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Abstract 

Despite the importance of memories in everyday life and the progress made in 

understanding how they are encoded and retrieved, the neural processes by which declarative 

memories are maintained or forgotten remain elusive. Part of the problem is that it is empirically 

difficult to measure the rate at which memories fade and, without such a measure, it is hard to 

identify the corresponding neural correlates. This study addresses this problem using a 

combination of individual differences, model-based inferences, and resting-state functional 

connectivity. The individual-specific values of rate of forgetting in long-term memory (LTM) 

were estimated for 33 participants using a formal model fit to data from an adaptive fact learning 

task. Individual rates of forgetting were then used to examine participant-specific patterns of 

resting-state fMRI connectivity, using machine-learning techniques to identify the most 

predictive and generalizable features. Consistent with the existing literature, our results identified 

a sparse, distributed network of cortical and subcortical regions that underlies forgetting in LTM. 

Cross-validation showed that individual rates of forgetting were predicted with high accuracy (r 

= .96) from this connectivity pattern alone. These results open up new opportunities for the study 

of individual differences in  LTM function and dysfunction. 

 

Keywords: cognitive modeling, long-term memory, resting-state fMRI, functional connectivity 
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Introduction 

The ability to acquire and maintain knowledge in long-term memory (LTM) is central to 

to learning,  flexible behavior (Gershman & Daw, 2017), and even to the sense of personal 

identity (Klein & Nichols, 2012), and its loss is one of the most debilitating aspects of 

neurodegenerative diseases. Individual differences in this ability scale up to affect important 

real-life outcomes, such as differences in student grades (Sense et al., 2021) and ability to 

remember life-saving skills (Sense et al., 2019) Despite this, relatively little is known about 

individual differences in long-term memory. The temporal range of long-term memory, which 

spans from seconds to decades, makes it difficult to measure it in a laboratory setting. 

Consequently, previous studies have relied on individuals exhibiting dramatic differences in 

memory function, such as amnesic patients (such as patients suffering from medial temporal lobe 

injury: (Corkin, 2002; Gabrieli et al., 1988; Scoville & Milner, 1957)) or individuals with 

outstanding memory (such as individuals with Highly Superior Autobiographical Memory). 

Studies of individual variation in long-term memory across the normal population, instead, have 

restricted their investigation to specific, temporally circumscribed facets of long-term memory, 

such the moment of encoding (Alkire et al., 1998) and the moment of retrieval (Danker et al., 

2008; Thompson-Schill et al., 1997).   

Encoding and retrieval, however, are the two bookends of the life cycle of a memory. 

This paper, in contrast, focuses on the much less understood stage that happens between the two, 

during which a memory is consolidated or forgotten. While encoding and retrieval processes are 

largely centered around the medial temporal lobes and the lateral prefrontal cortices, 

respectively, consolidation and forgetting are distributed processes that involve large-scale 

changes in the connections between the medial temporal lobe and the entire neocortex (Alvarez 
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& Squire, 1994; Hardt et al., 2013; Moscovitch et al., 2005; Nadel et al., 2000; Squire, 2004), 

taking the form of synaptic changes, reorganization, and even neurogenesis (Frankland et al., 

2013). 

Thus, individual differences in forgetting must be ultimately underpinned by individual 

differences in the network of regions that is involved in consolidation and forgetting. 

Specifically, we hypothesized that individual differences in LTM function would relate to 

individual differences in resting state functional connectivity. Resting-state functional 

connectivity is typically measured with resting-state fMRI (rs-fMRI), continuous recordings of 

the spontaneous low-frequency fluctuations in blood oxygen level dependent signal while 

participants are awake but not actively engaging in any activities. The correlations between these 

spontaneous oscillations are systematic, with ensembles of voxels oscillating together (M. D. 

Fox et al., 2005) and forming functionally recognizable brain networks (Power et al., 2011; Yeo 

et al., 2011). Although the exact nature of spontaneous low-frequency activity is unknown, a 

dominant hypothesis is that it serves to maintain stable patterns of connectivity that encode 

Bayesian priors, shaped previous experiences, about the type of information that the brain is 

likely to encounter in the future (Pezzulo et al., 2021). This putative function of spontaneous 

brain activity, together with its distributed nature of, makes it an ideal substrate for LTM. 

