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Abstract  
 
Mutations to the human kinome are known to play causal roles in cancer. The kinome regulates 

numerous cell processes including growth, proliferation, differentiation, and apoptosis. In addition 

to aberrant expression, aberrant alternative splicing of cancer-driver genes is receiving increased 

attention as it could create loss or gain of functional domains, altering a kinase's downstream 

effects. 

 

The present study quantifies changes in gene expression and isoform ratios in the kinome of 

metastatic melanoma cells relative to primary tumors. We contrast 538 total kinases and 3042 

known kinase isoforms between 103 primary tumor and 367 metastatic samples from The Cancer 

Genome Atlas (TCGA). We find strong evidence of differential expression (DE) at the gene level 

in 123 genes (23%). Additionally, of the 468 genes with alternative isoforms, 60 (13%) had 

differential isoform ratios (DIR). Notably, DE and DIR have little correlation; for instance, 

although DE highlights enrichment in receptor tyrosine kinases (RTKs), DIR identifies altered 

splicing in non-receptor tyrosine kinases (nRTKs). Using exon junction mapping, we identify five 

examples of splicing events favored in metastatic samples.  

 

We cluster isoform expression data and identify subgroups that correlate with genomic subtypes 

and anatomic tumor locations. Notably, distinct DE and DIR patterns separate samples with BRAF 

hotspot mutations and (N/K/H)RAS hotspot mutations, the latter of which lacks effective kinase 

inhibitor treatments. DE in RAS mutants concentrates in CMGC kinases (a group including cell 

cycle and splicing regulators) rather than RTKs as in BRAF mutants. Furthermore, isoforms in the 

RAS kinase subgroup show enrichment for cancer-related processes such as angiogenesis and cell 

migration. Our results reveal a new approach to therapeutic target identification and demonstrate 

how different mutational subtypes may respond differently to treatments highlighting possible new 

driver events in cancer.  
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Introduction 
 
Melanoma is the deadliest form of skin cancer, with about 232,100 new cases and 55,500 deaths 

worldwide each year [1]. Although incidence is less than 5% of new cancer cases in the U.S., 

incidence and deaths worldwide continue to rise, especially in the young adult populations [2].  

Stage 1 or 2 disease is easily treated by surgery, where 5-year survival rates are > 90% [1], but if 

not caught early tumors may metastasize to the nearby lymph nodes and then throughout the body. 

Once the disease reaches the brain, median survival time decreases to 5 months [3]. Thus, novel 

systemic treatments for metastatic melanoma are needed. 

 

Kinases have become compelling cancer targets because they contain mutations that produce 

constitutive kinase activation and dysregulate signaling pathways in cancer. Among the 538 known 

kinase genes in humans, there are numerous relevant targets. Specifically, mutations have been 

observed in kinases serving as growth factor receptors [4], cell cycle regulators [5, 6], nuclear 

signaling [7], and apoptosis regulators [8]. In melanomas, BRAF is most commonly mutated, along 

with other kinases including NRAS and NF1. Fleuren et al. identified 23 additional kinases 

harboring driver mutations for melanoma, including the receptor FGFR3 and cell cycle regulator 

CDK4 [9]. Additional targets may remain undiscovered as atypical kinases, which can 

phosphorylate proteins but lack a typical kinase domain.  

 

Along with chemotherapy and immunotherapy, treatments for advanced melanomas also 

incorporate small molecule kinase inhibitors (KI). There are currently 37 FDA approved KIs on 

the market for cancer treatment, with ~150 in clinical trials [10]. Targets of these small molecule 

KIs include BRAF, which occurs in about 50% of melanoma patients [1, 11], and MEK, a 

downstream signaling target of BRAF in the MAPK pathway. Despite initial successes for these 

drugs, limitations remain. For example, half of all BRAF-mutant tumors treated with BRAF 

inhibitors advance within 6–8 months post-treatment [12] whereas other hotspot mutations, such 

as in NRAS, lack effective KI treatments altogether [13]. Complementary targeted approaches in 

the form of immune-checkpoint blockers ipilimumab, pembrolizumab, and nivolumab, have 

recently been shown to significantly improve survival in some patients, even in those with wildtype 

BRAF [14-16]. Although these treatments do not work in the majority of patients [17], combining 

them with KIs may improve survival prospects. Thus while existing drugs show promise for a 
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subset of patients, new targets and combination therapies are in dire need to address treatment-

resistant tumors, and especially those tumors with wildtype BRAF. 

 

There are multiple forms of kinase dysregulation: activating mutations, overexpression, 

underexpression, copy number alterations, repression, and chimeric translocations; but there has 

been much less research into gene isoform distributions, in part due to the difficulty of estimating 

isoform composition from short read RNA sequences [18, 19]. For these data, computational 

approaches are required to estimate isoform counts prompting development of transcript alignment 

algorithms such as RSEM [20], and faster pseudo-alignment algorithms such as kallisto [21]. The 

gold-standard of isoform analysis might eventually be achieved through “3rd generation” long read 

sequencing technologies such as PacBio [22]  and Oxford Nanopore [23], providing more accurate, 

contiguous isoform sequences, although these currently have a high error rate and are costly 

compared to 2nd gen. sequencing [24]. Regardless, long and short read sequencing technologies 

both discern differential isoform composition to address the question of how alterations in 

sequential exon continuity can change functional outcomes.  

 

Although isoform distributions are not widely reported in the literature, there is reason to suspect 

they are altered in cancer tissues. First, alternative splicing is highly abundant under normal 

conditions where up to 94% of human genes undergo alternative splicing [25], and the dominant 

isoform depends on cell type [26]. Second, in various cancers, splicing factors can be mutated or 

mis-regulated [27-31], potentially skewing isoform distributions. Third, somatic DNA mutations 

– abundant in cancer – may occur on splice sites and splice regulators, favoring or suppressing 

splicing events. Kinases are known to undergo alternative splicing events in cancer [18] and these 

are implicated in tumor progression. Examples include MKNK2 in glioblastoma [32]; CD44 in 

breast cancer [33]; and KLF6 in prostate, lung, and ovarian cancers [34]. Splicing induced losses 

or gains of functional or regulatory domains, documented in cancers, altering the functions of 

affected proteins in the cell. Despite these observations, differential isoform usage is an extra level 

of detail not normally analyzed in cancer studies.  

 

Here we propose to detect and demonstrate the biological relevance of isoform alterations in 

metastatic melanoma. Notably, a recent study of the human kinome in prostate cancer found that 
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there was little overlap between genes with differential expression and genes with differential 

splicing [35], suggesting a study of the latter will yield additional therapeutic targets. Despite our 

emphasis on differential isoform expression, we include differential expression of genes (i.e., 

representing a gene locus with a single expression value), to show distinct and relevant findings 

learned from each type of assessment.  

 

In this study, we analyze RNA-seq data from The Cancer Genome Atlas (TCGA) skin cutaneous 

melanoma project (SKCM) to study changes to the kinome of metastatic vs. primary tumor 

melanomas. Important findings include isoforms downregulated in metastatic samples that 

correspond with known and novel suppressors of metastasis and additional subgroupings of 

metastatic samples with narrowly focused therapeutic potential. Our results identify characteristics 

of wildtype BRAF tumors, as well as new subdivisions among BRAF mutant tumors. 

 
 
Methods 
 
Human kinome 

 

We obtained Gene IDs for 538 human kinases from the Human Kinome database [36] at 

http://kinase.com/web/current/kinbase/. Kinases are classified into 10 phylogenetic groups: 

tyrosine kinases (TKs); “Sterile” serine/threonine kinases (STEs); calmodulin-dependent kinases 

(CAMKs); Cdk, MAPK, GSK, and Cdk-like related kinases (CMGCs); protein kinase A, protein 

kinase G, and protein kinase C related kinases (AGCs); tyrosine kinase-like (TKLs); casein kinase 

1 (CK1); receptor guanylate cyclases (RGCs); atypical kinases (aPKs); and “other” typical kinases. 

For our analysis, we further subdivided TKs into receptor tyrosine kinases (RTKs) and non-

receptor tyrosine kinases (nRTKs) due to their distinct functional roles. 

 

TCGA data 

 

We obtained RNA-seq data and kinase gene counts – estimated using HTSeq [37] – from the 

National Cancer Institute (NCI)’s Genomic Data Commons (GDC) portal for TCGA’s skin 

cutaneous melanoma (SKCM) project. This included data from 472 samples gathered from 468 
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patients: 367 samples for metastatic tumors, 103 for primary tumors, 1 for an additional metastatic 

tumor from the same patient, and 1 for solid normal tissue. The latter two samples were not used 

in our analysis. 

