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Abstract Synaptic plasticity, the experience-induced change in connections between neurons,8

underlies learning and memory in the brain. Most of our understanding of synaptic plasticity9

derives from in vitro experiments with precisely repeated stimulus patterns; however, neurons10

exhibit significant variability in vivo during repeated experiences. Further, the spatial pattern of11

synaptic inputs to the dendritic tree influences synaptic plasticity, yet is not considered in most12

synaptic plasticity rules. Here, we address the sensitivity of plasticity to trial-to-trial variability and13

delineate how spatiotemporal synaptic input patterns produce plasticity with in vivo-like14

conditions using a data-driven computational model with a calcium-based plasticity rule. Using in15

vivo spike train recordings as inputs, we show that plasticity is strongly robust to trial-to-trial16

variability of spike timing, and derive general synaptic plasticity rules describing how17

spatiotemporal patterns of synaptic inputs control the magnitude and direction of plasticity.18

Specifically, a high temporal input firing rate to a synapse late in a trial correlated with19

neighboring synaptic activity produces potentiation, while an earlier, moderate firing rate that is20

negatively correlated with neighboring synaptic activity produces depression. Together, our21

results reveal that calcium dynamics can unify diverse plasticity rules and reveal how22

spatiotemporal firing rate patterns control synaptic plasticity.23

24

Introduction25

Synaptic plasticity—the activity-dependent modification of synaptic strength—is widely hypothe-26

sized as the neural substrate of learning and memory throughout the brain (Takeuchi et al., 2014).27

For instance, synaptic plasticity in mammalian striatum (Perrin and Venance, 2019), cortex (Buono-28

mano andMerzenich, 1998), hippocampus (Martin andMorris, 2002), and amygdala (Bocchio et al.,29

2017) have been linked to procedural, sensorimotor, associative, and emotional learning andmem-30

ory, respectively. Learning requires that repeated experiences produce a stable, persistent change31

in synaptic connections which in turn produce stable neural activity and behavioral responses32

(Abraham and Robins, 2005; Josselyn and Tonegawa, 2020). In vivo experiments have revealed33

changes in synaptic strength, and generation, elimination, growth or shrinkage of dendritic spines34

(sites of synaptic input) (Fisher et al., 2017; Trachtenberg et al., 2002;Winnubst et al., 2015; Zhang35

et al., 2015). However, evidence for stable synaptic changes in response to repeated stimuli pri-36

marily comes from in vitro brain-slice experiments with precisely repeated input stimuli patterns,37

which reveal that stimulus timing, frequency, and synaptic location can control development of38

long term potentiation (LTP) or long term depression (LTD) (Sjöström et al., 2001; van Rossum39

et al., 2000; Caporale and Dan, 2008; Lovinger et al., 1993; Hawes et al., 2013). Yet, it is unclear if40
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in vitro plasticity discoveries that used precise stimulation patterns are reproducible in the highly41

variable neural activity conditions in vivo during natural learning and behavior. Indeed, one of the42

great unsolved questions in neuroscience is whether stable, long-lasting synaptic plasticity occurs43

in vivo given variable neural activity, and, if so, how robust is synaptic plasticity to variability in44

response to repeated sensory stimuli and behaviors?45

Variability and noise are prominent throughout the brain (Faisal et al., 2008). For instance,46

cortical neurons exhibit significant trial-to-trial variability in vivo in response to the same repeated47

external sensory stimulus (Shadlen and Newsome, 1998; Stevens and Zador, 1998). Trial-to-trial48

variability includes variance in the timing of individual spikes, as well as variance in firing rate over49

time. Thus, a given postsynaptic neuron could experience variability in the timing and frequency at50

each of its thousands of synaptic inputs, which would together produce (in addition to cell-intrinsic51

sources of variability) highly variable output spiking of the postsynaptic neuron. For a postsynaptic52

neuron to become potentiated or depressed in response to a specific stimulus represented by a53

subset of its synaptic inputs, plasticity must be robust to variance in the signal (spiking of that54

particular subset of inputs) as well as variance in the noise (the other synaptic inputs not related55

to a stimulus). In the in vitro case, not only is presynaptic and postsynaptic spike timing much56

less variable during repetition, but also the spatial pattern on the dendritic tree of the repeatedly57

activated synapses is likely less variable in vitro as well.58

Experiments suggest that spatial organization of synaptic inputs on the dendritic tree are im-59

portant for plasticity. For instance, in vitro, cortical synaptic plasticity has been shown to depend60

not only on rate and timing, but also on cooperativity of inputs (Sjöström et al., 2001), yet it is61

unclear how in vivo-like variability may affect each of these factors. Additionally, the spatial organi-62

zation of synaptic inputs on the dendritic tree can affect plasticity by cooperativity among clustered63

inputs in vitro (Brandalise et al., 2016; Kastellakis et al., 2015; Sjöström et al., 2008; Weber et al.,64

2016; Golding et al., 2002). Yet, the effect of variability on spatial cooperativity under in vivo-like65

conditions is unclear, as trial-to-trial variability may affect different spatial patterns, potentially pro-66

ducing cooperative plasticity one trial but not another.67

Intracellular calcium elevation is required for most forms of synaptic plasticity, and the spa-68

tiotemporal dynamics of the calcium signal—its peak, duration, and location—can determine the69

occurrence and direction (potentiation or depression) of plasticity (Evans and Blackwell, 2015; Ne-70

vian and Sakmann, 2006; Zucker, 1999). In spiny projection neurons (SPNs) of the striatum—input71

nucleus of the basal ganglia and the focus of this paper—calcium signaling may provide an eligibil-72

ity trace for corticostriatal plasticity (either LTP or LTD) underlying reinforcement learning for goal-73

directed or habitual behavior (He et al., 2015; Kreitzer and Malenka, 2008). We have previously74

