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         B-cells undergo somatic hypermutation (SHM) of the Immunoglobulin (Ig) variable region 18 

to generate high-affinity antibodies. SHM relies on the activity of activation-induced deaminase 19 

(AID), which mutates C>U preferentially targeting WRC (W=A/T, R=A/G) hotspots. Downstream 20 

mutations at WA Polymerase η hotspots contribute further mutations. Computational models of 21 

SHM can describe the probability of mutations essential for vaccine responses. Previous studies 22 

using short subsequences (k-mers) failed to explain divergent mutability for the same k-mer. We 23 

developed the DeepSHM (Deep learning on SHM) model using k-mers of size 5-21, improving 24 

accuracy over previous models. Interpretation of DeepSHM identified an extended DWRCT 25 

(D=A/G/T) motif with particularly high mutability. Increased mutability was further associated 26 

with lower surrounding G content. Our model also discovered a conserved AGYCTGGGGG 27 

(Y=C/T) motif within FW1 of IGHV3 family genes with unusually high T>G substitution rates. 28 

Thus, a wider sequence context increases predictive power and identifies novel features that drive 29 

mutational targeting. 30 

 31 

 32 

Introduction 33 

  34 

         Upon encountering antigen, germinal center (GC) B cells undergo several programmed 35 

mutational events in secondary lymphoid organs to mount an effective humoral immune response. 36 

Somatic hypermutation (SHM) takes place in the GC dark zone whereby mostly point mutations 37 

are introduced into the Immunoglobulin (Ig) variable (V) region. Selection for mutations leading 38 
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to higher binding B cell receptors to cognate antigen occurs in the GC light zone, thus, producing 39 

a diverse repertoire of high-affinity antibodies (Methot and Di Noia, 2017; Pilzecker and Jacobs, 40 

2019; Rajewsky, 1996). The mutagenic enzyme, activation-induced deaminase (AID), initiates 41 

SHM (Muramatsu et al., 2000) by converting cytosine (C) to uracil (U) in single-stranded DNA 42 

(ssDNA), resulting in a U:G (guanine) mismatch (Bransteitter et al., 2003). AID displays 43 

preferential targeting at WRC/GYW "hotspot" motifs (where W=A/T, R=A/G, Y=C/T, and the 44 

underlined base indicates the mutated base in the top and bottom strand, respectively), whereas 45 

SYC/GRS "coldspots" (S=C/G) are significantly less targeted (Pham et al., 2003; Rogozin and 46 

Diaz, 2004; Rogozin and Kolchanov, 1992; Yu et al., 2004). If left unrecognized, U mismatches 47 

will act as a template T and be replicated over (Pilzecker and Jacobs, 2019). The resulting C>T 48 

transition mutation is commonly referred to as the DNA "footprint" of AID (Liu et al., 2008). 49 

Downstream DNA repair further contributes to antibody diversity that is mediated by low-fidelity 50 

polymerases. During non-canonical base-excision repair (ncBER), the U:G mismatch is 51 

recognized and excised by uracil-DNA glycosylase (UNG), resulting in an abasic site (Rada et al., 52 

2004). Repair of these abasic sites by REV1 can cause both transition and transversion mutations 53 

at C:G base-pairs (Jansen et al., 2006). In the case of non-canonical mismatch repair (ncMMR), 54 

the U:G mismatch is recognized by the MSH2/MSH6 heterodimer. Next, EXO1 exonuclease is 55 

recruited to create a patch of ssDNA, which then allows error-prone polymerases, particularly 56 

Polymerase eta (Polη), to resynthesize. Polη is known to create mutations at neighboring adenine 57 

(A) and thymine (T) sites of the initial AID-induced lesion, most notably at WA/TW hotspot motifs 58 

(Matsuda et al., 2001; Mayorov et al., 2005). 59 

         Several computational models have been developed for the SHM process and intrinsic 60 

biases exhibited by key proteins such as AID and Polη. These models have mainly utilized k-mer 61 
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subsequences, where k is a specified integer length, ranging between 3- to 7-mers (Cui et al., 2016; 62 

Elhanati et al., 2015; Shapiro et al., 1999; Shapiro et al., 2002; Yaari et al., 2013). Two of these 63 

models (Cui et al., 2016; Yaari et al., 2013) are widely used and have leveraged 5-mer motifs to 64 

capture the dependency of the local surrounding sequence for the middle nucleotide to mutate, 65 

while simultaneously bypassing any influence of selection. The first of these targeting models 66 

("S5F") evaluates all possible 5-mers and synonymous (silent) mutations derived from functionally 67 

rearranged, or productive, VDJ coding sequences (Yaari et al., 2013). The second model 68 

("RS5NF") similarly assesses 5-mers but uses both synonymous and non-synonymous 69 

(replacement) mutations from non-productively (non-functional) rearranged sequences (Cui et al., 70 

2016). Such models have been used to simulate B cell repertoire lineages by constructing a set of 71 

hypothetical sequences that have been mutated in a sequential manner as governed by, for example, 72 

the underlying S5F substitution scores (Krantsevich et al., 2021; Sheng et al., 2017). Although k-73 

mer approaches are generally able to capture some key local intrinsic biases of SHM, such as 74 

hotspot targeting, there is evidence that shorter k-mers are insufficient to properly characterize 75 

differential SHM targeting. For example, a recent study extended a local sequence (5-mer) context 76 

model and improved accuracy by including parameters describing the position within the IGHV 77 

gene (Spisak et al., 2020). Another study compared the mutability of identical 5-mer (middle 78 

position +/-2nt) motifs at different positions within an IGHV gene (Zhou and Kleinstein, 2020), 79 

and found that the mutation frequency of these motif-allele pairs (MAPs) positively correlates with 80 

the overall mutability of a wider neighborhood of motifs, suggesting that an extended k-mer may 81 

better capture SHM. 82 

         Earlier studies have shown that using deep learning is effective in different genomic 83 

applications; for example, convolutional neural networks (CNNs) in extracting conserved 84 
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sequence motifs among target sequences (Alipanahi et al., 2015; Kelley et al., 2016; Zhou and 85 