 

The data was processed in 14 batches, with the largest batch (labeled “A18”) having 218 of the 

samples in three plates. The remaining batches had 10-48 samples in a single plate each. 

 
Isoform quantification 
 

For the purpose of quantifying the abundance of isoforms in the human kinome, we used the 

kallisto (v0.45.0) package [21] in conjunction with the transcript sequences of protein coding genes 

in the Gencode (release 29) annotation of the human genome. We first constructed the kallisto 

index file using the 98,913 FASTA sequences of transcript isoforms of human protein coding

 genes included in the Gencode annotation

(ftp://ftp.ebi.ac.uk/pub/databases/gencode/Gencode_human/release_29/gencode.v29.pc_transcrip

ts.fa.gz; accessed March 15, 2019). FASTQ-formatted RNA-Seq reads (48-bp, paired-end) for 

each TCGA SKCM sample were produced from the bam files obtained from the Genomics Data 

Commons Data Portal. In order to avoid biases in kallisto estimates of fragment lengths, for each 

sample we produced FASTQ files in which the order of the reads was randomized. We then used 

these randomized reads to perform the kallisto “quant” analysis, from which we obtained the 

transcripts per million (tpm) estimates of each isoform abundance. 

 
Sample quality control 
 
3’ bias for each sample was estimated using the QoRTs package [38]. For sample purity, we used 

the consensus purity estimate from Aran et al. [39]. Samples with purity < 70% were removed to 

create our “high purity” sample set. Samples with a QoRTs 3’ bias score > 0.55 (see ref [38] for 

Methods) were also removed in our “quality controlled” set. After clustering kinase isoform 

expression in metastatic samples, we also classified 83 metastatic samples as having amounts of 

immune infiltrate using k-means clustering with 2 centers (see Clustering of Metastatic Samples 

below). 
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Differential expression (DE) 

 

We tested differential expression of all genes between primary tumor and metastatic samples using 

the DESeq2 toolbox for R [40] with two models: “sample type” and “sample type + batch” to 

account for batch effects.  

 

Genomic subtypes for 56 primary tumor and 260 metastatic samples were obtained from Akbani 

et al. [11]. They included BRAF hotspot mutants (47%), RAS [N/H/K] hotspot mutants (29%), NF1 

mutants (9%), and Triple Wildtype (15%). The remaining 156 samples were added after the study 

and had no genomic subtype information. 

 

Calculations for differential isoform ratios (DIR) 

 

Transcript isoform counts for the TCGA samples were estimated from RNA-seq data with kallisto 

[21], using isoform information for protein coding loci provided by Gencode v.29 transcriptome 

annotation. In total, there were 3,042 protein coding isoforms for the human kinome. Isoform 

counts (in transcripts-per-million or TPM) for each gene were grouped as a vector, and the vector 

was normalized to sum to 1. One vector per sample was made, ignoring samples with zero counts 

for all isoforms.  

 

We used two models to test for differential isoform ratios. The first was a permutation method 

utilizing linear discrimination analysis (LDA). LDA was performed to reduce the space of isoform 

vectors to the 1D line which best separates sample types, and the LDA statistic  

 

(𝜇!" − 𝜇#$%)&

𝜎!"& + 𝜎#$%&  

 

was calculated. The sample labels were then randomized niter times and the statistic recalculated to 

create a null distribution, from which the p-value was found. This method had the benefit of 

producing a single p-value without assumptions, but could only find p-values as low as 1/niter. 
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In the second model principal component analysis (PCA) was performed on the space of 

normalized isoform vectors, providing us with “n-1” components for “n” isoforms. PCs with zero 

variance were removed. We tested the difference in isoform coordinates between sample types 

along each PC using one of three different statistical tests (see below) and combined the p-values 

using Fisher’s method. For both models, p-values were adjusted using Benjamini-Hochberg FDR 

adjustment. 

 

Comparison of statistical tests 

 

Given that the permutation test becomes computationally prohibitive for large datasets and high 

precision, we attempted to find a statistical test that could reproduced the results obtained through 

permutations. We used three different tests along the principal components of the space of isoform 

vectors: the Wilcoxon rank sum test, Welch’s t-test, and the general independence test from R’s 

conditional inference (coin) package [41]. We combined the p-values from each principal 

component with both Fisher’s method (FM) and the asymptotically exact harmonic mean (HMP) 

from DJ Wilson [42]. This resulted in six sets of p-values which we compared to the permutation 

test results. 

 

We found that the t-test combined with Fisher’s method gave the best correlation between p-values 

(r = 0.92) and ranks (ρ = 0.92), while the coin test combined with HMP gave the best correlation 

between the logarithm of p-values (r = 0.89). However, total correlation may be of less interest 

than the sensitivity and specificity of the tests. We calculated Youden’s J statistic (sensitivity + 

specificity – 1) at three significance levels: p = 0.05, 0.01, and 0.001. The t-test combined with 

Fisher’s method performed best at all three levels, with J = 0.79, 0.80, and 0.80 respectively, 

followed by the coin test with Fisher’s method. The geometric mean of these two tests 𝑝'$( =

)𝑝%)%$*%𝑝+,-' performed better, with J = 0.80, 0.84, and 0.86 respectively, and also increased all 

three correlations. We thus adopted this test for scaling up the number of genes. The Wilcoxon test 

performed poorly due to difficulties handling ties in the data. 
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Clustering of metastatic samples 

 

A quasi-Poisson generalized linear model (GLM) was used to test each individual metastatic 

sample vs. all primary tumor samples for each protein-coding isoform – using TPM counts from 

kallisto – resulting into a 3,042 x 367 matrix of p-values. Before clustering the data was digitized, 

setting all p < 0.05 to +1 for isoforms with increased expression, all p < 0.20 to -1 for isoforms 

with decreased expression, and all other entries to 0. The reason we used such a liberal p-value for 

negative change is because most count data follow a Poisson-like distribution with a low median, 

which makes decreased expression for individual samples unlikely to test as significant. For 

example, isoform SLK-202 tests as highly significant for decreased expression (p = 3.4e-9) for all 

metastatic vs. primary tumor samples but only tests as significant (p = 0.0014 and 0.038) for two 

individual samples. 

 

After digitizing, we applied k-means clustering to the data matrix, using the elbow method to find 

an appropriate number of clusters. Enrichment for tumor region, mutation subtype [11], batch ID, 

and kinase phylogenetic group in each cluster were tested using Fisher’s exact test.  

 

Gene biological process and kinase group enrichment 

 

1,572 biological process (BP) annotations were downloaded from the PANTHER database at 

geneontology.org. Genes were ranked by p-values (for DE or DIR) and significant genes tested for 

enrichment using the one-sided Fisher’s exact test (i.e. hypergeometric test), using the remaining 

kinase genes as the background. We found that enrichments could differ drastically depending on 

the p-value threshold chosen for significance, so we searched for BP enrichment at multiple 

thresholds. Additionally, testing for DE or DIR with small sample sizes produced less extreme p-

values than testing with large sample sizes, resulting in comparing >300 significant genes from 

one set of results (more than half the kinome) to <10 genes in another set of results. So we tested 

four percentile-based thresholds – the top 5%, 10%, 20% and 40% of all genes with a p-value – to 

obtain a comparable set of enrichments between sample sets. Results described are for the top 5% 

of genes unless noted otherwise.   
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We did not adjust p-values for the biological processes for several reasons. Having discovered a 

set of significant genes, our question was what functional purpose do these genes serve? Some 

annotations, such as “protein kinase”, will never test as significant because all the genes in our 

background and foreground are kinases, making the expected false discovery rate lower than 

assumed in Benjamini-Hochberg (BH) correction. Furthermore, GO terms are highly dependent, 

making common adjustment methods such as BH inappropriate. Finally, GO terms do not account 

for individual isoform activities, thus do not address our underlying question. 

 

We did calculate an empirical false discovery rate (see Supplemental Results, Empirical FDR) 

merely to compare our enrichment results to those of a randomly selected set of “significant” 

genes. 

 

Kinase phylogenetic group enrichment (see “Human kinome” above) was calculated in the same 

manner using percentile thresholds, with p-values unadjusted.  