shown that synaptic calcium transients are highly sensitive to spatiotemporal patterns of synaptic75

input and can encode synapse-specificity and cooperativity of neighboring synaptic activity in an76

experimentally-validated biophysical SPNmodel with dendritic branches (Dorman et al., 2018). We77

have also shown that a calcium based plasticity rule with dual amplitude- and duration-thresholds78

can predict LTP and LTD outcomes of several in vitro plasticity experiments (Jędrzejewska-Szmek79

et al., 2017). Together, our prior works suggests that our calcium based plasticity rule, imple-80

mented in biophysical models with realistic morphology, could predict whether plasticity is robust81

to spatiotemporal trial-to-trial variability and which specific spatiotemporal patterns produce LTP82

or LTD.83

Here, we investigate computationally the effect of spatiotemporal synaptic activity patterns and84

trial-to-trial variability to predict if persistent synaptic plasticity occurs with in vivo-like synaptic85

variability. We find that persistent plasticity is robust to trial-to-trial variability, and we also demon-86

strate that the spatial pattern of activity on the dendritic branch is critical for determining whether87

LTP or LTD occurs.88
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Results89

Data-driven SPN model exhibits calcium-based synaptic plasticity for in vivo-like90

inputs91

To investigate the effects of in vivo-like corticostriatal synaptic inputs on corticostriatal plasticity,92

we created a realistic biophysical SPN model (Prager et al., 2020) with a calcium-based plasticity93

rule (Jędrzejewska-Szmek et al., 2017) and simulated in vivo-like synaptic input patterns. Themulti-94

compartment, multi-ion channel model was optimized to fit electrophysiological data using an ex-95

tended version of a parameter optimization algorithm we developed (Jȩdrzejewski-Szmek et al.,96

2018; Dorman and Blackwell, 2021). The model reproduced the characteristic electrophysiological97

responses of SPNs.98

Trial-to-trial variability is regularly observed in in vivo spike train recordings but the effect of vari-99

ability on plasticity is unclear. To simulate synaptic plasticity in response to trial-to-trial variability,100

we obtained spike train recordings from the anterior lateral motor cortex from a published dataset101

(Li et al., 2015) fromwhich we constructed synaptic inputs to themodel. An initial single trial of cor-102

ticostriatal inputs was constructed from all the spike trains of 22 behaviorally similar experimental103

trials to generate sufficient synaptic drive while maintaining, as much as possible, potential within-104

trial correlations between neurons present in the dataset. The initial one-second trial (shown as105

raster plot and peri-stimulus time histogram in Figure 1A,B) produced depolarization and spiking106

in the SPN (Figure 1C) with a firing rate consistent with in vivo observations.107

Thefirst question addressed iswhether a calcium-based synaptic plasticity rule thatwas derived108

to explain STDP data is sufficiently general to produce synaptic plasticity in response to spatiotem-109

porally distributed synaptic inputs. To determine whether this calcium-based plasticity rule would110

predict plasticity for in vivo like conditions, we simulated synaptic weight changes in response to111

trial-to-trial variability. We used our calcium-based plasticity rule that can reproduce results from112

several spike-timing dependent plasticity experiments on SPNs in vitro (Jędrzejewska-Szmek et al.,113

2017). Crucially, this rule is entirely based on spine calcium dynamics, not relative spike timings, so114

it is a general rule that encompasses both frequency-based and spike-timing plasticity rules.115

Cortical spike trains indeed produced synaptic plasticity with our calcium-based plasticity rule.116

We examined the spine calcium concentration and the synaptic weight of every synapse in re-117

sponse to a single 1-second trial of randomly distributed in vivo spike trains. We found that, at118

the end of a single trial, some synapses exhibited potentiation, some exhibited depression, and119

others exhibited no change (Figure 2—example synapses; Figure 3—all synapses), with most ex-120

hibiting little change. These results show that a calcium-based plasticity rule determined from in121

vitro data can produce plasticity with spatially distributed in vivo-like synaptic input conditions.122

Synaptic plasticity is highly robust to trial-to-trial variability123

During repeated behaviors, cortical neurons exhibit significant levels of trial-to-trial variability, yet it124

remains unclear how this variability affects synaptic plasticity. For synaptic plasticity to serve as the125

basis of learning, it should be robust to naturally observed variability in neuron spiking. However,126

many plasticity experiments use highly regular, precisely repeated stimulus patterns. To bridge127

the gap between in vitro plasticity findings due to precisely repeated stimuli and in vivo plasticity128

with spatiotemporally dispersed inputs and trial-to-trial variability, we simulated the response to129

10 repeated trials, with varying levels of trial-trial variability. This is analogous to 10 behavioral130

learning trials during which striatal neurons receive variable cortical input from trial to trial.131

For every level of trial-to-trial variability we simulated, a subset of synapses exhibited robust132

weight change at the end of 10 repeated trials. As shown in Figure 4A, synaptic weight over time133

consistently accumulates potentiation or depression for a subset of synapses regardless of vari-134

ability level. This robust weight change also is observed when variability is introduced by randomly135

moving spikes to different trains (Figure 4— supplementary figure 1). These results predict that136

synaptic weight change is robust to high levels of trial-to-trial spike time variability, suggesting that137
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Figure 1. In vivo-like inputs constructed from cortical spike trains produce spiking in SPNs
A. Raster plot shows spike times for each cortical input in the model, constructed from in vivo spike train

recordings. B. Peri-stimulus time histogram of the above raster plot (spike counts per 10 ms bin) C. Somatic

membrane potential of the SPN model showing spiking output induced by cortical input.

