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Abstract 

The heterogeneity of attention-deficit/hyperactivity disorder (ADHD) traits (inattention vs. 

hyperactivity/impulsivity) complicates diagnosis and intervention. Identifying how the 

configuration of large-scale functional brain networks during cognitive processing correlate with 

this heterogeneity could help us understand the neural mechanisms altered across ADHD 

presentations. Here, we recorded high-density EEG while 62 non-clinical participants (ages 18-

24; 32 male) underwent an inhibitory control task (Go/No-Go). Functional EEG networks were 

created using sensors as nodes and across-trial phase-lag index values as edges. Using cross-

validated LASSO regression, we examined whether graph-theory metrics applied to both static 

networks (averaged across time-windows: -500–0ms, 0–500ms) and dynamic networks 

(temporally layered with 2ms intervals), were associated with hyperactive/impulsive and 

inattentive traits. Network configuration during response execution/inhibition was associated 

with hyperactive/impulsive (mean R2 across test sets = .20, SE = .02), but not inattentive traits. 

Post-stimulus results at higher frequencies (Beta, 14-29Hz; Gamma, 30-90Hz) showed the 

strongest association with hyperactive/impulsive traits, and predominantly reflected less burst-

like integration between modules in oscillatory beta networks during execution, and increased 

integration/small-worldness in oscillatory gamma networks during inhibition. We interpret the 

beta network results as reflecting weaker integration between specialized pre-frontal and motor 

systems during motor response preparation, and the gamma results as reflecting a compensatory 

mechanism used to integrate processing between less functionally specialized networks. This 

research demonstrates that the neural network mechanisms underlying response 

execution/inhibition might be associated with hyperactive/impulsive traits, and that dynamic, 
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task-related changes in EEG functional networks may be useful in disentangling ADHD 

heterogeneity. 
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Introduction  

 Despite being one of the most prevalent behavioral disorders, thought to affect roughly 

7.2% of the population under 18 worldwide, the diagnostic reliability of attention-

deficit/hyperactivity disorder (ADHD) is an ongoing challenge (1, 2). This is due in part to the 

heterogeneity of ADHD traits (inattention, hyperactivity, impulsivity), which often fail to neatly 

align with the distinct presentations recognized by the DSM-V (3). To overcome this, the 

National Institute of Mental Health proposed that ADHD subtype etiology be refined using 

biologically based measures, which might better capture the altered mechanisms that account for 

the distinct traits (4). To date, however, few studies have successfully used biological measures 

to reliably differentiate the two distinct presentations, characterized by hyperactive/impulsive 

and inattentive traits (5). The current study examines whether patterns of brain network 

connectivity recorded from electroencephalogram (EEG) during the execution and inhibition of 

motor responses can reliably do so. 

 A primary deficit of those with ADHD is in the ability to appropriately execute and 

inhibit motor responses based on environmental cues, often operationalized through performance 

on an inhibitory task (e.g., Go/No-Go, stop-signal, stroop (6, 7, 8)). Dysfunction in the 

electrocortical responses associated with these functions is consistently implicated in those with 

ADHD using both fMRI and EEG, although EEG often predicts ADHD with higher accuracy 

than fMRI (4, 9, 10). In those with ADHD, motor execution/inhibition dysfunction during the 

Go/No-Go task is evidenced by reduced frontal N2 and central P3 components of the event-

related potential (ERP), and decreased event-related oscillatory alpha power (9, 11, 12). 

 Although inhibitory deficits are pronounced in those with ADHD, some evidence 

suggests individual differences in the mechanisms underlying the ability to execute/inhibit motor 
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responses might specifically account for hyperactive/impulsive traits (13, 14). In EEG research, 

for example, compared to the inattentive subtype, those with the combined subtype show higher 

amplitude beta oscillations at electrodes over the sensorimotor cortex during a cued-flanker 

inhibitory task (thought to reflect weaker motor response planning (12)). They also show weaker 

source-localized oscillatory theta power over right frontal areas during the pre-trial intervals of a 

Go/No-Go task (15). However, contradictory evidence complicates this hypothesis: differences 

in cognitive measures of inhibitory control often fail to distinguish between subtypes, and 

electrophysiological research has found no differences between inattentive and 

hyperactive/impulsive subtypes in the event-related potentials thought to underly motor response 

inhibition (6, 16, 17, 18, 19).  

 This controversy seems to suggest that the neural mechanisms supporting motor response 

execution/inhibition are not a prominent source of heterogeneity in ADHD traits. However, 

diffusion tensor imaging (DTI) has identified white matter damage to frontal-subcortical circuits 

and motor circuits (both strongly implicated in response inhibition) as a primary characteristic of 

the combined subtype compared to the inattentive subtype (20). Additionally, the use of 

methylphenidate (shown to enhance response inhibition on Go/No-Go tasks by reducing task-

irrelevant connectivity), is more effective at reducing hyperactive/impulsive symptoms than 

inattentive symptoms (21, 22, 23). These results suggest instead that the neural correlates of 

execution/inhibition are in fact related to ADHD heterogeneity, but that measures capturing 

neural activity from local regions (MEG/EEG sensors; fMRI regions of interest) might lack the 

sensitivity required to adequately distinguish between subtypes. Instead, examining patterns of 

connectivity between cortical regions in the wide-spread functional networks important for 

cognitive control appears to be necessary. This conclusion– that distinct ADHD symptoms may 
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be linked to altered connectivity between cortical regions during the execution/inhibition of 

motor responses– has increasingly been made within the broad shift towards understanding 

ADHD through a network-based approach, rather than a regional-abnormality based approach (5, 

14, 24, 25, 26). This network approach is also in line with research examining the neural 

correlates of response inhibition, which has argued against specific regions functionally 

specialized for inhibitory processing in favour of a domain-general class of ‘network 

mechanisms’, where connectivity patterns initiated by the fronto-parietal network account for a 

variety of functions during cognitive control (27, 28).  

 One approach recently used in ADHD research is that of task-based network measures, 

which characterize the dynamic changes in large-scale functional network organization during 

distinct cognitive processes (14, 29, 30). Since these changes are closely linked to behaviour, it is 

thought that task-based approaches might better capture sources of ADHD heterogeneity than 

resting-state approaches (14, 29, 31). A network approach might also further the use of EEG in 

clinical ADHD research. Indeed, research examining single features in the EEG signal, such as 

the ratio of theta to beta oscillations or the N2/P3 ERPs, has not yet adequately captured the 

heterogeneity of ADHD (4, 32, 33). While some research has pursued multivariate approaches to 

overcome this, where multiple predictive features within the EEG signal are identified using 

advanced pattern recognition techniques (e.g., convolutional neural networks; 34, 35), their lack 

of interpretability has so far limited their utility in clinical research as well (4, 34). Thus, the 

utility of EEG in clinical research may be furthered by research using network measures to 

identify specific connectivity patterns associated with ADHD heterogeneity (4, 5).  

 In the current study, we examine whether differences in the organization of functional 

EEG networks during response execution/inhibition (Go/No-Go task) are associated with distinct 
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ADHD symptoms (inattention and hyperactivity/impulsivity). In line with the Research Domain 

Criteria (RDoC; dimensional framework proposed by the National Institute of Mental Health), 

we recognize ADHD traits as lying on a continuum in the broader population (3, 36, 37, 38, 39).  

 To characterize the dynamic configuration of task-based EEG networks, we use metrics 

derived from graph theory, which describe the networks as ‘graphs’ (sets of nodes and 

connections between them, called ‘edges’). Typically, in EEG networks, nodes are sensors, and 

edges are defined through various functional connectivity measures between sensors. These 

measures are thought to capture the synchronization of neuronal oscillations from distinct 

regions, which is a mechanism for neuronal populations to coordinate information transfer (40). 

