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Abstract

An outstanding challenge in the clinical care of cancer is moving from a one-size-fits-all
approach that relies on population-level statistics towards personalized therapeutic
design. Mathematical modeling is a powerful tool in treatment personalization, as it
allows for the incorporation of patient-specific data so that treatment can be
tailor-designed to the individual. In this work, we employ two fitting methodologies to
personalize treatment in a mathematical model of murine cancer immunotherapy.
Unexpectedly, we found that the predicted personalized treatment response is sensitive
to the fitting methodology utilized. This raises concerns about the ability of
mathematical models, even relatively simple ones, to make reliable predictions about
individual treatment response. Our analyses shed light onto why it can be challenging
to make personalized treatment recommendations from a model, but also suggest ways
we can increase our confidence in personalized mathematical predictions.

Author summary

As we enter the era of healthcare where personalized medicine becomes a more common 1

approach to treating cancer patients, harnessing the power of mathematical models will 2

only become more essential. Using a preclinical dataset on cancer immunotherapy, we 3

explore the challenges and limitations that arise when trying to move from a 4

one-size-fits-all approach to treatment design towards personalized therapeutic design. 5

These challenges lead to actionable suggestions on how to ascertain when we have 6

enough data to personalize treatment, or how to determine when we can have 7

confidence that an optimal-for-the-average prediction will have a comparable impact on 8

an individual. We also show how mathematical modeling can suggest what data is 9

needed to increased confidence in personalized predictions. 10

Introduction 11

The conventional approach for developing a cancer treatment protocol relies on 12

measuring average efficacy and toxicity from population-level statistics in randomized 13

clinical trials [1–3]. However, it is increasingly recognized that heterogeneity, both 14

between patients and within a patient, is a defining feature of cancer [4, 5]. This 15
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inevitably results in a portion of cancer patients being over-treated and suffering 16

toxicity consequences from the standard-of-care dose, and another portion being 17

under-treated and not benefiting from the expected efficacy of the treatment [6]. 18

For these reasons, in the last decade there has been much interest in moving away 19

from this ‘one-size-fits-all’ approach to cancer treatment and towards personalized 20

therapeutic design (also called predictive or precision medicine) [1, 2, 7]. Collecting 21

patient-specific data has the potential to improve treatment response to 22

chemotherapy [6,8–11], radiotherapy [12–14], and targeted molecular therapy [11,15–17]. 23

However, it has been proposed that personalization may hold the most promise when it 24

comes to immunotherapy [18]. Immunotherapy is an umbrella term for methods that 25

increase the potency of the immune response against cancer. Unlike other treatment 26

modalities that directly attack the tumor, immunotherapy depends on the interplay 27

between two complex systems (the tumor and the immune system), and therefore may 28

exhibit more variability across individuals [18]. 29

Mathematical modeling has become a valuable tool for understanding tumor-drug 30

interactions. However, just as clinical care is guided by standardized recommendations, 31

most mathematical models are validated based on population-level statistics from 32

preclinical or clinical studies [19]. To truly realize the potential of mathematical models 33

in the clinic, these models must be individually parameterized using measurable, 34

patient-specific data. Only then can modeling be harnessed to answer some of the most 35

pressing questions in precision medicine, including selecting the right drug for the right 36

patient, identifying optimal drug combinations for a patient, and prescribing a 37

treatment schedule that maximizes efficacy while minimizing toxicity. 38

Efforts to personalize mathematical models have been undertaken to understand 39

glioblastoma treatment response [20,21], to identify optimal chemotherapeutic and 40

granulocyte colony-stimulating factor combined schedules in metastatic breast 41

cancer [22], to identify optimal maintenance therapy chemotherapeutic dosing for 42

childhood acute lymphoblastic leukemia [9], and to identify optimized doses and dosing 43

schedules of the chemotherapeutic everolimus with the targeted agent sorafenib for solid 44

tumors [23]. Interesting work has also been done in the realm of radiotherapy, where 45

individualized head and neck cancer evolution has been modeled through a dynamic 46

carrying capacity informed by patient response to their last radiation dose [24]. 47

Beyond these examples, most model personalization efforts have focused on prostate 48

cancer, as prostate-specific antigen is a clinically measurable marker of prostate cancer 49

burden [25] that can be used in the parameterization of personalized mathematical 50

models. The work of Hirata and colleagues has focused on the personalization of 51

intermittent androgen suppression therapy using retrospective clinical trial data [26, 27]. 52

Other interesting work using clinical trial data has been done by Agur and colleagues, 53

focusing on individualizing a prostate cancer vaccine using retrospective phase 2 clinical 54

trial data [25, 28], as well as androgen deprivation therapy using data from an advanced 55

stage prostate cancer registry [29]. Especially exciting work on personalizing prostate 56

cancer has been undertaken by Gatenby and colleagues, who used a mathematical 57

model to discover patient-specific adaptive protocols for the administration of the 58

chemotherapeutic agent abiraterone acetate [30]. Among the 11 patients in a pilot 59

clinical trial treated with the personalized adaptive therapy, they observed the median 60

time to progression increased to at least 27 months as compared to 16.5 months 61

observed with standard dosing, while also using a cumulative drug amount that was 62

