriminators worked adversarially with an emotion
classifier to improve the model generalizability. Li et al. [3]
proposed a domain adaptation method through simultaneously
adapting marginal and conditional distributions based on the
latent representations and demonstrated an improvement of the
model generalizability across subjects and sessions.

On the other hand, with the great development and applica-
tion of the internet and multimedia nowadays, there are many
approaches to characterize audio-visual content and embed
the conveying information with other feature modalities for
emotion detection. For example, based on traditional hand-
crafted audio and visual features, Wang et al. [14] investigated
several kernel based methods to analyze and fuse audio-
visual features for bimodal emotion recognition. Mo et al.
[15] proposed Hilbert-Huang Transform (HHT) based visual
and audio features for time-frequency-energy description of
videos and introduced cross-correlation features to indicate the
dependencies between the visual and audio signals. Further-
more, the recent success of deep learning methods in computer
vision brings new insights into video-content based affective
study. Acar et al. [16] utilized CNNs to learn mid-level audio-
visual feature representations for affective analysis of music
video clips. Zhang et al. [17] proposed a hybrid deep model
to characterize a joint audio-visual feature representation for
emotion recognition, where CNN, 3D-CNN and DBN were
integrated with a two-stage learning strategy.

In general, current affective computing models can be
mainly categorized into two streams. One stream is to predict
individual preferences through analyzing a user’s spontaneous
physiological responses (i.e. EEG signals) while watching
the videos [18], [19]. Another stream is to estimate intrinsic
emotions from video content itself by integrating visual and
audio features in an either feature-level fusion or decision
fusion and building a classifier for distinguishing emotions

[17], [20]. However, spontaneous response based individual
preferences prediction would be sensitive to individual differ-
ences and fail to achieve a reliable performance in affective de-
tection across individuals; while video content based intrinsic
emotions estimation could achieve a stable emotion detection
performance, but fail to consider the deviations of individuals
in emotion perceiving. An appropriate embedding of individual
preferences and intrinsic emotions would be helpful to learn
reliable affective features from video content and also indi-
vidual preferences from the recording spontaneous responses.
This motivates us to study the underlying associations among
emotions, video content and brain responses, where video
content functions as a stimulation clue indicating what kind
of emotions would possibly be elicited and brain responses
reveals individual emotion perceiving process showing how
we exactly feel the emotions.

Besides, comparing to unimodal analysis, multimodal fu-
sion could provide more details, compensate the incomplete
information from another modality and develop advanced
intelligent affective systems [21]. Recently, Wang et al. [22]
incorporated video information and EEG signals to improve
the video emotion tagging performance. This study charac-
terized a set of traditional visual and audio features, in-
cluding brightness, color energy and visual excitement for
visual features, and average energy, average loudness, spec-
trum flow, zero crossing rate (ZCR), standard deviation of
ZCR, 13 Mel-Frequency Cepstral Coefficients (MFCC) and
the corresponding standard deviations for audio features. The
proposed hybrid emotion tagging approach was realized on a
modified SVM classifier, and the corresponding performance
was improved from 54.80% to 75.20% for valence and from
65.10% to 85.00% for arousal after a fusion of multi-modality
data. Inspired by the success of the embedding protocol across
different data modalities, this study proposes a novel affective
information detection model (termed as EEG-AVE) to learn
transferable features from EEG signals and embed affective-
related multimedia characteristics for better affective detection
across individuals. The proposed EEG-AVE model is shown
in Fig. 1, which is composed of three parts: EEG-based
individual preferences prediction, audio-visual based intrinsic
emotions estimation, and multimodal embedding.

(1) EEG-based individual preferences prediction: In this
part, we propose a multi-scale domain adversarial neu-
ral network (termed as MsDANN hereinafter) based on
DANN [12] to enhance the generalization ability of EEG
feature representation across individuals and boost the
model performance on individual preferences prediction.
Specifically, EEG data from different individuals are
treated as domains, where the source domain refers to
the existing individuals and the target domain refers to
the newcoming individual(s). Based on the input multi-
scale feature representation, the feature extractor network,
task classification network and discriminator network are
designed to make the source and target domains share
similar and close latent distribution so as to work with
the same prediction model. As the mining emotional
informative and sensitive features from EEG signals is
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still a great challenge, this study introduces a multi-
scale feature representation to improve feature efficacy
and model adaptability to complex and dynamic emotion
cases. Comparing to single-scale feature representation,
pioneer studies have showed EEG signals analysis with
such a coarse-grain procedure could be beneficial to
emotion studies [23]–[25].

(2) Audio-visual based intrinsic emotions estimation: To
alleviate the individual differences problem, affective
audio-visual content analysis is conducted to digest the
intrinsic emotion information involved the videos which
could be used as a supplementary information for individ-
ual affective detection. Due to the well-known “semantic
gap” or “emotional gap” that the traditional handcrafted
features may fail to sufficiently discriminate emotions,
we develop a deep audio-visual feature based hypergraph
clustering method (termed as DAVFHC) for characteriz-
ing high-level audio-visual features that could effectively
distinguish emotions. Here, two pretrained CNN archi-
tectures (VGGNet [26] and VGGish [27]) are adopted
to explore affective-related characteristics in audio-visual
content and the most optimal audio-visual features are
fused through a hypergraph theory.