Resting-state activity is also reliable within participants (Braun et al., 2012). It has been 

speculated that it reflects the “architecture” of the brain (Stocco et al., 2021); small variations 

within this architecture are characteristic to every individual, to the point that it can be used to 

“fingerprint” individual participants (Finn et al., 2015; Waller et al., 2017). Consistent with this 

finding, individual differences in the resting-state functional connectivity between different 

regions have been shown to be predictive of performance differences in a variety of cognitive 
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abilities, including working memory (Avery et al., 2020), executive functions (Reineberg et al., 

2015; Reineberg & Banich, 2016), motor learning (McGregor & Gribble, 2017), perceptual 

discrimination (Baldassarre et al., 2012), and most importantly, recognition memory  (Persson et 

al., 2018). Thus, resting-state connectivity functional connectivity provides an ideal target to 

identify the biological underpinnings of individual differences in long-term memory retention 

and forgetting. 

A Computational Theory of the Rate of Forgetting 

To connect rs-fMRI measures to individual differences in forgetting, we need a way to 

estimate the degree to which individuals vary in forgetting. Purely behavioral measures of 

psychological constructs often have poor reliability, which leads, in turn, to poor brain-

behavioral associations (Marek et al., 2020). One way to obviate this limitation is to fit realistic 

computational models to individual behaviors, and use the fitted model parameters as dependent 

variables (Collins, 2018; Daw, 2011). When the model captures the dynamics of the underlying 

neural process, its parameters can be more reliable and interpretable than pure behavioral 

measures. This has been shown, for example, with the threshold and drift parameters of 

accumulator models in perceptual decision-making (White et al., 2014, 2016) and in learning rate 

parameters in reinforcement learning models of learning (Xu & Stocco, 2021). Finally, using 

realistic models of long-term memory avoids the pitfalls that were originally pointed out by 

Loftus (1978; Wagenmakers et al., 2012) in applying statistical linear models to non-linear 

effects in memory performance. 

In this study, the estimation of the rate of forgetting was based on a rational model of 

episodic memory (Anderson & Schooler, 1991; Pavlik & Anderson, 2008, 2005; Sense et al., 

2018; Sense et al., 2016). This model, coupled with an adaptive memory task that minimizes the 
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use of alternative strategies, yields individual rates of forgetting for individuals that can be 

measured within a short time but can be reliably extrapolated over very long times (Sense et al., 

2019).  

In this model, the probability of retrieving a memory m at time t is proportional to its 

activation A(m, t), a scalar quantity that reflects a memory’s absolute availability. As in the 

multiple trace theory (Moscovitch et al., 2005; Nadel et al., 2000), each memory m is associated 

with multiple episodic traces, each of which corresponds to a specific event in which m was 

retrieved or (re)encoded, and each of which decays over time. 
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Figure 1: Activation over time of a memory that has been encoded in four different events, at 

times t = 1, 20, 55, and 65 seconds (top). Each episode leaves an independent decaying trace 

(bottom). The total activation of the memory is the log sum of the decaying traces . 
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The activation of each trace decays as a power function of time, and the activation of m is 

the log sum of the decaying activations of all its traces: 

 

A(m, t) = log ∑i [t - t(i)] 
-d(i) 

 

where t(i) and d(i) are, respectively, the time of the creation of the i-the trace and its 

characteristic decay rate. A trace’s decay rate, in turn, is related to the m’s activation at the 

moment each trace is created, thus capturing the fact that traces with higher initial activation 

decay faster than traces with lower activation (Pavlik & Anderson, 2005). Specifically: 

 

d(i) = eA(m, t(i)) + α 

 

with A(m, t(i)) being the activation of m at the moment the i-th trace was encoded. Thus, 

if the times at which a memory m has been encoded, re-encoded, and retrieved are known and 

controlled for, its activation depends only on α, which is the only free parameter in the above 

equations and, by determining the decay of each memory, was taken to represent an individual-

specific rate of forgetting. 