47% less than the standard dosing [17]. 63

These examples show the promise of employing mathematical models to make 64

individualized treatment recommendations for cancer patients. However, they also 65

reflect one of the main challenges - having enough data to parameterize a predictive 66

mathematical model. One approach to overcoming such limited data is through the use 67
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of a virtual patient cohort [31, 32], though in this work we take an alternative approach. 68

In particular, we explore the consequences of fitting limited preclinical patient data to a 69

minimal mathematical model and using that fit model to make individualized treatment 70

predictions. In Materials and methods, we describe the preclinical data collected by 71

Huang et al. [33] on a mouse model of melanoma treated with two forms of 72

immunotherapy, and our previously-developed mathematical model that has been 73

validated against population-level data from this trial [34]. Individual mouse volumetric 74

time-course data is fit to our dynamical systems model using two different approaches 75

detailed in Materials and methods: the first fits each mouse independent of the other 76

mice in the population, whereas the second constrains the fits to each mouse using 77

population-level statistics. In Results and Discussion, we demonstrate that, 78

unexpectedly, the treatment response identified for an individual mouse is sensitive to 79

the fitting methodology utilized. We explore the causes of these predictive discrepancies 80

and how robustness of the optimal-for-the-average treatment protocol influences these 81

discrepancies. We conclude with actionable suggestions for how to increase our 82

confidence in personalized mathematical predictions. 83

Materials and methods 84

Data Set 85

The data in this study considers the impact of two immunotherapeutic protocols on a 86

murine model of melanoma [33]. The first protocol uses oncolytic viruses (OVs) that are 87

genetically engineered to lyse and kill cancer cells. In [33] the OVs are 88

immuno-enhanced by inserting transgenes that cause the virus to release 4-1BB ligand 89

(4-1BBL) and interleukin (IL)-12, both of which result in the stimulation of the 90

tumor-targeting T cell population [33]. The preclinical work of Huang et al. has shown 91

that oncolytic viruses carrying 4-1BBL and IL-12 (which we will call Ad/4-1BBL/IL-12) 92

can cause tumor debulking via virus-induced tumor cell lysis, and immune system 93

stimulation from the local release of the immunostimulants [33]. 94

The second protocol utilized by Huang et al. are dendritic cell (DC) injections. DCs 95

are antigen-presenting cells that, when exposed to tumor antigens ex vivo and 96

intratumorally injected, can stimulate a strong adaptive immune response against 97

cancer cells [33]. Huang et al. showed that combination of Ad/4-1BBL/IL-12 with DC 98

injections results in a stronger antitumor response than either treatment 99

individually [33]. 100

Mathematical Model 101

Our model contains the following five ordinary differential equations:

dU

dt
= rU − βUV

N
− (κ0 + ckillI)

UT

N
, U(0) = U0, (1)

dI

dt
= β

UV

N
− δII − (κ0 + ckillI)

IT

N
, I(0) = 0, (2)

dV

dt
= uV (t) + αδII − δV V, V (0) = 0, (3)

dT

dt
= cT I + χDD − δTT, T (0) = 0, (4)

dD

dt
= uD(t)− δDD, D(0) = 0, (5)

where U is the volume of uninfected tumor cells, I is the volume of OV-infected tumor 102

cells, V is the volume of free OVs, T is the volume of tumor-targeting T cells, D is the 103
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volume of injected dendritic cells, and N is the total volume of cells (tumor cells and T 104

cells) at the tumor site. When all parameters and time-varying terms are positive, this 105

models captures the effects of tumor growth and response to treatment with 106

Ad/4-1BBL/IL-12 and DCs [34]. By allowing various parameters and time-varying 107

terms to be identically zero, other treatment protocols tested in Huang et al. [33] can 108

also be described. 109

This model was built in a hierarchical fashion, details of which have been described 110

extensively elsewhere [31, 34–36]. Here, we briefly summarize the full model. Uninfected 111

tumor cells grow exponentially at a rate r, and upon being infected by an OV convert 112

to infected cancer cells at a density-dependent rate βUV/N . These uninfected cells get 113

lysed by the virus or other mechanisms at a rate of δI , thus acting as a source term for 114

the virus by releasing α free virions (on average) into the tissue space. Viruses decay at 115

a rate of δV . 116

The activation/recruitment of tumor-targeting T cells can happen in two ways: 1) 117

stimulation of cytotoxic T cells due to 4-1BBL or IL-12 (modeled through I, at a rate of 118

cT , as infected cells are the ones to release 4-1BBL and IL-12), and 2) production due 119

to the externally-primed dendritic cells (at a rate of χD). These tumor-targeting T cells 120

indiscriminately kill uninfected and infected tumor cells, with the rate of killing that 121

depends on IL-12 and 4-1BBL production (again, modeled through I in the term 122

(κ0 + ckillI)), and they can also experience natural death at a rate of δT . The 123

time-dependent terms, uV (t) and uD(t), represent the source of the drug and are 124

determined by the delivery and dosing schedule of interest. 125

Fitting Methodologies 126

Independently Fitting Individuals 127

Our first attempt at individualized fitting is to find the parameter set that minimizes 128

the L2-norm between the model and the individual mouse data: 129

ζ =

n∑
t=0

(Vmodel(t)− Vdata(t))2, (6)

where Vmodel(t) = U(t) + I(t) is the volumetric output predicted by our model in eqns. 130