(3) Multimodal embedding: The final affective detection
result is determined by an embedding model where
the predicted individual preferences from EEG signals
and the estimated intrinsic emotions from audio-visual
content are fused at a decision level. The compensation
information from different modalities contributes together
to tackle the individual differences problems in affective
detection.

The major novelties of this work are as follows.

• We propose a novel affective detection model (EEG-AVE)
to tackle individual differences problem in EEG-based
emotion recognition through incorporating spontaneous
brain responses and stimulation clues in a hybrid em-
bedding strategy. Both EEG and audio-visual information
are exploited to digest different dimensions of emotions,
and the compensation relationships among different data
modalities on the affective detection study are examined.

• We introduce an effective domain adaption method (Ms-
DANN) to detect individual preferences from EEG sig-
nals, where the impact of individual differences is dimin-
ished through a transfer learning approach.

• We present an efficient method (DAVFHC) to estimate the
intrinsic emotions in audio-visual materials. For charac-
terizing emotion related features, semantic audio-visual
features are extracted by using deep learning methods
and the complex and latent relationships of deep audio-
visual features with emotion labels are measured with
hypergraph theory.

The remainder of this paper is structured as following. In
Section II and III, the proposed MsDANN model for individual
preferences prediction from EEG signals and the proposed
DAVFHC model for intrinsic emotions estimation from audio-
visual content are respectively introduced in details. Section
IV presents the embedding model for final affective detection

from individuals. Section V explains the database and experi-
mental conditions used in this study. In Section VI, the model
evaluation and comparison are conducted using a leave-one-
individual-out cross-validation individual-independent proto-
col and the results are discussed. Section VII summarizes our
findings and draws a conclusion of this paper.

II. INDIVIDUAL PREFERENCES PREDICTION

A. MsDANN Model

In this section, we propose a new transfer learning based
neural network, MsDANN, to address the individual dif-
ferences problem in EEG based emotion detection. In this
network, a multi-scale feature representation is incorporated to
capture a series of rich feature characteristics of EEG signals
and maximize the informative context for predicting a diverse
set of individual preferences in emotions. Specifically, we
extract the differential entropy (DE) features [28] from the
defined frequency sub-bands (refer to Table I) at different
frequency/scale resolutions (1 Hz, 0.5 Hz, and 0.25 Hz),
and build respective domain adaptation models with domain
adversarial training methods. In the proposed MsDANN, the
common features from different individuals are learnt; at
the same time, the relationships between the learnt common
features and the related emotion information are preserved.

The network structure of MsDANN is shown in Fig. 2,
which is composed of three parts: the generator (feature
extractor network) for deep feature extraction, the classifier
(task classification network) for emotion label prediction, and
the discriminator (discriminator network) for real or fake data
distinguishing. Here, the generator and classifier could be
considered as a standard feed-forward architecture, while the
generator and discriminator are trained based on a gradient
reversal layer to ensure the feature distributions of two do-
mains as indistinguishable as possible. In this study, the EEG
data with emotion labels are treated as the source domain to
train the generator, classifier and discriminator; while the EEG
data without emotion labels are utilized to train the generator
and discriminator. Through this multi-scale deep framework,
a set of transferable features involving affective information
could be characterized, the cross-domain discrepancy could
be bridged, and the classification performance could be effec-
tively improved in both source and target domains.

To learn a shared common feature space between the source
and target domains and also guarantee the learnt feature
representation involving enough information for revealing the
emotion states, the loss objective function is designed below.
Suppose that the source and target domains are denoted
as S and T. In the domain learning, the EEG data with
emotion labels in S are given as xl = {xl1, ..., xlNS

} and
y = {y1, ..., yNS

}, where xli is the input EEG data at lth scale
feature representation and yi is the corresponding emotion
label of xli. NS is the sample size of xl. On the other hand,
the unlabeled EEG data in T is denoted as zl = {zl1, ..., zlNT

},
where zli is the input EEG data at lth scale feature representa-
tion and NT is the corresponding sample size of zl. We denote
the generator, classifier, and discriminator as rθ, cσ , dµ with
the parameters of θ, σ and µ. To ensure the learnt features by
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Fig. 1: The proposed EEG-AVE model.

TABLE I: The defined frequency sub-bands for DE feature characterization.

θ α1 α2 β1 β2 β3 γ1 γ2 γ3

frequency band (Hz) 4-8 8-10 10-13 13-16 16-20 20-28 28-34 34-39 39-45

rθ from source domain or target domain are indistinguishable,
the domain adversarial training objective function is given as

min
θ

max
µ

E(xl,zl)∼(S,T)LD(µ, θ, xl) + LD(µ, θ, zl), (1)

where LD is a binary cross-entropy loss for the discriminator
to be trained to distinguish S and T, defined as

LD(µ, θ, xl) = −I[xl ∼ S] log(dµ ◦ rθ(xl))
− I[xl ∼ T] log(1− dµ ◦ rθ(xl)).

(2)

Here, I is an indicator function. Based on Eq. 1, we add
another loss function LT for the classifier part as

min
σ,θ

max
µ

Exl∼S[LT (σ, θ, xl)]+

λE(xl,zl)∼(S,T)[LD(µ, θ, xl) + LD(µ, θ, zl)],
(3)

where LT (σ, θ, xl) is the classification loss in the source
domain, determined by

∑
Loss(cσ ◦rθ(xl), y). λ is a balance

parameter during the learning process, given as

λ =
2

1− exp (−γp)
− 1, (4)

where γ is a constant value and p is a factor of epoch. Eq. 3
is the final objective function for MsDANN model training.