Previous studies have shown that individual values of α are stable across time and 

materials and predictive of real-world outcomes such as learning and test scores (F. Sense et al., 

2018, 2015; Florian Sense et al., 2016, 2019; van der Velde et al., 2020), thus meeting the 

psychometric criteria of reliability and validity (Shrout & Lane, 2012). Finally, at least one 

previous study has established that rates of forgetting, thus measured, reliably correlate with 

individual differences in neural activity (Zhou et al., 2021). 
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Experimental Predictions 

To identify the neural correlates of these differences, this study used a statistical learning 

approach (James et al., 2013) in which a linear model was trained to predict an individual’s rate 

of forgetting from their resting-state connectivity. If the rate of forgetting reflects a true 

biological parameter, individual variations in the rate of forgetting should reliably correlate with 

features of rs-fMRI and, in particular, with the distributed patterns of functional connectivity 

across networks that support memory consolidation. 

Specifically, we hypothesized that the rate of forgetting would correlate with functional 

connectivity in the Default Mode Network (DMN: Raichle et al, 2001). The DMN encompasses 

most of the circuitry of memory encoding, including the hippocampus, the medial frontal cortex, 

and the precuneus (Ranganath & Ritchey, 2012). It is named so because it is active at rest but 

inactive while the brain is engaged in goal-oriented activity, a fact that has been explained as it 

being involved in rehearsing and maintaining memory as a form of “priors” for later processing 

(Pezzulo et al., 2021; Raichle & Snyder, 2007).  

Memory consolidation also involves associative cortical areas in the frontal and parietal 

lobes (Alvarez & Squire, 1994; Durrant & Lewis, 2009; Moscovitch et al., 2005). These regions 

encompass multiple distinct networks, including the fronto-parietal network (FPN) and the 

cingulo-opercular network. Additionally, we expect that higher-level visual areas, such as those 

associated with the ventral and dorsal visual attention networks, will be involved as well, given 

their prominence in superior autobiographical memory (LePort et al., 2012; Palombo et al., 

2018). Finally, because memory consolidation and decay occur as a system-wide re-organization 

of individual memory features, we expect that connectivity within these networks would be more 

important than connectivity between each of these networks.    
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In summary, we expect that the rate of forgetting would correlate with distributed 

patterns of connectivity between regions, and that these patterns would encompass the default 

mode, fronto-parietal, the cingulo-opercular, and visual attention networks. Furthermore, we 

hypothesized that measures of functional connectivity would be sufficient to precisely predict an 

individual’s rate of forgetting. To test these predictions, we conducted the following experiment.  

 Materials and Methods 

Participants  

A total of 33 monolingual English-speaking participants (19 females) aged between 18 to 

33 years old were recruited from a pool of University of Washington undergraduates for whom 

resting-state fMRI data had already been acquired in a previous, unrelated experiment. All 

participants provided informed consent and were compensated with a $25 gift card for their 

participation in the study. All of the recruitment and testing procedures were approved by the 

University of Washington’s Institutional Review Board. 

Vocabulary Learning Task  

Rate of forgetting was estimated using the adaptive vocabulary learning task described in 

Sense et al. (2016). Twenty-five Swahili-English word pairs were selected from a previous study 

(Van den Broek et al., 2019). The task dynamically interleaved study trials and test trials. On 

study trials, a Swahili word (e. g., “samaki”) and its corresponding English equivalent (“fish”) 

were presented simultaneously on the screen. On test trials, only a Swahili word was presented 

on the screen as a cue (e.g., “samaki”), and participants were asked to respond by typing the 

corresponding English word (“fish”) in an empty textbox. Trials were self-paced, with no cap on 

the time allowed for a response. Consecutive trials are separated by a 600 ms ISI after a correct 

response and a 4,000 ms ISI following an incorrect response during which feedback was shown 
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on screen. The order of repetitions and moment of introduction for each item were determined by 

the adaptive scheduling algorithm outlined below and described in more detail in van Rijn et al. 

(2009) and Sense et al. (2016). The task lasted approximately 12 minutes. 