Troyanskaya, 2015). In this study, we adopted a deep learning approach using a 2-D CNN to 86 

analyze extended k-mer lengths to better understand the underlying SHM process. We demonstrate 87 

that our model, DeepSHM (Deep learning on SHM), can more accurately represent the SHM 88 

process by evaluating longer k-mers of up to 21 nts. Additionally, DeepSHM using 15-mers as 89 

inputs was able to recapitulate AID WRC/GYW hotspot motifs and identify an extended DWRCT 90 

motif. Neural network predictions are notoriously difficult to explain (the "black box" problem), 91 

but many new methods are available to interpret results (Koo and Ploenzke, 2020). We used one 92 

such method to identify a negative association between increased mutability at a site and its 93 

surrounding G content. On the other hand, lower mutation frequency was correlated with increased 94 

substitution rates of certain substitution types, particularly for G>T and C>A mutations. 95 

Furthermore, many highly conserved sites within G-rich sub-regions belonging to several IGHV3 96 

genes display an extremely high bias towards creating G mutations, some of which may participate 97 

in the formation of G-quadruplex (G4) structures. 98 

  99 

  100 

Results 101 

  102 

Deep learning can more accurately represent SHM mutabilities and substitution biases 103 

  104 
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         The objective of our analysis was to use supervised deep learning to build an accurate 105 

convolutional neural network (CNN) for SHM and, as much as possible, identify novel features 106 

contributing to mutability. We chose CNNs because we still expected mutation frequency to 107 

depend on recurring motifs that might occur at any position in the sequence (most obviously, AID 108 

hotspots), a task CNNs are well suited to. The workflow of our network consists of an input layer 109 

that processes a k-mer subsequence represented in its one-hot encoding format (i.e. a 4×k matrix 110 

of zeros and ones), followed by a convolution layer and two fully connected layers as the hidden 111 

layers, and finally the output layer of size 4×1 or 1×1, depending on the task that is being predicted 112 

(Figure 1, see Methods). Several hyperparameters, including dropout rate and learning rate, were 113 

fine-tuned with our model as well (Supplementary Table 1). We defined a model that would 114 

separate mutations on each strand (which are predominantly at C and A on the top strand and at G 115 

and T on the bottom strand) at the input level. To achieve this, we identified a simple solution 116 

using padding that assigns a row in each channel of the convolution layer output separately to each 117 

strand (Figure 1). CNNs are also often used together with attribution methods such as Integrated 118 

Gradients, to help with interpretation of the results. 119 

 120 

Figure 1. DeepSHM model architecture. Each model had an input layer, one convolution layer, two fully connected 121 

layers, and an output layer. The input layer was a 4×k dimensional one-hot encoded matrix (k is length of 122 
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subsequence). The dimension of the output layer was dependent on the task: substitution (4×1), mutation frequency 123 

(1×1), or weighted substitution (4×1). For the convolutional layer, ‘same’ padding was used to allow the model to 124 

process top and bottom strand mutations separately. With ‘same’ padding, the output of each convolutional channel 125 

has the same shape as the input (4×k) with the following properties: the first and the fourth rows are populated with 126 

zeros only (there was no real input, only padding; cyan and magenta rows); the input used for the second (light blue) 127 

row contained two rows of padding and two data rows corresponding to A or C nucleotides only; and similarly, the 128 

input used for the third (green) row also contained two rows of padding and two rows of data corresponding to G or 129 

T nucleotides. Since AID and Polη target C and A sites respectively, this approach was taken with the expectation of 130 

helping the model distinguish top and bottom strands. 131 

As a starting point, we trained two CNN models, which we collectively refer to as 132 

DeepSHM (Deep learning on SHM), to separately predict mutation frequency and substitution 133 

rates, calculated from previously published B cell repertoire data containing non-productively 134 

rearranged and clonally independent VDJ coding sequences (Tang et al., 2020), for varying k-mer 135 

lengths (see Methods). We trained both models independently using different combinations of k-136 

mer lengths and hyperparameters as listed in Supplementary Table 1. We found that for 137 

predicting mutation frequency, 15-mers were moderately better than 9-mers (purple boxplots in 138 

Figure 2A, Mann-Whitney U test: P<2.2×10-16) and that further extending the motif length to 21 139 

did not improve accuracy since both produced an overall maximum correlation (across 140 

hyperparameters) of 0.76 (Figure 2A, Table 1). Thus, using k-mers of length 15 or longer 141 

outperformed shorter lengths, specifically 5-mers and 9-mers (Table 1), suggesting that an 142 

extended DNA motif can better model the SHM process. However, using longer k-mers did not 143 

substantially improve the model that predicts SHM substitution bias alone, achieving an average 144 

correlation of 0.55 for 15-mers (green boxplots in Figure 2B, Table 1), but which is similar for 145 

different lengths. For the interpretability analysis below, we chose to use the best 15-mer models 146 

to keep the k-mer length consistent for comparisons across all models. In order to check if the 147 
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performance of the models leading to the best results was consistent, we also trained 30 different 148 

iterations of each model, keeping the hyperparameters fixed but using different random seeds. We 149 

found the standard deviation across correlations was very small, at 0.002 for the mutation 150 

frequency model and 0.001 for the substitution rate model, showing the strong consistency of our 151 

results. 152 

 153 

Figure 2. Performance of DeepSHM. Boxplots describing the distribution (across random hyperparameters) of 154 

Pearson correlations between DeepSHM predictions and empirical data (y-axis) are shown for different input k-mers 155 

(x-axis) for (A) mutation frequencies, and (B) substitution rates, for all three models (mutation frequency, substitution, 156 

and weighted substitution). Red dashed lines signify correlations of predicted S5F values, which uses 5-mers. 157 

We next sought to compare DeepSHM against the widely used S5F model that is based on 158 