in vivo variability does support synaptic plasticity.138

Though synaptic weight change persisted across levels of trial-to-trial variability, themagnitude139

of weight change at the end of an experiment was reduced for increasing levels of variability. Fig-140

ure 4B shows ending synaptic weight as a function of trial-to-trial variability, demonstrating that141

high variability reduces the magnitude of depression, but not potentiation, both for jittered and142

moved spikes (Figure 4—supplementary figure 2). These results suggest that variability in spike143

timing primarily effects the magnitude of plasticity but rarely the direction (potentiation or depres-144

sion).145

Plasticity of a single synapse is only partially predicted by its presynaptic activity146

Individual synapses receive wide ranges of presynaptic input patterns and exhibit a broad range147

of synaptic plasticity outcomes. Which properties of synaptic input patterns, that are potentially148

modulated by trial-to-trial variability, predict the magnitude and direction of synaptic plasticity?149

To investigate this question, we first asked whether the total presynaptic spike count for a given150
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Figure 2. Calcium-based plasticity rule produces both potentiation and depression
A calcium-based plasticity rule was implemented with dual amplitude and duration thresholds. LTD required

that spine calcium concentration exceed the amplitude threshold (dot-dashed line) of 0.33 µM for greater

than 28 ms, while LTP required that spine calcium concentration exceed a higher amplitude threshold

(dashed line) of 0.53 µM for at least 3.3 ms. Example traces are shown of a synapse that potentiates (A) or
depresses (B) following a single trial. Blue lines show spine calcium concentration (with left y-axis) and green

lines show synaptic weight (with right y-axis) for each example synapse.
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Figure 3. Distribution of synaptic weights after initial trial
Histogram shows the distribution of synaptic weights for all synapses following a single trial (note log scale of

y axis). All weights were initialized at 1, and post-trial weights greater than 1 are potentiation while weights

less than 1 are depression.

synapse predicted that synapse’s weight at the end of 10 trials (ending weight). We compared end-151

ing weight of every synapse to its total presynaptic spike count across all 10 trials for experiments152

at different levels of trial-to-trial variability (Figure 5). We found a general pattern that synapses153

with low presynaptic spike counts exhibited little to no synaptic weight change; synapses with a154

moderate presynaptic spike count tended to exhibit depression; and synapses with a high presy-155

naptic spike count exhibited potentiation. However, a wide range of ending synaptic weights was156

observed for synapses with moderate presynaptic spike counts, and further, these synapses were157
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Figure 4. Synaptic plasticity is robust to trial-to-trial variability
(A) The weight of every synapse over a full 10-trial experiment is shown for different trial-to-trial variability

conditions, with the sigma value corresponding to the standard deviation of random jitter of spike times.

(Right) Ending weight of each synapse is shown for each variability condition (synapses with near zero weight

change excluded for visualization). (B) Distribution of final weights grouped by potentiation and depression
shows that variability reduces synaptic depression magnitudes, but has little effects on the distribution of

potentiation magnitudes. Correlation of ending synaptic weight versus variability was significant for

depressing synapses (R=0.306, p=0.0006, N=121 events), but not for potentiating synapses (R=0.054, p=0.510,

N=148 events)
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Figure 5. Ending synaptic weight is partially predicted by total presynaptic spike count per synapse
Ending synaptic weight of each synapse is plotted versus its total presynaptic spike count across all 10

repeated trials, with experiments separated by the level of trial-to-trial variability. Ending weight exhibits no

change for low spike counts, tends toward depression for intermediate spike counts, and exhibits

potentiation for high spike counts. This trend is consistent regardless of trial-to-trial variability; however, for

intermediate spike counts the ending weight is highly variable.

most affected by trial-to-trial variability. The synaptic weight was not correlated with the synapse’s158

distance to the soma, except for the lower levels of variability (Figure 5—Supplementary Figure159

1). These results suggest that while spike count alone is a significant factor in predicting synap-160

tic weight change, other spatiotemporal factors may also be important, and these factors may be161

significantly affected by trial-to-trial variability.162

Plasticity of a single synapse is affected by presynaptic temporal firing rate pattern163

As total presynaptic spike count alone did not completely predict ending synaptic weight per syn-164

apse, we next investigated the effect of the temporal pattern of presynaptic firing rate on synaptic165

plasticity. Though spike count per synapse was consistent for experiments, the trial-to-trial vari-166

ability introduced changes in spike timing that altered the time-varying instantaneous presynaptic167

firing rate for each synapse. To identify whether instantaneous firing rate over the course of a sin-168

gle trial was associatedwith potentiation, depression, or no-change, we computed aweight-change169

triggered average presynaptic firing rate. This weight-change triggered average was computed by170

binning trials and synapses based on the magnitude of synaptic weight change following an indi-171

vidual trial, computing the instantaneous presynaptic firing rate vs. time for each synapse and trial,172

and averaging across synapse-trials within each bin.173

Our results show that synapses that strongly potentiate exhibit a weight-change-triggered av-174

erage presynaptic firing rate with a high peak firing rate late in the trial. In contrast, synapses175

that strongly depress exhibit an earlier peak firing rate or a moderate sustained presynaptic firing176

rate. Synapses with little or no weight change exhibit a low presynaptic firing rate (Figure 6A). This177

pattern was also observed when variability was introduced by moving spikes between trains (Fig-178
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Figure 6. Temporal pattern determines direction of plasticity as shown by
weight-change-triggered-average
A. For each synapse on each trial, we computed the instantaneous firing rate of its presynaptic input activity

and grouped synapse-trials into bins based on the size of the synaptic weight change that occurred following

a single trial. Then, we averaged across the instantaneous firing rate of each bin. Late and high peak firing

rates lead to LTP, while earlier peak firing rate or moderate firing rate leads to LTD. B. For each synapse on
each trial, we computed the calcium concentration for each synapse-trial and averaged across the calcium

concentration for each weight change bin. Calcium concentration is higher during the second part of the trial,

both for potentiating and depressing synapses.

