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Title:  Evaluating the efficacy of a consumer-centric method for ecological sampling: Using bonobo (Pan 
paniscus) feeding patterns as an instrument for tropical forest characterization 

 
Abstract 

1. Characteristics of food availability and distribution are a key component of a species ecology. Objective 1 

measurement of food resources, such as vegetation plot sampling, do not consider aspects of selection 2 

by the consumer and therefore may produce imprecise measures of availability. Further, in most animal 3 

ecology research, traditional ecological surveying often is time-intensive and supplementary to ongoing 4 

behavioral observation. We propose a method to integrate ecological sampling of an animal’s 5 

environment into existing behavioral data collection systems by using the consumer as the surveyor. 6 

Here, we introduce the consumer-centric method (CCM) of assessing resource availability for its ability 7 

to measure food resource abundance, distribution, and dispersion. This method catalogues feeding 8 

locations observed during behavioral observation and uses aggregated data to characterize these 9 

ecological metrics.  10 

2. We evaluated the CCM relative to traditional vegetation plot surveying using accumulated feeding 11 

locations across three years visited by a tropical frugivore, the bonobo (Pan paniscus), and compared 12 

it with data derived from over 200 vegetation plots across their 50km2+ home range. 13 

3. We demonstrate that food species abundance estimates derived from the CCM are comparable to 14 

those derived from traditional vegetation plot sampling after approximately 600 observation days or 60 15 

spatially explicit feeding locations. The agreement between the methods further improved when 16 

accounting for aspects of consumer selectivity in objective vegetation plot sampling (e.g., size minima). 17 

Estimates of density from CCM correlated with plot-derived estimates and were relatively insensitive to 18 

home range inclusion and other species characteristics, but were sensitive to sampling frequency (e.g., 19 

consumption frequency). Agreement between the methods in relative distribution of resources 20 

performed better across species than expected by chance, although measures of dispersion correlated 21 

poorly.  22 

4. We demonstrate that while providing a robust measure to quantify local food availability, the CCM has 23 

an advantage over traditional sampling methods as it incorporates sampling biases relevant to the 24 

consumer. Therefore, as this method can be incorporated into existing observational data collection 25 
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and does not require additional ecological surveying, it serves as a promising method for behavioral 26 

ecological data collection for animal species who re-use space and consume immobile food items. 27 

 28 

Keywords: dispersion | distribution | food availability | resource selection | species abundance | 29 

vegetation plot  30 

 31 

1. Introduction 32 

The abundance, dispersion, and distribution of food resources not only determines species 33 

distribution but also has a strong impact on many aspects of an animal’s life-history, physiology, and 34 

sociality (e.g., Anholt and Werner 1995; Chapman et al. 2015; Davies and Deviche 2014; Hutto 1990; 35 

Lambert and Rothman 2005; Rogers 1987; van Schaik et al. 1993; Vogel and Janson 2007). Due to the 36 

core importance of food to an organism, the quantification of food availability and distribution are key 37 

considerations across studies and disciplines. Methods used to estimate food resource abundance, 38 

distribution, and dispersion are just as varied as the questions which necessitate these quantifications 39 

(Szigeti et al. 2016).  40 

Measurement of food resource abundance or density (i.e., estimation of the amount of a resource 41 

available in a landscape) depends heavily on the type of resource and scale of interest (Bowering et al. 42 

2018; Morrison 2016). Large scale analyses of abundance typically rely on remotely derived proxies via 43 

satellite imagery, but for questions related more immediately to the individual or social group scale, direct 44 

measurement of exploitable resources offer more direct insights into the resources available to a consumer 45 

(e.g., Foerster et al. 2016; Wessling et al. 2020). While mobile resources may be measured via consumer 46 

behavior (e.g., attack rates: Hutto 1990), for static food resources like plants, abundance is commonly 47 

estimated by sampling subsets of the area of interest. Example methods include transects or vegetation 48 

plots/quadrats (Baraloto et al. 2013; Ståhl et al. 2017; Vogel and Janson 2007), with the latter being the 49 

most common sampling method in studies of frugivorous or folivorous animals. To then estimate 50 

distribution, that is, a calculation of relative resource abundance or density across space within a 51 

landscape, sampling may be further stratified across a given area relevant from individuals to populations 52 

(e.g., home range, landscape, or region). 53 
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Measures of dispersion (i.e., patterns of clustering or patchiness), such as Morisita’s index 54 

(Morisita 1962), are used to quantify the clustering of resources over space within a landscape (Krebs 1999; 55 

Stephens and Krebs 1986), often used in the contexts of understanding resource competition and socio-56 

ecological behavior (e.g., Vogel and Janson 2011). Quantifications of food species dispersion are perhaps 57 

even more varied in practice and sensitive to the scale relevant to the consumer (e.g., Myers 1978; Vogel 58 

and Janson 2011). Dispersion metrics may also require distinct sampling methods tailored to specific 59 

questions (e.g., Vogel and Janson 2007), thus potentially requiring supplementary surveying effort to food 60 

abundance surveying. 61 

Despite its centrality to animal ecological research, ecological sampling design frequently does not 62 

conform to recommended standards nor is adequately validated by animal ecologists (Mortelliti et al., 2010; 63 