In the current study, individual differences in these networks are examined in terms of their 

integration, segregation, and the balance of these two properties, referred to as ‘small-

worldness’. Decreased small-worldness in EEG beta-networks during cognitive interference has 

been found in those with ADHD compared to controls, and thus might be a specific alteration 

responsible for ADHD heterogeneity (41). Additionally, we examine functionally specialized 

collections of nodes called modules, which show strong connectivity with themselves and weak 

connectivity with the rest of the network (42, 43). Since integration between modules is thought 

to play a mechanistic role in executive functions (e.g., response inhibition/execution), it may also 

account for ADHD heterogeneity (43, 44, 45). 

 Task-based networks are typically analyzed by aggregating over distinct time windows, 

which conceals important information about how networks may dynamically organize to support 

response execution/inhibition (46, 47). Here, we examine the utility of a novel dynamic 

approach, which better captures these changes (46, 47). Given the inherently dynamic way 

information is transferred across regions during specific cognitive functions, we expected this 
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approach to be well-suited in identifying subtle individual differences in the neural mechanisms 

supporting response execution/inhibition, and thus be sensitive to differences in ADHD traits. 

Methods and Materials 

Participants 

 Data were collected from 77 university students. 15 participants were excluded from 

analysis due to technical problems in data acquisition and a failure to complete the 

task/questionnaires, resulting in 62 participants entering analysis (see Table 1 for participant 

info).  

Conners’ Adult ADHD Rating Scales 

 Self-report measures of inattention, hyperactivity and impulsivity were collected using 

Conners’ Adult ADHD Rating scales, which consists of 66 items on a 4-point Likert scale, 

ranging from “Not at all true” to “Very much true” (48). Five subtests were examined (Table 1), 

three of which assess hyperactivity and impulsivity, and two of which assess inattention. These 

scales have high internal and test-retest reliability (α’s = 0.86-0.92; 40). 

Stimuli and Procedure 

Participants underwent an A-X continuous performance task (adapted from Tekok-Kilic 

et al. (49)). Throughout two blocks, 1270 letters (A-H, J, L, X) were presented pseudo-randomly 

in the center of a computer screen. Participants were asked to respond quickly and accurately 

with a thumb press on a response pad to the letter sequence ‘A - X’. The letter ‘A’ was presented 

200 times, and half of letters following ‘A’ were ‘X’. “Go” trials were when ‘X’ was followed 

by ‘A’ and required response execution (100 total); “No Go” trials were when another letter 

followed ‘A’ and required response inhibition (100 total). Each letter was presented for 200ms, 

and there was an 800ms interval between letters. Mean reaction time and error rates measured 
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task performance. Half of the trials in the task (n = 50) also included a ‘distractor’: simple line-

drawings of objects (evenly distributed for Go/No-Go conditions) presented 200ms after ‘A’ for 

200ms, although these were excluded from current analyses. This resulted in 50 Go and 50 No-

Go trials being used in analysis. During the task, 128-channel EEG was recorded (sampling-rate: 

500Hz, impedances kept below 100kΩ) from a HydroCel Geodesic sensor net and 300 NetAmps 

amplifier (Electrical Geodesics, Inc., Eugene, Oregon). EEG testing took ~22 minutes, excluding 

breaks between blocks. Several self-report questionnaires were administered after EEG testing 

and took ~20 minutes to complete. For the purposes of the current study, only ADHD scores 

were analyzed. 

EEG Preprocessing and Phase Synchrony 

 EEG data were preprocessed in Brain Vision Analyzer 2.2.1 (Brain Products). Data were 

re-referenced to an average of all sites, and .5Hz high-pass, 100Hz low-pass, and 60Hz notch 

filters were applied. Gratton and Coles (1983) method was used to correct for eye movements 

(50), and trials with an amplitude difference of 200μV over a 200ms interval, or with an 

amplitude >±200μV were rejected, resulting in 42.18 (SD = 5.89) Go trials and 44.35 (SD = 

5.41) No-Go trials entering analysis. Connectivity between EEG sensors was calculated as in 

Panda et al. (51). Specifically, trial-by-trial data (from 3s pre-stimulus to 3s post-stimulus) from 

each participant were z-scored and filtered into canonical frequency-bands: (1-3Hz; 4-7Hz; 8-

13Hz; 14-29Hz; 30-90Hz). Instantaneous phase estimates were obtained using the Hilbert 

transform, and across-trial phase synchrony was measured using the phase-lag index (PLI; 52). 

PLI measures the consistency of phase-lags between electrodes across trials but does not imply a 

directed relationship. As a result, PLI attenuates zero-lag synchrony that might have occurred as 

a result of volume conduction. With PLI values as edges, sensor-by-sensor adjacency matrices 
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were created at 2ms time-steps for each frequency-band. For dynamic networks, each adjacency 

matrix was proportionally thresholded to maintain the strongest 10% of edges (resulting in an 

average of 12.7 edges per node), and binarized. For static networks, adjacency matrices were 

averaged across time-windows (pre-stimulus/baseline processing: -500-0ms; post-stimulus/task-

relevant processing: 0-500ms) before being proportionally thresholded (10%) and binarized. 

Network Analyses 

 Network analyses were conducted in MATLAB using in-house scripts, the Brain-

Connectivity Toolbox (53), and the Dynamic-Graph metrics toolbox (47). Definitions and 

interpretations of metrics used to characterize the networks are presented in Table 2. These 

include static and dynamic measures of integration (static: global efficiency; dynamic: broadcast 

centrality), segregation (static: clustering coefficient; dynamic: temporal correlation coefficient), 

small-worldness, and modularity (static: modularity, participation coefficient; dynamic: 

flexibility). Node-level measurements were averaged across all nodes to provide one summary 

statistic for each participant. For dynamic integration (broadcast centrality), the value halfway 

between zero and the largest eigenvalue absolute value across all static networks was selected for 

α (54). To measure how information was transferred between nodes over time, the average 

‘burstiness’ of networks was calculated. Communication between nodes is ‘burst-like’ when 

connections are serially correlated (show random-length periods of sequential connections, 

followed by random length periods of sequential disconnections), whereas communication is 

periodic when connections occur at regular intervals (55).   

 The optimal partition of each static network into modules was performed using Louvain’s 

modularity maximization algorithm (γ = 1 (56)). Dynamic modules were detected using the 

method described by Aynaud & Guillaume (57), which applies the Louvain algorithm to each 
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static network at time t, except, rather than the algorithm first assigning each node to their own 

module, nodes are first assigned to the module with which they belonged at t – 1. This avoids 

issues that arise from community-detection methods which identify modules at each timepoint 

independently (58). Due to the small variance that arises from Louvain’s algorithm, flexibility 

was averaged across 100 runs (59).  

Regression Analyses 

 To identify network characteristics (features) associated with hyperactivity/impulsivity 

and inattention (outcome variables), regression analyses were conducted using the least absolute 

shrinkage and selection operator (LASSO; 60). LASSO is a statistical learning method that fits 

data to a multiple linear regression and prevents overfitting by applying a penalty term (which 

includes a hyperparameter lambda) to the cost function used to estimate regression coefficients. 