 

Split-read alignment mapping 

 

To evaluate changes in the relative abundance of isoform using an alternative method, we 

quantified the relative abundance of split reads specifically associated with the isoform of interest. 

For this purpose, we aligned the RNA-Seq reads using STAR against the hg19 version of the 

human genome assembly. We used the QoRTs package [38] to quantify split read support for 

splice junctions. For cases of alternative promoters, we compared the relative abundance of split 

reads supporting a common exon junction with alternative upstream exons. In cases of isoforms 

differentiated by a skipped exon, we considered the reads supporting the junction skipping the 

exon, and the average number of reads supporting the two junctions of the alternatively spliced 

exon. The relative abundance was expressed as a fraction of reads specifically supporting one 

isoform out of the total number of reads supporting both isoforms. The difference in the relative 

abundance was compared between primary tumor and metastatic samples using a one-sided 

Wilcoxon rank sum test, guided by the expectation set by the output from the kallisto tool. 
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SLK experiment 
We transiently overexpressed short-length SLK (SLK-201), and full-length SLK (SLK-202) in the 

metastatic melanoma cell line A375 (ATCC, Manassas, VA). Short-length SLK and full-length 

SLK were cloned into the GFP fusion expression vector, p-RECEIVER-M98 (Genecopoeia,  

Rockville, MD). A375 cells were grown in RPMI Medium 1640 with 10% FPS and 1x Antibiotic-

Antimycotic (Gibco, Gaithersburg, MD). A375 cells were transfected with lipofectamine 2000 

(Invitrogen, Carlsbad, CA). The cells were stained with Aqua LIVE/DEAD™ (Invitrogen, 

Carlsbad, CA) and analyzed by FACS at 24h, 48h, and 72h time points. We analyzed percent 

change in GFP in live cells over time for the empty vector-GFP, short-length SLK-201-GFP, and 

full-length SLK-202-GFP. The differential percent change in GFP in the SLK constructs compared 

to the empty vector control was used to measure isoform specific cell death. 

 
Results 
 
We analyzed the 538 kinase genes comprising the human kinome, for changes in total mRNA 

expression and 3042 isoforms for altered isoform expression, between metastatic and primary 

tumors. Using computational tools HTSeq [37] and kallisto [21] with short read sequences, we 

implemented the data analysis workflow depicted in Figure 1.  We included quality control 

measures to ensure transcript integrity and control for tumor purity. Along with differential 

expression defined at the gene level and differential isoform ratios calculated within each locus,  

we performed a clustering analysis to identify pathway, mutational and functional characteristics 

that define each subgroup. 

 

 
Figure 1: Data analysis workflow 

TCGA Skin Cutaneous 
Melanoma (SKCM) RNA-
seq data

• 103 primary tumors 
• 368 metastatic samples 
• 470 patients

Gene counts 
from HTSeq

Test differential expression 
with DESeq2 R package 

Isoform counts 
from kallisto

Test for differential isoform 
ratios (Permutation test)  

Cluster isoform expression 
for metastatic samples

Remove low 
purity samples

Remove low 
purity and 
high fragment 
bias samples
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Sample demographics 
 
Primary (n = 103) and metastatic (n = 367) tumors were obtained from the TCGA skin cutaneous 

melanoma project (SKCM) (Table 1). Primary tumors originated in a number of locations 

including arms or legs, trunk, head or neck, or other areas, such as armpit, genitalia, etc. Metastatic 

locations included regional cutaneous or subcutaneous tissue, regional lymph nodes, distant 

metastases, and unclassified metastases. Samples were skewed towards males, and mostly derived 

from white individuals. Patient age at time of diagnosis ranged from 15 to 90, with a median of 

58-years-old.  

 
Table 1: Sample Demographics 

Sample 
details 

Variables Sample numbers 

type - Normal 
tissue 

Primary Metastatic 

number - 1 103 367 
tumor origin arms or legs - 41 153 

trunk 1 48 125 
head or neck - 8 30 
other (armpit, genitalia, etc.) - 4 9 
unknown - 2 50 

metastatic 
location 

regional cutaneous or 
subcutaneous tissue - - 74 

regional lymph nodes - - 221 
distant metastases - - 68 
unclassified metastases - - 4 

genomic 
subtype 

BRAF hotspot mutation - 32 118 
RAS hotspot mutation - 11 81 
NF1 any mutation - 5 23 
triple wildtype - 8 38 
not available - 47 107 

sex male 1 61 230 
female - 42 137 

age (median) - 51 65 56 
race white  1 94 353 

Asian - 7 5 
non-white Hispanic - 1 2 
black - 0 1 
unknown - 1 6 

# of batches  1 14 14 
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Differential expression (DE) dominated by receptor tyrosine kinases 
 
We first tested differential expression at the gene level. Out of 538 kinase genes, 281 (52%) had 

significant DE (padj < 0.05) between all primary tumor and all metastatic samples (Table S1). The 

top groups, ranked by p-value, included both non-receptor (nRTKs) and receptor tyrosine kinases 

(RTKs) (Figure 2). We looked for biological process enrichment in the top 5% and 10% of genes, 

and found strong enrichment for immune cell activation (both innate and adaptive). Clustering 

analysis (see Methods) revealed these genes have strongly correlated expression, suggesting their 

high expression results from immune infiltrate in the metastatic samples, i.e. immune cells 

attacking tumor cells. Using this approach, we identified 83 metastatic samples with high amounts 

of putative immune infiltrate (see Methods), which we removed before rerunning the DESeq2 

analysis. This action removed the enrichment for nRTKs, whereas RTK enrichment remained 

(Figure 2B). We next addressed the impact of impure tumor samples, as measured by the consensus 

purity estimate developed in Aran et al. [39]. When 168 samples with < 70% estimated purity were 

removed from the original set, which included 80 of the 83 immune infiltrate samples, again we 

saw enrichment for nRTKs disappear whereas RTKs remained significant (Figure 2C). We named 

this filtered group the “high purity” (HP) group. In both assessments, enrichment for RTKs 

remained significant when assessed as subsets of the top 5% to ~ 20% of genes. There was also a 

lesser enrichment for the STE kinase group (p = 0.031 at 20% threshold; Figure 2C), which 

contains kinases upstream of MAPK signaling cascades. When only the high purity (HP) samples 

were compared we found 197 significant genes including 26 of the 57 RTKs (Table S2). Of these 

26, 11 are known to be trafficked to the nuclear membrane [43]: FGFR1/3, FLT1, ERBB4, INSR, 

TIE1, CSF1R, EGFR, IGF1R, MET, and KDR. Absolute fold-changes for significant genes ranged 

from 0.503 (KSR) to 11.7 (NRK).  

 

Next we examined differential gene expression when the HP primary tumor and metastatic samples 

were subdivided into their particular genomic subtypes (BRAF, RAS, Triple Wildtype and NF1) 

(Table S3). Although this approach reduced sample size for each significance test (Table 3), a 

similar enrichment pattern emerged. For example, the DE genes for the BRAF hotspot mutants, 

NF1 mutants, and Triple Wildtype samples were all enriched for RTKs (odds ratios = 4.0, 6.9, and 

3.2 respectively at 5% threshold; Figure 2D). The deviant result was the case of the RAS hotspot 
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mutants, where DE was dominated not by RTKs but by CMGC kinases (odds = 4.1, Figure 2E). 

This group contains both cyclin-dependent kinases – which regulate the cell cycle – and 

downstream MAP-kinases – which regulate gene expression – as well as kinases directly involved 

in splicing regulation (i.e., serine arginine protein kinases). Although RTKs (particularly Ephrin 

receptors; i.e., EPHA) remain significantly altered in the RAS mutants, this result suggests a 

distinct set of alterations are necessary for RAS hotspot mutants to become metastatic. 