5-mer motifs (Yaari et al., 2013). To ensure a fair comparison, we generated an S5F targeting 159 

model using the same data set that was used to train DeepSHM, as well as the same cross-validation 160 

scheme (see Methods). Using the same test set splits as above, we found that there was an average 161 

correlation of 0.66 between the predicted S5F model mutabilities and empirical mutation 162 

frequency, and an average correlation of 0.50 for predicted S5F substitution scores and empirical 163 

substitution rates (red dashed lines in Figure 2, Table 1). The substitution model slightly (but 164 
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statistically significantly) outperformed S5F for all k-mer values we analyzed. The mutation 165 

frequency model achieved a modest improvement over S5F using 5-mers as an input, and this 166 

difference became more evident for 9-, 15-, and 21-mers (Figure 2A, Table 1). We also similarly 167 

computed 30 iterations (using different random seeds) of the best 15-mer models for both mutation 168 

frequency and substitution models, and found these iterations to have significantly greater 169 

accuracy than S5F both individually and in aggregate (P<1.8×10-6 for each model, Wilcoxon 170 

signed-rank test). Overall, these results show that our deep learning approach successfully extracts 171 

meaningful information from the wider sequence context to improve predictions. 172 

Model Test set 
S5F 

 (5-mer) 

DeepSHM 

 (5-mer) 

DeepSHM 

 (9-mer) 

DeepSHM 

 (15-mer) 

DeepSHM 

 (21-mer) 

Substitution rate 

IGHV1 0.52 0.57 0.57 0.58 0.57 

IGHV3 0.49 0.52 0.52 0.53 0.52 

IGHV4 0.48 0.53 0.53 0.54 0.52 

IGHV2, 5, 6, 7 0.52 0.52 0.54 0.54 0.53 

Avg correlation 0.50 0.54 0.54 0.55 0.54 

Best - S5F NA 0.04 0.04 0.05 0.04 

Mean - S5F NA 0.02 0.03 0.02 0.01 

P-value NA 1.18E-13 1.28E-17 2.04E-13 2.25E-04 

Mutation frequency 

IGHV1 0.69 0.72 0.78 0.8 0.81 

IGHV3 0.65 0.69 0.72 0.74 0.73 

IGHV4 0.64 0.69 0.73 0.78 0.78 

IGHV2, 5, 6, 7 0.66 0.64 0.68 0.73 0.74 

Avg correlation 0.66 0.68 0.73 0.76 0.76 
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Best - S5F NA 0.02 0.08 0.1 0.1 

Mean - S5F NA 0.01 0.06 0.08 0.07 

P-value NA 6.41E-14 1.28E-17 1.28E-17 1.28E-17 

Weighted substitution 

 (substitution rate) 

IGHV1 0.52 0.55 0.55 0.53 0.53 

IGHV3 0.49 0.5 0.5 0.5 0.49 

IGHV4 0.48 0.49 0.51 0.48 0.5 

IGHV2, 5, 6, 7 0.52 0.49 0.52 0.49 0.51 

Avg correlation 0.50 0.51 0.52 0.50 0.51 

Best - S5F NA 0.04 0.09 0.11 0.11 

Mean - S5F NA 0.03 0.07 0.08 0.07 

P-value NA 7.51E-16 9.47E-17 1.28E-17 2.33E-17 

Weighted substitution 

 (mutation frequency) 

IGHV1 0.69 0.77 0.81 0.84 0.84 

IGHV3 0.65 0.69 0.72 0.73 0.71 

IGHV4 0.64 0.68 0.7 0.74 0.73 

IGHV2, 5, 6, 7 0.66 0.66 0.74 0.77 0.77 

Avg correlation 0.66 0.70 0.74 0.77 0.76 

Best - S5F NA 0.01 0.02 0.01 0.01 

Mean - S5F NA -0.05 -0.07 -0.09 -0.14 

P-value NA 2.06E-15 1.53E-16 3.19E-17 1.28E-17 

Table 1. Cross-validation of various input k-mer sequences. The correlations of repeatedly trained models using 173 

different random seeds (but the same hyperparameters) for neural network training had small standard deviations, in 174 

all cases below 0.01. P-values are from a Wilcoxon signed-rank test comparing the training results for each model 175 

with the corresponding S5F model accuracy. P-values were corrected (Benjamini-Hochberg) for multiple 176 

comparisons. 177 
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To identify associations between mutation frequency and specific substitutions, we further 178 

constructed a DeepSHM model to predict the "weighted substitution" of a k-mer, i.e., the product 179 

of the percentage of each observable substitution type (e.g G>N) and the mutation frequency of 180 

the k-mer (see Methods). Note that this weighted substitution metric is a vector representing the 181 

four ordered DNA bases, with a “0” placed at the position that matches the middle nucleotide of 182 

the k-mer. Since weighted substitution constitutes aspects of both the observable mutation 183 

frequency and substitution rate of the middle nucleotide of a given k-mer, we were able to evaluate 184 

DeepSHM on each metric separately. Although this model made poorer substitution rate 185 

predictions on average (varying hyperparameters) than S5F (Table 1), the best model performed 186 

similarly to S5F for substitution rates while, surprisingly, performing slightly better than any 187 

model in predicting mutation frequency. Cross-validation in this instance produced a range of 188 

average correlations between 0.50-0.52 for predicted substitution rates – a level similar to that of 189 

S5F (Figure 2B, Table 1). On the other hand, DeepSHM of weighted substitution values was 190 

marginally better at predicting mutation frequency for 15-mers (correlation: 0.77) than the 191 

previous standalone model that was tasked to learn mutation frequency only as well as being better 192 

than S5F. (Figure 2A, Table 1). Since the weighted substitution model was able to perform at a 193 

level slightly better to the standalone mutation frequency model for longer k-mers and substantially 194 

better for shorter (5-mer, 9-mer), this suggested a possible association between the projected 195 

substitution bias of a site and overall mutability and furthermore, that interpretability methods 196 

might uncover these (see below). 197 

  198 

Interpretation of the DeepSHM network reveals extended hotspot motifs 199 
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  200 