When lambda is zero, the LASSO simplifies to the least-squares estimates; when lambda is 

sufficiently high, all regression coefficients become zero. By driving small coefficients to zero, 

LASSO results in a relatively interpretable model with a sparse set of features. The optimal 

lambda value, which maximizes the model’s ability to account for variability in future 

observations, was estimated using repeated 10-fold cross-validation. This process is as follows: 

1) partition the data into 10 equal folds, 2) fit the model to all but one of these folds using a wide 

range of lambda values (training set; normalized using the min-max method), 3) for each lambda 

value, measure the mean squared error (MSE) of the model on the fold left out (test set), 4) 

calculate the out-of-sample R2 on this test set using the lambda value that minimizes MSE, 5) 

using each fold as a test set, determine the average MSE across test sets as a function of lambda, 

6) estimate regression coefficients using the lambda value that minimizes this average MSE. Ten 

repetitions of this k-fold cross validation were used to determine MSE as a function of lambda 
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before selecting the appropriate value (as this helps avoid biases of unrepresentative partitions). 

This lambda value was used to estimate a final model on the entire dataset (providing the 

regression coefficients to be interpreted). To assess the quality of the model, the average out-of-

sample R2 across test sets was used. To interpret the model, regression coefficients and Pearson’s 

r were used. 

Results 

AX-CPT Task Performance 

 Across participants, mean reaction time was 360.2 ms (SD = 79.5) and an average of 0.15 

(SD = 0.36) commission errors (incorrect response on No-Go trials) were made. The most 

commission errors made by a participant was four; most participants (n = 38) made zero. 

LASSO Models 

 Separate regression models were estimated for the five ADHD scales during both the pre- 

and post-stimulus windows (-500–0ms; 0–500ms). Static and temporal network measures from 

all frequency-bands and both Go/No-Go conditions were model features. Models conducted on 

post-stimulus data (0-500ms) predicted measures of hyperactivity and impulsivity 

(Hyperactivity/Impulsivity: R2 = .202 SE = .020; Hyperactivity/Restlessness: R2 = .188, SE = 

.022; Impulsivity/Emotionality: R2 = .123, SE = .023; average R2 across test sets provided). This 

can be seen in Figure 1. Conversely, models for inattentive traits had all regression coefficients 

driven to zero (Inattention: R2 = .033, SE = .025; Inattention-Memory: R2 =  .029, SE = .020), 

suggesting the relationship between inattention and network configuration was not strong enough 

to overcome the overfitting penalty. All models conducted on data from the pre-stimulus period 

(-500–0ms) had regression coefficients driven to zero as well, suggesting baseline network 

configuration did not relate to ADHD traits (Inattention: R2 = .051, SE = .017; 
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Inattention/Memory: R2 = .071, SE = .014; Hyperactivity/Restlessness: R2 = .031, SE = .046; 

Hyperactivity/Impulsivity: R2 = .082, SE = .015; Impulsivity/Emotionality: R2 = .078, SE = 

.022). 

 

Figure 1. Empirical and predicted hyperactive/impulsive behaviours 

Scatterplot of empirical and predicted scores (from LASSO model) on Hyperactivity/Impulsivity 

(least squares regression line plotted in gray). Model included all network measures in low and 

high frequency bands for both Go and NoGo conditions in the post-stimulus condition. Across 

all test-sets used in cross validation, the average out of sample R2  was .202.  

 

Condition Analyses 

 Features identified in the Go and No-Go conditions were then examined separately to 

understand differences between the execution (Table 3) and inhibition of motor responses (Table 

4). Results are presented for Hyperactivity/Impulsivity (R2 = .202) and 

Hyperactivity/Restlessness (R2 = .188).  

 In the Go condition, hyperactive/impulsive traits were associated with the configuration 

of EEG networks following stimulus presentation (0–500ms). The majority of network features 

(Hyperactivity/Impulsivity: 5/7, Hyperactivity/Restlessness: 3/6) were in the beta-band (14-29 

Hz; regression coefficients and Pearson’s r presented in Table 3). The results in Table 3 tell us 

that during response executive in those with high hyperactivity/impulsivity, EEG networks 

oscillating at a beta frequency become less integrated, show a more modular structure, tend to 

form connections within these modules, and communicate more periodically. This dynamic 

configuration can be seen in Figure 2, and predominantly reflects less long-range/burst-like 
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communication between frontal-central and bilateral-posterior regions around 200–300ms in 

those with high hyperactivity/impulsivity.  

 

Figure 2. Post-stimulus beta network configuration (14-29Hz) during execution of a response 

(Go) in those with high and low hyperactivity/impulsivity 

(A) Adjacency matrices with sensors as nodes, and the mean number of connections within each 

time-window as edges. Network are averaged across the 10 participants with the lowest and 

highest hyperactivity scores. 

(B)  Topographical map showing the mean number of connections from 200-300ms (thresholded 

at 10% and binarized), averaged across all participants (n = 62). 

 

 Similarly, in the No-Go condition, hyperactive/impulsive traits were associated with the 

configuration of high-frequency EEG networks following stimulus presentation, although the 

majority of features (Hyperactivity/Impulsivity: 5/7, Hyperactivity/Restlessness: 3/5) were in the 

gamma networks (30-90Hz; Table 4). The results in Table 4 tell us that networks oscillating at a 

gamma-frequency in those with high hyperactivity/impulsivity are less stable over time, less 

segregated, and more integrated. However, they exhibit a level of segregation higher than 

expected based on their level of integration (small-worldness), suggesting the configuration did 

not simply tend towards randomness. This configuration can be seen in Figure 3, and 

predominantly reflects communication within left frontal-central regions that is less segregated 

in those with high hyperactivity/impulsivity. 
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Figure 3. Post-stimulus (0-500ms) gamma network (30-90Hz) configuration during inhibition of 

a response (NoGo) in those with high and low hyperactivity/impulsivity 

(A) Adjacency matrices with sensors as nodes, and the mean number of connections from 0-

500ms as edges. Each network is averaged across the 10 participants with the lowest and 

highest hyperactivity scores. 

(B)  Topographical map with the mean number of connections show by each node over the same 

time period (thresholded at 10% and binarized). 

 

Discussion 

 In this study, we investigated whether the dynamic configuration of large-scale cortical 

networks during the execution and inhibition of motor responses acts as a source of 

heterogeneity in ADHD. We found that the dynamic configuration of EEG networks during both 

response execution (Go) and inhibition (No-Go) is altered in those with hyperactive/impulsive, 

but not inattentive, traits. Specifically, hyperactivity/impulsivity was linked to decreased/less 

burst-like integration in networks oscillating at a beta frequency during response execution, and 

increased integration/small-worldness in networks oscillating at a gamma frequency during 

response inhibition. These results suggest that differences in how functional networks are 

dynamically recruited during response execution/inhibition may contribute to ADHD 

heterogeneity.  

Motor Response Execution: Weaker Beta Network Integration Associated with 

Hyperactivity/Impulsivity  

 During response execution (Go), networks oscillating at a beta frequency showed a more 

modular configuration (i.e., could easily be divided into subnetworks), with less integration 
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between modules as hyperactivity/impulsivity increased. Dynamically, these networks lacked the 

burstiness (clear on/off periods) seen in those with less hyperactivity/impulsivity. Cortical beta 

oscillations have long been implicated in motor control, and bursts of beta communication within 

the motor cortex are thought to reflect the appropriate selection and initiation of movements (61, 

62). When considered alongside the location of electrodes involved (bilateral central-posterior 

and frontal-central) and its timing (~200-300ms), this finding might reflect difficulty initiating 

integration of prefrontal and motor circuit activity (see Figure 2). This is similar, although 

posterior, to the increased oscillatory beta power found over central-bilateral motor areas during 

response preparation in the combined versus inattentive subtype (12). Our results further explain 

this effect by suggesting it arises from alterations to the mechanisms driving integration between 

prefrontal and motor circuitry. 