 

 
Figure 2: Kinase group enrichment for differential expression of primary and metastatic 
tumors differs by sample set. Depicted are the odds ratios for each kinase group in the top 5%, 
10%, 20%, and 40% of kinase genes, ranked by p-value. This indicates that the strongest DE 
enrichment is concentrated in nRTKs for all 470 samples, RTKs for high purity and BRAF mutant 
samples, and CMGC kinases for RAS mutant samples. Enrichment data collected at the four 
percentile points are independent of p-value; the percent of genes that have significant DE (p<0.05) 
before and after p-value adjustment are shown by the gray and black dotted lines respectively. 
Sample type (primary tumor or metastatic) was the only model variable for the DESeq2 results. 
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(387 samples)
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Mutants 
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Table 2: Differential expression from primary tumor to metastatic samples in receptor 
tyrosine kinases (RTKs) 
 

Gene  
Name 

Base  
Mean 

Fold  
Change 

P-value P-adj Nuclear 
Trafficked [43] 

EPHA1 149.44 -6.13 8.15e-31 1.82e-28  
FGFR3 496.72 -4.58 4.29e-14 3.72e-12    Yes 
LMTK3 84.69 -2.99 4.87e-10 2.97e-08  
EPHA3 671.47 3.20 7.27e-09 3.77e-07    Yes 
EPHB6 392.00 -2.79 1.31e-07 5.62e-06  
FLT1 1539.25 1.57 4.10e-06 1.24e-04  
MERTK 993.10 1.86 2.16e-05 5.06e-04  
ROR1 409.93 1.75 4.58e-05 9.44e-04  
FGFR2 232.15 -2.54 6.50e-05 1.25e-03    Yes 
EGFR 731.80 -1.95 3.58e-04 4.76e-03    Yes 
EPHA2 3375.91 -1.56 1.74e-03 0.0156  
TIE1 895.76 1.42 3.63e-03 0.0267    Yes 
EPHA6 16.09 2.24 5.71e-03 0.0371  
DDR2 6622.61 1.36 6.66e-03 0.0416  
RYK 2858.81 1.17 8.31e-03 0.0484    Yes 
INSR 2475.26 1.25 8.60e-03 0.0495    Yes 

Results are between high purity (>70%) primary and metastatic tumors using sample 
type and batch ID as model variables. Only RTKs with padj < 0.05 are shown. 
Negative fold change indicates decreased expression in metastatic samples 

 
 
Influence of sample batches on differential gene expression 
 
Because not all the samples in the TCGA data set came from the same batch, we also ran DESeq2 

using both sample type and batch ID as model variables. This approach increased p-values, 

decreasing the number of significant genes. However, 123 kinase genes remained significant at the 

padj < 0.05 level, including 16 RTKs (Table 2), compared to 197 total genes when only the sample 

type was the variable. Gene ranking was not substantially altered (Spearman correlation r = 0.81) 

and enrichment trends were similar to our prior results for all genomic subtypes (BRAF, RAS, 

Triple WT), with the exception of the NF1 mutant samples. These could not be assessed due to the 

small sample size (2 primary and 11 metastatic tumors), where the primary tumors and metastatic 

samples were not from the same batch. Excepting this subtype, for the remaining analyses we 

included batch ID as a model variable. 
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Biological process (BP) enrichment differs by genomic subtype 
 
In addition to the kinase group enrichment, for each set of results (i.e., all samples, high purity, 

BRAF mutants, etc.) we looked for BP enrichment among significant genes, as a hypothesis-free 

approach to further characterize the metastatic tumors (Table S4). Top genes were highly enriched 

for immune-related annotations when all 470 samples were used, the highest being “adaptive 

immune system” (p = 5.1e-9) (Table 3). These enrichments nearly disappeared when samples with 

< 70% purity were removed. Surprisingly, when only analyzing HP samples BP annotations were 

depleted, with only four annotations receiving a p-value below 0.05. “Ephrin receptor signaling 

pathway” (p = 0.033); e.g. EPHA, which generates contact-dependent signaling between 

neighboring cells and transduces signal from the cell exterior to the interior through ligand-induced 

activation of the kinase domain; was the only non-immune-related enrichment. Ephrin receptors 

are prototypical RTKs that impact cell shape, adhesion, and movement through activation or 

repression of the Rho GTPase family [44], suggesting an important role in metastatic processes. 

 

This lack of BP enrichments suggests either that DE is widely distributed among a number of cell 

processes, or that enrichment patterns differ by genomic subtype and disappear when lumped 

together. To address this question, we separated the high purity samples into genomic subtypes 

and found support for the latter hypothesis, where division into individual subtypes revealed 

enrichment in distinct processes (Table 3). We observed strong BP enrichment among DE genes 

for samples with BRAF mutations, with the most significant annotation being “cell differentiation” 

(p = 1.3e-4). Neurogenesis and cell projection-related enrichments were also discovered. The DE 

genes for RAS mutants had weaker enrichments, although select examples such as “positive 

regulation of defense response” and “regulation of angiogenesis” are relevant for cancer. The 

ephrin receptor signaling pathway was enriched in both the BRAF (p = 0.008) and RAS (p = 0.035) 

mutants. 

 

The NF1 mutant and Triple WT sets had smaller sample sizes (13 and 28 samples respectively). 

The NF1 mutants were enriched for “regulation of MAPK cascade” (p = 0.0054), “chemotaxis”, 

and “neuron projection guidance” among others. The Triple WT samples – unlike the other 
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genomic subtypes – were enriched for responses to cytokine stimulation, especially interleukin-1 

(p = 0.0053), as well as the inflammatory response and defense response. 

Table 3: Summary of kinase differential expression results.  

Sample Set Sample 
Size 

P<0.051 Padj<0.05 Kinase Group 
Enrichment 

Selected BP Enrichments2 P-value2 

All Samples PT: 103 
Met: 367 

262 genes 202 genes nRTK 
RTK 

-Adaptive immune response 
-Hemopoiesis  
-Innate immune response  

5.1e-9 
1.4e-7 
6.1e-4 

All Samples 
(Purity>0.7) 

PT: 88 
Met: 214 

203 genes 123 genes RTK 
STE 

-Ephrin receptor signaling pathway 0.033 

BRAF 
Hotspot 
Mutation 
(Purity>0.7) 

PT: 27 
Met: 61 

99 genes 27 genes RTK -Cell differentiation  
-Positive reg. of lipase activity 
-Biomineralization  
-Positive reg. of neurogenesis  
-Positive reg. of cell projection 
organization  
-Ephrin receptor signaling pathway  

1.3e-4 
5.2e-4 
5.9e-4 
0.0016 
0.0058 
0.0077 

RAS Hotspot 
Mutation 
(Purity>0.7) 

PT: 9 
Met: 52 

133 genes 36 genes CMGC -Eye morphogenesis 
-Positive reg. of defense response 
-Reg. of angiogenesis  
-Ephrin receptor signaling pathway 

0.0034 
0.017 
0.050 
0.035 

NF1 Any 
Mutation 
(Purity>0.7) 

PT: 2 
Met: 11 

62 genes 12 genes RTK -Reg. of MAPK cascade  
-Eye morphogenesis 
-Chemotaxis 
-Neuron projection guidance 

0.0054 
0.0057 
0.013 
0.014 

Triple 
Wildtype 
(Purity>0.7) 

PT: 8 
Met: 20 

41 genes 9 genes RTK 
CAMK 

-Calcium-mediated signaling 
-Cellular response to cytokine 
stimulus 
-Inflammatory Response 
-Defense Response 

0.0021 
0.0031 
0.0053 
0.013 

 1 Both sample type and batch ID were used as model variables for DESeq2, except for the NF1 subtype where only 
sample type was used 
2 Enrichments are for the top 27 (5%) kinase genes ranked by p-value 

 
 
Kinase genes exhibit differential isoform usage between primary and metastatic tumors 
 
To complement the usual procedure of DE analysis, we next tested whether multi-isoform kinase 

genes exhibit differential isoform ratios (DIR) between primary and metastatic tumors. Per the 

Gencode v.29 annotation, we tested 468 such genes with 3,042 total coding isoforms. We 

measured significance in 317 (68%) via a permutation test (padj < 0.05) when all 470 tumor samples 

were used, more genes than had tested significant for DE. Our complementary PCA test (see 

Methods) found p-values as low as 5.3e-28 for LIMK1. 
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This high level of observed DIR could be an artefact of sample impurity – since different cell types 

might express isoforms in different ratios – or experimental artefacts such as fragment sequence 

bias [45]. Fragment bias results from degraded RNA reads. Because these reads are sequenced 

from the 3’ end following poly(A) enrichment protocols, high levels of degradation results in 

overestimation of 3’ fragment isoforms and underestimation of 5’ fragment isoforms (Figure 

3A,B), although the total gene count estimate is unaffected. 