The proposed MsDANN model is an end-to-end framework
for cross-individual emotion prediction based on EEG signals,
combining the feature learning adaptation and emotion classi-
fication into a unified deep model. Based on the input data with
multi-scale DE feature representation, the domain adaption

and classification loss are exploited to guide the generator to
learn effective feature representations across individuals via
the gradient reversal layer and efficiently tackle the individual
differences problem in EEG data processing.

B. MsNN Model

We also introduce a baseline method, multi-scale neural
network (termed as MsNN), for model comparison under the
condition with or without deep domain adaption. As illustrated
in Fig. 3, the network is trained on the source domain without
feature adaption and tested on the target domain.

III. INTRINSIC EMOTIONS ESTIMATION

At present, a number of well trained deep CNN models
have been successfully applied to multimedia processing, such
as AlexNet [29], GoogLeNet [30] and VGG [26] for visual
content, and VGGish [27] for audio content. The deep features
could bridge the semantic gap and improve semantic interpre-
tation performance. In this section, we develop a DAVFHC
method to learn and decode the semantic features from audio-
visual content for intrinsic emotions estimation.

A. Deep Visual Feature Characterization

At the visual level, a pretrained VGGNet network [26] is
utilized to process frame-based visual information and char-
acterize effective visual features. The training and testing data
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sets were based on ILSVRC-2012, with 1.3M training pictures,
50K test pictures, and 100K validation pictures. The network
was trained by optimizing a polynomial logistic regression
objective function with a smallest batch-based gradient de-
scent momentum. Considering the balance of layer depth and
performance, VGG16 is utilized in this paper to characterize
the frame-based visual features. It consists of 13 convolutional
layers and 3 fully connected layers. The corresponding number
of convolution kernels at each layer are 64, 64, 128, 128, 256,
256, 256, 512, 512, 512, 512, 512, and 512, and the kernel
size is 3× 3.

As illustrated in Fig. 4, the visual feature extraction pro-
cedure includes three steps. 1. Frame-based visual feature
extraction. The video frames are input to the pretrained
VGG16 and the corresponding feature maps are characterized
at each convolutional layer. For each layer, an average feature

map is then calculated and converted into a feature vector. 2.
Segment-based visual feature extraction. Instead of direct
averaging all the frame-based features in one segment, we
introduce an adaptive key frame detection step to detect a key
frame from every segment based on the feature distribution.
Suppose that one segment is composed of k frames with the
corresponding extracted features, denoted as Bι = {bι1, ..., bιk},
where ι = 1, ..., Nι refers to the convolutional layer. The
key frame detection is illustrated as follows. (1) All frames
are grouped into one cluster in terms of Bι; (2) The cluster
center cι is computed; (3) The distance between each frame
bιi (i ∈ [1, k]) and the cluster center cι is calculated, de-
noted as {dι1, ..., dιk}; (4) the frame which is the closest to
cι is selected as the key frame of the segment, termed as
k∗ = arg min{dι1, ..., dιk}. Then, the corresponding feature
of the key frame bιk∗ is treated as the segment-based feature
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representation. 3. Segment-based visual feature fusion. The
characterized segment-based features at each single convolu-
tional layer (bιk∗ , ι ∈ [1, Nι]) are then fused by concatenation.
Empirically, the segment length is set to 1s. To get the
semantic features, only the characterized features at the last
two convolutional layers (ι = 12 and 13) are used as visual
features (ΨV ) in the proposed DAVFHC method.

B. Deep Audio Feature Characterization

At the audio level, a pretrained CNN network, VGGish
[27], is adopted to characterize effective audio features. VG-
Gish is a deep network model trained on a Youtube-8M
database (training/validation/test: 70M/20M/10M), which has
been proved to be capable of extracting effective and efficient
deep auditory features in various applications [31]–[33]. The
network contains 6 convolutional layers, and the corresponding
numbers of convolution kernels are 64, 128, 256, 256, 512, and
512, respectively. The kernel size is 3× 3.

Same as the visual feature extraction process, the audio
features are also characterized at the segment level. 1. Data
preparation. The audio signals are detected from the emo-
tional clips and then partitioned into a number of segments
with a fixed length. 2. Data preprocessing. The segment-
based audio data is preprocessed following the procedures
presented in [27]. 3. Deep audio feature characterization.
For each segment, the logarithmic melspectrum is character-
ized and input to the VGGish. The deep feature maps are
extracted at each convolutional layer and averaged into one
feature map. 4. Deep audio feature fusion. For each segment,
the feature map at each single convolutional layer is converted
into a feature vector. The converted feature vectors across
different convolutional layers are then fused by concatenation.
Empirically, the segment length is set to 1s (same as the visual

data. To get the semantic features, only the feature vectors
extracted from last two layers (5th and 6th) are used as audio
features (ΨA) in the proposed DAVFHC method.