 Given the structure and myelination of white matter tracts is thought to strongly constrain 

EEG connectivity (63), this interpretation may be consistent with abnormal white matter 

structure previously reported in the combined ADHD subtype (20, 64). Abnormalities in the 

circuits associated with motor control/inhibition (supplementary motor area and middle frontal 

gyrus (20)) would be particularly supportive of this explanation and would suggest the lack of 

beta integration observed in those with hyperactive/impulsive traits arises from white matter tract 

abnormalities that hinder the integration between specialized frontal and motor systems. 

 This interpretation, however, should be made with caution. First, difficulty suppressing 

default mode network (DMN) activity during response execution could also influence the 

integration and modularity of oscillatory beta activity (DMN interference hypothesis: 65, 66, 67, 

68). Second, there is some evidence that the DTI findings thought to characterize the combined 

ADHD subtype (20) might not hold up to more stringent analyses practiced today (69). Future 
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research, then, might benefit from investigating how white matter abnormalities indexed by 

radial/axial diffusivity (19, 62) restrict the electrophysiological mechanisms driving integration 

between neural circuits (using, for example, dynamic tractography techniques, which examine 

the relationship between cortico-cortical evoked potentials and diffusion MRI measures (70)).  

Motor Response Inhibition: Stronger Gamma Network Integration/Small-Worldness 

associated with Hyperactivity/Impulsivity 

 During response inhibition (No-Go), hyperactivity/impulsivity was associated with 

altered short-range gamma connectivity within left frontal-central areas. Specifically, with 

greater hyperactivity/impulsivity, gamma networks became more integrated/small-world like, 

showed more between-module communication and were more likely to change over time. This is 

in line with previous findings of decreased oscillatory frontal-gamma power from 300-600ms for 

Go/No-Go conditions in those with ADHD versus non-ADHD controls (9). Event-related fNIRS 

research has suggested reduced activity during Go/No-Go tasks in ADHD might be localized to 

circuitry in the left prefrontal cortex (71).  

 While the “Go” beta network configuration may reflect a mechanism that is insufficiently 

evoked (an inability to integrate functionally specialized systems in the prefrontal and motor 

cortex), this “No-Go” gamma network configuration may instead reflect a mechanism evoked to 

a greater degree. First, increased integration, small-worldness, and between-module processing 

in gamma networks is the same configuration observed during increased cognitive load (e.g., to 

increased n in n-back working memory tasks (72)). These changes are thought to occur when 

specialized sub-networks within the cortex coordinate their processing to successfully complete 

the required function (59, 72). Second, increased small-worldness, a configuration thought to 

minimize metabolic costs while maximizing the potential for complex interactions, was seen in 
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the gamma networks of those with hyperactive/impulsive traits (73, 74, 75). Rather than a shift 

towards random or regular structure (an alteration commonly seen in the functional networks of 

those with psychiatric disorders), increased small-worldness is thought to be advantageous 

during periods of increased cognitive demand (73, 74, 75). Together, these results suggest that 

those with hyperactive/impulsive traits respond to the task as though it is more cognitively 

demanding and requires a higher level of integration/small-worldness to be properly completed. 

In other words, those with hyperactive/impulsive traits may have less functionally specialized 

networks and evoke an integrative mechanism to compensate (76).  

Lack of Association Between Inattention and Configuration of Alpha Networks 

 To our surprise, we found little association between the configuration of oscillatory alpha 

networks and ADHD traits. In attentional networks during Go/No-Go tasks, alpha oscillations 

are thought to gate information transfer between fronto-parietal and occipital regions, thereby 

suppressing task-irrelevant and highlighting task-relevant sensory information (77, 78, 79). A 

large body of research examining electrophysiological correlates of ADHD has suggested 

individual differences in this alpha may explain inattentive symptoms (80, 81). However, in this 

study, network configuration did not predict inattentive traits, and alpha results for 

hyperactive/impulsive traits were inconsistent (small regression coefficients and no linear 

correlations). The relative simplicity and consistent inter-stimulus interval of the current task 

might have limited the extent to which attentional gating varies within typically developing 

adults. Future research measuring EEG network configuration during more cognitively 

demanding tasks (i.e., cued reaction-time task) might highlight altered mechanisms found within 

the inattentive subtype.  

Limitations 
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 Our findings should be considered alongside certain limitations. First, we used a 

conservative estimate of connectivity (phase-lag index), which attenuates ‘pure’ (zero-lag) 

synchronization in an attempt to account for volume conduction (52). Since some of the 

attenuated synchronization likely reflects true neural connectivity between distinct regions rather 

than volume conduction effects (82), methodological advances that allow for the interpretation of 

pure EEG synchronization (i.e., inverse modelling advances) will allow us to draw conclusions 

about these mechanisms more confidently. Second, while this research benefitted from a 

dimensional approach, the extent to which ADHD behaviours are dimensional versus categorical 

is poorly understood, and consideration through both lenses appears to be required (83). Because 

of this, the extent to which those with clinical levels of hyperactivity/impulsivity will exhibit the 

same alterations is unclear. We predict similar findings (weaker beta integration/stronger gamma 

integration), albeit more pronounced.  

Conclusion 

 Accurately distinguishing inattentive and hyperactive/impulsive presentations is 

important when deciding on the appropriate intervention. This is evidenced, for example, by the 

reduced response to methylphenidate found in the inattentive subtype (23). By demonstrating 

that the neural mechanisms underlying this heterogeneity can be captured through functional 

network measures applied to the EEG recorded during a Go/No-Go task, this research furthers 

the use of EEG in clinical research focused on delineating the ADHD subtypes. 

 

 

 

 

.CC-BY-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted August 5, 2021. ; https://doi.org/10.1101/2021.08.04.455077doi: bioRxiv preprint 

https://doi.org/10.1101/2021.08.04.455077
http://creativecommons.org/licenses/by-nd/4.0/


EEG Network Configuration During Go/No-Go Task in ADHD 20 

 

Acknowledgments 

We would like to extend our thanks to those who took the time to participate in the study, and to 

Abraham Omorogieva for his help with data collection. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

.CC-BY-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted August 5, 2021. ; https://doi.org/10.1101/2021.08.04.455077doi: bioRxiv preprint 

https://doi.org/10.1101/2021.08.04.455077
http://creativecommons.org/licenses/by-nd/4.0/


EEG Network Configuration During Go/No-Go Task in ADHD 21 

 

References 

1. Thomas, R., Sanders, S., Doust, J., Beller, E., & Glasziou, P. (2015). Prevalence of attention-

deficit/hyperactivity disorder: a systematic review and meta-analysis. Pediatrics, 135(4), 

e994-e1001. 

2. Law, E. C., Sideridis, G. D., Prock, L. A., & Sheridan, M. A. (2014). Attention-

deficit/hyperactivity disorder in young children: predictors of diagnostic 

stability. Pediatrics, 133(4), 659–667.  

3. Insel, T, Cuthbert, B, Garvey, M, Heinssen, R, Pine, DS, Quinn, K, Sanislow, C, Wang, P (2

010). Research Domain Criteria (RDoC): toward a new classification framework for research 

on mental disorders. The American Journal of Psychiatry 167, 748–751. 

4. Lenartowicz A, Loo SK. (2014). Use of EEG to diagnose ADHD. Curr Psychiatry Rep. 

Nov;16(11):498.  

5. Saad, J., Griffiths, K., & Korgaonkar, M. (2020). A Systematic Review of Imaging Studies in 

the  Combined and Inattentive Subtypes of Attention Deficit Hyperactivity 

Disorder. Frontiers in Integrative Neuroscience, 14, 31–31.   

6. Wodka, M. (2007). Evidence that response inhibition is a primary deficit in ADHD. Journal 

of Clinical and Experimental Neuropsychology, 29(4), 345–356.  

7. Tillman, C. M., Thorell, L. B., Brocki, K. C., & Bohlin, G. (2007). Motor response inhibition 

and execution in the stop-signal task: development and relation to ADHD behaviors. Child 

Neuropsychology, 14(1), 42-59. 