(1)-(5), and Vdata(t) represents the volumetric data for an individual mouse. 131

To independently fit an individual mouse, parameter space is first quasi-randomly 132

sampled using high-dimensional Sobol’ Low Discrepancy Sequences (LDS). LDS are 133

designed to give rise to quasi-random numbers that sample points in space as uniformly 134

as possible, while also (typically) having faster convergence rates than standard Monte 135

Carlo sampling methods [37]. After the best-fit parameter set has been selected among 136

the 106 randomly sampled sets chosen by LDS, the optimal is refined using simulated 137

annealing [38]. Having observed that the landscape of the objective function near the 138

optimal parameter set does not contain local minima, we randomly perturb the 139

LDS-chosen parameter set, and accept any parameter changes that decrease the value of 140

the objective function (making the method equivalent to gradient descent). This 141

random perturbation process is repeated until no significant change in ζ can be achieved 142

(in particular, until the relative change in ζ for the last five accepted parameter sets is 143

less than 10−6), and we call this final parameter set the optimal parameter set. 144

It is important to note that, by approaching fitting in this way, the parameters for 145

Mouse i depend only the volumetric data for Mouse i; that is, the volumetric data for 146

the other mice are not accounted for. 147
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Fitting Individuals with Population-Level Constraints 148

Nonlinear mixed effects (NLME) models incorporate fixed and random effects to 149

generate models to analyze data that are non-independent, multilevel/hierarchical, 150

longitudinal, or correlated [39]. Fixed effects refer to parameters that can generalize 151

across an entire population. Random effects refer to parameters that differ between 152

individuals that are randomly sampled from a population. 153

The mixed effects model we will utilize is of the form: 154

yij = T (tij , ψi) + bT (tij , ψi)εij , i = 1, ...,M, j = 1, ..., ni, (7)

where yij is the predicted tumor volume at each day j for each individual i (that is, at 155

time tij), M = 8 is the number of mice, ni = 31 is the number of observations per 156

mouse, ψi is the parameter vector for the structural model for each individual, and εij is 157

a variable describing random noise. Here we made the assumption that the error is a 158

scalar value proportional to our structural model. 159

Typically, NLME models attempt to maximize the likelihood of the parameter set 160

given the available data. There does not exist a general closed-form solution to this 161

maximization problem [40], so numerical optimization is often needed to find a 162

maximum likelihood estimate. In this work, we employ Monolix [41], which uses a 163

Markov Chain Monte Carlo method to find values of the model parameters that 164

optimize the likelihood function. To implement NLME in Monolix, we first processed 165

and arranged our experimental data (tumor volume and dosing schedule) in a 166

Monolix-specified spreadsheet. To avoid predictive errors, we censored the data, as 167

detailed in [41]. More specifically, all tumor volumes less than 1 mm3 were set to 0. 168

This was done to prevent over-fitting to these data points at the expense of the rest of 169

the data. 170

We assume that each parameter ψi,k ∈ ψi is lognormally distributed with mean ψ̄i,k 171

and standard deviation ωi,k: 172

log(ψi,k) v N (log(ψ̄i,k, ω
2
i,k)). (8)

Based on previous fits to the average of the data in [36], we used the following set of
initial guesses for the population parameters:

[r, β, α, δV , κ0, δT , χD, δI , ckill, cT , δD, U0] =

[0.32, 1, 3, 2.3, 2, 0.35, 5.5, 1, 0.51, 1.2, 0.35, 55.6],

with the initial standard deviations chosen as:

[ωr, ωβ , ωα, ωδV , ωκ0
, ωδT , ωχD

, ωδI , ωckill
, ωcT , ωδD , ωU0

] =

[0.25, 0.5, 1, 0.1, 1, 0.1, 0.25, 0.1, 0.5, 0.5, 0.1, 5].

Practical Identifiability via the Profile Likelihood Method 173

It is well-established that estimating a unique parameter set for a mathematical model 174

can be challenging due to the limited availability of often noisy experimental data [42]. 175

A non-identifiable model is one in which multiple parameter sets give “good” fits to the 176

experimental data. Here, we will study the practical identifiability of our system in eqns. 177

(1) - (5) using the profile likelihood approach [43,44]. 178

A single parameter is profiled by fixing it across a range of values, and subsequently
fitting all other model parameters to the data [42]. To execute the profile likelihood
method, let p be the vector that contains all parameters of the model, θ be one
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parameter of interest contained in the vector p. The profile likelihood PL for the
parameter θ is defined in [45] as:

PLk(θ) = min
p∈{p|pk=θ}

(−2LL(p; z1, ...zN )) = min
p∈{p|pk=θ}

(
N∑
n=1

(
zn − y(tn, p)