 

We inspected of the isoform counts and found that genes with the strongest DIR had 3’ fragment 

isoforms, suggesting samples with high 3’ fragment bias could be driving significance. This bias 

was concentrated in the primary tumor samples (two-sided Wilcoxon, p = 1.3e-8) (Figure 3C). We 

also found sample impurity was concentrated in metastatic samples (p = 1.6e-4). Thus, both could 

contribute to the observed levels of significance.  
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Figure 3: Examining data bias in isoform count estimation (A) Isoform examples. (B) Cancer 
cell isoform distributions can be altered by effects of fragment bias and cell type heterogeneity 
(i.e. sample impurity). The bars represent the apparent relative expression level of each isoform, 
with the left bar indicating the true distribution in a cancer cell and the right two bars indicating 
how data bias can skew the results. (C) Primary and metastatic tumor samples assessed for 3’ 
fragment bias using QoRTs, where samples scoring above 0.55 were removed, and sample 
impurity, where samples with < 70% purity were removed. Red bars in the sample purity 
assessment indicate metastatic samples with observed high immune infiltrate. 
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Using the histograms as a guide, we removed samples with less than 70% purity or a QoRTs score 

> 0.55 from further analysis (Figure 3C). This reduced the number of samples to 50 primary tumor 

and 178 metastatic (Table S3), which we deemed the “quality-controlled” (QC) sample set. In this 

stringent QC set, only 60 genes had DIR with padj < 0.05 (Permutation test), and the most 

significant kinase was SLK at p = 7e-6 (Table 4, full list in Table S5). As a post-hoc analysis we 

tested the effects on individual genes by removing samples one-by-one to assess the influence of 

fragment bias or sample impurity. (See Supplemental Results, Figure S1, Figure S2) 

 
 
Table 4: Example genes with significant changes in isoform ratios after 3’ bias and sample 
impurity filtering.   

Gene 
DIR,  
p-value DIR, padj 

Coding 
Isoforms Splicing/isoform changes in metastatic samples 

Significant 
DE? 

SLK 7.00E-06 0.00328 2 Skipping of 13th exon, part of coiled-coil region Yes    ↑ 

TGFBR11 3.40E-05 0.00590 9 Selection for 3rd exon, encodes transmembrane 
domain  

MAP3K3 5.60E-05 0.00590 5 Skipping of 3rd exon, precedes PB1 domain  
COQ8B1 6.80E-05 0.00590 11 Selection for 6th exon, effects on function unknown Yes    ↓ 

ABL1 8.00E-05 0.00590 3 Increase of full-length isoforms, decrease of 5’ 
fragment  

LIMK1 0.000128 0.00750 3 Alternate promoter site. Shortens 1st zinc- binding 
domain.  

PAN31 0.00027 0.0108 2 Selection for 4th exon  
FGFR3 0.00028 0.0108 7 Decrease of all isoforms, equalizing ratios Yes    ↓ 
FES 0.00037 0.0108 9 Skipping of 11th exon, encodes SH2 domain  

UHMK11 0.00067 0.0154 3 Alternate promoter site favoring longer isoform 
with ATP-binding region  

PAK6 0.00081 0.0173 14 Decrease of all isoforms except a middle fragment Yes    ↓ 
BLK 0.00215 0.0273 3 Unequal increase of two major isoforms Yes    ↑  

MKNK2 0.0069 0.0531 8 Alternate splicing at terminal exon, increase of 
isoform without MAPK binding site Yes    ↓ 

1Results supported by kallisto counts but not supported by exon junction read mapping 
 
 
Differential gene expression does not predict differential isoform ratios 
 
Having controlled for fragment bias and impurity, we asked whether genes with differential 

expression between primary and metastatic tumors were also likely to exhibit DIR. We compared 

the p-values for DIR from the QC set to the p-values for DE from the high purity set. Genes with 

padj < 0.05 had non-significant overlap (Fisher’s exact test, p = 0.310), with only 15 genes 

overlapping (Figure 4). Gene rank (by p-value) had no correlation (Spearman, r = 0.038).  The 

gene MAP3K3, for example, had the third highest level of DIR (p = 5.6e-5) but no observed change 
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in expression (p = 0.77, rank 487). Interestingly, genes with significant DIR were enriched for 

nRTKs (Figure 5A) but not RTKs, the opposite of what we observed for DE genes. Thus DE and 

DIR concentrate in different genes. 

 

We separated the QC samples into genomic subtypes, as we did for the DE analysis, and calculated 

DIR for each subset. Due to the small sample sizes, few genes tested as significant with our 

permutation test. For example, the BRAF mutants revealed only four genes with padj  < 0.05 (SLK, 

MOK, ABL2, and SYK) while the other 3 subtypes revealed no significant genes after p-value 

adjustment  (summarized in Table 5). As seen for the full sample set, no ranked gene list for any 

DIR sample group correlated with its DE counterpart.  

 

 
Figure 4: DE does not overlap with DIR. Significance in one does not predict significance in the 
other (One-sided Fisher’s exact test, p = 0.091 (left) and 0.310 (right) Compared are results using 
high purity samples for DE (model ~ sample type + batch ID) and quality-controlled samples for 
DIR. Compared are the 468 kinase genes with >1 coding isoform.  
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Table 5: Summary of kinase differential isoform ratio results.  

Sample Set1 Sample Size P<0.05 Padj<0.05 
Kinase 
Group 

Enrichment 
Selected BP Enrichments2 P-value 

All Samples PT: 103 
Met: 367 

330 genes 317 genes None -Response to amino acid starvation 
-Cytoskeletal organization 
-Positive reg. of lipid kinase activity 
-Response to fibroblast growth factor 
-Blood vessel development3 

3.3e-4 
4.5e-4 
0.0021 
0.0057 
8.7e-4  

Quality 
Controlled 

PT: 50 
Met: 178 

154 genes 60 genes nRTK -Reg. of endocytosis  
-Endothelial cell migration 
-Cell differentiation 
-Positive reg. of stress fiber assembly 
-Cytoskeletal organization 

3.4e-4 
0.0037 
0.0050 
0.0057 
0.0084 

BRAF 
Hotspot 
Mutation 
(QC) 

PT: 17 
Met: 52 

57 genes 4 genes nRTK -Regulation of protein acetylation 
-B cell receptor signaling pathway 
-Reg. of cell motility 

0.0084 
0.012 
0.031 

RAS Hotspot 
Mutation 
(QC) 

PT: 6 
Met: 50 

29 genes 0 genes None -Positive reg. of angiogenesis 
-Cellular response to VEGF 
-Chemotaxis 

1.6e-4 
0.0020 
0.0075 

Triple 
Wildtype 
(QC) 

PT: 6 
Met: 16 

40 genes 0 genes None -Reg. of gene expression 
-Reg. of RNA splicing 
-Chromatin organization 

0.0065 
0.015 
0.023 

1 Subgroups are comparable to Table 3, except the NF1 mutant set, which had too few samples (1 primary tumor, 11 
metastatic) for reasonable analysis.  
2 Enrichments are for the top 24 (5%) kinase genes with >1 coding isoform ranked by p-value 
3 Blood vessel development is concentrated in the top 47 (10%) genes            

 
 
DIR affects different biological processes than seen for DE 
 
Because many unadjusted p-values were significant for DIR we elected to search for gene ontology 

(GO) enrichments. For each sample set, we searched for biological process (BP) enrichment in the 

top genes (ranked by p-value) using percentile thresholds from 5% - 40% (see Methods).  

Enrichments are described for the top 5% (24) genes unless noted otherwise. 

 

For comparative purposes, we examined the full sample set first without filtering, which contained 

low purity and high fragment bias samples, we revealed 221 BP terms with p < 0.05 and 10 

additional terms with p<0.001. The most significant terms included “positive regulation of 

translation” (p = 1.5e-4), “cytoskeletal organization”, “response to amino acid starvation”, and 

“blood vessel development” (Table 5). Immune-related enrichments were strongest at the 40% 
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threshold, indicating putative immune infiltrate may affect DIR results, but the most significant 

genes were not immune-related. 

 

The QC set had fewer BP enrichments than the full sample set (Table 5). These enrichments 

included “regulation of endocytosis” (p = 3.5e-4) “cytoskeletal organization”, “Endothelial cell 

migration”, “cell differentiation”, and “cell cycle arrest” (Figure 5B), all of which have a putative 

relevance to cancer.  

 

The genomic subtype sets revealed distinct BP enrichments – as they did when testing DE genes. 