8. Hwang, S., Meffert, H., Parsley, I., Tyler, P. M., Erway, A. K., Botkin, M. L., ... & Blair, R. 

J. R. (2019). Segregating sustained attention from response inhibition in ADHD: An fMRI 

study. NeuroImage: Clinical, 21, 101677. 

.CC-BY-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted August 5, 2021. ; https://doi.org/10.1101/2021.08.04.455077doi: bioRxiv preprint 

https://doi.org/10.1101/2021.08.04.455077
http://creativecommons.org/licenses/by-nd/4.0/


EEG Network Configuration During Go/No-Go Task in ADHD 22 

 

9. Baijot, S., Cevallos, C., Zarka, D., Leroy, A., Slama, H., Colin, C., ... & Cheron, G. (2017). 

EEG dynamics of a go/nogo task in children with ADHD. Brain Sciences, 7(12), 167. 

10. Suskauer, S. J., Simmonds, D. J., Fotedar, S., Blankner, J. G., Pekar, J. J., Denckla, M. B., & 

Mostofsky, S. H. (2008). Functional magnetic resonance imaging evidence for abnormalities 

in response selection in attention deficit hyperactivity disorder: differences in activation 

associated with response inhibition but not habitual motor response. Journal of Cognitive 

Neuroscience, 20(3), 478-493. 

11. Deiber, M. P., Hasler, R., Colin, J., Dayer, A., Aubry, J. M., Baggio, S., ... & Ros, T. (2020). 

Linking alpha oscillations, attention and inhibitory control in adult ADHD with EEG 

neurofeedback. NeuroImage: Clinical, 25, 102145. 

12. Mazaheri, A., Fassbender, C., Coffey-Corina, S., Hartanto, T. A., Schweitzer, J. B., & 

Mangun,  G. R. (2014). Differential oscillatory electroencephalogram between attention-

deficit/hyperactivity disorder subtypes and typically developing adolescents. Biological 

Psychiatry, 76(5), 422–429.  

13. Adams, Z. W., Derefinko, K. J., Milich, R., & Fillmore, M. T. (2008). Inhibitory functioning 

across ADHD subtypes: Recent findings, clinical implications, and future 

directions. Developmental Disabilities Research Reviews, 14(4), 268-275. 

14. McNorgan, C., Judson, C., Handzlik, D., & Holden, J. G. (2020). Linking ADHD and 

Behavioral Assessment Through Identification of Shared Diagnostic Task-Based Functional 

Connections. Frontiers in Physiology, 11, 583005.   

15. Adelhöfer, N., Bluschke, A., Roessner, V., & Beste, C. (2021). The dynamics of theta-related 

pro-active control and response inhibition processes in AD (H) D. NeuroImage: Clinical, 30, 

102609. 

.CC-BY-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted August 5, 2021. ; https://doi.org/10.1101/2021.08.04.455077doi: bioRxiv preprint 

https://doi.org/10.1101/2021.08.04.455077
http://creativecommons.org/licenses/by-nd/4.0/


EEG Network Configuration During Go/No-Go Task in ADHD 23 

 

16. Keute, M., Krauel, K., Heinze, H. J., & Stenner, M. P. (2018). Intact automatic motor 

inhibition in attention deficit hyperactivity disorder. Cortex, 109, 215-225. 

17. Wodka, E. L., Loftis, C., Mostofsky, S. H., Prahme, C., Larson, J. C. G., Denckla, M. B., & 

Mahone, E. M. (2008). Prediction of ADHD in boys and girls using the D-KEFS. Archives of 

clinical neuropsychology, 23(3), 283-293. 

18. Wodka, E. L., Mostofsky, S. H., Prahme, C., Gidley Larson, J. C., Loftis, C., Denckla, M. B., 

& Mark Mahone, E. (2008). Process examination of executive function in ADHD: Sex and 

subtype effects. The Clinical Neuropsychologist, 22(5), 826-841. 

19. Pasini, A., Paloscia, C., Alessandrelli, R., Porfirio, M. C., & Curatolo, P. (2007). Attention 

and executive functions profile in drug naive ADHD subtypes. Brain and 

Development, 29(7), 400-408. 

20. Lei, D., Ma, J., Du, X., Shen, G., Jin, X., & Gong, Q. (2014). Microstructural abnormalities 

in the combined and inattentive subtypes of attention deficit hyperactivity disorder: a 

diffusion tensor imaging study. Scientific reports, 4, 6875.  

21. Liddle E.B., Hollis C., Batty M.J., Groom M.J., Totman J.J., Liotti M., Scerif G. (2011). 

Task-related default mode network modulation and inhibitory control in ADHD: effects of 

motivation and methylphenidate. J Child Psychol Psychiatry. 52(7):761-71. 

22. Silberstein, R., Andrew, P., Con, S., David, C., & Maree, F. (2015). Brain functional 

connectivity, dopamine and the default mode network in ADHD. Frontiers in Human 

Neuroscience, 9. https://doi.org/10.3389/conf.fnhum.2015.219.00046 

23. Beery, S., Quay, H., & Pelham, W. (2017). Differential Response to Methylphenidate in 

Inattentive and Combined Subtype ADHD. Journal of Attention Disorders, 21(1), 62–70.   

.CC-BY-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted August 5, 2021. ; https://doi.org/10.1101/2021.08.04.455077doi: bioRxiv preprint 

https://doi.org/10.1101/2021.08.04.455077
http://creativecommons.org/licenses/by-nd/4.0/


EEG Network Configuration During Go/No-Go Task in ADHD 24 

 

24. Qian, X., Castellanos, F., Uddin, L., Loo, B., Liu, S., Koh, H., Poh, X., Fung, D., Guan, C., 

Lee, T., Lim, C., & Zhou, J. (2019). Large-scale brain functional network topology 

disruptions underlie symptom heterogeneity in children with attention-deficit/hyperactivity 

disorder. NeuroImage Clinical, 21, 101600–101600.  

25. Konrad K, Eickhoff SB. (2010) Is the ADHD brain wired differently? A review on structural 

and functional connectivity in attention deficit hyperactivity disorder. Hum Brain Mapp. 

Jun;31(6):904-16. doi: 10.1002/hbm.21058. PMID: 20496381; PMCID: PMC6871159. 

26. Saad, J. F., Griffiths, K. R., Kohn, M. R., Clarke, S., Williams, L. M., & Korgaonkar, M. S. 

(2017). Regional brain network organization distinguishes the combined and inattentive 

subtypes of attention deficit hyperactivity disorder. NeuroImage: Clinical, 15, 383-390. 

27. Zhang, R., Geng, X., & Lee, T. (2017). Large-scale functional neural network correlates of 

response inhibition: an fMRI meta-analysis. Brain Structure & Function, 222(9), 3973–3990. 

https://doi.org/10.1007/s00429-017-1443-x 

28. Hampshire, A., & Sharp, D. (2015). Contrasting network and modular perspectives on 

inhibitory control. Trends in Cognitive Sciences, 19(8), 445–452. 

29. Michelini, G., Jurgiel, J., Bakolis, I., Cheung, C., Asherson, P., Loo, S., Kuntsi, J., & 

Mohammad-Rezazadeh, I. (2019). Atypical functional connectivity in adolescents and adults 

with persistent and remitted ADHD during a cognitive control task. Translational Psychiatry, 

9(1), 137–137.  

30. Stevens, M. C., Pearlson, G. D., Calhoun, V. D., & Bessette, K. L. (2018). Functional 

neuroimaging evidence for distinct neurobiological pathways in attention-

deficit/hyperactivity disorder. Biological Psychiatry: Cognitive Neuroscience and 

Neuroimaging, 3(8), 675-685. 