The presentation software was designed to optimally interleave the stimuli so that items 

would be repeated before the internal cognitive model predicted that they would be forgotten by 

continuously updating the rate of forgetting (α) for each pair. The cognitive model assumes that 

each memory m is a pair (see Anderson, 1974) that links a new Swahili word (“samaki”) to a 

known English word (“fish”). In response to a study probe, participants use the presented Swahili 

word (“samaki”) as a cue to retrieve m (“samaki” - “fish”). When m is retrieved, participants can 

type in the correct answer (“fish”). In turn, α is estimated from the time T it takes participants to 

respond (first key press), which is related to m’s activation by the equation: 

 

T = e-A(m) + k 

 

where k represents a fixed offset (300 ms) for non-memory related processes (Anderson, 

2007; Anderson et al., 2004).  

rs-fMRI Data Collection and Preprocessing  

A series of functional echo-planar images were collected. Each functional run lasted 7 

minutes, and consisted of 210 brain volumes collected with TR = 2,000 ms, TE = 25 ms, FA = 

72 degrees. Each volume consisted of 36 oblique 3-mm slices with no gap in-between, with an 

in-plane resolution of 80x80 3x3 mm voxels. Each functional series was preprocessed using a 

mixture of programs from the AFNI (Cox, 1996) and SPM (Penny et al., 2011) software 

packages. Specifically, each series of functional neuroimages was de-spiked, corrected for 
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differences in slice acquisition time, realigned to the mean image in the series, normalized the 

MNI ICBM152 template, and spatially smoothed with a 3D 8 mm FWHM Gaussian filter. In 

addition to the functional data, an anatomical MP-RAGE was also collected to aid in the 

normalization process. Functional connectivity data were analyzed with the Python Nilearn 

library (Abraham et al., 2014). 

Brain Parcellation 

To calculate functional connectivity, each participant's brain was divided into discrete 

regions using the parcellation method originally proposed by Power et al (2011). Although more 

recent parcellations have been proposed, this parcellation is notable for including both cortical 

and subcortical regions (see also Cole et al., 2016). Figure 2 depicts the coordinates of the 264 

region centroids, color-coded according to their corresponding network, and using the color 

scheme proposed in the original paper. 

 

 

Figure 2. Centroids of all 264 regions in the parcellation by Power et al. (2011) that was used in 

this study. 
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Statistical Learning Model 

A Lasso regression model was used to analyze the functional connectivity data. The 

choice was motivated by a number of considerations, which can be briefly summarized as 

follows. First, being a variant of linear regression, Lasso produces results that are relatively easy 

to interpret as linear weights of neural features; as such, these results are easy to evaluate and 

understand. Second, compared to other variants of linear regression (such as ridge regression), 

Lasso reduces the complexity of the model by evaluating whether coefficients can be shrunk to 

zero and, therefore, “drop” any unnecessary explanatory variables. In practice, this means that 

Lasso incorporates feature selection and parameter fitting in a single pass, further decreasing the 

experimenter’s degree of freedom and reducing the dimensionality of the data. 

Lasso is best explained as an extension of linear regression. In linear regression, a vector 

of parameters β is estimated to minimize the squared sum of the difference between the vector of 

observations y and the weighted explanatory variables X, that is, argmin ||y - βX||2 (where the 

notation ||v||n represents the L(n) norm of the vector v). In Lasso, the difference is further 

penalized in proportion to the sum of the absolute values of the beta weights (their L1 norm): 

 

β
* = argmin( ||y - βX||2 + λ||β||1 ) 

 

The value of λ represents the tradeoff between model simplicity (encouraged by the ||β||1 

penalty) and accuracy (encouraged by ordinary least-squares minimization term ||y - βX||2). 

When λ = 0, there is no penalty and the model reduces to canonical linear regression, privileging 
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fit at the expense of generalizability. As λ grows, however, so does the penalty for larger 

weights, until only the intercept remains, resulting in the simplest generalizable model.  

A cross-validation procedure was used to find the optimal value of λ. A sequence of 

possible λ values was generated, and, for each value, the performance of the Lasso algorithm was 

measured using leave-one-out validation (LOOV). In LOOV, the algorithm is run 33 times, each 

time leaving out a different participant as the test set while the β values are fit on the remaining 

32 participants as the training set. The mean error in predicting the rate of forgetting for the left-

out participant was then measured for all values of λ, and the value of λ that produced the 

smallest cross-validation error across all participants was chosen. The optimal value corresponds 

to a minimum in the convex profile of the cross-validation error curve (G. James et al., 2013).  

Results 

Rates of Forgetting 

Rates of forgetting were calculated for each individual by averaging across the forgetting 

rates for each word pair they studied. The resulting values ranged from 0.253 to 0.385, with a 

mean of 0.305 and standard deviation of 0.029. Both the mean and the range of values are in line 

with previously published studies (Sense et al., 2016; Zhou et al., 2021). 