σn

)2
)
, (9)

where zn for n = 1, . . . , N is the measured data that is assumed to follow a normal 179

distribution with mean y(tn, p) and variance σ2, and LL(p; z1, ...zN ) is the log of the 180

likelihood function. The likelihood function represents the likeliness of the measured 181

data zn given a model with parameters p [46]. The profile likelihood curve for any 182

parameter of interest θ is found using the following process: 183

1. Determine a range for the parameter values of θ. 184

2. Fix θ = θ∗ at a value in the range. 185

3. For the fixed value in step 2 we fit the parameters p∗k and obtain the best-fit 186

values by minimizing the objective function defined in eqn. (9). 187

4. Evaluate the objective function at those optimum values for the fixed value of θ∗. 188

5. Repeat the process described in steps 2-4 for a discrete set of values in the range of 189

the parameter θ. This yields to the profile likelihood function for the parameter θ. 190

Once PL(θ) is determined, the confidence interval for θ at a level of significance α 191

can be computed using: 192

PL(θ)− 2LL(p∗k) ≤ ∆α (10)

where ∆α denotes the α quantile of the χ2 distribution with df degrees of freedom 193

(which represents the number of fit model parameters when calculating PL(θ)) [42]. We 194

use α = 0.95 for a 95% confidence interval. The intersection points between the 195

threshold 2LL(p∗k) + ∆α and PL(θ) result in the bounds of the confidence interval. A 196

parameter is said to be practically identifiable if the shape of the profile likelihood plot 197

is close to quadratic on a finite confidence interval [47]. Otherwise, a parameter is said 198

to be practically unidentifiable. 199

Results and Discussion 200

Personalized Fits 201

The individual mouse data in response to treatment with Ad/4-1BBL/IL-12 + DCs [33] 202

is fit using the two methodologies discussed previously: 1) quasi-Monte-Carlo method 203

with simulated annealing in which each mouse is fit independently (which we will call 204

the “QMC” method for short), and 2) nonlinear mixed effects modeling in which 205

population-level statistics constrain individual fits. In Fig. 1, we can see the best-fit for 206

each mouse using the two fitting approaches. 207
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Fig 1. Best-fit for each mouse treated with Ad/41BBL/IL-12 and DCs in the order
VDVDVD at a dose of 2.5× 109 OVs and 106 DCs [33]. The QMC fits (in which each
mouse is treated independently of the others) are shown in red, and the NLME fits are
shown in black. The experimental data (blue) is also provided on each plot.

We observe that for each mouse, the QMC algorithm results in a fit that more 208

accurately captures the dynamics in the experimental data. The differences between the 209

two fitting methodologies explain why this is occurring. NLME assumes each parameter 210

is sampled from a lognormal distribution whose mean and variance are determined by 211

the full population of mice. (The estimated lognormal distributions for each model 212

parameter are shown in Fig. S1.) On the other hand, the QMC algorithm fits each 213

mouse independently, and the only constraint imposed on the parameters is a 214

nonnegativity constraint. This allows the QMC algorithm to explore a much larger 215

region of parameter space, resulting in better fits. The downside, as we will show, is 216

that the QMC algorithm may be selecting parameters that are not biologically realistic. 217

We have established that the parametric constraints across the two fitting 218
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methodologies explain the goodness-of-fit differences seen in Fig. 1. However, this does 219

not tell us which parameters vary across fitting methodologies and which, if any, are 220

conserved. In Fig. 2 and S2 we show the best-fit parameter value for each mouse and 221

fitting methodology relative to the best-fit parameter value for the average mouse. For 222

example, the best-fit value of the tumor growth rate r to the average of the control data 223

has been shown to be r = 0.3198 [34]. Since Mouse 1 has a relative value of 1.0916 when 224

fitting is done using QMC, the value of r predicted for that Mouse is 9.16% larger than 225

the value for the average mouse, meaning QMC predicts r = 0.3491 for Mouse 1. On the 226

other hand, the relative value is 0.7512 when fitting is done using NLME, meaning the 227

predicted value is r = 0.2402, which is 24.88% less than the value for the average mouse. 228

Fig 2. Best-fit values of tumor growth rate parameter r, virus infectivity parameter β,
viral decay rate δV , infected cell lysis rate δI , T cell stimulation term by
immunostimulants cT , and T cell stimulation term by DCs χD. The best-fit values are
shown for each mouse and are presented relative to the best-fit value of the parameter
in the average mouse [34]. Therefore, a value of 1 means the parameter value is equal to
that in the average mouse, less than 1 is a smaller value, and greater than 1 is a larger
value. Values for other model parameters are shown in Fig. S2.