.CC-BY-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted August 5, 2021. ; https://doi.org/10.1101/2021.08.04.455077doi: bioRxiv preprint 

https://doi.org/10.1007/s00429-017-1443-x
https://doi.org/10.1101/2021.08.04.455077
http://creativecommons.org/licenses/by-nd/4.0/


EEG Network Configuration During Go/No-Go Task in ADHD 25 

 

31. Gonzalez-Castillo, J., & Bandettini, P. A. (2018). Task-based dynamic functional 

connectivity: Recent findings and open questions. Neuroimage, 180, 526-533.  

32. Saad, J. F., Kohn, M. R., Clarke, S., Lagopoulos, J., & Hermens, D. F. (2018). Is the 

theta/beta EEG marker for ADHD inherently flawed? Journal of attention disorders, 22(9), 

815-826. 

33. Adamou, M., Fullen, T., & Jones, S. L. (2020). EEG for Diagnosis of Adult ADHD: A 

Systematic Review With Narrative Analysis. Frontiers in Psychiatry, 11, 871. 

34. Dubreuil-Vall, L., Ruffini, G., & Camprodon, J. A. (2020). Deep learning convolutional 

neural networks discriminate adult adhd from healthy individuals on the basis of event-

related spectral eeg. Frontiers in Neuroscience, 14, 251. 

35. Ahmadi, A., Kashefi, M., Shahrokhi, H., & Nazari, M. A. (2021). Computer aided diagnosis 

system using deep convolutional neural networks for ADHD subtypes. Biomedical Signal 

Processing and Control, 63, 102227. 

36. Hilger, K., & Fiebach, C. J. (2019). ADHD symptoms are associated with the modular 

structure of intrinsic brain networks in a representative sample of healthy adults. Network 

Neuroscience, 3(2), 567-588. 

37. Miller GA, Rockstroh BS, Hamilton HK, Yee CM. Psychophysiology as a core strategy in 

RDoC. Psychophysiology. 2016 Mar;53(3):410-4. doi: 10.1111/psyp.12581. PMID: 

26877134. 

38. Fassbender, C. (2018). Dimensional and Categorical Approaches to Understanding 

Attention-Deficit/Hyperactivity Disorder: New Frontiers in Translational 

Research. Biological Psychiatry: Cognitive Neuroscience and Neuroimaging, 3(8), 652-653.  

.CC-BY-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted August 5, 2021. ; https://doi.org/10.1101/2021.08.04.455077doi: bioRxiv preprint 

https://doi.org/10.1101/2021.08.04.455077
http://creativecommons.org/licenses/by-nd/4.0/


EEG Network Configuration During Go/No-Go Task in ADHD 26 

 

39. Heidbreder, R. (2015). ADHD symptomatology is best conceptualized as a spectrum: a 

dimensional versus unitary approach to diagnosis. ADHD Attention Deficit and Hyperactivity 

Disorders, 7(4), 249-269.  

40. Fries, P. (2005). A mechanism for cognitive dynamics: neuronal communication through 

neuronal coherence. Trends in cognitive sciences, 9(10), 474-480. 

41. Liu, T., Chen, Y., Lin, P., & Wang, J. (2015). Small-World Brain Functional Networks in 

Children with Attention-Deficit/Hyperactivity Disorder Revealed by EEG Synchrony. 

Clinical EEG and Neuroscience, 46(3), 183–191.   

42. Bullmore E, Sporns O. Complex brain networks: graph theoretical analysis of structural and 

functional systems. Nat Rev Neurosci. 2009 Mar;10(3):186-98. doi:  

43. Bertolero, M., Yeo, B., & D’Esposito, M. (2015). The modular and integrative functional 

architecture of the human brain. Proceedings of the National Academy of Sciences - 

PNAS, 112(49), E6798–E6807. https://doi.org/10.1073/pnas.1510619112 

44. Bertolero, M. A., Yeo, B. T., Bassett, D. S., & D’Esposito, M. (2018). A mechanistic model 

of connector hubs, modularity and cognition. Nature human behaviour, 2(10), 765-777. 

45. Wang, C., Hu, Y., Weng, J., Chen, F., & Liu, H. (2020). Modular segregation of task-

dependent brain networks contributes to the development of executive function in 

children. NeuroImage (Orlando, Fla.), 206, 116334–116334.  

46. Braun, U. et al. (2015). Dynamic reconfiguration of frontal brain networks during executive 

cognition in humans. Proceedings of the National Academy of Sciences - PNAS, 112(37), 

11678–11683. https://doi.org/10.1073/pnas.1422487112 

47. Sizemore, A., & Bassett, D. (2018). Dynamic graph metrics: Tutorial, toolbox, and 

tale. NeuroImage (Orlando, Fla.), 180(Pt B), 417–427.  

.CC-BY-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted August 5, 2021. ; https://doi.org/10.1101/2021.08.04.455077doi: bioRxiv preprint 

https://doi.org/10.1073/pnas.1510619112
https://doi.org/10.1101/2021.08.04.455077
http://creativecommons.org/licenses/by-nd/4.0/


EEG Network Configuration During Go/No-Go Task in ADHD 27 

 

48. Conners, C., Sitarenios, G., & Ayearst, L. (2018). Conners’ Continuous Performance Test 

Third Edition. In Encyclopedia of Clinical Neuropsychology (pp. 929–933). Springer 

International Publishing. https://doi.org/10.1007/978-3-319-57111-9_1535 

49. Tekok-Kilic, A., Shucard, J. L., & Shucard, D. W. (2001). Stimulus modality and Go/NoGo 

effects on P3 during parallel visual and auditory continuous performance tasks. 

Psychophysiology, 38(3), S0048577201991279. 

50. Gratton, G., Coles, M. G. ., & Donchin, E. (1983). A new method for off-line removal of 

ocular artifact. Electroencephalography and Clinical Neurophysiology, 55(4), 468–484. 

51. Panda, E. J., Emami, Z., Valiante, T. A., & Pang, E. W. (2020). EEG Phase Synchronization 

during Semantic Unification Relates to Individual Differences in Children’s Vocabulary 

Skill. Developmental Science, e12984. 

52. Stam, C., Nolte, G., & Daffertshofer, A. (2007). Phase lag index: Assessment of functional 

connectivity from multi channel EEG and MEG with diminished bias from common 

sources. Human Brain Mapping, 28(11), 1178–1193.  

53. Rubinov, M., & Sporns, O. (2010). Complex network measures of brain connectivity: uses 

and interpretations. Neuroimage, 52(3), 1059-1069. 

54. Grindrod, P., Parsons, M. C., Higham, D. J., & Estrada, E. (2011). Communicability across 

 evolving networks. Physical Review E, 83(4), 046120. 

55. Thompson, W., & Fransson, P. (2016). Bursty properties revealed in large-scale brain 

networks with a point-based method for dynamic functional connectivity. Scientific Reports, 

6(1), 39156–39156. https://doi.org/10.1038/srep39156 

.CC-BY-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted August 5, 2021. ; https://doi.org/10.1101/2021.08.04.455077doi: bioRxiv preprint 

https://doi.org/10.1007/978-3-319-57111-9_1535
https://doi.org/10.1038/srep39156
https://doi.org/10.1101/2021.08.04.455077
http://creativecommons.org/licenses/by-nd/4.0/


EEG Network Configuration During Go/No-Go Task in ADHD 28 

 

56. Blondel, V. D., Guillaume, J. L., Lambiotte, R., & Lefebvre, E. (2008). Fast unfolding of 

communities in large networks. Journal of Statistical Mechanics: Theory and 

Experiment, 2008(10), P10008. 