C. Feature Fusion and Emotion Estimation
The characterized segment-based visual and audio features

are concatenated and formed into a segment-based audio-
visual feature vector termed as ΨM = [ΨV ,ΨA]. The complex
relationships among all the segments from the emotional clips
are constructed with a hypergraph which has been widely
recognized as an effective approach for complex hidden data
structure description. For the traditional graph, only pairwise
relationships between any two vertices are considered, which
would lead to the information loss [34]. In the hypergraph, one
edge (termed as hyperedge in the hypergraph) could connect
more than two vertices and the complex relationship among
a group of vertices could be well described. In the paper, the
segments are the vertices denoted as V , and the connections
among the segments are the hyperedges denoted as E. One
hypergraph could be represented as G = (V,E), where the
vertices and hyperedges are denoted as V = {v1, v2, ..., v|V |}
and E = {e1, e2, ..., e|E|}, respectively. The vertices belong
to one hyperedge ek ∈ E is termed as {vek1 , vek2 , ..., vek|ek|}. To
define the vertices and hyerpedges relationships, the similarity
between any two vertices (the emotional clip segments denoted
as Ψvi

M = {ψviM,1, ..., ψ
vi
M,NM

} and Ψ
vj
M = {ψvjM,1, ..., ψ

vj
M,NM

},
with the feature dimensionality of NM ) are measured as

a(Ψvi
M ,Ψ

vj
M ) =

1

1 + ξ
Ψ

vi
M ,Ψ

vj
M

, (5)

where ξ
Ψ

vi
M ,Ψ

vj
M

is the calculated distance, given as

ξ
Ψ

vi
M ,Ψ

vj
M

=
∑

t=1,...,NM

(ψviM,t − ψ
vj
M,t)

2

ψviM,t + ψ
vj
M,t

. (6)
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Based on the measured similarity matrix A =
{a(Ψvi

M ,Ψ
vj
M )}Ni,j=1 (N is the sample size), an incident

matrix H ∈ |V | × |E| is formed, in which the connection
relationships between the vertices V and the hyperedges E is
described as

h(vi, ek) =

{
1 if vi ∈ ek
0 if vi /∈ ek

. (7)

The hyperedge weight matrix W is a diagonal matrix indi-
cating the weights of all the hyperedges E in the hypergraph
G. The weight w(ek) of one hyperedge ek ∈ E is computed
based on the calculated similarities among the vertices that
belong to ek, given as

w(ek) =

∑
vi,vj∈ek,vi 6=vj a(Ψvi

M ,Ψ
vj
M )

τ
, (8)

where a(Ψvi
M ,Ψ

vj
M ) is the similarity value between the vertices

of vi and vj , given in Eq. 5. τ is the total number of vertices
connected to the hyperedge ek. As w(ek) is a measurement of
all the similarity relationships among the vertices that belong
to one hyperedge, a higher w(ek) value indicates a strong
connection of homogeneous vertices of the hyperedge and a
lower w(ek) refers to a weak connection of the hyperedge
in which the connected vertices share little similar properties.
In other words, the hypergraph structure could well describe
the relationships of the audio-visual segments in terms of
properties. The vertex degree matrix (Dv) is a diagonal matrix
presenting the degree of all the vertices in the hypergraph
G. The degree of one vertex vk ∈ V is calculated as the
summation of all the hyperedge weights of the hyperedges
that the vertex belong to, defined as

d(vi) =
∑

e∈E|vi∈e

h(vi, e)w(e). (9)

The hyperedge degree matrix (De) is also a diagonal matrix
showing the degree of all the hyperedges in the hypergraph
G. The degree of one hyperedge ek ∈ E is calculated as the
summation of all the vertices that connect to the hyperedge,
given as

d(ek) =
∑

ek∈E|v∈ek

h(v, ek). (10)

In this study, we introduce a spectral hypergraph partitioning
method [35] to partition the constructed hypergraph into a
number clusters corresponding to the emotion states (high or
low). Thus, it is a two-way hypergraph partitioning problem
which could be described as

Hcut(S, S̄) =
∑
e∈∂S

w(e)
|e ∩ S||e ∩ S̄|

d(e)
, (11)

where S and S̄ are the partitions of the vertices V . For two-
way partitioning, S̄ is the complement of S. ∂S is the partition
boundary, given as ∂S = {e ∈ E|e ∩ S 6= ∅ and e ∩ S̄ 6=
∅}. d(e) is the hyperedge degree defined in Eq. 10. To avoid
unbalanced partitioning, Hcut(S, S̄) is further normalized by

NHcut(S, S̄) = Hcut(S, S̄)(
1

vol(S)
+

1

vol(S̄)
), (12)

where vol(S) and vol(S̄) are the volumes of S and S̄,
given as vol(S) =

∑
v∈S d(v) and vol(S̄) =

∑
v∈S̄ d(v).