Szigeti et al. 2016). For example, sampling effort can substantially impact measures of resource 64 

abundance, but it is rarely validated whether efforts are sufficient to adequately measure the intended 65 

metrics. Further, ecological data collection often requires research effort additional to ongoing behavioral 66 

observations and is time intensive and thus infrequently conducted. Snapshots of abundance derived from 67 

these efforts in a landscape may therefore be used even many years after they have been collected or may 68 

fail to account for temporal variation.  69 

The problem of insufficient quantifications of resource availability may also extend to sampling 70 

design. While traditional sampling methods in animal ecology may offer an objective measure of the 71 

resources potentially accessible to a consumer, these methods are by design blind to aspects of resource 72 

selection by the consumer. Given these disadvantages, the question arises whether there is a way to 73 

conduct ecological sampling that is time-efficient within existing behavioral data collection systems and also 74 

integrates resource selection criteria of the consumer? Behavioral observation has been used previously 75 

as a measure of food availability (Lovette and Holmes 1995; Hutto 1990), dispersion (Vogel and Janson 76 

2011), and preference (Forester et al. 2009), however these methods are either limited in application or still 77 

necessitate ecological data collection.  78 

We therefore introduce a consumer-centric method (CCM) for animal behavioral ecology studies 79 

which uses the consumer as the survey vehicle to potentially quantify food resources in a landscape. With 80 

this method, researchers catalogue food resource locations as they are consumed during the process of 81 
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behavioral observation. Here, we evaluate the CCM relative to traditional habitat plot data collection using 82 

accumulated feeding locations from two social groups of a tropical frugivore, the bonobo (Pan paniscus), 83 

as a case study. Specifically, we investigated whether behavioral data on feeding locations (trees and 84 

lianas) provide a reliable dataset allowing inference about food species’ (1) densities, (2) distribution and 85 

(3) dispersion. We additionally assess (4) the minimum sampling effort required and (5) for what 86 

characteristics of a food species this method can be considered most reliable.  87 

 88 

2. Methods 89 

2.1 Study Species and Behavioral Observation 90 

Data were collected at the Kokolopori Bonobo Reserve (Fig. 1) on two social groups of bonobos 91 

(Ekalakala: EKK, Kokoalongo: KKL) between May 2016 and December 2019. Groups were followed daily 92 

for behavioral data collection, during which we collected group feeding locations using a GPS (Garmin 93 

GPSMAP 62), and circumference at breast height (synonymous with and hereafter referred to as DBH) of 94 

feeding trees >20cm diameter and lianas >5cm DBH (SI 2.1, 2.2). Due to GPS measurement error and 95 

consequently an inability to distinguish individual trees on a small scale, we summarized feeding tree 96 

locations of each group into presence or absence of each species in 50 x 50 m cells. We used location data 97 

collected with the GPS tracklog function to calculate the home range of both bonobo groups using kernel 98 

density estimates (see SI 2.1). These groups share overlapping areas of their home ranges, including 64% 99 

and 66% of the home ranges of EKK and KKL, respectively (Samuni et al. 2020). We evaluated whether 100 

feeding location datasets were sufficiently sampled and stable by considering accumulation patterns of data 101 

per species over time (SI 2.3).  102 
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 103 

Fig. 1. (Left) Location of the study site relative to global bonobo distribution. (Right) 50 x 50m habitat plots 104 

(black dots; not to scale) within 1 km2 grid cells (black square) overlaid upon all visited 50x50 cells within 105 

the 95% home range kernels for Ekalakala (red) and Kokoalongo (blue) bonobo groups.  106 

 107 

2.2 Vegetation plots 108 

We conducted vegetation plot sampling by overlaying 1x1 km grid cells over the whole ranging 109 

area and aimed to conduct plot sampling in every grid cell utilized by at least one of the groups (Fig. 1; SI 110 

1.2). Like the observational cells, all habitat plots were 50 x 50m in size, within which data were collected 111 

on all trees meeting the minima defined for observational cells. In total, we sampled 236 plots within these 112 

grid cells, of which 214 plots fell within the 95% home range of either group, with 162 and 170 within the 113 

95% range of EKK and KKL, respectively (Fig. 1). Plot sampling averaged 4.1 ± 1.6 (SD) plots per km2 114 

(range: 1 to 7) and was determined to be of sufficient sampling depth (SI 1.3). 115 

 116 
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2.3 Comparison of datasets 117 

2.3.1 Density 118 

To compare estimated species abundances derived from each dataset (CCM or vegetation plots), 119 

we derived three different indices. 1) We used the bonobo observational data to create a ‘presence index’ 120 

based on bonobo feeding locations for each food species, estimated as the number of 50x50m cells in 121 

which each species was present divided by the total number of cells within the 95% kernel home range of 122 

each group (see Fig. S5 for an example). 2) We calculated species density estimations using the vegetation 123 

plot data as the total number of individuals observed per area surveyed (num. individuals / km2, hereafter 124 

“Plot Density”). 3) We calculated the number of 50x50m plots in which each species was present per total 125 

number of plots sampled for more direct comparison with the CCM (hereafter “Plot Presence”).  126 