57. Aynaud, T., Guillaume, J.L. (2010) Static community detection algorithms for evolving 

networks. WiOpt’10: Modeling and Optimization in Mobile, Ad Hoc, and Wireless Networks, 

May 2010, Avignon, France. pp.508-514. ffinria-00492058f  

58. Cazabet, R., Boudebza S., Giulio Rossetti (2020). Evaluating Community Detection 

Algorithms for Progressively Evolving Graphs. Journal of Complex Networks, Oxford 

University Press. 8 (6), ff10.1093/comnet/cnaa027ff. ffhal-03173685f 

59. Spielberg, J. M., Miller, G. A., Heller, W., & Banich, M. T. (2015). Flexible brain network 

reconfiguration supporting inhibitory control. Proceedings of the National Academy of 

Sciences, 112(32), 10020-10025. 

60. Hastie, T., Tibshirani, R., & Friedman, J. (2009). The Elements of Statistical Learning Data 

Mining, Inference, and Prediction, Second Edition (2nd ed. 2009.). Springer New York.  

61. Little S, Bonaiuto J, Barnes G, Bestmann S (2019) Human motor cortical beta bursts relate to 

movement planning and response errors. PLoS Biol 17(10): e3000479.   

62. Schaum, M., Pinzuti, E., Sebastian, A., Lieb, K., Fries, P., Mobascher, A., ... & Tüscher, O. 

(2021). Right inferior frontal gyrus implements motor inhibitory control via beta-band 

oscillations in humans. Elife, 10, e61679. 

63. Nunez, P. L., Srinivasan, R., & Fields, R. D. (2015). EEG functional connectivity, axon 

delays and white matter disease. Clinical Neurophysiology, 126(1), 110-120. 

.CC-BY-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted August 5, 2021. ; https://doi.org/10.1101/2021.08.04.455077doi: bioRxiv preprint 

https://doi.org/10.1101/2021.08.04.455077
http://creativecommons.org/licenses/by-nd/4.0/


EEG Network Configuration During Go/No-Go Task in ADHD 29 

 

64. Chen, L., Huang, X., Du Lei, N. H., Hu, X., Chen, Y., Li, Y., ... & Gong, Q. (2015). 

Microstructural abnormalities of the brain white matter in attention-deficit/hyperactivity 

disorder. Journal of Psychiatry & Neuroscience: JPN, 40(4), 280. 

65. Mills, B. D., Miranda-Dominguez, O., Mills, K. L., Earl, E., Cordova, M., Painter, J., ... & 

Fair, D. A. (2018). ADHD and attentional control: Impaired segregation of task positive and 

task negative brain networks. Network Neuroscience, 2(02), 200-217. 

66. Mowinckel, A. M., Alnæs, D., Pedersen, M. L., Ziegler, S., Fredriksen, M., Kaufmann, T., ... 

& Biele, G. (2017). Increased default-mode variability is related to reduced task-performance 

and is evident in adults with ADHD. NeuroImage: Clinical, 16, 369-382. 

67. Sonuga-Barke, E. J., & Castellanos, F. X. (2007). Spontaneous attentional fluctuations in 

impaired states and pathological conditions: a neurobiological hypothesis. Neuroscience & 

Biobehavioral Reviews, 31(7), 977-986. 

68. Mantini, D., Perrucci, M. G., Del Gratta, C., Romani, G. L., & Corbetta, M. (2007). 

Electrophysiological signatures of resting state networks in the human brain. Proceedings of 

the National Academy of Sciences, 104(32), 13170-13175. 

69. Saad, J.F., Griffiths, K., Kohn, M., Braund, T.A., Clarke, S., Williams, L., & Korgaonkar, M. 

(2021). No support for white matter connectivity differences in the combined and inattentive 

ADHD presentations. PLoS ONE, 16. 

70. Silverstein, B. H., Asano, E., Sugiura, A., Sonoda, M., Lee, M. H., & Jeong, J. W. (2020). 

Dynamic tractography: Integrating cortico-cortical evoked potentials and diffusion 

imaging. Neuroimage, 215, 116763. 

.CC-BY-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted August 5, 2021. ; https://doi.org/10.1101/2021.08.04.455077doi: bioRxiv preprint 

https://doi.org/10.1101/2021.08.04.455077
http://creativecommons.org/licenses/by-nd/4.0/


EEG Network Configuration During Go/No-Go Task in ADHD 30 

 

71. Miao, S., Han, J., Gu, Y., Wang, X., Song, W., Li, D. & Li, X. (2017). Reduced prefrontal 

cortex activation in children with attention-deficit/hyperactivity disorder during go/no-go 

task: a functional near-infrared spectroscopy study. Frontiers in Neuroscience, 11, 367. 

72. Kitzbichler, M., Henson, R., Smith, M., Nathan, P., & Bullmore, E. (2011). Cognitive effort 

drives workspace configuration of human brain functional networks. The Journal of 

Neuroscience, 31(22), 8259–8270. https://doi.org/10.1523/JNEUROSCI.0440-11.2011  

73. Bassett, D., & Bullmore, E. (2006). Small-World Brain Networks. The Neuroscientist, 12(6), 

512–523. https://doi.org/10.1177/1073858406293182 

74. Liao, X., Vasilakos, A. V., & He, Y. (2017). Small-world human brain networks: 

perspectives and challenges. Neuroscience & Biobehavioral Reviews, 77, 286-300. 

75. Lord, L. D., Stevner, A. B., Deco, G., & Kringelbach, M. L. (2017). Understanding 

principles of integration and segregation using whole-brain computational connectomics: 

implications for neuropsychiatric disorders. Philosophical Transactions of the Royal Society 

A: Mathematical, Physical and Engineering Sciences, 375(2096), 20160283. 

76. Godwin, D., Barry, R. L., & Marois, R. (2015). Breakdown of the brain’s functional network 

modularity with awareness. Proceedings of the National Academy of Sciences, 112(12), 

3799-3804. 

77. MacLean, M. H., & Arnell, K. M. (2011). Greater attentional blink magnitude is associated 

with higher levels of anticipatory attention as measured by alpha event-related 

desynchronization (ERD). Brain Research, 1387, 99-107. 

78. Foxe, J. J., & Snyder, A. C. (2011). The role of alpha-band brain oscillations as a sensory 

suppression mechanism during selective attention. Frontiers in Psychology, 2, 154. 

.CC-BY-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted August 5, 2021. ; https://doi.org/10.1101/2021.08.04.455077doi: bioRxiv preprint 

https://doi.org/10.1523/JNEUROSCI.0440-11.2011
https://doi.org/10.1101/2021.08.04.455077
http://creativecommons.org/licenses/by-nd/4.0/


EEG Network Configuration During Go/No-Go Task in ADHD 31 

 

79. Yuk, V., Dunkley, B. T., Anagnostou, E., & Taylor, M. J. (2020). Alpha connectivity and 

inhibitory control in adults with autism spectrum disorder. Molecular autism, 11(1), 1-13. 

80. Lenartowicz, A., Mazaheri, A., Jensen, O., & Loo, S. K. (2018). Aberrant modulation of 

brain oscillatory activity and attentional impairment in attention-deficit/hyperactivity 

disorder. Biological Psychiatry: Cognitive Neuroscience and Neuroimaging, 3(1), 19-29. 

81. Lenartowicz, A., Lu, S., Rodriguez, C., Lau, E. P., Walshaw, P. D., McCracken, J. T., ... & 

Loo, S. K. (2016). Alpha desynchronization and frontoparietal connectivity during spatial 

working memory encoding deficits in ADHD: A simultaneous EEG/fMRI 

study. Neuroimage: Clinical, 11, 210-223. 