ure 6—supplementary figure 1A). We also calculated the weight-change-triggered average calcium179

concentration, to assess how presynaptic firing dynamics were translated into calcium elevations.180

As shown in Figure 6B (and Figure 6—supplementary figure 1B), synapses that potentiate have181

higher calcium concentration than synapses that depress, and synapses that strongly potentiate182
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have the highest calcium. Though the largest differences are in the second half of the trial, weight183

change dependent differences in calcium concentration for synapses that depress are more ap-184

parent in the first half of the trial. These results suggest that input timing within a trial, which185

affects peak instantaneous firing rate and calcium concentration, is a critical factor for the direc-186

tion and amplitude of synaptic weight change. Though temporal pattern discriminates strong LTP187

from strong LTD, the temporal patterns for moderate plasticity are not as clear. Thus, next we188

evaluated the role of spatial patterns of synaptic input.189

Plasticity of a single synapse is affected by neighboring synaptic activity190

Prior work has shown that synaptic plasticity can be affected by spatiotemporally cooperative191

synaptic activity—that is, multiple synapses on the same dendritic branch active within a limited192

time window (Govindarajan et al., 2011; Legenstein and Maass, 2011; Cichon and Gan, 2015; Bran-193

dalise et al., 2016;Magó et al., 2020;Weber et al., 2016; Losonczy et al., 2008). Our prior work has194

shown that spatiotemporal activity patterns have nonlinear, spatially specific effects on calcium195

transients in dendrites and spines (Dorman et al., 2018). Thus, it is likely that nearby synaptic ac-196

tivity can cooperatively influence plasticity in our calcium-based model. As shown in figure 5, a197

given synapse’s presynaptic firing rate, alone, is not sufficient to fully determine its synaptic weight198

change. Therefore, we next investigated the cooperative effect of neighboring synaptic activity on199

weight change at each synapse.200

We found that synapses which strongly potentiate experience higher neighboring synaptic ac-201

tivity in the dendritic branch than synapses which strongly depress (Figure 7A) for both types of202

spike train variability (Figure 7—supplementary figure 1). This suggests that cooperative synaptic203

activity among neighboring synapses within a dendritic branch influences the outcome of plas-204

ticity. We averaged across neighboring synapses because no spatial pattern was apparent when205

considering input to neighboring synapses individually (Figure 7—supplementary figure 2). To fur-206

ther investigate a relationship between direct and neighboring inputs for plasticity, we computed207

correlation coefficients between each synapse’s direct instantaneous firing rate and the combined208

rate of its neighbors, again binned by plasticity outcome. As shown in Figure 7B, strongly potentiat-209

ing synapses were more likely to be positively correlated with neighboring activity, while strongly210

depressing synapses were more likely to be negatively correlated. Together, our results show that211

both temporal and spatial patterns are critical to synaptic plasticity.212

Dynamics of pre-synaptic firing rate predicts synaptic plasticity213

To further assess robustness of the results, we repeated simulations using 1000different variations214

of the mapping from spike trains to synapses. Since the change in plasticity is consistent with re-215

peated trials (Fig 4), we simulated a single trial. The weight-change-triggered triggered pre-synaptic216

firing rate (Figure 7— supplementary figure 3A) reveals that, similar to Fig 6, synapses that strongly217

potentiate have a transiently high firing rate, though the time of peak firing varies. Regardless of218

the dynamics of the pre-synaptic firing rate, the calcium concentration (Figure 7— supplementary219

figure 3B) exhibits a higher concentration later in the trial, as observed in Fig 6B. The firing rate of220

neighboring synapses (Figure 7— supplementary figure 3C) reveals a much higher firing frequency221

for neighbors of potentiating synapses than neighbors of depressing synapses. For synapses that222

exhibited a weight change, the correlation between neighboring synapse firing rate and weight223

change was 0.1, averaged across 5 sets of simulations. Though the correlation is low, it is highly224

significant (P<0.0001) demonstrating that spatiotemporal firing patterns are key to determining225

synaptic plasticity.226

To quantitatively assess how spatiotemporal pattern of synaptic input controls synaptic plastic-227

ity, we used random forest regression to predict synaptic weight change from instantaneous firing228

rate to the synapse, together with either firing rate of neighboring synapses, correlation between229

direct input and input to neighboring synapses, or distance of synapse to the soma. The instanta-230

neous firing rate was discretized into a small number of time samples to coarsely represent the231
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A

B

Figure 7. Activity of neighboring synapses influences direction of plasticity
A. Neighboring synaptic activity is associated with small difference in strong LTP and LTD. Traces show the

combined neighboring synaptic instantaneous firing rate averaged for bins of synaptic weight change

following a trial. For every synapse, its 20 nearest neighbors’ spike trains were combined and an

instantaneous firing rate was computed from the combined spike train. Synapses were then binned by

amount of weight change following a trial, and the average neighboring instantaneous rate was computed for

each bin. B. Correlation between direct and neighboring synapses influences direction of plasticity.
Histograms show the correlation between direct and neighboring presynaptic firing rates binned by plasticity

outcome. High positive correlation between direct and neighboring firing rate is associated with LTP, while

low correlations are associated with LTD.

mean firing rate over time: e.g., 1 sample measures the mean firing rate for the entire trial. Figure232

8 shows that increasing the resolution of sampling the firing rate improved the prediction of weight233

change, demonstrating that temporal pattern is important. Unexpectedly, spatial information did234
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not improve the prediction. The same pattern is observed when variability was introduced bymov-235

ing spikes between trains (Figure 8— supplementary figure 1A) or using alternative mappings of236

spike trains to synapses (Figure 8— supplementary figure 1B). In summary, the dynamics of direct237

input to the synapse is crucial for determining synaptic plasticity, but firing rate of neighboring238

synapses was not needed, despite the correlation between synaptic weight change and neighbor-239

ing firing rate, likely due to ability of random forest regression to find temporal features.240

1 2 3 5
Time samples

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8
Pr

ed
ict

io
n 

sc
or

e
Direct
+Correlation
+Distance
+Both

Figure 8. Temporal pattern of input predicts weight change better than mean firing rate
Prediction score is the coefficient of determination, R2, of the predicted weight change for the test set. N=4

regressions for each combination of features. Error bars show 1 standard error. ANOVA shows that

increasing number of time samples improves the prediction score (F(3,76)=4.776, P=0.0042).