In contrast to the DE genes, the DIR genes between BRAF mutant primary and metastatic tumors 

did not show strong BP enrichments, while the DIR genes between RAS mutant samples showed 

enrichment for 94 BPs. The strongest of these was “positive regulation of angiogenesis” (p = 1.6e-

4) and related enrichments such as “vasculature development”. Other enrichments included “cell-

cell communication”, “protein transport”, and “membrane organization” (Figure 5C). Such 

enrichment patterns would not be discovered if DE alone was studied. In contrast, significant genes 

from the BRAF mutants had 27 processes enriched below p = 0.05 – these included 6 cell 

locomotion-related enrichments – and none below p = 0.008.  
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Figure 5: Genes with significant DIR display unique BP enrichment patterns. (A) DIR genes 
are enriched for non-receptor tyrosine kinases in the QC set, whereas there was no kinase group 
enrichment in the full sample set. The black dotted line indicates the percent of genes with padj < 
0.05, and the gray dotted line the percent of genes with unadjusted p < 0.05 (B) Select biological 
process enrichments for the QC set. Note that significance is plotted (-log10p), not odds ratios, and 
the horizontal dotted line indicates p = 0.05. (C) When using the QC RAS hotspot mutant samples 
only, DIR genes were highly enriched for angiogenesis and related annotations. 

 
 
Resolving alternative splicing events in kinase genes 
 
Focusing on DIR with discrete splicing changes, we identified skipped exons, alternative 

promoters, and alternative terminal exons (Table 4). For example, ABL1 has two long isoforms 

(ABL1-201 and -202), which differ only in their promoter site, that have increased expression in 

metastatic samples. An additional isoform (ABL1-203) encodes a shorter 5’ fragment, which 

decreases in expression. However, ABL1 does not test as significant in DE between primary and 

Kinase Group (QC set)

Biological Process (QC set)

Biological Process 
(QC RAS Hotspot mutants)

A

B

C
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metastatic samples, indicating that the DIR analysis can reveal aberrations that differential gene 

expression does not capture.  

 

To test the kallisto DIR data for evidence of splicing differences, we directly mapped RNA-seq 

reads to the nucleotide sequences of exon junctions in several genes from Table 4. This provides 

a resolved view of exon splicing patterns in the samples which did not rely on kallisto (see 

Methods). Within the melanoma sequence data, we confirmed exon skipping in three genes – 

MAP3K3 (exon 3), FES (exon 11) (Figure 6A,B) and SLK (exon 13) (Figure 7). We also confirmed 

switching to an alternate terminal exon in MKNK2 (Figure 6C) and increased use of an alternative 

promoter in LIMK1 (Figure 6D). We illustrate the fraction of split reads, out of all reads, supporting 

these events.  

 

In SLK, the most significant gene on our list, expression of the long isoform SLK-202 is decreased, 

whereas the short isoform SLK-201 increases (Figure 7). The short isoform skips exon 13 

predicting a putative role for loss of this exon in cancer. We compared expression of this alternative 

exon in normal melanocytes using RNA-seq data from Zhang et al. [46]. Exon 13 was absent in 

the normal cells, and largely specific to primary tumor samples.  

 

Some genes have DIR which coincides with significant DE. For example, 6 of the 7 coding 

isoforms of FGFR3 are suppressed in metastatic samples (Figure S3), while the remaining isoform 

-205 has mildly increased expression, altering isoform ratios. PAK6, with 14 isoforms, undergoes 

a similar alteration. In BLK, DIR of 3 isoforms is driven by an unequal increase of 2 major 

isoforms, rather than all 3.  
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Figure 6: Alternative splicing in MAP3K3, FES, MKNK2, and LIMK1 in primary and 
metastatic samples. Shown for each gene are box plots for fraction of split reads aligned to exon 
junctions in primary tumor and metastatic samples.  (E) Maps of each isoform identify the 
differential exon. 

 

 
Figure 7: Alternative splicing in SLK (A) The two coding isoforms of SLK, which only differ in 
the presence or absence of exon 13. (B) Mapped read counts from one primary tumor and one 
metastatic sample. In the metastatic sample, no reads are mapped to exon 13, indicating that 
isoform SLK-202 is not present. (C) Box and scatter plots for the two isoforms of SLK. Also shown 
in the scatter plot are the normal melanocyte samples from Zhang et al. [46].  
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To address the functional consequences and biological implications of isoform switching, we 

matched the alternatively spliced regions in these five genes to domain annotations obtained from 

UniProt (Table 4). The skipped exon in SLK encodes a section of a coiled-coil region in the C-

terminal domain. SLK uses this domain to dimerize at high concentrations, and these dimers 

activate apoptosis [47]. MKNK2 switches to a shortened terminal exon which lacks the MAPK 

binding site, interfering with downstream signaling. The 11th exon of FES encodes the SH2 

domain, which is necessary to activate the kinase domain [48]. The 3rd exon of MAP3K3 is not 

mapped to any domain, but it precedes the PB1 protein-interaction domain. These data indicate 

that the isoform changes modulate the usage of important domains in the kinases, which can 

ultimately affect their function and participation in signaling networks. Finally, the alternative 

promoter of LIMK1 utilized in some metastatic samples shortens the first zinc-binding domain, a 

domain that inhibit the protein’s kinase activity [49]. 

 
SLK experiment 
 
We wished to see if overexpression of the two SLK isoforms could produce cell death in metastatic 

melanoma. We hypothesized that expression of the full-length isoform (SLK-202) would produce 

more cell death compared to the short-length isoform (SLK-201) due to the lack of a dimerization 

domain (coiled-coil region) in the shorter isoform (Figure S6A). In this experiment, short-length 

and full-length SLK were cloned into the GFP fusion expression vector, p-RECEIVER-M98. We 

transiently transfected A375 metastatic melanoma cells with short-length SLK-GFP, full-length 

SLK-GFP, and empty vector-GFP. Cells were analyzed by FACS at 24h, 48h, and 72h post 

transfection. We analyzed change in percent GFP in live cells over time (Figure S6B).  

 

We observed a large decrease in change of percent GFP in both SLK isoforms compared to the 

control indicating that both isoforms cause cell death in metastatic melanoma (Figure S6C). This 

suggests that the cell death pathway is still functional in metastatic melanoma, making SLK a 

candidate cancer therapeutic. No significant difference in cell death was observed between short-

length SLK and full-length SLK (Figure S6C). The lack of differential cell death between isoforms 

may be due to the fact that both isoforms were expressed at concentrations higher than the 

biological norm. Short-length SLK retains other coiled-coil regions and may still dimerize at high 

concentrations. To see a difference in cell death between isoforms, these proteins may need to be 
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expressed at biologically relevant concentrations in SLK-/- A375 cells and over a longer time 

period to facilitate dimerization. 

 
Clustering on DIR identifies correlations with genomic subtype and tumor location 
 

 
Figure 8: Heatmap of 367 metastatic samples clustered according to kinase isoform counts. 
Red dots indicate increased expression in metastases (Quasi-Poisson GLM, p < 0.05) while blue 
dots indicate decreased expression (p < 0.2). Shown are the 367 metastatic samples (columns) and 
235 isoforms that were altered in > 13% of samples (rows). P-values for enrichments were 
calculated using the one-sided Fisher’s exact test. 
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To identify similarities in metastatic samples based on isoform expression patterns, we clustered 

the samples (columns in Figure 8). Rather than clustering raw expression data, we determined 

which of the kinase isoforms was significantly upregulated or downregulated in each of the 367 

metastatic samples (see Methods) relative to all primary tumor samples. This allowed us to address 

the simpler question of which isoforms are altered in which samples. To identify correlated 

patterns of upregulation or downregulation we also clustered the isoforms (rows in Figure 8). 

 

Of the 3,042 protein coding kinase isoforms, 235 had significant altered expression in > 13% of 

metastatic tumor samples. Clustering this reduced dataset with the k-means elbow method 

identified 4 sample clusters and 4 isoform groups (Figure S4). However, we found that using k-

means with 5 isoform groups strengthened certain BP enrichment patterns. These 5x4 clusters are 

depicted in Figure 8. For each sample cluster, we tested enrichment for batch ID, region (skin/soft 

tissue, lymph node, and distant metastasis), and genomic subtype. 