To evaluate method agreement, we created pair-wise sets of comparisons of the three density 127 

indices by means of Pearson’s correlation tests and used the correlation coefficient (r) as a measure of 128 

strength of agreement between methods. We conducted the pair-wise comparisons while assessing the 129 

influence of sampling effort on method agreement by varying levels of home range usage (kernel % range 130 

from 20 until 95 % in increments of 1%) and dietary inclusion (top 10 most consumed species until full diet) 131 

for each group. We only considered comparisons with at least 10 species in at least 10 vegetation plots. 132 

We additionally created a moving window over the kernel home range from 20% to 95% for which to 133 

compare methods more directly according to home range location. This window accounts for variation in 134 

area coverage by adjusting window radius to impose similarly sized datasets for comparison over the range 135 

of % kernel inclusion (i.e., for agreement from home range core to periphery; SI 3.1). 136 

Finally, to identify potential dataset minima required for reliable and stable density indices derived 137 

from the CCM, we evaluated the pattern of correlation strength between indices from each method as the 138 

dataset grew over time (i.e., day of data collection), and set the minimum as the point from which the 139 

correlation coefficient remains relatively stable. We describe p-values for these correlations in our 140 

summaries below, however as these correlations require independent data and because we evaluated 141 

thousands of correlation coefficients per group (nEKK=15075 and nKKL=12834), we do not draw inference 142 

based on p-values but instead focus only upon correlation coefficients. 143 

 144 
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2.3.2 Dispersion 145 

To evaluate agreement between methods in characterizing food species dispersion, we used 146 

Morisita’s index (Morisita 1962). To allow for standardized and directly comparable sample units from which 147 

to calculate this index for both methods, we aggregated number of individuals per species visited by the 148 

bonobos across three different grid cell sizes (500x500m cells, 1000x1000m cells, and 1500x1500m cells), 149 

and calculated the average number of individuals for each species in each of these grid cells using the 150 

vegetation plot dataset. For both datasets, we then calculated the Morisita’s index using the dispindmorisita 151 

function of the package ‘vegan’ (Oksanen et al. 2019) for each species. We further accounted for an unusual 152 

distribution of Morisitia’s indices deriving from the vegetation plot dataset by transforming the data to allow 153 

for a more normal distribution (SI 3.2). 154 

 155 

2.3.3 Distribution 156 

To evaluate the efficacy of the CCM to reliably quantify the distribution of food species in a 157 

landscape, we aggregated data by grid cell as in our dispersion comparison. We compiled the abundance 158 

data for both bonobo and vegetation plot datasets in two ways: by either i) aggregating (CCM) or averaging 159 

(plot dataset) the number of individuals per species per grid cell or ii) by marking the presence/absence of 160 

a given species per grid cell size. We chose to average rather than aggregate plot data because greater 161 

plot sampling in a grid cell will inherently increase species abundances, whereas sampling biases in CCM 162 

could be accounted for by controlling for location within each group’s home range (i.e., % kernel home 163 

range). We then fitted model sets separately for each cell size and group (six sets of up to 70 species each), 164 

using each food species as a dataset and each cell as a datapoint. We used the estimated bonobo feeding 165 

data abundance per cell (a measure of distribution) as the response and the plot abundance as the test 166 

predictor using zero inflated Poisson models (500x500m grid size) or simple linear models for (1000x1000 167 

and 1500x1500m grid sizes). Within these models, to account for variation in home range utilization by the 168 

bonobos we controlled for the % kernel home range of each cell by averaging the % kernel value assigned 169 

to each of the vegetation plots used to estimate the species abundance within that cell. We then calculated 170 

average Nagelkerke’s R2 (500x500m) or r2 (1000x1000m and 1500x1500m) for each model set across 171 

levels of dietary inclusion (see SI 3.3 for detailed descriptions of the fitted models and model checks).  172 
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To also evaluate agreement between methods on simple presence of a species in a cell, we fitted 173 

a generalized linear mixed model with binomial error structure (Baayen 2008) for each grid cell size and 174 

each social group. The response in this model was the presence or absence of a species in a given cell as 175 

predicted by the bonobo observational data (with one datapoint per species per cell), and presence as 176 

measured by vegetation plot and % kernel as test predictors. In these (six total) binomial models we 177 

included cell ID and species as random effects and included random slopes for presence/absence in the 178 

plots and their correlation within the random effect of species (SI 3.3 for details and model checks). As a 179 

last validation of distribution agreement, we identified when bonobos missed the presence of a species in 180 

a cell that had been identified in habitat plots and calculated a proportion of missed species occurrences 181 

out of all cells per species, as well as evaluated potential sources of biases in likelihood to miss a species 182 

in a cell (see 2.4). 183 

 184 

2.4 Identifying sources of bias 185 

If a consumer is selective in which resources it uses within a landscape, then measurements from 186 

vegetation plots may not accurately measure the relevant resources to that consumer. To evaluate these 187 

potential discrepancies, we compared food tree and liana sizes (strongly tied to variability in food crop 188 

production: Chapman et al. 1992; SI 4) between CCM and vegetation plot data as an example of a potential 189 

selective characteristic. We then quantified seven characteristics of each species to evaluate how they 190 

contribute to rates of data accumulation and agreement between our sampling methods. Specifically, we 191 

considered the lifeform (tree or liana), patterns of dispersion, consumed food item (fruit or non-fruit), 192 

seasonality of consumption, density in the landscape, DBH variability, and frequency of consumption (SI 193 