We observe that while the value a parameter can take on across methodologies is 229

usually of the same order of magnitude, substantial differences can exist across 230

methodologies in essentially all parameters. Generally speaking, NLME-associated 231

parameters exhibit smaller variations from the best-fit parameter for the average mouse. 232

This occurs because the full population of mice constrain the lognormal distribution 233

that each parameter is sampled from. 234

Compare this to the QMC-associated parameters, which are searched for in an 235

unrestricted region of non-negative parameter space. Some biologically unlikely things 236

happen when we look at the QMC parameters - a good example of this are the best-fit 237

values of the viral decay rate δV in Fig. 2. For Mouse 2 and 3 (which we see in Fig. 1 238

are successfully treated by the experimental treatment protocol), QMC predicts that 239

the optimal parameter set has δV = 0. Biologically, this attributes treatment success (at 240

least partially) to the fact that the injected OVs never decay! While it certainly seems 241

reasonable that if the treatment was never eliminated from the body, the tumor volume 242

would go to zero, having no viral decay is nonsensical. So even though the QMC 243

parameter sets give better fits to the data, the guarantee of a biologically-reasonable 244
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value for each parameter is sacrificed. 245

Looking across methodologies, parameter disparities are the most pronounced in cT , 246

the rate of cytotoxic T cell stimulation from 4-1BBL and IL-12. The QMC-predicted 247

parameters cover a much larger range of values relative to the average mouse. 248

According to the QMC fits, cT can range anywhere from 92.15% below the value in the 249

average mouse to 4.69 times higher than the value in the average mouse. Compare this 250

to the NLME-predicted values of cT , which can range from 90.29% below the value in 251

the average mouse to 31.87% below the value for the average mouse. What is clear from 252

looking at the best-fit parameter values across methodologies is that it is not differences 253

in a single (or small set) of parameter values that explain the difference in fits. The 254

nonlinearities in the model simply do not allow the effects of one parameter to be easily 255

teased out from the effects of the other parameters. 256

Personalized Treatment Response at Experimental Dose 257

Here we seek to determine if the two sets of best-fit parameters for a single individual 258

yield similar personalized predictions about tumor response to a range of treatment 259

protocols. The treatment protocols we consider are modeled after the experimental work 260

in [33]. Each day consists of only a single treatment, which can be either an injection of 261

Ad/4-1BBL/IL-12 at 2.5× 109 viruses per dose, or a dose of 106 DCs. Treatment will 262

be given for six days, with three days of treatment being Ad/4-1BBL/IL-12, and three 263

days being DCs. If only one dose can be given per day, there are exactly 20 treatment 264

protocols to consider. The 20 protocols are shown in Fig. 3, where V represents a dose 265

of Ad/4-1BBL/IL-12, and D represents a dose of dendritic cells. 266

To quantify predicted tumor response, we will simulate mouse dynamics (using the 267

determined best-fit parameters) for each of the 20 6-day protocols. Unless otherwise 268

stated, we will use the predicted tumor volume after 30 days, V (30), to quantify 269

treatment response. For each fitting methodology, mouse, and protocol we display the 270

log (V (30)) in a heatmap (as in Fig. 3). For all V (30) ≤ 1 mm3, we display the 271

logarithm as 0, as showing negative values would hinder cross-methodology comparison 272

and overemphasize insignificant differences in treatment response. We consider all such 273

tumors to be effectively treated by the associated protocol. Any nonzero values 274

correspond to the value of log (V (30)) when V (30) > 1 mm3, and we assume these 275

tumors have not been successfully treated. The resulting heatmap at the experimental 276

dose of 2.5× 109 viruses per dose, and 106 DCs per dose is shown in Fig. 3. 277

Ideally, we would find that treatment response to a protocol for a given mouse is 278

independent of the fitting methodology utilized (at least in the qualitative sense of 279

treatment success or failure). However, that does not generally appear to be the case for 280

our data, model and fitting methodologies, as we elaborate on here. 281

• Cumulative statistics on consistencies across methodologies. The two 282

fitting methodologies give the same qualitative predictions for 73.75% (118/160) 283

of the treatment protocols (see Fig. 3). Of the 118 agreements, 57 consistently 284

predict treatment success whereas 61 consistently predict treatment failure. It is 285

of note that these numbers only change slightly if we use V (80) as our 286

measurement for determining treatment success or failure (81.875% agreement 287

with 78/131 consistently predicting eradication and 53/131 consistently predicting 288

failure - see Fig. S3). Mouse 2, 3 and 6 have perfect agreement across fitting 289

methodologies, and Mouse 7 has 95% agreement across methodologies. For these 290

mice, treatment response is generally not dependent on dosing order. For instance, 291

Mouse 2 and 3 are successfully treated by all twenty protocols considered, whereas 292

Mouse 6 cannot be successfully treated by any protocol. In fact, V (30) for Mouse 293

6 is highly conserved across dosing order, suggesting that the ordering itself is 294
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Fig 3. Heatmaps showing the log of the tumor volume measured at 30 days, at the OV
and DC dose used in [33]. If log(V (30)) ≤ 1, its value is shown as 0 on the heatmap.
Left shows predictions when parameters are fit using QMC, and right shows NLME
predictions.

having minimal impact on treatment response. While performing a bifurcation 295

analysis in 11D parameter space is not feasible, what is clear is that for the mice 296

with significant agreement across methodologies, the best-fit parameters must be 297

sufficiently far from the bifurcation surface, as shown in the schematic diagram in 298