Connectome Extraction 

Each participant’s global pattern of brain connectivity, known as the connectome 

(Sporns, 2011), was extracted using a standard procedure (Cole et al., 2016; Shen et al., 2017). 

For each of the 264 x 264 pairs, the Pearson correlation coefficient between the respective 

timeseries was computed. The group-average of the resulting matrices (Figure 2A) shows a 

canonical distribution of r values, including the zones of higher r values along the diagonal 

(corresponding to connectivity within the same networks). This pattern is entirely consistent with 
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previous findings using the same parcellation scheme (e.g., Cole et al 2016). 

One problem with this canonical connectome is that the raw correlation coefficients are 

almost all positive and partially driven by common sources, including unobserved physiological 

effects. To remove these confounds, we followed the procedure of Cole et al. (2016), and 

recalculated the correlation matrices using partial correlation coefficients, so that, when 

calculating the correlation between two regions, the correlations between each region in the pair 

and the remaining 262 regions were partialled out. Note that this procedure also eliminates any 

remaining residual physiological artifacts that are shared across brain regions. The resulting 

average connectome is a much sparser matrix (Figure 3B) that includes both negative and 

positive correlations (Cole et al., 2016; Fox et al., 2005). 

Each participant’s sparse correlation matrix was then reshaped into a row vector of (264 x 

263) / 2 - 264 = 34,452 elements. To reduce the number of regressors, only connections between 

regions that exhibited a minimum average partial correlation coefficient of |r| > 0.1 across 

participants (see Figure 3B) were included. This threshold was chosen a priori to remove all of 

the functional connectivity values that, in our group of participants, would not be significant at a 

very liberal threshold of p < .50. The mean correlation coefficient across participants was 

calculated by first turning each individual coefficient into a z-value using Fisher’s r-to-z 

transformation, then averaging the individual z-values, and transforming the average z value back 

into an equivalent r coefficient.  

Thanks to this sparsification, only 301 connectivity measures per participant remained. 

Thus, the final regressor matrix X passed to the Lasso algorithm was a 33 (participants) x 301 

(regressors) matrix.   
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Figure 3. (A) Mean raw correlations between each of the 264 regions across all participants 

(Figure 1); (B) Mean partial correlations between the same regions. In each matrix, rows and 

columns are ordered by network. 

 

Resulting Connectivity 

Using the optimal lambda value obtained through LOOV (λ = 0.00152), we fit a single 

Lasso regression model with the 301 connections as input features to predict the rates of 

forgetting for 33 participants. Of the 301 initial features, only 25 were left with a β ≠ 0, involving 

a total of 46 brain regions, with four of these regions being included in two connections and the 

other 42 belonging to a single connection. It was the individual variations in these connections 

that were found to be most predictive of individual rates of forgetting.Figure 4 shows which 

connections are relevant and which network each region belongs to. Individual ROIs are colored 

using the same convention of Power et al. (2011) and Figure 2. Edges between nodes are color-

coded based on the corresponding β value estimated by Lasso; negative weights, in blue, are 

associated with smaller rates of forgetting and positive weights, in red, are associated with higher 
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rates of forgetting. 

Consistent with our expectations, these connections were widespread and distributed, 

involving both the DMN as well as sensory and motor areas. Also consistent with the current 

views of synaptic reorganization during consolidation and forgetting, most of these connections 

(64%) are situated between pairs of regions within the same network, rather than between 

networks. This proportion is significantly different from what would be expected if the 

connections were randomly sampled from the global connectome, where within-network 

connections represent a minority of cases (9.67% of the total; χ2(1) =  84.48, p < 0.0001).  Of the 

connections between regions belonging to different networks, 44% include regions in the DMN.  

In addition to the DMN and primary and associative sensory areas,  regions in the dorsal 

and ventral attention networks and in the striatum (“Subcortical” network in Power et al., 2011) 

were also associated with the rate of forgetting. Individual morphological differences in the 

striatum morphology in the activity of visual areas have been previously related to superior 

episodic memory (LePort et al., 2012; Palombo et al., 2018). The involvement of these regions 

might also be explained by the nature of the task, which uses visual word forms as retrieval cues, 

as both visual attention networks and the striatum have been implicated in directing visual 

attention (Stocco et al., 2017). 
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Figure 4:  Functional brain connections predictive of individual rates of forgetting. ROI 

centroids are colored according to the scheme by Power et al., 2011. The color of each 

connection reflects the value of the corresponding β weight.  