         A complication often associated with deep neural networks is model interpretability (the 201 

“black box” problem). One way we interrogated the predictions made by DeepSHM, and what it 202 

has learned about the SHM process, was to analyze the output of the penultimate layer of each 15-203 

mer based model. In particular, analyzing the output, or “encodings”, of this layer can be viewed 204 

as an alternative, and more informative, way of representing the input 15-mer. To visualize the 205 

multi-dimensional encodings of the individual 15-mers, we used t-SNE, a dimensionality reduction 206 

technique, to project each onto a 2-dimensional embedding (see Methods). At this point in order 207 

to make full use of the data, we merged all of the 15-mer data into one training set, and then trained 208 

three new individual models (one for each output type) using the hyperparameters which 209 

previously led to the best cross-validation results. The analyses we present below are derived from 210 

the DeepSHM models that were trained using this merged data set. 211 

         We began by identifying features learned by DeepSHM that predicted weighted 212 

substitutions. Since weighted substitution is a measure of both mutation frequency and substitution 213 

bias, the embedding should capture both metrics simultaneously. Each point in the resulting t-SNE 214 

embedding in Figure 3A represents a single 15-mer and is colored according to its corresponding 215 

mutation frequency. We identified several clusters of 15-mers that are mostly grouped by similar 216 

mutation rates, including those expressing high mutability. Clusters with mid to high mutation 217 

frequencies are similarly within close proximity but displayed no obvious groupings other than 218 

being mostly located towards the center. When we considered the middle nucleotide of each 15-219 

mer, we observed that these clusters also shared the same middle nucleotide (Figure 3B), 220 

suggesting that the network identified as a key feature the “0” value in the weighted substitution 221 

output vector that is associated with the middle nucleotide. 222 
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 223 

Figure 3. Neural network encodings analysis: weighted substitution model. Each point in the t-SNE embedding 224 

represents a single 15-mer processed through the truncated model (to extract the output of the penultimate layer) 225 

originally trained to learn the associated weighted substitutions (see Methods) and is colored according to its 226 

corresponding (A) mutation frequency (log10), and (B) middle nucleotide. Consensus sequences derived from the 227 

highest mutated cluster identified using k-means clustering on the embedding of 15-mers containing either (C) a 228 

middle C nucleotide or (D) a G nucleotide (clusters 10 and 16 in Supplementary Table 2). 229 

Next, we applied k-means clustering on the embedding as a way to isolate cluster 230 

boundaries (Supplementary Figure 1, see Methods). We subsequently created a sequence logo 231 

plots representing each cluster shown in Supplementary Table 2. As expected, clusters with the 232 

highest mutation frequencies had inner subsequences containing AID (C cluster 10, G cluster 16) 233 

and Polη (A clusters 1 and 2, T cluster 20) hotspots. For AID, these are WRC (Figure 3C) and 234 

GYW motifs (Figure 3D). Within the two most highly targeted AID hotspot clusters there is a 235 

substantial presence of both WGC/GCW and WAC/GTW contexts, rather than only the well-236 
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known WGCW overlapping hotspot motif (Tang et al., 2020; Wei et al., 2015). Furthermore, even 237 

when we include WAC/GTW, there is a preference for a T base at the 3' end of the WRC hotspot, 238 

and conversely, an even stronger bias for an A base at the 5’ end of the GYW hotspot (Figure 3C, 239 

D). This motif is consistent with a genome-wide study of AID mutations in mice that reported 240 

observing high mutability at AACT and AGCT motifs in both strands (Álvarez-Prado Á et al., 241 

2018). When we assessed the mutability of all possible WRCN (N=A/C/G/T) motifs separately, 242 

we observed WRCT to be the most highly mutated in each case (Supplementary Figure 2). 243 

Previous studies identified WRCY/RGYW (Y=C/T, R=A/G) and later WRCH/DGYW 244 

(H=A/C//T, D=A/G/T) to be a better predictor of mutability at C:G bases (Rogozin and Diaz, 2004; 245 

Rogozin and Kolchanov, 1992). However, we discovered some inconsistencies with these 246 

definitions, as AGCC was found to be the least mutated of the AGCN motifs and WRCG was not 247 

always the least mutated, on both strands. Overall, these early hotspot definitions may have been 248 

too broad, and WRCT/AGYW is a more consistent predictor of AID targeting. Lastly, we also 249 

noted that among the least mutated k-mer clusters, many were G-rich in their surrounding context 250 

(for example, C clusters 8 and 9, A cluster 4, T cluster 21), and particularly for G (G clusters 12 251 

and 14) (Supplementary Table 2). 252 
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 253 

Figure 4. Recurrent motifs identified by TF-MoDISco. TF-MoDISco results using the Integrated Gradients as base-254 

level importance scores of 15-mers whose middle nucleotide conformed to a (A) WRC or (B) GYW AID hotspot 255 

motif. 256 

As a complementary way to find sequence motifs associated with mutability, we used TF-257 

MoDISco (Transcription Factor Motif DIScovery), a program for identifying recurring motif 258 

patterns in genomic data (see Methods) (Shrikumar et al., 2018). We applied TF-MoDISco to the 259 

standalone model that predicts only mutation frequency because we reasoned that sequence 260 

features related to mutability would be more easily identifiable since the model is only required to 261 

learn a single task. TF-MoDISco uses importance scores, which can be derived from many 262 

machine learning methods, to produce a set of unique motifs learned by the model (see Methods). 263 
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We began by analyzing the importance scores derived from Integrated Gradients (Sundararajan et 264 

al., 2017) of 15-mers whose middle nucleotide conformed a WRC/GYW AID hotspot motif. As 265 

expected, the positively contributing sites in the set of ensuing motifs aligned with the hotspot 266 

motifs (Figure 4A, B). In addition, TF-MoDISco again revealed a preference for having a T base 267 

at the +1 position of the WRC (WRCT, Figure 4A) and an A base at the -1 position of the GYW 268 