4.1) as test predictors in models with the following responses (SI 4.2): (1) the speed at which data 194 

accumulate in the CCM dataset (2) a measure of difference between estimates of density between the 195 

methods, and (3) likelihood for bonobos to miss the presence of a species in a cell (SI 4.2).  196 

 197 

2.4 General Analyses 198 

All data analyses were conducted in R (version 4.0.2; R Core Team 2020), and models were fitted 199 

using functions of the ‘lme4’ package (1.1.23; Bates et al. 2015). We report p-values between 0.05 and 0.1 200 
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as a ‘trend’ for all models to ease issues of dichotomization of significance (Stoehr 1999). To avoid issues 201 

of multiple testing when identical models were run across responses which varied only in their summary 202 

method (e.g., grid cell size) or dataset (e.g., social group), we describe only patterns which are stable and 203 

significant or trending across at least half of each model set; full results for all models as well as further 204 

description of all methods and model checks can be found in the SI. We used log transformation to help 205 

return predictor (e.g., species density, consumption frequency) and response (all density indices) variables 206 

to a roughly normal or symmetric distribution when they were right-skewed.  207 

 208 

3. Results 209 

3.1 Consumer Centric Dataset 210 

The bonobo groups visited (i.e., fed in) a total of 12430 (EKK) and 13827 (KKL) 50x50m cells, 211 

amounting to an area ‘surveyed’ of 31.1 (EKK) and 34.6km2 (KKL). This amounts to 58.6km2 total area 212 

surveyed, as 46.7% of this area occurred within the home range overlap of both communities. Bonobos 213 

from EKK and KKL fed on a total of 78 tree and liana species (88.6% occurring in the diets of both groups) 214 

from trees and lianas, of which 96% of feeding occasions could be identified to a local name. These 215 

observations amounted to 8818 (EKK) and 9140 (KKL) unique feeding tree/liana locations (50x50m) 216 

consisting of 76 (EKK) and 72 (KKL) species, of which 58 (EKK) and 55 (KKL) species were consumed in 217 

at least 10 locations. The diets of both groups were strongly skewed towards a few frequently consumed 218 

species (SI 2.4). The groups visited a similar number of locations each day, with a mean of 10.0 ± 5.5 (KKL) 219 

and 8.9 ± 5.0 (EKK) locations visited. On average, 4.5 ± 2.0 (KKL) and 4.3 ± 1.8 (EKK) species were 220 

consumed per day by the bonobos.  221 

Bonobos visited 60% (EKK) and 56% (KKL) of all visited cells within the first year of data collection, 222 

with gradual declines in the accumulation of newly visited cells over the 3+ year study period in both groups 223 

and a clear approach towards an asymptote for most of the top 30 species (Fig. S2). We found that the 224 

speed at which new feeding locations were added to the dataset also decreased across species (i.e., longer 225 

accumulation times) with each passing year for both groups, and that much of the observed decrease in 226 

new locations visited over time was likely driven by significant gains early within the dataset (Figs. S2, S3; 227 

SI 2.3). Data on species more variable in size (DBH) accumulated slower in EKK than species more uniform 228 
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in size (but no such relationship was found in KKL), and accumulation was also slower in species consumed 229 

for their fruits and in more abundant species in the landscape in both groups (SI 4.3, Tables S2 and S3). 230 

 231 

3.2 Vegetation Plot Dataset  232 

In total, 14855 trees and lianas were measured across 214 habitat plots (SI 1.1), thus exceeding 233 

plot surveying minima (124 plots, SI 1.3). Plot surveying required a cumulative total of 146 team days, 234 

averaging to 1.7 ± 0.6 (SD) plots completed per team day (range: 1 – 4). Trees comprise the majority 235 

(66.9%) of the individuals measured. This dataset averages to 277.7 individual tree and lianas /ha in across 236 

the habitat of these two groups, with 196.1 indiv./ha for food species, and 168.2 indiv./ha for potential food 237 

trees that meet bonobo size minima (see below) for the EKK and KKL home ranges collectively. 238 

Seventy-five of the 200 taxa identified in the plots were consumed by at least one of the two groups, 239 

with 67 of 72 (EKK) and 70 of 75 species (KKL) in the diet occurring in the plots. Like the bonobo diet, the 240 

forest is heavily biased towards a few species, with one species accounting for over 10% of the dataset 241 

(‘Bofili’, local name for Scorodophloeus zenkeri), and the top 10 most common tree species accounting for 242 

almost 40% of all trees and lianas (n=6375, 39.2%). Correspondingly, only 16 species account for over 243 

50% of the individuals in the plots, of which 11 occur in the diet of both groups. Species in the bonobo diet 244 

accounted for 67% of the total number of trees or lianas observed in the Kokolopori landscape. 245 