The partitioning rule is to look for the weakest hyperedge
e between S and S̄, where the vertices in the same cluster
should be tightly connected (high hyperedge weights) and the
vertices in the different clusters should be weakly connected
(low hyperedge weights). An optimal partitioning is given in
Eq. 13 to find the weakest connection between two partitions,
which is an NP-complete problem solved by a real-valued
optimization method.

arg min
f

1

2

∑
e∈E

∑
u,v∈V

w(e)h(u, e)h(v, e)

d(e)

× (
f(u)√
d(u)

− f(v)√
d(v)

)
2

= arg min
f

∑
e∈E

∑
u,v∈V

w(e)h(u, e)h(v, e)

d(e)

× (
f2(u)√
d(u)

− f(u)f(v)√
d(u)d(v)

)

= arg min
f

∑
u∈V

f2(u)
∑
e∈E

w(e)h(u, e)

d(u)

∑
v∈V

h(v, e)

d(e)

−
∑
e∈E

∑
u,v∈V

f(u)h(u, e)w(e)h(v, e)f(v)√
d(u)d(v)d(e)

= arg min
f
fT (I −Θ)f

(13)

where Θ is given as

Θ = D−(1/2)
v HWD−1

e HTD−(1/2)
v , (14)

and I is an identity matrix with the same size as W . The
hypergraph Laplacian is denoted as

∆ = I −Θ. (15)

The optimal solution is transformed to find the eigenvectors
of ∆ whose eigenvalues are the smallest. In other words, the
optimal hypergraph partitioning results find the top eigenvec-
tors with the smallest non-zeros eigenvalues in ∆ and form
an eigenspace for the subsequent vertex clustering with the
K-means method. Through this approach, all the vertices are
grouped into two clusters. The corresponding emotion state of
each cluster is determined by the majority distribution of the
involved vertices. If most of vertices are belong to high level,
the cluster’s emotion state is assigned as high; on the other
hand, it is assigned as low. In practice, to avoid information
leaking, the clusters’ emotion states are only determined based
on the training samples.

IV. EMBEDDING MODEL

Based on the aforementioned work, we incorporate the esti-
mated intrinsic emotions based on deep audio-visual features
and the predicted individual preferences from the collected
simultaneous EEG signals, and conduct a decision-level infor-
mation fusion for final affective prediction.

Specifically, we fuse EEG signals and audio-visual informa-
tion in a decision level through shared weights. Suppose that
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the predicted emotional individual preferences based on EEG
signals are denoted as Y EEG = {yEEG1 , ..., yEEGN } and the
estimated intrinsic emotions based on audio-visual content are
denoted as YMUL = {yMUL

1 , ..., yMUL
N }. The final detected

affective results are determined by

yFUSi =
wEEG × yEEGi + wMUL × yMUL

i

wEEG + wMUL
, (16)

where wEEG and wMUL are the shared weights of EEG
signals and audio-visual information in the fusion process.
Y FUS = {yFUS1 , ..., yFUSN } are the final affective detection
results.

V. DATABASE AND EXPERIMENTAL CONDITIONS

A famous EEG-emotion database, the MAHNOB-HCI [36],
is used for sentiment analysis and affective detection from
both EEG signals and audio-visual content in this paper. In
this database, a total of 30 participants (male/female: 13/17;
age: 26.06±4.39) from different cultural backgrounds were
invited to participate in the experiment and 20 commercial
film clips (duration: from 34.9s to 117s, with an average of
81.4s and a standard deviation of 22.5s) were selected for
emotional eliciting. The experimental paradigm is shown in
Fig. 5. In one trial, to minimize the emotion evoking effect
from other trials, a neutral clip that was randomly selected
from the Stanford Psychophysiology Laboratory played first.
Then, an emotional clip was randomly selected from the 20
commercial film clips and played for emotion eliciting. After
the emotional clip playing, the participants were requested
to give a subjective assessment about their emotions during
watching the emotional clip using a score in the range of 1 to
9. During the experiment, EEG signals were simultaneously
collected at a sampling rate of 256Hz, by using the Biosemi
active II system with 32 Ag/AgCl electrodes placed according
to the standard international 10-20 electrode system [37]. Due
to the data incompleteness of participant 3, 9, 12, 15, 16 and
26, only 24 participants are used in this paper.

To cross-compare with the results presented in the other
studies, we utilize a fixed threshold of 5 for scores (in the
range of 1 to 9) to discretize the subjective feedback into
high and low levels (≥ 5 high; < 5 low). Two performance
metrics, detection accuracy Pacc and F1-Score Pf , are used
to validate the evaluation performance. Pacc is an overall
detection performance measurement and Pf is a harmonic av-
erage of the precision and sensitivity which is less susceptible
to the unbalanced classification problems. The corresponding
definitions are given as

Pacc =
nTN + nTP

nTN + nFN + nTP + nFP
× 100%, (17)

and
Pf =

2× Ppre × Psen
Ppre + Psen

× 100%, (18)

where nTN and nTP are the correctly predicted samples,
and nFN and nFP are the incorrectly predicted samples. The
precision Ppre and sensitivity Psen are given as

Ppre =
nTP

nTP + nFP
, (19)

Psen =
nTP

nTP + nFN
. (20)

To fully evaluate the validity and reliability of the model
performance, a strict leave-one-out cross-validation is adopted.
All the predicted individual preferences and the estimated
intrinsic emotions are obtained in a cross-validation manner.
For the proposed MsDANN model, the model training and
testing are conducted on a leave-one-individual-out cross-
validation. In one round of cross-validation, all the samples
from 1 individual are treated as the test data, while the other
samples from the remaining individuals (other 23 participants)
are used as the training data. After repeating 24 times until
each participant is treated as the test data once, the final
result of MsDANN is a formation of all the obtained test
results through the cross-validation rounds. For the devel-
oped DAVFHC method, the model training and testing are
conducted on a leave-one-video-out cross-validation. In one
round of cross-validation, all the samples from 1 video are
used as test data and the other samples from the remaining
videos (other 19 videos) are treated as training data. After
repeating 20 times until each video is treated as the test data
once, the final prediction result of DAVFHC is a formation of
the obtained test results in all the cross-validation rounds. In
other words, after obtaining all the test results of all EEG and
video samples in the above mentioned cross-validation rounds,
the final affective results are obtained by a decision fusion.
As the affective detection on different emotion dimensions
such as valence and arousal are independent, the corresponding
hyperedge size and feature size in DAVFHC are set to different
values empirically, where the values are set to 15 and 20 for
valence and 21 and 25 for arousal.