Discussion241

In this study, we addressed how temporal and spatial patterns of in vivo-like synaptic inputs with242

trial-to-trial variability impact the direction andmagnitude of synaptic plasticity. We employed a cal-243

cium based plasticity rule in a biologically constrained computational model previously validated244

on in vitro plasticity protocols to predict plasticity for in vivo-like conditions. We found that synaptic245

plasticity with in vivo-like activity is robust to trial-to-trial variability. Further, we found that the tem-246

poral pattern of synaptic inputs within a trial and the spatial pattern of neighboring synaptic inputs247

on the dendritic tree controls synaptic plasticity outcomes, with a transient high firing frequency248

producing strong LTP and a moderate increase in firing frequency producing LTD. The firing fre-249

quency of neighboring synapses relates to the plasticity outcome, with correlation or high firing250

frequency of neighbors producing LTP and lack of correlation or low firing frequency of neighbors251

producing LTD. Our work provides key insights into the nature of synaptic plasticity in conditions252

more likely to occur during natural behavior. Together, these results predict that plasticity is highly253

robust to variable spike timing in the brain and suggest that both temporal and spatial aspects of254
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synaptic integration are critical to plasticity.255

Our finding that plasticity at a single synapse is influenced by neighboring synaptic activity is256

consistentwithmany studies (both in vivo and in vitro) showing relationships between spatial synap-257

tic input patterns and plasticity. For instance, in SPNs in vitro, spatially clustered synaptic inputs258

can produce supralinear depolarization (termed NMDA-spikes or plateau potentials) and synaptic259

calcium transients (Plotkin et al., 2011; Dorman et al., 2018; Prager et al., 2020; Du et al., 2017),260

and synaptic activation of 2–4 neighboring spines at depolarized potentials can produce nonlinear261

enhancement of spine calcium transients (Carter et al., 2007). Building on these findings, our work262

predicts that neighboring synaptic interactions can influence the direction and magnitude of corti-263

costriatal synaptic plasticity in vivo, with high neighboring activity producing LTP and low neighbor-264

ing activity producing LTD. Spatially clustered inputs have been shown to induce synaptic potenti-265

ation (termed cooperative LTP) in cortical and hippocampal pyramidal neurons in vitro (Brandalise266

et al., 2016; Golding et al., 2002; Gordon et al., 2006; Larkum et al., 2009; Losonczy et al., 2008;267

Makara andMagee, 2013; Schiller et al., 2000;Weber et al., 2016;Magó et al., 2020). Similarities in268

synaptic integration properties of SPNs and pyramidal neurons (Oikonomou et al., 2014) suggest269

that our calcium-based plasticity rule could be implemented in models of pyramidal neurons and270

could account for cooperative LTP observations in vitro and predict in vivo plasticity in pyramidal271

neurons.272

Observations suggest that functional synaptic clustering is a key component in plasticity and273

learning. For instance, correlated activity in spatially clustered spines has been observed in vivo in274

pyramidal neurons (Takahashi et al., 2012;Winnubst et al., 2015;Wilson et al., 2016; Kerlin et al.,275

2018). Further, in vivo calcium transients in neighboring spines of the same dendritic branch cor-276

relate with structural potentiation of spines and behavioral learning in motor cortical neurons (Ci-277

chon and Gan, 2015). This is consistent with our observation that strongly potentiating synapses278

had higher synaptic inputs than depressing synapses. However, it is unclear whether functional279

clustering arises from synaptic connectivity in development, or if activity dependent plasticity can280

generate functional clusters starting from random connectivity. Our results, which used randomly281

distributed inputs, suggest that spatial synaptic correlationsmay emergewith randomspatial distri-282

bution of inputs, thereby potentiating neighboring synapses that each receive higher than average283

input and producing functional synaptic clusters. These implications of our results are consistent284

with another modeling study investigating the impact of synaptic clustering on somatic membrane285

potential with in vivo-like conditions (Ujfalussy andMakara, 2020), which suggested that global plas-286

ticity rules would not be sufficient for formation of synaptic clusters. Ujfalussy and Makara (2020)287

predicted that local plasticity rules would be necessary, though theirmodel did not implement local288

plasticity rules to test that prediction. Our calcium-based plasticity rule, which accounts for both289

local and global plasticity effects, is a method for formation of synaptic clusters, consistent with290