 

Notable enrichments in Cluster A (n = 55 samples) include the tissue location of skin/soft tissue 

cluster and BRAF hotspot mutations. Cluster B (n = 69 samples), was identified as a lymph node 

cluster with mild enrichment in Triple WT samples. Distant metastases were depleted in both A 

and B clusters. Cluster C (n = 60 samples) had no region enrichment but was strongly enriched for 

RAS hotspot mutations (Fisher’s exact test, p = 4.4e-4, odds = 2.9). Cluster D (n = 183 samples) 

stood out as a low expression cluster, which had expression largely similar to the primary tumor 

samples, with little upregulation of isoforms compared to other groups. Moreover, decreased 

expression of isoforms (shown in blue) occurred in many samples. This cluster was enriched for 

distant metastases. 

 

The batch ID enrichment analysis identified batch A18 in Cluster C, suggesting batch effects could 

have influenced our results. To address this issue, we clustered only the 199 metastatic samples 

(54% of all such samples) in batch A18 (Figure S5), originally found in groups A-D. We found 

four clusters comparable to the four described above, and Cluster 3 was still significantly enriched 

for RAS hotspot mutants (p = 0.032, odds = 2.1). Clustering all samples not in A18, originally 

present in groups A-D, also revealed 4 clusters and though genomic  
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subtype was not available for most of these samples, Cluster C still had the highest enrichment for 

RAS mutants (p = 0.16, odds = 2.3). Thus, the RAS group enrichment appears to be independent of 

the batch. Cluster D in our main heatmap was enriched for batch A37, a smaller batch (n = 41 

samples), considerably smaller than the cluster it was in.  

 

We also compared the level of 3’ bias and sample impurity in each cluster and found that Cluster 

B had low purity (median 42%) compared to the other three (median of 72%, 80%, and 79% 

respectively). Median 3’ bias did not differ noticeably, although Cluster C had a lowest mean bias 

(0.517, QoRTs score), indicating higher quality samples. Taken together, these data suggest that 

metastatic samples have characteristic subgroups related to tumor location and genomic subtype, 

where isoform expression patterns may help to identify the most similar samples to test as 

treatment subgroups. 

 
 
Isoform groups correlate with biological process annotations 
 
We performed a similar analysis on the five isoform groups (i.e., rows), looking for kinase 

phylogenetic group and BP enrichments compared to the total human kinome. Group 1 was 

enriched for genes involved in blood vessel morphogenesis (p = 3.6e-6) and related annotations, 

as well as MAPK regulation. These isoforms are upregulated in Clusters A and B. Since these 

genes are active in the skin/soft tissue sample cluster and regional lymph nodes, the isoforms may 

be important in the first transition from primary tumor to metastatic melanoma. This group is also 

enriched for RTKs. 

 

Group 2 was strongly enriched for nRTKs and contained genes in the category of immune 

response, for example, used by leukocytes such as T-cells and B-cells (p = 5.2e-11). These 

isoforms are consistently upregulated in Cluster B. Due to their highly correlated expression and 

the low estimated purity of the Cluster B samples (median 42%), this group likely arises from 

immune cells infiltrating the tumor, consistent with previous findings from Akbani et al. [11]. 

Cluster B is also enriched for samples taken from lymph nodes, a prime location for immune cells 

to interact with the tumor. 

 



 31 

Group 3 was enriched for kinases that regulate cell motility (p = 0.0081). No phylogenetic kinase 

group enrichments were found, although this group had weak CMGC enrichment compared to the 

other four groups in Figure 8. These isoforms had the highest expression in Cluster C, containing 

RAS hotspot mutant samples and distant metastases. We note a strong pattern of exclusivity for 

Group 3 isoforms with the immune infiltrate cluster of Group 2 isoforms, suggesting a novel means 

of stratifying samples for clinical testing.  

 

Group 4 was enriched for kinases which positively regulate apoptosis (p = 0.010) and cell 

differentiation (p = 0.0045), and for STE kinases. These isoforms were upregulated in Clusters A 

and C. This group contains two isoforms of CDK19, a gene implicated in cancer proliferation (a 

third isoform, CDK19-203, lacks the seventh exon and decreases in metastatic samples). The 

function of these isoforms in apoptosis is not explored, on one hand apoptotic processes may occur 

spontaneously in cancer due to cellular stress and DNA damage [50], on the other hand alternate 

splicing can modulate pro- and anti-apoptotic functions in the same gene, like BCLX [51]. Samples 

with high levels of immune infiltrate (i.e. Cluster B) appear to have no enrichment of these 

isoforms, indicating how therapeutics could be specific for one subgroup and be ineffective in 

another. 

 

Group 5 contained isoforms of genes enriched for regulation of RNA biosynthesis and 

transcription (p = 0.0059). These isoforms had correlated downregulation in several samples 

(Clusters B and D), although they are not universally downregulated and in fact increase in some 

samples. One such gene, NME1, is a known suppressor of metastasis [52]. Also in this group are 

two isoforms of MAPKAPK3 (-201 and -208), a gene which activates autophagy in response to 

stress [53] and represses transcription factor E47 [54]. A shorter isoform, -202, is increased in 

metastatic samples. This isoform lacks the p38 MAPK-binding site, meaning it cannot be activated 

by p38. This apparent isoform switching was not identified by our DIR analysis because isoform 

-201 increases in some metastatic samples. RPS6KA4-201 also significantly decreases, though not 

the gene’s two secondary isoforms -202 and -205. These isoforms lack a nuclear binding site on 

the 3’ end, suggesting it is RPS6KA4’s nuclear binding that is selected against. The list of isoforms 

in Group 5 is given in Table 6, and the full list for each sample cluster and isoform group may be 

found in Table S6. 
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Some isoforms had divergent expression patterns depending on cluster. For example, the major 

isoform of BRD4, BRD4-201, was found in Group 5, indicating decreased expression in several 

samples. In contrast, this isoform increased in RAS-mutant metastatic samples, as did two shorter 

isoforms BRD4-205 (a member of Group 3) and BRD4-203 (Figure S7). This suggests BRD4 may 

be a drug target specific to RAS-mutant melanoma; indeed, a recent study found that Vemurafenib-

resistant melanoma was susceptible to BRD4 degradation [55]. Consistent with this observation, 

DE analysis revealed an 11% increase in BRD4 expression in metastatic RAS mutants, but this 

increase is not significant (punadjusted = 0.452). Furthermore, we could not confirm kallisto’s isoform 

assignments using exon junction alignment, although the reported increase in isoform 205 – a 

shortened isoform which includes the two bromodomains but not the C-terminal region or NET 

domain – may suggest some underlying switching effect. 
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Table 6: Kinase genes with correlated decreased expression in metastatic samples 

Identified by isoform 
clustering (Group 5)1 

Gene Isoform ID* 
MAP2K5 204 
MAPK7 204 
CAMKK2 216 
TNK2 208 
ARAF 201 
MAP3K6 202 
MAP2K7 201 
MAPKAPK3 208, 201 
ULK1 201 
BCKDK 201 
CSK 201 
BRD4 201 
CDK16 220 
CDK11B 203 
STK11 201 
ADCK2 201 
RPS6KA4 201 
CLK3 201 
DAPK3 201 
CSNK1G2 201 
GTF2F1 201 
NRBP1 203 
TRIM28 201 
MAP2K2 202 
NME1 203 
MAP2K5 204 
MAPK7 204 
These isoforms have correlated 
under-expression in individual 
samples, but not strong under-
expression across all samples, with 
the exception of RPS6KA4, (FC = -
1.39, padj = 0.0011, DESeq2 with 
high purity samples) 
*isoform numbers are from 
Gencode v.29 
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Discussion 
 
Given the rise in melanoma cases across the world, and preliminary success of new therapeutic 

approaches combing kinase inhibitors and other treatments, we were encouraged to look for 

differential isoform expression, which has not been intensively studied, and compare it to 

differential expression identified using conventional approaches (i.e., using the gene locus as a 

proxy for average expression). We show that both differential expression and altered isoform ratios 

are prevalent in the human kinome in metastatic melanoma compared to primary tumor melanoma. 

Furthermore, these changes differ by genomic subtype and tumor location. Affected genes were 

enriched for several biological processes including immune response, angiogenesis, cell 

differentiation, chemotaxis, and cell projection organization. Our results provide insight into the 

regulation of melanoma progression and possible new routes for grouping therapeutic targets. 

 
Different genes were affected by differential expression (DE) and differential isoform ratios (DIR). 