VI. RESULTS AND DISCUSSION

A. Performance Comparison with Existing Methods

To improve the affective detection performance, both EEG
signals and audio-visual information are embedded in the pro-
posed EEG-AVE model. Here, we roughly estimate what kind
of emotion could be triggered according to the audio-visual
content itself (intrinsic emotions estimation), and detect the
individual preferences for each individual through analyzing
the recording EEG signals while he / she is watching the
multimedia material (individual preferences detection). The
contributions of EEG signals and audio-visual information
through the affective detection process are considered equally
important (the values of wEEG and wMUL are set to 0.5). The
corresponding emotion decoding performance for valence and
arousal are reported in Table II and Table III, respectively.
We compare EEG-AVE model with the existing representative
methods such as [36], [38], [39], [40], [41], [42], [43], and
[22]. It is worth note that the experimental results presented in
[22] were evaluated with the aggregated groundtruth (different
participants watching one video are tagged with same emotion
label). For the non-aggregated groundtruth, different partici-
pants watching one video are tagged with different emotion
labels according to the corresponding subjective assessment.
Even for a same emotional clip, different participants would
have different emotional feelings due to the differences in
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Fig. 5: The experimental paradigm of MAHNOB-HCI database.

TABLE II: Emotion recognition performance on MAHNOB-
HCI database among various methods for valence.

Methods Groundtruth Pacc Pf

Soleymani et al. [36] Non-Aggregated 57.00 56.00
Zhu et al. [38] Non-Aggregated 58.16 56.36
Huang et al. [39] Non-Aggregated 62.13 -
Rayatdoost and Soleymani [40] Non-Aggregated 71.25 62.08
Huang et al. [41] Non-Aggregated 66.25 -
Yin et al. [42] Non-Aggregated 69.93 -
Zhang and Yin [43] Non-Aggregated 62.99 62.56

Wang et al. [22] Aggregated 75.20 73.80

Proposed EEG-AVE model Aggregated 90.21 90.45
Proposed EEG-AVE model Non-Aggregated 71.13 66.83

TABLE III: Emotion recognition performance on MAHNOB-
HCI database among various methods for arousal.

Methods Groundtruth Pacc Pf

Soleymani et al. [36] Non-Aggregated 52.40 42.00
Zhu et al. [38] Non-Aggregated 61.35 63.08
Huang et al. [39] Non-Aggregated 61.80 -
Rayatdoost and Soleymani [40] Non-Aggregated 61.46 50.60
Huang et al. [41] Non-Aggregated 71.88 -
Yin et al. [42] Non-Aggregated 67.43 -
Zhang and Yin [43] Non-Aggregated 65.21 61.82

Wang et al. [22] Aggregated 85.00 82.40

Proposed EEG-AVE model Aggregated 85.59 86.55
Proposed EEG-AVE model Non-Aggregated 66.47 63.25

background, experience, religion, education, and so on. The
non-aggregated groundtruth could be more capable of reflect-
ing the emotion dynamics in individuals.

As shown in Table II, our proposed model outperforms the
existing methods for valence, where the Pacc and Pf results
are 90.21% and 90.45% for the aggregated groundtruth and
71.13% and 66.83% for non-aggregated groundtruth. For the
results with non-aggregated groundtruth, even the obtained
Pacc values of our proposed EEG-AVE model and Rayatdoost
and Soleymani [40]’s work are comparable, a better Pf of our
proposed EEG-AVE model is observed, where Pf is 62.08%
for Rayatdoost and Soleymani [40]’s work and 66.83% for
our model (improved by 7.65%). For the results with aggre-
gated groundtruth, our proposed EEG-AVE model increases
the affective detection performance by 19.96% for Pacc and
22.56% for Pf , comparing to Wang et al. [22]’s work. Similar
promising emotion recognition performance are observed for
arousal as shown in Table III, where the Pacc and Pf results
are 85.59% and 86.55% for the aggregated groundtruth and
66.47% and 63.25% for non-aggregated groundtruth. For ag-

TABLE IV: Emotion recognition performance with different
embedding strategies using aggregated and non-aggregated
groundtruth for valence.

Groundtruth EEG+Visual+Audio EEG+Visual EEG+Audio
Pacc Pf Pacc Pf Pacc Pf

Aggregated 90.21 90.45 74.65 74.61 69.08 73.06
Non-Aggregated 71.13 66.83 67.75 61.79 58.57 58.27

TABLE V: Emotion recognition performance with different
embedding strategies using aggregated and non-aggregated
groundtruth for arousal.