 246 

3.3 Dataset comparison 247 

3.3.1 Consumer selectivity of tree sizes 248 

Trees visited by bonobos were significantly larger on average than trees measured in the plots 249 

(EKK: t=-17.71, p<0.001; KKL: t=-20.38, p<0.001), but by only an average of less than 1cm in both groups 250 

(Table S1). For 23.1% of consumed species, we found more individuals in the plots that did not reach the 251 

minimum size consumed than those who did exceed this minimum threshold. We subsequently restricted 252 

all analyses to trees/lianas that met this threshold, consequently reducing the number of individuals 253 

included in plot dataset by approximately 18% in both groups (8891 individuals in EKK and 8685 in KKL; 254 

SI 4). Reducing the dataset had a measurable effect on the correlation strengths between estimates of 255 

density (see below), with an average improvement of 0.04 for comparison (r) of the CCM estimate with the 256 
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Plot Presence estimates, and 0.07 improvement in correlation coefficient in the comparison of the CCM 257 

estimate with Plot Density. 258 

 259 

3.3.2 Density  260 

We found that the density estimates from the CCM and vegetation plots were comparable in both 261 

groups (Table 1 and Fig. 2). Patterns of correlational strength between the methods stabilized and 262 

smoothed from approximately 50% kernel home range inclusion and above, and when approximately a 263 

minimum of 15 species was included in the dataset of both groups. Statistical significance of the correlation 264 

was reached in both groups when including ca. 20 of the top species or more. Inclusion of less frequently 265 

used areas of the home range to the comparison did not appear to considerably affect the strength of 266 

agreement between methods but correlation strength decreased with greater number of species included 267 

in the comparison (Fig. 2; Table 1). While we did observe that peripheral areas of the home range generally 268 

resulted in lower methodological agreement (Fig. S6), bonobo data appeared largely insensitive to inclusion 269 

of the outer reaches of the home range in both groups when included alongside more intensively surveyed 270 

areas (i.e., the core range).  271 

Broadly, the CCM more closely matched estimates of Plot Density relative to Plot Presence. 272 

However, for both comparisons we observed a decrease in the correlation coefficient the greater the 273 

number of species included in the EKK dataset (Fig. 2, blue lines in bottom left panel). For both groups, we 274 

found highest agreement between methods when restricting the comparison to the top 36-40 species (i.e., 275 

approximately half of the species in the diet), with one exception that only slightly outcompeted the r of the 276 

same range (KKL CCM vs. Plot Density). As expected, comparison between Plot Density and Plot Presence 277 

remained consistently high regardless of location within the home range of the bonobo groups, although 278 

correlations were lower when fewer species were included.  279 
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Table 1. Summary of correlation coefficients (r) between density estimates derived from the CCM and 280 

vegetation plot sampling for all significant comparisons above 50% kernel home range and of at least 10 281 

species.  282 

(a) Kokoalongo 
 

  
    

 
rmean ±SD 
(all 
combinations) 

rrange 
(all 
combinations) 

Number of 
species with 
highest rmean 
(rmean)* 

Number of 
species at rmax 

% kernel 
with 
highest 
rmean** 

% kernel at 
rmax 

Plot Presence and 
Plot Density  

0.96 ± 0.02 0.82 - 0.99 - - - - 

Plot Presence and 
CCM 

0.48 ± 0.04 0.31 - 0.55 36 species 
(0.53) 

10 94 % 
(0.50) 

58 

Plot Density and 
CCM 

0.58 ± 0.04 0.46 - 0.69 36 species 
(0.65) 

71 69 % 
(0.60) 

51 

  
      

(b) Ekalakala rmean ±SD 
(all 
combinations) 

rrange 
(all 
combinations) 

Number of 
species with 
highest rmean 
(rmean)* 

Number of 
species at rmax 

% kernel 
with 
highest 
rmean** 

% kernel at 
rmax 

Plot Presence and 
Plot Density  

0.97 ± 0.06 0.88 - 0.99 - - - - 

Plot Presence and 
CCM 

0.52 ± 0.02 0.31 - 0.63 40 species 
(0.58) 

48 51 % 
(0.56) 

95 

Plot Density and 
CCM 

0.54 ± 0.03 0.42 - 0.70 19 species 
(0.66) 

26 50 % 
(0.58) 

95 

*averaged across all combinations of % home range inclusion per number of species included 283 
**averaged across all combinations of number of species included per % home range inclusion 284 
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 285 

Fig. 2. Correlation coefficients of density estimates between sampling methods (i.e., CCM and vegetation 286 

plots) for EKK (left) and KKL (right), according to home range percentage (top) and dietary inclusion 287 

(bottom). Color groups depict the three comparisons in this study (see legend), with numbers in brackets 288 

indicating number of species included (top legend) or percent home range included (bottom legend). 289 

 290 

Once our moving window reached the dataset minimum of 20 plots at ca. 30% kernel, the 291 

correlation coefficient of the CCM with plot estimates increased until they reached a maximum around 60% 292 

kernel home range in both groups (Fig. S6). Peripheral areas of the home range were generally lower in 293 

agreement than more central areas but did not show persistent decreases with increasing peripheralization 294 

in a manner that would suggest consistently poorer sampling in peripheral areas. Sampling agreement was 295 
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strongest within our moving windows for the most frequently consumed species (e.g., 15 or 30 species) 296 

relative to more comprehensive subsets of the two groups’ diets (e.g., 55 and 70 species).  297 