(AGYW, Figure 4B). 269 

         In addition to WRCT/AGYW being a well-represented motif identified by TF-MoDISco, 270 

as measured by having positive contributions to mutability (above horizontal axis on Figure 4A), 271 

we also noticed many neighboring C and G bases contained negative contributions (below 272 

horizontal axis on Figure 4A), most evidently at the C located at the -3 position of the WRC 273 

hotspot, and the G located at the +3 position of the GYW hotspot (Figure 4B). Here, the negative 274 

contribution at the -3 position signifies that having a C at that position reduces mutational targeting 275 

to the middle C. By the same token, a mutation that changes the -3 position from C will increase 276 

the likelihood of the middle C subsequently being targeted. This observation supports our recently 277 

published study where we observed a strong positive “mutual association” – a correlation metric 278 

describing the impact of mutating one site and its effect at another site – between CC (or GG) pairs 279 

distanced by two nucleotides (Krantsevich et al., 2021). In that study we were able to explain most 280 

of such correlations in terms of overlapping AID and/or Polη hotspots, with the CNNC/GNNG 281 

motif being one the exceptions which we suggested might be explained by AID processivity (Pham 282 

et al., 2003; Storb et al., 2009). However, the TF-MoDISco analysis suggests a different 283 

explanation in which the absence of a C in the -3 position might be a part of an extended AID 284 

hotspot, defining CWRC as being similar to a sequential overlap motif, which we previously 285 

defined (Krantsevich et al., 2021) as a motif in which an initial mutation creates a new hotspot that 286 
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previously did not exist. Here, although the WRC hotspot did previously exist, a mutation in the 287 

first C would create a DWRC (D=A/G/T) motif, potentially with higher mutability. 288 

We next sought to determine whether adding the 5' D or 3' T context of the canonical WRC 289 

hotspot is more influential in terms of increasing its susceptibility to AID mutagenesis. To address 290 

this, we increased the hotspot specificity step by step, starting from CWRCV (V=A/C/G) and 291 

assessed the impact a single change in the motif at either the first C or V site, causing a DWRCV 292 

or CWRCT intermediate hotspot to form respectively, has on mutability (Figure 5A). We found 293 

that both DWRCV and CWRCT intermediate hotspots were shown to mutate significantly more 294 

than CWRCV (Figure 5B). We also discovered that the mutability of the DWRCT hotspot, which 295 

contains the extended hotspot in both 5' and 3' directions, was significantly higher than both 296 

intermediate hotspots (Figure 5B). Performing a pairwise comparison between the mutation 297 

frequency of all 16 individual (D/C)WRC(T/V) contexts further confirmed that those containing 298 

both a 5' D and 3' T were significantly more mutated than the remaining hotspot motifs, with 299 

DAGCT being the most mutated (Figure 5C, Supplementary Table 3). Additionally, the next 300 

three successively mutated hotspots followed a CWRCT context, overall suggesting the 3' T to be 301 

more impactful to AID recognition than the 5' D, but the addition of both substantially increases 302 

targeting in human V regions. 303 

.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted August 5, 2021. ; https://doi.org/10.1101/2021.08.03.453264doi: bioRxiv preprint 

https://doi.org/10.1101/2021.08.03.453264
http://creativecommons.org/licenses/by/4.0/


18 

 304 

Figure 5. Mutability of extended AID hotspots. (A) Schematic showing an increase of AID hotspot specificity (left 305 

to right). (B) Boxplots displaying the mutability of different (C/D)WRC(T/V) hotspot contexts, where D=A/G/T, 306 

V=A/C/G. Asterisks indicate significance (p ≤ 0.0001) of a one-sided Mann-Whitney U test comparing the greater 307 

mutation frequency of the boxplot on the right against the one on the left. (C) Pairwise comparison of mutability for 308 

all 16 (C/D)WRC(T/V) hotspot contexts. Boxes represent the p-value - adjusted for multiple comparisons (Benjamini-309 

Hochberg correction) - of a one-sided Mann-Whitney U test comparing the greater mutation frequency of the hotspot 310 

indicated by the row to the left, against the hotspot shown in the column below. Rows and columns are ordered by 311 

mean mutation frequency (high to low). The color and size of each box is scaled according to the adjusted p-value. 312 

Gray dots inside boxes indicate p-values ≤ 0.05. 313 

In addition, another secondary motif that unexpectedly emerged from the TF-MoDISco 314 

analysis of WRC/GYW 15-mers did not contain a positively contributing C nucleotide; rather it 315 

conformed to a TA Polη hotspot (Figure 4A, bottom). Having a TA hotspot appear while 316 
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specifically analyzing only 15-mers containing WRC hotspots reveals the importance of attracting 317 

Polη to these areas.  This finding is consistent with our previous analysis highlighting the 318 

importance of co-localization of AGCT overlapping AID hotspots and Polη hotspots within the 319 

CDRs (Tang et al., 2020; Wei et al., 2015). 320 

The TA motif also emerged when we applied TF-MoDISco to all 15-mers conforming to 321 

either a WA (Supplementary Figure 3A) or TW Polη hotspot (Supplementary Figure 3B). In 322 

addition to our model identifying both the TA and AA hotspot motifs as important, it also identified 323 

a TAT/ATA motif as a special case for both strands. Further analysis showed that WAT/ATW 324 

hotspots mutate significantly more than their WAV/BTW counterparts (Figure 6). Thus, while TA 325 

hotspots consistently have higher mutability than AA, the presence of a 3’ T individually increases 326 

the mutability of each of these Polη hotspots. 327 

 328 

Figure 6. Mutability of extended Polη hotspot motifs. Boxplots comparing the mutation frequency of various top 329 

strand WAT against WAV (blue), and bottom strand ATW against BTW (red) motifs. Asterisks indicate significance 330 
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(p ≤ 0.0001) of a one-sided Mann-Whitney U test comparing the greater mutation frequency of the boxplot on the left 331 

against the one on the right.  332 

 333 

Highly targeted sites display a lower surrounding GC content 334 

  335 

         We next applied the same t-SNE methodology to the DeepSHM model that predicted only 336 

mutation frequency. We found that the organization of the subsequent embedding followed a 337 

direction of descending mutation frequency, with the highest mutating 15-mers located at the mid- 338 

to upper-right portion of the plot (Figure 7A). A cluster of low-mutating 15-mers was also isolated 339 

in the upper-left (Figure 7A), which was enriched with ~76% of FW1 15-mers (Figure 7B). 340 