 

Validation of the Lasso Results 

Although Lasso reduces the number of predictors to a number that is comparable to the 

number of observations, it has been argued that its performance is severely hindered when 

regressors are collinear, which is likely to happen in cases, such as this one, when the number of 

regressors is much larger than the number of participants (Jia & Yu, 2010). In such cases, given 

equally valid predictors, the penalty term might force the Lasso algorithm to select one of them 

at random, providing an inadequate and partial picture of which regressors are indeed essential. 

If this were the case, other equally valid predictors would have been overlooked. A simple test to 

exclude this possibility  is to remove the 25 connections from the matrix of 301 sparse regressors 

X, and re-run the Lasso procedure. If Lasso converges on a different and equally successful 

solution, then other important regressors were accidentally excluded. 
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When applied to our data, this test shows that the Lasso algorithm does not converge 

anymore. Specifically, the LOOV procedure fails to find an optimal minimum. Instead, the 

cross-validation error is much larger (up to 5x) than in the previous model and greater 

generalization (as indicated by smaller cross-validation errors) is progressively observed as the 

value of λ increases, until the penalty term is so large that only the intercept remains in the linear 

model. Figure 5 illustrates the cross-validation error profiles at different levels of  λ for the 

original, full model (in blue) as well as the reduced model without the 25 predictive connections 

(in orange). The difference between the two curves confirms that these 25 connections are jointly 

essential for capturing the rate of forgetting.   
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Figure 5: Cross-validation error across different values of lambda for two different models. The 

blue line represents the profile of the “full” model containing all 301 connections; the black 

vertical line represents the value of λ that minimizes the cross-validation error; at that value, 

only 25 connections survive (see Figure 8 for their estimated β weights). The orange line 

represents the profile of a reduced model without the 25 connections identified at the optimal 

value of λ. For both curves, solid lines represent mean values and shaded ribbons represent 

standard errors. 
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A second test consists of measuring the collinearity of the resulting model. Since the 

number of predictors in the model (p = 25) is comparable to the number of observations (n = 33), 

it is possible that the remaining predictors remain highly collinear, which would suggest that all 

connections in the brain contain similar information and are similarly related to the rate of 

forgetting. To exclude this hypothesis, the reduced model was examined using the Variance 

Inflation Factors (VIF) metric as implemented in R’s car package (Fox & Weisberg, 2018). As a 

rule of thumb, VIF factors > 10 indicate collinearity (Fox & Monette, 1992). All of the 

remaining predictors had a VIF value < 10. In fact, the VIF values were < 5 in all but one case, 

which suggest that the remaining predictors contributed independently to an individual rate of 

forgetting.  

Regional Importance Within the Network  

The resulting connectivity matrix can also be analyzed in terms of network-level 

measures, such as the importance of a node (region) within the network. The importance of a 

node can be calculated as the L1 norm of all the edges connected to that node. In the case of our 

connectivity matrix, the L1 norm for a region is the sum of the absolute values of the beta 

weights of the connections that include that region. The importance of each region is visualized 

in Figure 6, where the 46 regions of Figure 4 are plotted with the size of the corresponding 

marker reflecting their importance. This visualization highlights the prominence of ventromedial 

prefrontal DMN regions and of the basal ganglia. This is consistent with one previous study 

(LePort et al., 2012), which similarly identified changes in the grey matter density of these two 

regions as being associated with superior autobiographical memory. 
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Figure 6: Relative node importance of each region in the network of Figure 5. The size of each 

marker indicates the importance of the corresponding region, calculated as the L1 norm of its 

connections.  

 

Predicting Rate of Forgetting From Connectivity 

One final question that remains to be addressed is how reliably the information from 

functional connectivity alone could be used to predict individual rates of forgetting. To do so, we 

used the LOOV cross-validation procedure, iteratively predicting the rate of forgetting of one test 

participant using their functional connectivity values and the beta weights estimated from the 

other 32 participants. The predicted rates of forgetting were almost perfectly correlated with the 

observed ones, with a Pearson correlation coefficient of r(33) = .96 (p < 0.0001) and an RMSE 

of only 0.008, or approximately 3% of the mean value of the true parameter (Figure 7). Thus, our 

results seem consistent and generalizable. 