These genes differed in both phylogenetic groups – e.g. receptor tyrosine kinases in DE vs non-

receptor tyrosine kinases in DIR – and biological process enrichments. Thus, isoform analysis may 

reveal novel information about cancer progression that DE analysis cannot. The drivers behind 

these splicing events are unknown, but can be multifactorial. For example, mutations in splicing 

factors can determine outcomes of alternative splicing, but so may somatic mutations or SNPs 

[56]. Additional determinants derive from epigenetic changes such as aberrant DNA methylation 

[57] and RNA modifications [58]. 

 
Isoform switching may affect protein function 
 

We chose to examine five genes with especially significant isoform switching in greater detail. 

Metastatic samples showed SLK overexpression in our study, something that has been previously 

observed in other cancer types such as ErbB2-driven breast cancer [59]. Knocking down this gene 

markedly reduces cell migration in 3T3 MEF cells [60]. Presumably, invasion is the functional 

benefit acquired by SLK overexpression in metastatic melanoma. However, while the short form 

of SLK (SLK-201) is overexpressed in metastatic samples, the long form (SLK-202) is 

underexpressed. Overexpression of SLK can cause dimerization via the C-terminal coiled-coiled 

domain; these dimers then activate apoptosis [47]. The short form of SLK (SLK-201) skips an exon 

that encodes a coiled-coil region in the C-terminal domain. It is possible the SLK long isoform 
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dimerizes at lower concentrations and is selected against in metastatic samples. Further 

experiments are needed to confirm this hypothesis. 

 
MAP3K3 has been identified as an oncogene in various cancers [61-63]. Although we observed no 

differential expression of the gene (after immune-infiltrate samples were removed), we found that 

skipping of exon 3 was significant in metastatic samples in the DIR analysis. The functional effect 

of this skipping is unknown; it precedes, but is not part of, the PB1 protein-protein interaction 

domain. MAP3K3 plays important roles in angiogenesis, cell differentiation, and proliferation and 

may regulate its partners through this structural edit.  

 

In metastatic samples, MKNK2 was found to switch to a shortened terminal exon which lacks the 

MAPK binding site. This switching has been previously observed in glioblastoma [32] (compared 

to normal samples), where the short terminal exon showed pro-oncogenic activity. The authors 

demonstrated that use of splice switching oligos in glioblastoma reduced the presence of the short 

terminal isoform and inhibited the oncogenic properties, suggesting this approach might also work 

in melanoma.  

 
Another notable exon skipping event in FES, a non-receptor tyrosine kinase, was found in 

metastatic tumors at the 11th exon, which encodes the SH2 domain, and is necessary to activate the 

kinase domain [48]. FES has been previously identified as a tumor suppressor in melanoma [64], 

but we did not observe significant DE in our analysis. We predict that the skipping of the SH2 

domain effectively turns off the kinase activity without decreasing the overall gene count. This 

effect would be consistent with reports of wild type FES acting as a tumor suppressor [65]. DE 

analysis alone would have missed this important effect. Notably, FES has several known inhibitors 

that target the SH2 domain and thus would not be effective against the short isoform [65].  

 

Finally, in some metastatic samples an isoform of LIMK1 with an abrogated N-terminal LIM 

domain was expressed. Deleting both LIM domains was previously found to increase kinase 

activity 3-7 fold [66], suggesting this isoform has greater kinase activity. Targeting LIMK1 with 

small molecular inhibitors has been shown to reduce migration and invasion of malignant 

melanoma [49], suggesting increased activity would promote malignancy. LIMK1 also did not 

have significant DE in our dataset. 
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Expression pattern of RAS hotspot mutants 
 
Our various analyses discovered that RAS mutants have an expression level pattern distinct from 

the other three genomic subtypes. BRAF and MEK inhibitors, while useful for treating BRAF-

mutant melanoma, have no or limited effectiveness against RAS-mutants [67]. BRAF-mutants that 

gain resistance to BRAF inhibitors often acquire a secondary NRAS mutation [68], meaning any 

effective RAS mutant treatment may also aid in treating drug-resistant BRAF-mutants. We found 

that DE of kinases in RAS mutants is concentrated in CMGC kinases (as opposed to receptors as 

in the other three subtypes) and that DIR is concentrated in kinases involved in angiogenesis. Thus 

anti-angiogenics [69] are also possible treatments. Kallisto counts also identified the 

bromodomains of BRD4 as a possible target. A recent study found that Vemurafenib-resistant 

melanoma was susceptible to BRD4 degradation [55], and bromodomain inhibitors such as 

OTX015 and BI-2536 have already had some success treating carcinomas [70]. However, this 

result was not supported by the HTSeq gene counts or exon junction analysis. 

 

Another genomic subtype, Triple Wildtype melanoma, had DE concentrated in Ca2+/calmodulin-

dependent protein kinase (in addition to RTKs). These may also serve as a new set of drug targets 

for this rarer subtype. 

 
Further biological implications 
 
One interesting result from the clustering analysis was the apparent mutual exclusivity of some 

kinase clusters in metastatic tumors. In particular, the isoform group involved in cell motility (i.e., 

Group 3) only had high expression in samples lacking in immune response markers (i.e., Cluster 

C). This sample set was enriched for RAS mutants, suggesting not only a unique expression pattern 

but that they may be better able to evade the immune system. The presence of distant metastases 

in Clusters C and D, which have little immune marker expression, suggest they may have evaded 

the initial immune attack in the lymph nodes. Furthermore, cell differentiation and apoptotic 

markers were highly expressed in regional soft tissue tumors (i.e., Cluster A) and RAS mutants 

(Cluster C), but not lymph node tumors (i.e., Cluster B). Perhaps cells that reach the lymph node 

have already evaded apoptosis. BRAFV600E mutations are present in Clusters A and B, indicating 

that in addition to the driver mutation, location of the tumor and isoform content is relevant to 

discern tumor biology and treatment choices. We conclude that the heterogeneity of sample types 
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displayed in Clusters A-D suggests that the complexity of tumor biology is greater than indicated 

by driver mutations alone, and that the isoforms in our heatmap may be useful for screening 

metastatic samples. 

 
Limitations 
 
Our results have several limitations that may impact the interpretations of our data. For example, 

isoform count estimation is a computational approach to predict isoform expression levels from 

short read data. Other short read algorithms – using direct alignment approaches such as RSEM, 

Sailfish, or Cufflinks – may produce different count estimates than kallisto. A comparative study 

of these algorithms found that accuracy decreases as the number of gene isoforms increases [71]. 

However, we use an additional kallisto-independent method to verify kallisto findings. 

 
Also, because kallisto requires isoform transcript sequences, our method does not account for 

novel isoforms. 3rd-gen RNA sequencing technologies such as PacBio [22] and Oxford Nanopore 

[23] are anticipated to provide more accurate knowledge of isoform sequences, both annotated and 

novel. Currently, novel isoforms may be indirectly inferred by aligning reads to the nucleotide 

sequences of individual exons [72].  

 
Sample artefacts could also affect our results. As demonstrated in the manuscript, computational 

estimates of isoform counts are highly impacted by sample impurity or 3’ fragment bias. Although 

our quality-controlled sample set had little difference in purity between primary tumor and 

metastatic samples (two-sided Wilcoxon, p = 0.88), primary tumor samples still exhibited 

increased 3’ bias compared to metastatic tumors (p = 4.4e-4). Estimates of fragment bias could be 

incorporated into the existing tools to reduce artefactual results.  

 

With one exception, the TCGA samples are not matched, i.e. the primary tumor and metastatic 

samples do not come from the same patient. However, our sample size is large enough to make 

meaningful comparisons between sample categories. 

 

Despite the limitations, the statistical significance of our results along with a variety of quality 

control measures (e.g. removing problematic samples, resolving DIR events with exon junction 

reads) provides confidence in our findings. 
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Summary  
 
We have compared differential gene expression and differential isoform expression to address the 

hidden effect of differential splicing of kinases in metastatic melanoma. We demonstrate novel, 

plausible stratification of tumors for clinical testing, for example, immune infiltrate vs. cell 

migration groups. These groups are consistent with presence of a specific driver mutation, but a 

mixture of samples could be found in each group (i.e., BRAF vs. RAS). Additionally, we identified 

a group of isoforms with significant downregulation in metastatic tumors. These include a known 

suppressor of metastasis (NME1), and may provide a rich source of discovery for additional 

suppressors. Although we focused here on the kinome in metastatic melanoma, in future work we 

can expand the analysis to the entire human genome, as well as other cancer types having a rich 

source of expression data. Further experimental work can confirm links between isoform switching 

and angiogenesis or other cell processes. 
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