Groundtruth EEG+Visual+Audio EEG+Visual EEG+Audio
Pacc Pf Pacc Pf Pacc Pf

Aggregated 85.59 86.55 77.28 78.57 68.55 72.20
Non-Aggregated 66.47 63.25 63.26 59.27 54.91 53.64

gregated groundtruth, the proposed EEG-AVE model performs
better than Wang et al. [22], especially for F1-score (increased
by 5%). For non-aggregated groundtruth, EEG-AVE model
gains better performance than most of existing methods on
recognition accuracy, except for Huang et al. [41] and Yin et
al. [42]. The obtained F1-score of EEG-AVE is the highest
among all the methods. Besides, the above results show
aggregated groundtruth leads a higher detection performance
comparing to the non-aggregated groundtruth, as the individual
differences in emotion feelings about the clip is not considered.

B. Performance Evaluation of Embedding Strategy

We compare the affective detection performance when dif-
ferent embedding strategies are adopted. Here are three em-
bedding strategies: EEG+Visual+Audio (the proposed EEG-
AVE model), EEG+Visual (only visual information embedded
with EEG signals) and EEG+Audio (only audio information
embedded with EEG signals). The corresponding affective de-
tection performances for valence and arousal with aggregated
and non-aggregated groundtruth are summarized in Table IV
and Table V.

The results show that EEG based affective detection with
an embedding of both visual and audio information achieve
the best performance for both valence and arousal. For
EEG+Visual strategy, the affective detection performance for
valence decreases to 74.65% (aggregated) and 67.75% (non-
aggregated) for Pacc and 74.61% (aggregated) and 61.79%
(non-aggregated) for Pf ; while the affective detection per-
formance for arousal decreases to 77.28% (aggregated) and
63.26% (non-aggregated) for Pacc and 78.57% (aggregated)
and 59.27% (non-aggregated) for Pf . The average decrease
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rates of valence and arousal are 11.76% and 7.51%, re-
spectively. For EEG+Audio embedding strategy, the affective
detection performance for valence decreases from 90.21% to
69.08% for Pacc and from 90.45% to 73.06% for Pf when
aggregated groundtruth is utilized; while it decreases from
71.13% to 58.57% for Pacc and from 66.83% to 58.27%
for Pf when non-aggregated groundtruth is used. A similar
decrease pattern is also observed on the affective detection
performance for arousal, where it decreases from 85.59% to
68.55% for Pacc and from 86.55% to 72.20% for Pf when
aggregated groundtruth is adopted; while it decreases from
66.47% to 54.91% for Pacc and from 63.25% to 53.64% for
Pf when non-aggregated groundtruth is utilized. The average
decrease rates of valence and arousal are 18.28% and 17.27%,
respectively. The comparison results with different embedding
strategies reveal that an embedding of both visual and audio
information has a capability to reach better affective detection
performance, compared to only visual or audio embedded.
In addition, we find only visual embedded outperforms only
audio embedded, which suggests that visual information plays
a more critical role on emotion perceiving, especially in film
clips.

C. Performance Evaluation of Domain Adaptation Effect
To analyze the domain adaptation effect in solving the in-

dividual differences problem, we evaluate our proposed EEG-
AVE model with a baseline method MsNN (as illustrated in
Fig. 3). In MsNN based EEG-AVE model, no feature adaption
or transfer learning is adopted in EEG processing, and the EEG
based emotional individual preferences prediction is trained
and tested on source domain and target domain separately.

The corresponding affective detection performance of Ms-
DANN and MsNN based EEG-AVE model for valence is re-
ported in Table VI. For aggregated groundtruth, comparing to
MsDANN based EEG-AVE model under EEG+Visual+Audio
strategy, the detection performance of MsNN based EEG-
AVE model decreases by 9.10% and 7.19% in terms of
Pacc and Pf , respectively. Comparing MsDANN and MsNN
based EEG-AVE model performance under EEG+Visual and
EEG+Audio embedding strategies, both Pacc and Pf values
also have similar decrease patterns. The Pacc value decreases
from 74.65% to 70.04% for EEG+Visual, and from 69.08% to
65.33% for EEG+Audio. The Pf value declines from 74.61%
to 73.03% for EEG+Visual, and from 73.06% to 71.64% for
EEG+Audio. When non-aggregated groundtruth is used, cross-
comparing MsDANN and MsNN based model performance
under an embedding strategy of EEG+Visual+Audio, it is
found that the decoding performance significantly decreases
from 71.13% to 63.58% (decreased by 10.61%) in terms of
Pacc and from 66.83% to 62.35% (decreased by 6.7%) in
terms of Pf . Similar trends are also observed in the other
embedding strategies. The corresponding detection accuracies
decrease to 60.98% (Pacc) and 59.20% (Pf ) for EEG+Visual
embedding strategy, and to 53.38% (Pacc) and 56.34% (Pf )
for EEG+Audio embedding strategy.

The corresponding affective detection performance of Ms-
DANN and MsNN based EEG-AVE model for arousal is sum-
marized in Table VII. For aggregated groundtruth, MsDANN

based EEG-AVE model outperforms MsNN based EEG-AVE
model across all three different embedding strategies in terms
of both Pacc and Pf . For EEG+Visual+Audio, EEG+Visual
and EEG+Audio embedding strategies, the corresponding im-
provement rates from MsNN to MsDANN are 9.18%, 7.30%
and 4.93% for Pacc, and that are 6.30%, 3.71% and 1.08%
for Pf . For non-aggregated groundtruth, similar patterns are
observed. Better results are achieved when MsDANN based
EEG-AVE model is adopted. Here, the improvement rates for
three different embedding strategies are 14.60%, 14.73% and
10.73% for Pacc and 8.73%, 7.90%, and 2.72% for Pf .