Ujfalussy and Makara (2020) as well as experimental evidence. The resulting synaptic plasticity291

accounts for the impact of local dendritic activity, and the potentiation of correlated synapses can292

produce spatial clustering. Our results also suggest a role for spatial patterns in synaptic depres-293

sion. Specifically, whereas high correlations among neighboring synapses were associated with294

potentiation, synapses that depressed had negatively correlated or lower than average neighbor-295

ing synaptic activity.296

This suggests a mechanism for spatially balanced potentiation and depression, which could297

provide homeostatic balance and prevent runaway potentiation. These implications are consis-298

tent with in vivo experiments that have shown spine shrinkage in inactive spines accompanying299

structural potentiation of nearby spines, suggesting heterosynaptic depression as an important300

compensatory plasticity mechanism (Oh et al., 2015; El-Boustani et al., 2018). Our results sug-301

gest that our calcium-based plasticity rule effectively captures the impact of neighboring synaptic302

activity on depression to support compensatory plasticity. Predictions from our results could be303

experimentally tested in vitro using glutamate uncaging to apply temporally correlated or uncorre-304

lated patterns to neighboring dendritic spines, together with whole cell recording to measure LTP305
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or LTD and calcium imaging of dendritic spines to relate stimulation patterns with calcium activity306

and synaptic plasticity.307

The distinct temporal patterns that were associated with potentiation or depression have im-308

plications for striatal and wider basal ganglia circuit function. Though corticostriatal LTP requires309

dopamine in addition to calcium elevation (Fisher et al., 2017), prior experimental work has shown310

calcium-dependent synaptic eligibility traces in SPNs (Shindou et al., 2019). These eligibility traces311

for corticostriatal LTP exhibit a temporal dependence such that an LTP protocol followed within312

a few seconds by dopaminergic stimulation produces LTP (Yagishita et al., 2014). This pattern of313

cortical inputs followed by dopamine is consistent with reinforcement learning, as the rewarding314

outcome (represented in the striatal dopamine signal) temporally follows the action that produced315

it (represented in corticostriatal activity). Thus, though our plasticity model doesn’t account for316

dopamine directly, we suggest that our calcium-based plasticity rule accounts for eligibility traces317

for LTD or LTP and captures the spatiotemporal pattern of corticostriatal activity that, when fol-318

lowed by dopaminergic stimulation, produces plasticity. Further, as dopaminergic activity is con-319

sistent with volume transmission (Borroto-Escuela et al., 2018; Zoli et al., 1998), we suggest that320

our calcium-based plasticity rule provides the spatiotemporal specificity indicating which synapses321

are eligible for reinforcement when followed by a spatially diffuse dopamine signal.322

This study has important implications for plasticity in variable in vivo conditions by showing323

that precise spike timing is not required. Our work suggests that while plasticity is sensitive to324

firing rate, it is highly robust to variance in precise spike timing during a trial. In vitro corticos-325

triatal spike-timing dependent plasticity experiments demonstrated that NMDAR-dependent (and326

spike-timing dependent) LTP is highly sensitive to jittered spike timings, though increasing pairings327

of presynaptic and postsynaptic stimuli could recover LTP (Cui et al., 2018). Thus, precise spike328

timing rules could make in vivo plasticity unlikely, given variability of spike timing (Williams et al.,329

2019). Importantly, our calcium-based plasticity rule is independent of spike timing, though we330

previously showed it could reproduce in vitro spike timing dependent plasticity results. Thus, we331

suggest our rule is generalizable to in vivo conditions, and we predict that plasticity in vivo is robust332

to variable spike timing. Consistent with this implication, other work has shown that cortical and333

striatal neurons exhibit decreasing trial-to-trial variability in vivo during learning that corresponds334

to reduced behavioral variability of the learned action, and this reduction is dependent on striatal335

plasticity (Santos et al., 2015). Our result that potentiation is robust to high trial-to-trial variabil-336

ity suggests that corticostriatal plasticity may occur even with highly variable conditions early in337

learning and then, by potentiating the relevant synapses, produce decreased variability in striatal338

spiking with learning.339

Our work is consistent with a prior model that predicted that plasticity was not sensitive to340

spike timing with in vivo like firing patterns (Graupner et al., 2016). Nonetheless, our research is341

a major advance over that prior work which implemented a plasticity rule based on simplified cal-342

cium dynamics in a non-spatial model (Graupner and Brunel, 2012) or derived firing rate plasticity343

models from simplified calcium dynamics (Lappalainen et al., 2019). Our calcium-based rule is im-344

plemented with detailed biophysical models of calcium dynamics in a neuron model that includes345

dendritic morphology. More importantly, we extend prior work to show that temporal patterns are346

still important, and that spatial interactions among synapses influence plasticity. We also predict347

that potentiation and depression are differentially sensitive to both spatiotemporal patterns and348

trial-to-trial variability.349

Our results show that the spatial aspects of synaptic integration may contribute to synaptic350

plasticity. However, spiking network models that incorporate spike-timing dependent plasticity351

rules to investigate the effect of plasticity on network activity neglect spatial patterns of synaptic352

inputs to a single neuron, reducing neurons to point processes (Legenstein et al., 2005; Berthet353

et al., 2016; Dunovan et al., 2019). We suggest that our calcium based plasticity rule could be354

used in futurework to develop simplified plasticitymodels incorporating both temporal and spatial355

effects of synaptic activity.356
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A statistical model using temporal and spatial kernels to predict the effect of both direct and357

neighboring synaptic activity on the synaptic weight of each synapse could be derived from bio-358

physical single neuron models with our calcium based rule and then simulated efficiently in large359

networks with simplified neuron models. Incorporating this synaptic plasticity rule in large scale360

simulations of network models of the basal ganglia could then better predict how corticostriatal361

plasticity supports goal-directed and habit learning and identify potential therapeutic targets for362

modulating aberrant plasticity in addiction.363

Methods364

Wedeveloped a biologically-constrained computational SPNmodelwithmultiple ion channels iden-365

tified in SPNs, real dendritic morphology, explicit dendritic spines, sophisticated calcium dynamics,366

and a calcium-based plasticity rule. Model parameters were determined using our parameter op-367

timization software to fit the model to electrophysiological current injection data (Dorman and368

Blackwell, 2021). To generate in vivo-like synaptic inputs, we obtained and analyzed anterior lat-369

eral motor cortical spike trains from the CRCNS.org repository. The model was simulated with370

these in vivo spike trains to investigate whether plasticity occurs with in vivo-like activity.371