Fig. 4. As a result, predicted treatment response is not sensitive to changes in the 299

parameter values that result from using a different fitting methodology. While not 300

equivalent, they also do not appear to be sensitive to dosing order. 301

• Cumulative statistics on inconsistencies across methodologies. The two 302

fitting methodologies give different qualitative predictions for 26.25% (42/160) of 303

the treatment protocols (see Fig. 3). Mouse 1 and 4 are largely responsible for 304

these predictive discrepancies, with Mouse 1 having inconsistent predictions for 305

75% of protocols, and Mouse 4 having inconsistent predictions for 90% of 306

protocols. Note that each methodology must agree for the protocol VDVDVD, as 307

this was the experimental protocol that was used for parameter fitting. So, 95% is 308

the maximum disagreement rate we can see across methodologies for a given 309

mouse. We observe that the QMC-associated parameter set is much more likely to 310

predict treatment failure for these mice, whereas the NLME parameter set is more 311

likely to predict treatment success. Contrary to the mice for which there is 312

significant cross-methodology agreement, we see a high dependency of treatment 313

response to dosing order for Mouse 1 and 4. From the perspective of the high 314

dimensional bifurcation diagram, these parameters must fall sufficiently close to 315

the bifurcation surface so that parametric changes that result from using different 316

fitting methodologies can lead to wildly different predictions about treatment 317

response (see schematic in Fig. 4). In turn, this appears to make these mice 318

significantly more sensitive to dosing order. 319

Exploring Predictive Discrepancies between Fitting 320

Methodologies 321

The predictive discrepancies across fitting methodologies begs the question of whether 322

the parameters we are fitting are actually practically identifiable given the available 323

experimental data. To explore this question, we generated profile likelihood curves for 324
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Fig 4. Schematic representation of a bifurcation diagram in two-dimensional parameter
space. For certain nonlinear combinations of parameters, a treatment can successfully
eradicate a tumor (as occurs for Mouse 8 treated with VVVDDD according to NLME
parameters), result in tumor stabilization (as occurs for Mouse 6 treated with VVVDDD
according to NLME parameters), or can fail to control the tumor (as occurs for Mouse 5
treated with VVVDDD according to NLME parameters). Note the bifurcation diagram
is dependent on both the dose of drug being given, and the ordering of those drugs.

fitting the average tumor growth data. Parameter fitting follows the QMC algorithm 325

presented in the subsection Independently Fitting Individuals, with the exception that 326

the cost function utilizes the average volume V̄data(t) and incorporates the variance in 327

the volume across mice (σ2(t)): 328

ζ2 =
n∑
t=1

(Vmodel(t)− V̄data(t))2

σ2(t)
. (11)

As a first step, we fixed the parameters whose values we could reasonably approximate 329

from experimental data: δI = 1, α = 3000, δV = 2.3, κ0 = 2, δT = 0.35, and 330

δD = 0.35 [36]. This means we are using df = 5 in the calculation of the threshold, as 331

the generation of each profile likelihood curve requires fitting four model parameters, 332

and the initial condition U(0). 333

The resulting profile likelihood curves in Fig. 5 show that, even under the 334

assumption that six of the eleven non-initial condition parameters are known, several of 335

the fit model parameters lack practical identifiability. The tumor growth rate r and the 336

infectivity parameter β are both practically identifiable (ignoring slight numerical noise). 337

The T cell activation parameters χD and cT lack practical identifiability as they have 338

profiles with a shallow and one-sided minimum [42]. The profile for ckill demonstrates 339

that the model can equally well-describe the data over a large range of values for this 340

enhanced cytotoxicity parameter. The flat likelihood profile is indicative of (local) 341
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Fig 5. Profile likelihood curves. Top row: tumor growth rate r, infectivity rate β, T cell
activation rate by DCs χD. Bottom row: T cell stimulation rate by immunostimulants
cT , and rate at which immunostimulants enhance cytotoxicity of T cells ckill. The
threshold (red dashed line) is calculated using df = 5 and a 95% confidence interval.

structural unidentifiability, which also results in the parameter being practically 342

unidentifiable [42]. It is worth noting that the original work fitting to the average mouse 343

was done in a hierarchical fashion [34,36], and this circumvented the identifiability 344

issues that emerge when doing simultaneous parameter fitting. 345

As we are unable to exploit the benefits of hierarchical fitting when performing 346

personalized fits, this lack of practical identifiability poses significant issues for 347

treatment personalization. We have already seen the consequences of this when we 348

observed that despite both giving good fits to the data, QMC and NLME only make 349

consistent qualitative predictions in only 73.75% of the treatment protocols tested 350

across all individuals. While the lack of practical identifiability helps explain why this 351

can happen, it does not explain the mechanisms that drive predictive differences. To 352

this end, we will now focus on the simulated dynamics of Mouse 4 in more detail, as this 353

was the mouse with the most predictive discrepancies across methodologies. 354

As shown in Fig. 6, when we simulate the model ten days beyond the data-collection 355

window, we see that the QMC and NLME parameters fall on different sides of the 356

bifurcation surface. In particular, in the QMC-associated simulation, at around 34 days 357

the tumor exhibits a local maximum in volume and continues to shrink from there 358