The density of the species in the landscape and the variability in size significantly impacted 298 

agreement between the methods (Table S4); specifically, lower species density in the plots (estimate 299 

average: 0.57 ± 0.11 [SE]) and lower size variability (-1.29 ± 0.62 [SE]) improved method agreement. 300 

Further, in KKL only, greater seasonality, non-fruit item consumption, and greater consumption frequency 301 

decreased agreement between methods.  302 

Correlation strength between the two methods reached significance and stabilized across methods 303 

and groups once exceeding 600 days (i.e., ca. 5300 [KKL] to 6000 [EKK] total visited locations) and 304 

continued to improve as data was collected until the end of our data period (Fig. 3; EKKmax: 1222 days, 305 

KKLmax: 1151 days). 306 

 307 

Fig. 3. Pearson’s r (left) and p-value (right; dashed line indicates 0.05 alpha level) of all three methods 308 

comparisons (see legend) for Ekalakala (full line) and Kokoalongo (dashed lines) over the duration of the 309 

dataset. 310 

 311 
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3.3.3 Dispersion 312 

Overall, Morisita’s indices from the CCM correlated weakly and non-significantly to vegetation plot 313 

indices, regardless of grid cell size used or bonobo group (Table 2a).  314 

 315 

Table 2. Average (a) correlation coefficients (r) and (b) proportion of variance explained (r; 500x500m) or 316 

Nagelkerke’s R (1000x1000m and 1500x1500m) between the CCM and plot datasets across three different 317 

grid cell sizes for (a) dispersion and (b) distribution estimates. 318 

(a) Dispersion 
    

 
EKALAKALA 

 
KOKOALONGO 

  

Cell 
size 

Mean +SD (range) 
 

Mean +SD 
(range) 

  

500 0.08 + 0.17 (-0.54, 
0.55) 

 
0.00 + 0.16 (-
0.35, 0.61) 

  

1000 0.00 + 0.19 (-0.8, 
0.25) 

 
-0.03 + 0.14 (-
0.65, 0.13) 

  

1500 -0.17 + 0.14 (-0.86, 
0.07) 

 
-0.20 + 0.14 (-
0.83, -0.01) 

  

(b) Distribution 
    

 
EKALAKALA 

 
KOKOALONGO 

  

Cell 
size 

Mean ± SD (range) Num species 
p<0.05 (% of 
total species) 

Mean ± SD 
(range) 

Num species 
p<0.05 (% of 
total species) 

Significant 
species in 
both 
groups 

500 0.25 ± 0.05 (0.21, 
0.38) 

15 (29%) 0.23 ± 0.04 (0.20, 
0.36) 

13 (28%) 11 

1000 0.23 ± 0.02 (0.20, 
0.30) 

13 (19%) 0.24 ± 0.02 (0.20, 
0.31) 

8 (11%) 7 

1500 0.23 ± 0.03 (0.14, 
0.27) 

8 (12%) 0.24 ± 0.02 (0.21, 
0.27) 

6 (9%) 3 

 319 

3.3.4 Distribution  320 

Across both bonobo groups and all three grid cell sizes, we found that more species significantly 321 

correlated between the two methods for individual abundances across cells than would be expected by 322 

chance, with an average of 18% of species significantly correlated between methods across the three cell 323 

sizes (Table 2b). Percentage of species with significant correlations across methods declined as grid cell 324 

sizes increased, as did the number of significant species which remained consistent across both groups. 325 

Generally, proportion variance explained (r or Nagelkerke’s R) by abundance per cell based on plots 326 
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averaged 0.25 ± 0.32 [SD] across species in all grid cell sizes and groups for predicting abundance per cell 327 

based on CCM. Average r did not vary substantially with cell size or between groups (Fig. 5).  328 

The presence of a species in a cell as measured by plots significantly predicted the presence of 329 

that species in the cell as identified with CCM (estimate: 0.60 ± 0.20 (SD), range: 0.32 – 0.81; Table S5). 330 

The location of a cell within the home range appeared to play a consistent role, with food species less likely 331 

to be identified by CCM in more peripheral cells (average estimate: -0.05 ± 0.01 (SD), range: -0.05 – -0.04; 332 

Table S5). Bonobos missed presence of a species on average in 17.5% ± 16.3% (SD; range: 0 – 68.4%) 333 

of the 500x500m cells and in 18.4% ± 16.5% (SD; range: 0 – 61.2%) of the 1000x1000m cells. Increases 334 

in species abundance correlated with an increase in the likelihood for bonobos to miss the presence of 335 

species in a cell irrespective of cell size or group but species were less likely to be missed in a cell if they 336 

were more frequently consumed. We additionally found some support for species consumed for their fruits 337 

to be more likely to be missed in smaller cell sizes (Table S6).  338 

 339 

Fig. 5. Averaged proportion variance explained (r) or Nagelkerne’s R (top) and p-values for the estimate 340 