SPN model morphology and passive membrane properties372

A biophysical SPN model we previously published (Dorman et al., 2018) was adapted and trans-373

lated from the GENESIS simulator format to our declarative format (Blackwell et al., 2021) for the374

MOOSE simulator (https://moose.ncbs.res.in). We used a D1 SPN morphology obtained from the375

Luebke repository (Goodliffe et al., 2018) on neuromorpho.org (Ascoli et al., 2007). Dendritic spines376

were modeled both implicitly and explicitly. Explicit dendritic spines were modeled for synaptic377

inputs and calcium dynamics at a density of 0.1 spines/µmwith cylindrical head (0.5 µm diameter,378

0.5 µm length) and neck (0.12 µm diameter, 0.5 µm length) on dendritic branches greater than 25379

µm from the soma. The density of explicitly modeled spines is not representative of the full spine380

density observed experimentally, andmodeling the full spine density would be computationally in-381

tensive. Therefore, the implicit effect of dendritic spines (those not explicitly modeled) on passive382

membrane properties and dendritic channel densities was modeled by compensating dendritic383

membrane resistivity (RM ), membrane capacitivity (CM ), and axial resistivity (RA), as well as chan-384

nel maximal conductance values (Holmes et al., 2006) using a distance dependent function fit to385

experimentally observed spine density versus distance from the soma (Wilson, 1992). Values for386

RM , CM , and RA were set to 6.02 Ωm2, 0.011 F∕m2, and 1.3 Ωm respectively, based on automatic387

parameter optimization.388

Voltage gated ion channels389

As previously described (Dorman et al., 2018), the model incorporates the following voltage gated390

sodium and potassium ion channels that have been observed in SPNs: a fast sodium channel391

(NaF) (Ogata and Tatebayashi, 1990); fast (Kaf/Kv4.2) (Tkatch et al., 2000) and slow (Kas/Kv1.2)392

(Shen et al., 2004) A-type potassium channels; an inwardly rectifying potassium channel (Kir2)393

(Steephen and Manchanda, 2009); a resistant persistent potassium channel (Krp; also called de-394

layed rectifier) (Nisenbaum and Wilson, 1995); a big conductance voltage- and calcium-activated395

potassium channel (BK) (Berkefeld et al., 2006); and a small conductance calcium-activated potas-396

sium channel (SK) (Maylie et al., 2004). Six voltage gated calcium channels (VGCCs) are also in-397

cluded: R-type (CaR/Cav2.3) (Brevi et al., 2001; Foehring et al., 2000), N-type (CaN/Cav2.2) (Bargas398

et al., 1994; Kasai and Neher, 1992; McNaughton and Randall, 1997), two L-type (CaL1.2/Cav1.2399

and CaL1.3/Cav1.3) (Bargas et al., 1994; Kasai and Neher, 1992; Tuckwell, 2012), and two T-type400

(CaT3.2/Cav3.2/α1H and CaT3.3/Cav3.3/α1I) (McRory et al., 2001). We newly added a calcium acti-401

vated chloride channel (CaCC) based on the ANO2/TMEM16B channel, which has been observed402

in SPNs and allows better fit of the AHP waveform (Song et al., 2016; Pifferi et al., 2009). Channel403

kinetic equations are the same as our previously reported model, but parameters were updated404
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during the parameter optimization by allowing half-activation voltages and time constants to be405

modified by the parameter optimization algorithm.406

Model optimization was done using ajustador software (Jȩdrzejewski-Szmek et al., 2018; Dor-407

man and Blackwell, 2021) that was updated to allow variation of channel kinetics, in addition to408

channel conductances and membrane properties, in order to fit the model response to experi-409

mental data for injected current steps. Briefly, the parameter optimization algorithm utilized a co-410

variance matrix adaptation with evolutionary strategy (cma-es) to vary model parameters (Hansen411

et al., 2019), and a feature-based fitness metric to compute the fitness between model and exper-412

imental data based on features such as number of spikes, action potential height, action potential413

width, spike timing, steady state membrane voltage, depolarization and hyperpolarization time414

constants, and after-hyperpolarization waveform. Channel conductances and membrane proper-415

ties were varied within a linear range, while kinetic parameters (half activation voltage and time416

constant) were varied with a multiplicative parameter between 0.5 and 2. Optimizations utilized417

the Neuroscience Gateway Portal (Sivagnanam et al., 2013).418

Calcium dynamics419

Intracellular calcium concentrationwasmodeledwith diffusion, calcium-binding buffers, and trans-420

membrane calcium pumps. One-dimensional radial diffusion of buffers and calcium was modeled421

with concentric shells in dendrites, while spine heads and necks implemented one-dimensional ax-422

ial diffusion in cylindrical slabs connected from the spine neck to the submembrane shell of the den-423

dritic shaft (Anwar et al., 2014). Transmembrane calcium extrusion mechanisms—plasma mem-424

brane calcium ATPase (PMCA) in every compartment and sodium-calcium exchanger (NCX) limited425

to spines—were modeled with Michaelis-Menten kinetics. The calcium-binding buffers included426

calbindin and calmodulin (N and C terminals), which could diffuse between calcium compartments,427

and an endogenous immobile buffer (representative of several potential biological mechanisms428

that buffer calcium without diffusing) (Matthews et al., 2013;Matthews and Dietrich, 2015).429

The sources of calcium influx in themodel included the voltage gated calcium channels and the430

NMDAR synaptic channel. Calcium concentration in the submembrane shell was used for calcium-431

dependent channel activation (BK, SK, CaCC) or inactivation (R-, N-, and L-type calcium channels).432

Synaptic channels433

Excitatory NMDAR and AMPAR synaptic channels were included on spine heads, and inhibitory434

GABAA channels were included on the dendritic shaft. Channels were modeled with dual exponen-435

tial kinetics, and the NMDA channel included voltage-dependent magnesium blocking.436