.CC-BY-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted August 5, 2021. ; https://doi.org/10.1101/2021.08.04.455133doi: bioRxiv preprint 

https://doi.org/10.1101/2021.08.04.455133
http://creativecommons.org/licenses/by-nd/4.0/


BRAIN CONNECTIVITY PREDICTS IDIOGRAPHIC FORGETTING RATE                        23 

 

 

Figure 7: Predicted vs. observed values of rate of forgetting across all 33 participants. Each dot 

represents a single participant; their color represents the percentage error in the estimate; the 

red dashed line is the identity line.  

 

In addition, we examined the stability of the β weights of each connectivity value 

obtained during the cross-validation procedure. This last measure is included because, given the 

small sample, it is possible that a given set of regressors could yield good predictions even if the 

specific weights of each regressor change dramatically across participants. Figure 8 depicts each 

connection’s estimate across all participants sets as well as the corresponding 95% confidence 
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interval. As the figure shows, the estimated β weights were consistent across sets of participants, 

further supporting the idea that the corresponding connectivity values are reliable predictors of 

individual differences in long-term memory forgetting.  

 

 

Figure 8: Mean β values of each connection across all cross-validation cycles. Labels indicate 

the networks that are bridged by each connection; numbers in parentheses indicate the IDs of 

the regions bridged by each connection according to the Power et al. (2011) coding system; 

colored points represent individual estimates from a cross-validation run; black points represent 

means; and black error bars represent 95% confidence intervals.  
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Discussion 

In this paper, we provided evidence that an individual’s rate of forgetting, operationalized 

as a decay intercept parameter in Pavlik and Anderson’s (2005) model, can be predicted using aa 

distributed pattern of functional connectivity obtained from resting-state (or task-free) brain 

connectivity measures.This set of connections was identified through Lasso regression and cross-

validation, and demonstrates remarkable generalizability and prediction accuracy while also 

reducing the full connectome to a manageable set of predictors. 

While our results are encouraging, one limitation must be acknowledged, namely, that a 

small number of fairly homogeneous participants studied a relatively small set of foreign 

vocabulary items, which potentially limits external validity. This limitation could also explain 

the correlation coefficient of Figure 7, which is unusually large even if produced through cross-

validation. Thus, future studies should expand the sample size and explore other sets of study 

materials. At the same time, these limitations also demonstrate that even in such a homogenous 

group, our approach can pick up on meaningful interindividual differences. 

Importantly, our results are consistent with the existing literature. Specifically, the 

individual rate of forgetting correlates with the connectivity in networks associated with different 

facets of memory function, like the sensory and associative cortices (involved in representation) 

and the DMN (involved in memory encoding and retrieval). Additionally, our results show 

remarkable similarity to the EEG findings of Zhou et al. (2021). In their study, a significant 

positive correlation between power in the beta band and rate of forgetting α was observed 

distributing at bilateral prefrontal (channel AF3, AF4) and right parietal (channel P8) regions, in 

locations that are consistent with the ventromedial prefrontal DMN nodes and the dorsal visual 

attention nodes in Figure 6, respectively. Because greater EEG power is associated with greater 
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synchrony between neurons, it is not surprising that greater local functional connectivity in these 

regions was also positively correlated with rates of forgetting.  

Finally, it is worth noting that, in addition to finding plausible connectivity correlates of 

the rate of forgetting, our findings can be applied in the opposite direction, to decode an 

individual’s rate of forgetting from distributed patterns of connectivity using a standard brain 

parcellation. Such an approach could be used, for example, to detect the early onset of abnormal 

forgetting in individuals with known memory pathologies and cognitive degenerative diseases. 

Most importantly, this finding demonstrates the possibility of decoding model parameters 

directly from resting state data, rather than from a combination of specific tasks. If generalized 

beyond these results, this procedure could play an important role on the road towards developing 

high-fidelity idiographic models. This procedure also has the benefits of showing reflections of 

parameters in brain connectivity network regions, shedding light to a more holistic and 

comprehensive way of doing functional anatomy research on human cognition. 
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