(bottom; dashed line indicates 0.05 alpha level) for correlations between estimated abundances per cell of 341 
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species (i.e., distribution agreement) as derived from CCM and vegetation plots for EKK (left) and KKL 342 

(right) and for three grid cell sizes (red: 500x500m, green: 1000x1000m, blue: 1500x1500m). 343 

 344 

4. Discussion 345 

Here we demonstrate the applicability of the consumer-centric method (CCM) for measuring 346 

resource density and distribution in an animal’s landscape. We demonstrate that food species estimates 347 

derived from the CCM method are comparable to estimates derived from traditional vegetation plot 348 

sampling following a relatively short data collection timeframe, including before data have reached 349 

saturation. The method also seems promising for characterizing distribution of food patches within a 350 

landscape. Furthermore, we demonstrated that the CCM has an advantage over traditional sampling 351 

methods as it incorporates sampling bias important to the consumer into quantification of the ecological 352 

landscape.  353 

 354 

4.1 Robustness of the CCM  355 

The CCM estimates of abundance showed strong similarity to estimates from traditional ecological 356 

sampling. Behavioral ecologists have previously used consumption rates to infer about the abundance of 357 

food resources (Hutto 1990; Lovette & Holmes 1995; Watts & Mitani 2015). These methods are particularly 358 

susceptible to handling time, consumer motivation, and/or dependence of preference from resource 359 

availability and are subsequently difficult to validate (Lovette & Holmes 1995). The key advantage of the 360 

CCM is that rather than quantifying availability from occurrences of consumption (frequency dependent) it 361 

depends on independent locations (spatially dependent), thereby allowing validation with traditional 362 

vegetation plot sampling.  363 

Although we found a significant but minor periphery effect on agreement between methods in the 364 

presence/absence of species, the correlation of abundance estimates between methods were unaltered by 365 

% of home range inclusion. The lack of a spatial effect on agreement between the methods is in some part 366 

likely to be a result of home range selection on the part of the consumer (e.g., second-order selection sensu 367 

Johnson 1980), i.e., bonobos may have already selected their home range based upon resource availability 368 

hence no sampling biases therewithin. In absence of home range use biases, the CCM therefore reliably 369 
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estimates resource availability across the entirety of a group’s space use, although future studies should 370 

verify absence of sampling biases on agreement between the CCM and traditional methods in their own 371 

study species. 372 

Further, we found consumption frequency to impact likelihood to miss species presences. 373 

Consequently, restricting estimation to only the top half of the consumed species (by frequency) appears 374 

to offer a compromise between maintenance of dietary relevance while maximizing fidelity with density 375 

estimates as assessed by objective plot measurements. This minimum translated to species consumed in 376 

approximately at least 60 locations over our three-year dataset. A general consequence of sampling 377 

frequency by a consumer is that estimates improve in precision as data accumulate over time. While 378 

species in our dataset were variable in “saturation level”, rates of new locations sampled by the bonobos 379 

slowed over the course of data collection and inter-method correlation of species abundances stabilized 380 

after fewer than two years of data collection (approx. 600 days). As our results indicate that sampling rate 381 

affects stability of estimates (e.g., frequency of consumption), we anticipate that this general minimum will 382 

be higher for species with slower sampling frequency, i.e., for less frequently consumed species, as well 383 

masting species or species which are consumed aseasonally. 384 

Generally, species distribution (i.e., relative abundance) correlated weakly between the methods 385 

across species regardless of scale of comparison (i.e., cell size). A greater proportion of species reached 386 

significant agreement between methods in smaller rather than larger cell sizes, potentially as a function of 387 

proximity, i.e., the larger the cell size used the greater the potential distance between bonobo feeding 388 

locations and comparatively small plot areas. Nevertheless, our finding that correlations of distribution within 389 

species was significant across a greater proportion of food species than expected by chance (i.e., 5%) and 390 

that the rates at which bonobos missed the presence of a species in a cell is likewise better than common 391 

rates of species misses between multiple observers in single plot (Millberg et al. 2008) provides hope that 392 

reliable estimates of sub-landscape abundances may improve with greater sampling depth.  393 

While detectability is rarely 100% in either method (Morrison 2016), the miss rates by a consumer 394 

in the CCM may rather carry additional information about the nature of resource selection (and the 395 

individuals which are subsequently ignored). This is especially likely to be the case in consumers who have 396 

the capacity to keep track of spatiotemporal patterns of resource availability. Bonobos likely have a concept 397 
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of where and when resources become available, and therefore are also capable of targeting resources that 398 

are rare (Janmaat et al. 2013; Normand et al. 2013). Consequently, the CCM mimics ad hoc sampling 399 

(Foster et al. 1998, Gordon & Newton 2006, Hopkins 2007), and our results indicate that the CCM more 400 

closely matches plot density estimates at capturing rare species relative to more abundant species. 401 

Nonetheless, in absence of full censusing, we cannot differentiate between which sampling method 402 

produced a more precise representation of food species availability, dispersion, and distribution patterns. 403 