Additionally, we examined the possible influence of the local surrounding sequence by calculating 341 

the individual base content of the four DNA bases in each 15-mer. However, the inner 5-mer, 342 

which contains the dominant context, was excluded when computing all base counts. When we 343 

colored the t-SNE embedding according to the GC content of each 15-mer, we observed that GC 344 

content increases along the same direction as decreasing mutability seen previously (Figure 7C). 345 

Quantifying this observation more formally, we indeed found a significant negative correlation 346 

between the GC content and the mutation frequency of the 15-mers (R=-0.31, P<2.2×10-16; Figure 347 

7D). On the other hand, when we considered each individual base count independently, we 348 

observed that the count of G nucleotides specifically shows a stronger negative correlation (R=-349 

0.19) than the C nucleotide count (R=-0.084) alone (Supplementary Figure 4A), although both 350 

correlations are highly significant (P<2.2×10-16). This result is consistent with the cluster analysis 351 

above (Supplementary Table 2) where we observed several clusters with G-rich k-mers and low 352 
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mutation frequencies. If we further separate the mutation frequencies into categories defined by 353 

the middle nucleotide, we find that G content has a consistent negative correlation regardless 354 

(column G of Supplementary Figure 4B). More generally, A and T richness (columns A and T 355 

of Supplementary Figure 4B) shows a consistent positive or sometimes non-significant 356 

correlation, whereas C and G richness shows a consistent negative (or non-significant) correlation. 357 

In summary, it appears that low-mutating sites generally have a high local GC (and particularly G) 358 

content, and conversely, that highly targeted sites display an elevated local AT (particularly A) 359 

content. 360 
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 361 

Figure 7. Neural network encodings analysis: mutation frequency model. Each point in the t-SNE embedding 362 

represents a single 15-mer processed through the truncated model (to extract the output of the penultimate layer) 363 

trained on mutation frequencies (see Methods) and is colored according to its corresponding (A) mutation frequency 364 

(log10), and (B) by Ig V sub-region location as defined by IMGT. (C) The t-SNE embedding is colored according to 365 

the GC content of each 15-mer. The calculated GC content excludes the middle 5-mer context of the 15-mer to remove 366 

any confounding AID hotspot or coldspot bias. (D) Computed Pearson correlation between mutation frequency and 367 

GC content, again excluding the middle 5-mer.  368 
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 369 

Conserved FW1 sites surrounded by clusters of AID coldspots in IGHV3 genes display a 370 

high T>G transversion bias 371 

  372 

         We now analyzed the standalone model predicting only substitution rates to gain possible 373 

insight into additional substitution biases exhibited by AID or downstream error-prone DNA 374 

damage response pathways, for example, as a result of REV1 or Polη intervention during non-375 

canonical base-excision repair (BER) and non-canonical mismatch repair (MMR), respectively. 376 

The resulting t-SNE embedding from this model identified four main clusters, as well as two much 377 

smaller satellite clusters, with each cluster containing 15-mers that share a common middle 378 

nucleotide (Figure 8A). A distinction between 15-mers with high and low mutation frequencies 379 

could also be observed based on their location on opposite ends of the cluster, especially for 380 

clusters containing either a C or G middle nucleotide, with high-mutating 15-mers typically located 381 

on the side closest to the center (Figure 8B). Since the model was tasked with learning the 382 

distributed substitution rates of each 15-mer, we next sought to evaluate the embedding by the rate 383 

of each individual substitution type (e.g. C>T). In certain clusters, a similar gradient of high to low 384 

substitution rates could also be seen as we observed for mutation frequency (Figure 8C-F). For 385 

instance, we noticed the rate of G>T substitutions increasing from the side nearest to the origin 386 

towards the outer boundaries of the cluster (top-right cluster in Figure 8F), which was associated 387 

with a shift towards decreasing mutation frequencies in the same cluster while proceeding in the 388 

same direction (Figure 8B). To evaluate this trend more closely, we analyzed three human IGHV 389 

genes from different families for which we had the most data (IGHV1-18, IGHV3-23, IGHV4-390 
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34), so as to include sites with low mutation frequencies at high coverage, and calculated the 391 

correlation between mutation frequency and rate of substitution for each substitution type.  As an 392 

example, for IGHV3-23 we found the most significant negative correlations to be at C>A 393 

mutations (R=-0.33, p=0.0058), and the reverse, G>T (R=-0.24, p=0.022; Supplementary Figure 394 

5). Alternatively, we observed a significant positive correlation between mutation frequency and 395 

C>T transition mutations (R=0.29, p=0.018; Supplementary Figure 5). Similar patterns were also 396 

observed for IGHV1-18*01 and IGHV4-34*01 (Supplementary Figure 5). These results are 397 

consistent with replication bypass (predominantly causing C>T) being favored over BER at sites 398 

with high mutation frequency.  399 

400 

Figure 8. Neural network encodings analysis: substitution model. Each point in the t-SNE embedding represents 401 

a single 15-mer processed through the truncated model (to extract the output of the penultimate layer) trained to learn 402 

the associated substitution rates (see Methods) and is colored according to its corresponding (A) middle nucleotide, 403 
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and (B) mutation frequency (log10). (C-F) The t-SNE embedding is colored by the rate of substitution for the middle 404 

nucleotide of every 15-mer to mutate to A (N>A); to C (N>C); to G (N>G); and to T (N>T), respectively. 405 

In the t-SNE analysis of the substitution model, we also discovered two small clusters of 406 

15-mers containing a C and T as their middle nucleotide (Figure 8A) that did not group with their 407 

respective larger clusters, suggesting that these particular sites might have distinct substitution 408 

patterns. Generating the consensus sequence of the outlier T cluster revealed a partially conserved 409 