The above results show, comparing to MsNN, MsDANN
is much more powerful in the proposed EEG-AVE model to
deal with the individual differences problem in EEG signal
processing. It provides a reliable and useful way to adaptively
learn the shared emotion-related common and discriminant
feature representation across individuals, and demonstrates the
validity of domain adaptation method in EEG-based affective
detection applications.

D. Performance Evaluation of Multimedia Affective Represen-
tation

In this study, audio-visual information is represented by
deep features characterized from two pretrained networks.
We further verify the effectiveness of the deep feature rep-
resentation and compare with the performance using more
traditional handcrafted features. Inspired from the previous
video affective studies [22], [44]–[46], the commonly used
handcrafted features are extracted and compared here. For
visual information representation, the adopted handcrafted
features include lighting key features, color information and
shadow portions in the HSL and HSV spaces. For audio
information representation, the used traditional audio features
include energy, loudness, spectrum flux, zero crossing rate
(ZCR), Mel-frequency cepstral coefficients (MFCCs), log en-
ergy, and the standard deviations of the above ZCR, MFCC
and log energy. The affective analysis of multimedia content
with different feature representations is conducted and the
corresponding comparison results of valence and arousal are
summarized in Table VIII and Table IX. The results show,
for both valence and arousal, a significant improvement on
affective detection performance is obtained when deep feature
representation is used instead of handcrafted features. It re-
veals that, comparing to the traditional handcrafted feature rep-
resentation, deep feature representation is a better and richer
affective representation for understanding and perceiving the
multimedia content.

VII. CONCLUSION

In this paper, we propose a novel affective detection model
(EEG-AVE) with an embedding protocol, where both EEG
based emotional individual preferences and audio-visual based
intrinsic emotions are incorporated to tackle the individual
differences problem in EEG processing. The multimodal in-
formation are analyzed and compensated to realize efficient
and effective EEG-based affective detection. The experimental
results show that the proposed EEG-AVE model achieves
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TABLE VI: Emotion recognition performance of MsDANN and MsNN based EEG-AVE model with different embedding
strategies using aggregated and non-aggregated groundtruth for valence.

Groundtruth EEG Model EEG+Visual+Audio EEG+Visual EEG+Audio
Pacc Pf Pacc Pf Pacc Pf

Aggregated MsDANN 90.21 90.45 74.65 74.61 69.08 73.06
MsNN 82.00 83.95 70.04 73.03 65.33 71.64

Non-Aggregated MsDANN 71.13 66.83 67.75 61.79 58.57 58.27
MsNN 63.58 62.35 60.98 59.20 53.38 56.34

TABLE VII: Emotion recognition performance of MsDANN and MsNN based EEG-AVE model with different embedding
strategies using aggregated and non-aggregated groundtruth for arousal.

Groundtruth EEG Model EEG+Visual+Audio EEG+Visual EEG+Audio
Pacc Pf Pacc Pf Pacc Pf

Aggregated MsDANN 85.59 86.55 77.28 78.57 68.55 72.20
MsNN 78.39 81.42 72.02 75.76 65.33 71.43

Non-Aggregated MsDANN 66.47 63.25 63.26 59.27 54.91 53.64
MsNN 58.00 58.17 55.14 54.93 49.59 52.22

TABLE VIII: Performance comparison of audio-visual af-
fective representation using aggregated and non-aggregated
groundtruth for valence.

Groundtruth Modality Deep Features Handcrafted Features
Pacc Pf Pacc Pf

Aggregated Visual 73.81 72.31 57.91 57.03
Audio 69.09 71.99 60.83 55.09

Non-Aggregated Visual 67.60 59.06 46.70 35.39
Audio 58.28 56.04 56.42 39.26

TABLE IX: Performance comparison of audio-visual af-
fective representation using aggregated and non-aggregated
groundtruth for arousal.

Groundtruth Modality Deep Features Handcrafted Features
Pacc Pf Pacc Pf

Aggregated Visual 78.52 78.21 70.83 71.52
Audio 69.34 71.51 65.49 70.92

Non-Aggregated Visual 61.35 53.27 54.00 46.86
Audio 53.75 49.60 52.39 53.70

promising affective detection results, comparing to the state-
of-the-art methods. Besides, aiming at characterizing dynamic,
informative, and domain-invariant EEG features across indi-
viduals, we develop a deep neural network with a transfer
learning method (MsDANN) to solve the individual differ-
ences problem in the EEG data processing and investigate
the performance variants with different neural network ar-
chitectures (with or without domain adaptation). Our analysis
demonstrates a superior cross-individual result is achieved un-
der an evaluation of leave-one-individual-out cross-validation
individual-independent method. Furthermore, we utilize two
well-known pretrained CNNs for semantic audio-visual feature
extraction and introduce hypergraph theory to decode deep
visual features, deep auditory features, and deep audio-visual
fusion features for intrinsic emotions estimation. The possi-

bility of affective detection using the multimedia materials is
verified and the benefit of the proposed embedding strategy
is examined. These results show both EEG signals and audio-
visual information play important and helpful roles in affective
detection, and the proposed EEG-AVE model could be applied
to boost the development of affective brain-computer interface
in the real applications.
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