Plasticity rule437

The calcium based plasticity rule used a dual amplitude and duration threshold for spine calcium438

concentration to determine LTP and LTD, as we previously described (Jędrzejewska-Szmek et al.,439

2017). For LTD, spine calcium had to exceed the amplitude threshold, TAD, of 0.33 µM for longer440

than the duration threshold of 28 ms, while for LTP the amplitude threshold, TAP , was 0.53 µM441

and the duration threshold was 3.3 ms. Once thresholds were exceeded, the synaptic weights442

were updated at each time step toward their maximum or minimum. For LTP, while thresholds443

were exceeded, synaptic weight was increased according to:444

w(t) = min{Pmax, P ⋅ ([Ca2+]sp(t − 1) − TAP )} ⋅

√

1 −
w(t − 1) −wmin

wmax −wmin
(1)

where P is a gain factor for potentiation, Pmax is the maximum allowable gain value, [Ca2+]sp is445

spine calcium concentration, TAP is the amplitude threshold for potentiation, wmax is maximum446

allowable synaptic weight (2.0), and wmin is minimum allowable synaptic weight (0). Similarly, when447
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LTD thresholds were exceeded, weight was decreased according to:448

w(t) = −min{Dmax, D ⋅ ([Ca2+]sp(t − 1) − TAD)} ⋅

√

w(t − 1) −wmin

wmax −wmin
(2)

where D and Dmax are the gain and maximum allowable gain for depression, and TAD is the am-449

plitude threshold for depression.450

Synaptic inputs451

In vivo cortical spike trains were obtained from a CRCNS.org repository, consisting of recordings452

from 25 simultaneously recorded anterior lateral motor cortex pyramidal neurons with 90 re-453

peated trials (Li et al., 2015). A single initial trial of model input consisted of 200 spike trains, which454

were selected from 22 similar trials (excluding neurons that were inactive within a trial) in order to455

preserve within-trial correlations between neurons.456

To generate controlled trial-to-trial variability of spike timing, the initial trial was repeated 10457

times with random jitter of each spike on each repetition. Trial-to-trial variability was limited to458

standard deviation of spike timing while constraining the same total number of spikes per spike459

train within each trial. The random jitter was generate from a truncated normal distribution using460

a standard deviation of 1, 10, 100, or 200 ms (truncated such that no value outside the start time461

or end time of the trial was selected). Experiments consisted of 10 trials with a single standard462

deviation. Trials were separated by a 1 second intertrial interval, during which time membrane463

potential returned to resting potential and spiking activity ceased.464

We also implemented a different type of trial-to-trial variability that allows variability of spike465

rate for individual synapses, but maintains the same spike timing to the neuron as a whole. Vari-466

able spike ratewas implemented by randomlymoving individual spikes fromone presynaptic input467

train to another, with the probability of each spike being moved between 10–100 %. To main-468

tain the distribution of spike counts per trial, the randomly selected target train probability was469

weighted by the number of spikes of the target trains. This ensured both the overall spike timing470

pattern to the whole neuronwasmaintained as well as the distribution of spike counts to synapses,471

while allowing small variations in spike rate for each synapse from trial to trial.472

To demonstrate the robustness of the results to the spatial pattern of synaptic inputs, a single473

trial was repeated using 1000 different mappings of spike trains to synapses. This preserved the474

overall instantaneous firing rate to the neuron, and isolated the contribution of spatial patterns.475

In addition to excitatory inputs, the neuron also received two types of inhibitory inputs. In-476

hibitory inputs were constructed from Poisson processes with mean firing rates consistent with477

both striatal fast spiking interneurons (FSIs) and low threshold spiking interneurons (LTSIs). In-478

hibitory trains were active for the entire 21 second experiment duration of the 10 repeated trials.479

FSI inputs were generated with a mean firing rate of 12 Hz (Owen et al., 2018) and targeted480

densely proximally (within 80 microns of the soma), while LTSI inputs were generated with a mean481

firing rate of 8 Hz (Sharott et al., 2012) and targeted distally (greater than 80 microns from the482

soma).483

Analysis484

Analysis of simulations used Python3 and the following python packages: Numpy, Scipy, Pandas,485

Scikit-learn, Statsmodels, and Matplotlib. For analysis relating spatiotemporal input patterns to486

magnitude and direction of synaptic weight change, we introduce a “weight-change triggered av-487

erage,” which is constructed by grouping synapses per trial into bins based on the value of the488

weight change following a trial, computing the instantaneous firing rate of the spike train input489

to each given synapse, and averaging the instantaneous firing rates within each bin of synaptic490

weight change. This is analogous to a spike-triggered average (Schwartz et al., 2006), but using the491

continuous valued, trial-level weight change instead of the spike.492
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Random forest regression was applied to the instantaneous firing rate to a synapse, the cor-493

relation between synapse firing rate and neighboring synapse firing rate, and the distance from494

spine to soma. Random forest regression applies a non-linear method for predicting the weight495

change from a set of features, such as pre-synaptic firing rate. The prediction is determined from496

a set of hierarchical rules, where each rule partitions the weight change based on a single fea-497

ture. A non-linear method was required because of the non-linear relationship between weight498

change and pre-synaptic firing. The instantaneous firing rate of direct input was discretized into 1-499

5 features (time samples), where 1 time sample calculates the mean firing rate for the entire trial,500

and 5 time samples calculates mean firing frequency for subsequent 200 ms time intervals. To501

determine the optimal features for predicting the weight change, a random forest regression was502

performed for each combination of features. For each regression, the trial-level weight changes503

were randomly subdivided into a testing set (1/N of the data) and a training set (the remainder of504

the data); subdividing the data and performing the random forest regressionwas repeatedN times.505

Then analysis of variance was used to determine which combination of features best predicted the506

weight change.507
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