AGYCTGGGGG sequence (Figure 9A). When we examined these subsequences more closely, 410 

we discovered that they were located only in IGHV3 family genes at either position 21 or position 411 

45 according to the IMGT unique numbering system (Lefranc, 2001) (Supplementary Figure 6). 412 

The motif was also surprisingly common. At position 21 it appeared in 37 different alleles (across 413 

19 genes) and was fully conserved in all alleles. Coincidentally, the motif also appeared in 37 414 

different alleles (across 18 genes) at position 45, although it differed slightly at the +3 and +4 415 

positions (Figure 9A). These two sets of alleles only partially overlap, such that 15 alleles had the 416 

motif at both positions 21 and 45. Thus, this specific motif in FW1 of the IGHV3 family genes 417 

appears to be highly conserved evolutionarily, suggesting a possible functional role. The rates of 418 

substitution at these sites were also found to be highly biased towards creating T>G mutations, 419 

with an average T>G rate of about 0.66 at position 21, and an even greater rate of 0.89 at position 420 

45 (background rate: 0.28 ± 0.23) (Figure 9B, Table 2). A previous study using Sanger sequencing 421 

data that was limited to IGHV3-23 and the pseudogene IGHV3-h had noted similarly high T>G 422 

substitution rates at positions 21 (for IGHV3-h) and 45 (for IGHV3-23) (Ohm-Laursen and 423 

Barington, 2007). Although the T subjected to mutation at both positions did not conform to a 424 

bottom strand TW Polη hotspot, these genes at position 45 displayed a relatively high average 425 

mutation frequency of 0.17 ± 0.08 (Table 2), which is somewhat unusual given that mutations are 426 
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generally more biased towards the CDRs than FW regions (Cohen et al., 2011; Shapiro et al., 427 

2002), and that we reported above that many sites within FW1 tended to display low mutability 428 

(Figure 7A, B). 429 

 430 

Figure 9. Evaluation of the T outlier cluster in the DeepSHM substitution model. (A) Sequence logo 431 

representation of the 15-mers appearing in the T outlier cluster in Figure 8A (right-hand side, red dots). (B) 432 

Substitution rates of T>A, T>C, and T>G for 15-mers corresponding to 37 IGHV3 alleles separately at IMGT positions 433 

21 and 45. Bars represent ±1 standard deviation. (C) G-quadruplex (G4) formation potential for the same IGHV3 434 

alleles in (B). G4 potentials (y-axis) are computed using the germline IGHV sequence ("Germline") and the mutated 435 

sequence ("Mutated") containing a single simulated T>G mutation at either IMGT positions 21 or 45. 436 

While examining the C outlier cluster (Figure 8A), we found the consensus sequence to 437 

be more diverse compared to the outlier with a middle T (Supplementary Figure 7A). The 438 
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sequence variation seen here was partly due to the fact that the 15-mers that constituted this cluster 439 

belonged to many other IGHV families besides IGHV3 and across different sub-regions of the IgV 440 

(Supplementary Figure 6). On the other hand, we noticed some overlap between both outlier 441 

clusters since, in some cases, the C corresponded to positions 20 and 44 that preceded the middle 442 

T of the other outlier cluster (Supplementary Figure 7A, Table 2). We further found these sites 443 

to have a similar elevated C>G substitution rate (mean rate of 0.62 compared to background mean 444 

of 0.33, P<2.2×10-16) (Supplementary Figure 7B, Table 2), suggesting the model distinguished 445 

sites with a general preference to create G mutations. 446 

Given that the sites with strikingly high T>G and C>G substitution rates we identified here 447 

are in adjoining G-rich sub-regions (Figure 9A, Supplementary Figure 7A), we evaluated the 448 

possible influence these mutations might have on the formation of G-quadruplex (G4) structures. 449 

In a recent study, we assessed the potential for DNA G4 structures to form in the IgV region, using 450 

a pre-trained deep learning model that computes the G4 potential of a linear DNA sequence (Tang 451 

and MacCarthy, 2021). There we found that the IGHV3 family had the highest propensity to form 452 

stable G4s in the top strand. We now sought to assess the overall mutational effect on G4 assembly 453 

of the IGHV3 sites that are biased towards G. Following the methodology of our previous study, 454 

we calculated the difference between the predicted G4 potential of the germline with that of the 455 

sequence with a single mutation at either position 21 or 45. Here, we found that a T>G mutation 456 

at position 21 elevated average G4 potentials to a very high value of 0.84 ± 0.10 compared to a 457 

germline value (already relatively high) of 0.54 ± 0.19 , whereas the same mutation occurring at 458 

position 45 displayed a far smaller average increase of 0.05 ± 0.04 (Figure 9C, Table 2). As for 459 

the remaining cases, there seemed to be little effect of C>G mutations on G4 potential (Table 2). 460 
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Interestingly, we made another observation regarding the instances where an A nucleotide disrupts 461 

the run of G  462 

IMGT 
position 

15-mer middle 
nucleotide n Avg. substitution 

rate to G 
Avg. mutation 
frequency 

Avg. germline 
G4 potential 

Avg. mutated 
G4 potential 

Avg. difference in 
G4 potential 
(mutated - germline) 