(Fig. 6, left). This is in comparison to the NLME-associated simulation, where the 359

tumor grows exponentially beyond the data-collection window. To uncover the 360

biological mechanism driving these extreme differences, we look at the “hidden” 361

variables in our model - that is, variables for which we have no experimental data. As 362

shown in Fig. 6, despite the similar fits to the volumetric data, the two parameters sets 363

predict drastically different dynamics for the OVs and T cells. For the 364

NLME-associated parameters, the virus and T cell population die out, eventually 365

resulting in unbounded tumor growth. On the other hand, the virus and T cell 366

population remain endemic throughout the simulation when using the QMC-associated 367

parameters, driving the tumor population towards extinction. 368

Assuming that the source of the bifurcation in the model lies in the dynamics of the 369

T cell and oncolytic virus population, additional data providing T cell or virus counts 370

can better inform our model. That is, both the practical identifiability and the ability 371

to perform personalized fits and predictions would be substantially improved with even 372

a single data point about the viral or T cell load at the end of the data collection 373
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Fig 6. Left: QMC and NLME-associated fits to Mouse 4 treated with VDVDVD, with
model predictions extended 10 days beyond the data-collection window. Center and
right: Predicted virus and T cell counts associated with each fitting methodology,
respectively.

window. This highlights that although one must be quite cautious in using 374

mathematical models to make personalized predictions, models can help us determine 375

what data is needed so that we can have more trust in our mathematical predictions. 376

Personalized Treatment Response to the Optimal for Average 377

Protocol 378

Ideally, when an optimal prediction is made for the average of a population, that 379

optimal treatment protocol would also well-control the tumors of individual patients in 380

the population. However, as is fairly common knowledge, and as our earlier work with 381

virtual populations has shown, this is not necessarily the case. In [31] we showed that 382

the experimental dose being considered in this paper is fragile or non-robust, meaning 383

that individual samples in a population are not likely to have the same qualitative 384

response to the optimal-for-the-average protocol. In particular, while VVVDDD was the 385

optimal-for-the-average of the mice in the experiments (and this optimal led to tumor 386

eradication for the average mouse [36]), we found only 30% of virtual populations were 387

successfully eradicated by this protocol [31]. In a fragile region of dosing space, one 388

must be very careful in applying a prediction for the average of a population to any one 389

individual in that population. 390

Considering the fragile nature of this region of dosing space, it is interesting to look 391

at statistics on how individual mice respond to VVVDDD, the predicted optimal 392

treatment protocol for the average mouse. While this protocol was effectively able to 393

eradicate the average tumor in the population, its success across individual mice varies 394

significantly across fitting methodologies. For the QMC-associated predictions, this 395

protocol eradicates tumors in 75% of the individual mice (second row of the heatmaps 396

in Fig. 3, left). Compare this to the NLME-associated predictions, in which this 397

protocol eradicates tumors in only 25% of the individual mice (second row of the 398

heatmaps in Fig. 3, right). As shown in Fig. S3, this prediction is unchanged if we 399

determine treatment success or failure at day 80 instead of day 30. 400

We can also compare response to the optimal-for-the-average protocol across 401

methodologies. We see a qualitative agreement across methodologies (eradication or 402

treatment failure) in only 50% of the mice (Mouse 2, 3, 5, 6). Mouse 7 is particularly 403

interesting, as there was 95% agreement across methodologies when using V (30) to 404

measure treatment success or failure, and the optimal for the average of VVVDDD is 405

the only protocol for which treatment response differed (with QMC predicting tumor 406

eradication, and NLME predicting treatment failure). As a further sign of caution, 407

notice how for Mouse 1 and 4 (the cases with significant predictive discrepancies across 408

methodologies), and Mouse 8 (intermediate case with 25% predictive discrepancies), 409

July 16, 2021 13/21

.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted August 3, 2021. ; https://doi.org/10.1101/2021.08.03.454882doi: bioRxiv preprint 

https://doi.org/10.1101/2021.08.03.454882
http://creativecommons.org/licenses/by/4.0/


VVVDDD eradicates the tumor with the QMC-associated parameters yet is the worst 410

protocol that could be given (largest log (V (30))) for the NLME-associated parameters. 411

This is particularly unsettling as it means the population-level optimal treatment 412

recommendation could be the worst-case scenario for some individuals. We saw this 413

same phenomenon occur with virtual populations [31], and taken together this strongly 414

suggests that a population-level prediction should be applied to individuals very 415

cautiously when in a fragile region of dosing space. 416

This raises the question: what if we were assessing individualized response to the 417

average protocol in a robust region of dosing space? In [31] we showed that the high DC 418

(50% greater than experimental dose), low OV (50% lower than experimental dose) 419

region of dosing space is robust, with 84% of virtual populations being successfully 420

eradicated by the optimal-for-the-average protocol of DDDVVV. This statistic gives 421

hope that individual mice may better respond to the optimal-for-the-average protocol in 422

this robust region of dosing space. 423

Fig 7. Heatmaps showing the log of the tumor volume measured at 80 days, at the
high DC (50% greater than experimental dose), low OV (50% lower than experimental
dose) region of dosing space. Left shows predictions if parameters are fit using QMC,
and right shows NLME predictions. Inserts show time course of predicted treatment
response for Mouse 6 and 7 to the optimal-for-the-average protocol of DDDVVV.