82. O’Reilly, C., & Elsabbagh, M. (2021). Intracranial recordings reveal ubiquitous in‐phase and 

in‐ antiphase functional connectivity between homotopic brain regions in humans. Journal of 

Neuroscience Research, 99(3), 887-897. 

83. Elton, A., Alcauter, S., & Gao, W. (2014). Network connectivity abnormality profile 

supports a categorical‐dimensional hybrid model of ADHD. Human Brain Mapping, 35(9), 

4531-4543. 

 

 

 

 

 

 

 

.CC-BY-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted August 5, 2021. ; https://doi.org/10.1101/2021.08.04.455077doi: bioRxiv preprint 

https://doi.org/10.1101/2021.08.04.455077
http://creativecommons.org/licenses/by-nd/4.0/


00

0
0

P
re

d
ic

te
d

 S
co

re
s

DSM- Hyperactivity/Impulsivity Scores

.CC-BY-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted August 5, 2021. ; https://doi.org/10.1101/2021.08.04.455077doi: bioRxiv preprint 

https://doi.org/10.1101/2021.08.04.455077
http://creativecommons.org/licenses/by-nd/4.0/


High Hyperactivity/Impulsivity

Low Hyperactivity/Impulsivity

100 – 200 ms

200 – 300 ms

300 – 400 ms

0 0.0250.020.0150.010.005 .03

Mean Number of Connections

200 – 300 ms

A)

B)

.CC-BY-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted August 5, 2021. ; https://doi.org/10.1101/2021.08.04.455077doi: bioRxiv preprint 

https://doi.org/10.1101/2021.08.04.455077
http://creativecommons.org/licenses/by-nd/4.0/


High Hyperactivity

Low Hyperactivity

Frontal

Posterior

Right Central

Left Central

Frontal

Posterior

Right Central

Left Central

0 0.0250.020.0150.010.005 .03

Mean Number of Connections from 0-500 ms

0 – 500 ms

A)

B)

.CC-BY-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted August 5, 2021. ; https://doi.org/10.1101/2021.08.04.455077doi: bioRxiv preprint 

https://doi.org/10.1101/2021.08.04.455077
http://creativecommons.org/licenses/by-nd/4.0/


Age 20.47 (2.20)

Sex 30 Female, 32 Male

Inattention/Memory 12.13 (5.61)

Inattention 9.77 (4.15)

Hyperactivity/Restlessness 17.89 (6.75)

Hyperactivity/Impulsivity 10.06 (4.35)

Impulsivity/Emotionality 10.63 (5.38)

Table 1

Participant Info and Self-Report Measures

Demographic

Measures

Inattentive 

Measures

Hyperactive/Impulsive 

Measures

n  = 62

Results are presented as Mean (SD)
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Metric Interpretation

Global Efficiency
Measures the ability for any two nodes in the network to 

communicate through a short number of steps.  

N = Number of nodes;  l ij = shortest path between nodes i 

and j .

Clustering Coefficient

Measures the tendency of a node to 'cluster' (have neighbours 

which are also neighbours with each other). 

 ti =  number of neighbours of node i;  ki =  number of  

'closed triangles' (occurs when two neighbours of node i  are 

also neighbours with each other). 

Small-Worldness
Measures the level of segregation in the network relative to its 

level of integration.

 l  = equivalent lattice network; r  = equivalent random 

network.  

Modularity

Measures how well a partition divides the network into 

subnetworks that show a large number of within-module 

connections and a small number of between-module 

connections 

E = number of edges; δ = Kronecker-delta function  (1 if 

nodes i and j are in the same module (m), 0 otherwise); e = 

equivalent random network.

Participation Coefficient
Measures a node’s tendency to connect with nodes outside of 

its own module.

Nm = number of modules; Ki = number of connections held 

by node i; Kis =number of connections held by node i within 

module s. 

Static

Dynamic

Table 2

Static and dynamic graph-theory metrics used in analysis 
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Broadcast Centrality 

Measures the ability of a node to communicate with all other 

nodes through temporal paths of all lengths. 

I = identity matrix, T = static adjacency matrix at each time-

point; α = parameter between 0 and 1. 

Temporal Correlation Coefficient

Measures the tendency for nodes to remain connected to the 

same neighbours over time. 

T = temporal length of the network.

Small-Worldness

Measures the level of dynamic segregation relative to the level 

of dynamic integration.

rp = randomly permuted order of the network.

Burstiness Coefficient

Measures the tendency for communication to occur in a burst-

like fashion. 

τ = distribution of inter-contact times.

Flexibility
Measures the tendency of a node to switch modules. 

M = number of times node i changed modules; T = length of 

network.
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Freq Class Measure β Pearson's r 95% CI

Beta Static Integration -2.48

Beta Static Modularity 1.41 .30, p = .0178 [.06 .51]

Beta Dynamic Burstiness -1.24 -.32, p = .0167 [-.52 -.06]

Beta Static Participation Coefficient -1.11 -.34, p  = .0064 [-.55 -.10]

Beta Dynamic Integration -.90 -.22, p  = .089 [-.44 .03]

Alpha Static Modularity .57

Gamma Dynamic Flexibility .17 .25, p = .0482 [.01 .47] 

Freq Class Measure β Pearson's r 95% CI

Beta Static Participation Coefficient -2.14 -.28, p  = .023 [-.49 -.03]

Beta Static Integration -1.91

Beta Dynamic Integration -.41

Gamma Dynamic Small-Worldness 3.95 0.40, p  = .0011 [.17 .59]

Gamma Static Integration -2.06 -0.23, p  = .076 [-.45 .02]

Alpha Static Segregation 3.10

Table 3

Execution of a motor response (Go)

-

-

-

Features in the LASSO models which were identified as predictive of scores on the CAARS scales. In the 

model (one run for each scale), all frequency bands, static and dynamic measures, as well as Go and NoGo 

conditions were features. For each feature in the Go condition, regression coefficients (β), pearson's r  (when 

p  > .1), and 95% confidence intervals for pearson's r  are provided.

Hyperactivity/Impulsivity

Features Strength

Hyperactivity/Restlessness

Features Strength

-

-
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Freq Class Measure β Pearson's r 95% CI

Gamma Static Small-Worldness 4.76 .43, p  = .0006 [.20 .61]

Gamma Dynamic Integration 2.70 0.36, p  = .0038 [.12 .56]

Gamma Dynamic Small-Worldness 2.16

Gamma Static Integration 1.16 .31, p  = .01 [.06 .52]

Gamma Dynamic Segregation -.44 -.36, p  = .0043 [-.56 -.12]

Alpha Dynamic Integration 0.32

Theta Static Modularity 0.31

Freq Class Measure β Pearson's r 95% CI

Gamma Static Small-Worldness 5.60 .41, p  = .0008 [.18 .60]

Gamma Static Integration 4.90 0.33, p  = .01 [.082 .53]

Gamma Static Participation Coefficient 2.13 .35, p  = .0055 [.11 .55]

Beta Dynamic Integration -1.86 -.28, p = .029 [-.49 -.03]

Delta Dynamic Integration -.49 -.21, p  = .09 [-.43 .04]

Table 4

Inhibition of a motor response (No-Go)

Features in the LASSO models which were identified as predictive of scores on the CAARS scales. In the 

model (one run for each scale), all frequency bands, static and dynamic measures, as well as Go and NoGo 

conditions were features. For each feature in the No-Go condition, regression coefficients (β), pearson's r 

(when p  > .1), and 95% confidence intervals for pearson's r  are provided.

Hyperactivity/Impulsivity: No-Go

Features Strength

Hyperactivity/Restlessness: No-Go

Features Strength

-

-

-
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