Ideally, methodological sampling biases could be identified by simulating both sampling schemes from a 404 

simulated ‘forest’. Unfortunately, we rarely understand the complexity of consumer movement and resource 405 

selection patterns (Buskirk & Millspaugh 2006). Therefore, subsequent conclusions drawn from simulated 406 

sampling behavior would be just as arbitrary as the decisions made to simulate them (Johnson 1980).  407 

 408 

4.2 Measuring different phenomena 409 

We argue that the CCM, with adequate evaluation, may be a more appropriate tool for most 410 

applications in behavioral ecology than traditional inventory methods. Traditional plot sampling quantifies 411 

the total amount of potential resources which also include inaccessible, unattractive, or otherwise 412 

unpalatable resources to a consumer. Only a subset of these resources comprises true resource 413 

availability, i.e., resources with potential to be selected (Alldredge et al. 1998; Buskirk & Millspaugh 2006; 414 

Johnson 1980), and although correlated, each represents inherently two separate phenomena (Hutto 415 

1990). Because we rarely understand the processes of food selection by which consumers filters objective 416 

resource abundance into availability, the CCM provides the advantage of using the consumer as a means 417 

to avoid arbitrary decisions as to how to best sample the landscape (Johnson 1980). We detail examples 418 

of this selectivity and the resulting advantages of the CCM below. 419 

First, we observed significant differences between average sizes of trees/lianas visited by bonobos 420 

relative to what was available in the landscape of consumed species (as measured in vegetation plots). 421 

Reducing our plot dataset to sizes selected by the consumer increased the correlations between CCM and 422 

vegetation plot measures and demonstrates the inadequacies of consumer-objective plots in mirroring 423 

consumer behavior. Second, that bonobos missed or ignored certain food resources in cells identified to 424 

contain them underlines further how researchers are likely unaware of relevant selection criteria that impact 425 
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measurement of true resource availability. Because apes possess mental maps of their environments and 426 

are known to adjust travel to target preferred food sources (Janmaat et al. 2013; Lucchesi et al. 2021), they 427 

are unlikely to consistently miss potentially important food resources within their home range at the scale 428 

observed in our study. Third, we found that CMM estimates of density and distribution differed between 429 

bonobo social groups, even with largely overlapping home ranges. This conforms to previous findings of 430 

group-specific feeding selection criteria in bonobos (Samuni et al. 2020), independent of local abundance. 431 

If resource availability for a consumer in a given landscape is dependent on group identity, then only 432 

methods like the CCM incorporating these criteria allow comparable estimates for comparative studies 433 

across social groups.  434 

Altogether, by accounting for consumer selection, the accumulation of data on food patch location 435 

are inherently less subjective than datasets dependent upon arbitrary decisions by the investigator 436 

(Johnson 1980). Biases in resource measurement occur via multiple sources including selection of 437 

sampling method, metric, effort, as well as through unavoidable systematic or random measurement errors 438 

(Baraloto et al. 2013; Milberg et al. 2008; Morrison 2016; Ståhl et al. 2017; Wessling et al. 2020). The CCM, 439 

however, accounts for several of these issues because consumers are knowledgeable and motivated 440 

surveyors who actively target resources, with apparently negligible impact of scale variation (e.g., cell size) 441 

or abundance on fidelity of CCM estimates to plot-derived estimates. 442 

Therefore, estimates derived from the CCM provide accurate measures of availability once data 443 

have reached a sufficient depth. Our spatially explicit CCM further allows for data accumulation and 444 

consequential improvement of the accuracy of estimates over time until otherwise removed due to 445 

irrelevance (e.g., patch loss). Nevertheless, if rapid abundance assessment is preferable for a project, 446 

traditional ecological sampling may remain a preferable method due to a 600 person-day burn-in time 447 

required (this study) by the CCM before estimates become reliably stable per social group relative to 150 448 

person days of plots for both groups. However, these 150 person days are supplementary to observational 449 

data, insomuch as person-days necessary to collect both sets of data must be considered additive to 450 

observational data collection. Yet, if databases of feeding locations are already available, adapting these 451 

data to CCM estimation of resource density or distribution save researchers from needing to collect 452 

additional data to quantify resource abundance. 453 
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While this method is best applied to estimate the availability of discrete, immobile, and spatially 454 

explicit resources, these advantages transcend application beyond bonobos and allow researchers to 455 

evaluate the strengths of the method for their investigations across all potential consumers who meet these 456 

criteria (further discussed in Table S7). Functionally, assumptions of the CCM are similar to studies 457 

investigating resource preference, a method which also combines objective habitat measures with 458 

subjective animal-centric data (Manly et al. 2002). For example, this method can only be applied to 459 

consumers which re-use space over time, like a consistent home range, and assumes that consumers have 460 

equal access to all the areas of this space (Alldredge et al. 1998). Nonetheless, researchers must verify 461 

CCM sampling is of sufficient sampling depth and absent of biases (e.g., sampling biases or characteristics 462 

of food items) for their consumer before the CCM can be applied as a means of resource availability. When 463 

applied correctly, the CCM will enable many behavioral ecologists to quantify aspects of food availability by 464 

using existing data, in a manner that is more suitable to its application as well as allows for more precise 465 

comparison ways that make this data comparable across social groups, subsequently promising new 466 

insights in the interplay between an animal and its environment. 467 
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