The robust population-level optimal of DDDVVV yields a successful treatment 424

response in all eight mice for the NLME-associated parameters. This holds whether we 425

use V (30), our original measure for establishing treatment success (as shown in Fig. S4), 426

or if we use V (80) as shown in Fig. 7. This is consistent with the robust nature of this 427

region of dosing space, as the NLME-associated parameters are less likely to wildly 428

deviate from the average mouse due to population-level distributions constraining the 429

value of these parameters. In comparison, the QMC-associated predictions show that 430

only 62.5% of the individual mice are successfully treated by the optimal for the average 431
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in an 80-day window (Fig. 7, top left). That said, if we look at the data more closely, we 432

can see that Mouse 7 has essentially been eradicated even though 80 days was not quite 433

long enough to drive V (80) < 1 mm3, our threshold for eradication. Fig. 7 also shows 434

that the tumor volume for Mouse 6 has stabilized. Thus, we see that the 435

QMC-associated predictions actually agree with the optimal-for-the-average response in 436

75% of cases (or, 87.5% if you consider the stabilization of Mouse 6 to be a “success” 437

rather than a “failure”). 438

In closing, we see a significant benefit to working with a robust 439

optimal-for-the-average protocol, even in the absence of all model parameters being 440

practically identifiable. In the presence of robustness, we predict that one could 441

generally apply the optimal-for-the-average protocol and expect a qualitatively similar 442

response in most individuals. While this does not mean each individual is treated with 443

their personalized optimal protocol, this has important consequences for determining 444

when a population-level prediction will be safe and effective in an individual. 445

Conclusion 446

In this work, we demonstrated that making personalized treatment recommendations 447

based on mathematical modeling is a nontrivial task, as treatment response can be 448

sensitive to the fitting methodology utilized when lacking sufficient patient-specific data. 449

We found that for our model and preclinical dataset, predictive discrepancies can be (at 450

least somewhat) explained by the lack of practical identifiability of model parameters. 451

This can result in the dangerous scenario where an effective treatment recommendation 452

according to one fitting methodology is predicted to be the worst treatment option 453

according to a different fitting methodology. This raises obvious concerns regarding the 454

utility of mathematical models in personalized oncology. 455

That said, a mathematical model can also be used to determine what additional 456

data is needed to improve parameter identifiability. For the model and data described 457

herein, we see how having an additional measurement on the viral load or T cell count 458

at the end of the data collection window would go a long way to reduce the predictive 459

discrepancies across fitting methodologies (Fig. 6). 460

When additional data is not available, an alternative option to personalization is 461

simply treating with the population-level optimal. Here we showed the dangers of 462

applying the optimal-for-the-average for a fragile protocol, and we demonstrated that 463

such a one-size-fits all approach is much safer to employ for a robust optimal protocol. 464

Therefore, even when data is lacking to make personalized predictions, establishing the 465

robustness of treatment response can be a powerful tool in predictive oncology. 466

As we enter the era of healthcare where personalized medicine becomes a more 467

common approach to treating cancer patients, harnessing the power of mathematical 468

models will only become more essential. Understanding the identifiability of model 469

parameters, what data is needed to achieve identifiability, and whether treatment 470

response is robust or fragile are all important considerations that can greatly improve 471

the predictive abilities of mathematical models in personalized oncology. 472
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Supporting information

Fig S1. Estimated parameter distributions from Monolix’s implementation of NLME.
Each parameter is assumed to be lognormally distributed. The blue bars in each graph
represent the empirical distribution of the parameter estimation and the black line
represents the theoretical distribution.
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Fig S2. Best-fit value of number of viruses released by lysed cell α, the cytotoxicity
enhancement term due to immunostimulants ckill, T cell decay rate δT , DC decay rate
δD, and default cytotoxicity rate of T cells κ0. The best-fit values are shown for each
mouse and are presented relative to the best-fit value of the parameter in the average
mouse [34]. Therefore, a value of 1 means the parameter value is equal to that in the
average mouse, less than 1 is a smaller value, and greater than 1 is a larger value.
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Fig S3. Heatmaps showing the log of the tumor volume measured at 80 days, at the
OV and DC dose used in [33]. Left shows predictions when parameters are fit using
QMC and right shows NLME predictions. Compare to heatmap in Fig. 3 which shows
the log of the tumor volume 50 days earlier.

Fig S4. Heatmaps showing the log of the tumor volume measured at 30 days, at the
high DC (50% greater than experimental dose), low OV (50% lower than experimental
dose) region of dosing space. Left shows predictions if parameters are fit using QMC
and right shows NLME predictions. Compare to heatmap in Fig. 7 which shows the log
of the tumor volume 50 days later.
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