1 C 1 0.67 0.02 0.01 0.01 0.00 

20 C 31 0.50 ± 0.32 0.01 ± 0.01 0.54 ± 0.20 0.64 ± 0.19 0.09 ± 0.02 

21 T 37 0.66 ± 0.23 0.05 ± 0.03 0.54 ± 0.19 0.84 ± 0.10 0.29 ± 0.10 

34 C 19 0.60 ± 0.37 0.03 ± 0.05 0.07 ± 0.08 0.07 ± 0.08 0.01 ± 0.00 

44 C 38 0.77 ± 0.24 0.02 ± 0.01 0.56 ± 0.17 0.64 ± 0.18 0.07 ± 0.04 

45 T 37 0.89 ± 0.18 0.17 ± 0.08 0.58 ± 0.15 0.63 ± 0.14 0.05 ± 0.04 

48 A 1 0.79 0.11 0.37 0.56 0.19 

49 A 5 0.79 ± 0.12 0.07 ± 0.03 0.37 ± 0.07 0.53 ± 0.05 0.16 ± 0.02 

61 C 45 0.67 ± 0.14 0.04 ± 0.02 0.54 ± 0.19 0.54 ± 0.19 0.01 ± 0.01 

101 C 1 0.52 0.11 0.01 0.01 0.00 

167 C 1 0.46 0.52 0.37 0.41 0.04 

173 C 3 0.64 ± 0.29 0.09 ± 0.09 0.04 ± 0.02 0.04 ± 0.02 0.00 ± 0.00 

180 C 1 0.20 0.03 0.01 0.01 0.00 

214 C 4 0.51 ± 0.26 0.13 ± 0.06 0.08 ± 0.06 0.10 ± 0.07 0.01 ± 0.01 

249 C 15 0.59 ± 0.24 0.06 ± 0.02 0.08 ± 0.09 0.08 ± 0.09 0.00 ± 0.01 

268 C 44 0.55 ± 0.19 0.06 ± 0.03 0.55 ± 0.18 0.53 ± 0.18 -0.01 ± 0.01 

Table 2. Summary statistics on outlier C and T clusters from Figure 8A. 463 

nucleotides at the +3 or +4 positions (Figure 9A) which was that these sites also displayed 464 

high A>G substitution rates (0.79 ± 0.11; Table 2, positions 48 and 49). This hypothetical mutation 465 
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also caused a moderate, though substantial, increase in G4 potential (0.17 ± 0.02, Table 2). These 466 

findings reveal that particular recurring mutations in this sub-region may promote G4 formation, 467 

and that the bias towards generating new G sites suggests specific DNA repair enzymes may be 468 

recruited to these sub-regions within FW1. 469 

  470 

  471 

Discussion 472 

  473 

         In this study, we leveraged deep learning to gain novel insights into SHM, a key process 474 

in antibody affinity maturation. We trained multiple deep learning models using a convolutional 475 

neural network (CNN) framework to analyze DNA k-mer subsequences of various lengths, ranging 476 

from 5 to 21 nts, derived from human IGHV germline sequences. Using a high-quality data set 477 

containing non-productive B cell repertoire data, the model was tasked to learn two focal aspects 478 

of SHM: the frequency of mutation at a given site, and the spectrum of mutations that can arise at 479 

this site (substitution). Understanding the propensity of a site to mutate and the underlying 480 

substitution biases that ensue can lead to a better understanding of how AID is recruited to and 481 

targets the Ig V region, as well as the associated downstream DNA repair mechanisms that follow 482 

AID deamination.           483 

We began by developing three models, collectively referred to as DeepSHM, to predict 484 

separate tasks for a given k-mer: observable mutation frequency; distributed substitution rates; and 485 

a combination of both measures (weighted substitution). We found that predicting substitution 486 
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rates did not substantially depend on the k-mer size, while 15-mers were optimal for predicting 487 

mutation frequencies (Figure 2, Table 1). Additionally, DeepSHM predicted both substitution 488 

rates and mutation frequencies more accurately than the widely used S5F targeting model for all 489 

k-mer sizes we evaluated (k = 5, 9, 15 and 21) (Table 1). Even though we were able to outperform 490 

S5F in representing substitution biases, the correlation between our predictions and empirical data 491 

was moderate (~0.55), suggesting that the processes underlying SHM substitution biases may be 492 

more fundamentally random than mutational site targeting alone. Error-prone DNA repair 493 

processes downstream of AID are highly complex. For example, while Polη is biased towards 494 

making WA>WG mutations (Zhang et al., 2014) and plays a dominant role in generating mutations 495 

at A:T sites, many A:T mutations still occur in its absence (Saribasak et al., 2009) that are mediated 496 

by other polymerases (Maul et al., 2016). Similarly complex, BER is biased towards transversions 497 

but can also repair faithfully, with a further dependence on hotspot mutability (Pérez-Durán et al., 498 

2012). Thus, downstream repair processes may simply be too complex, or genuinely random, to 499 

be captured well by a model that depends on sequence context alone. 500 

         In order to uncover some of the hidden features learned by DeepSHM, we analyzed the 501 

output, or encodings, obtained from the penultimate layer of the network predicting weighted 502 

substitution using input 15-mers, and performed t-SNE, a method of dimensionality reduction, to 503 

visualize the encodings in two dimensions. The subsequent embedding formed clusters of 15-mers 504 

that were distinguished by mutation frequency and middle nucleotide (Figure 3A, B). Individual 505 

clusters containing a C or G middle nucleotide that were associated with high mutability, assumed 506 

to be relevant to AID hotspots, revealed a strong preference for a T base at the +1 position of the 507 

top strand AID WRC (W=A/T, R=A/G) hotspot, including for WAC motifs that are not part of a 508 

WGCW motif, and similarly, an A base at the -1 position of the bottom strand GYW (Y=C/T) 509 
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context (Figure 3C, D). As an alternative way to identify sequence features, we applied TF-510 

MoDISco (see Methods) to reveal recurrent genomic patterns using importance scores extracted 511 

from the model for each 15-mer. This approach confirmed the importance of the T base  at the +1 512 

position of WRC (Figure 4A) and the A base at the -1 position of the bottom strand GYW hotspot 513 

(Figure 4B). An early study by Rogozin and Diaz reported the WRCH/DGYW (H=A/C/T, 514 

D=A/G/T) to be a good predictor of mutability at C:G bases (Rogozin and Diaz, 2004), but we 515 

found WRCT to be a more consistent definition. The authors of the S5F model also supported the 516 

WRCH definition since they found their model can capture the higher mutability rate seen at 517 

certain WRCA motifs (Yaari et al., 2013), presumably at the AGCA overlapping hotspot. 518 

However, previous hotspot definitions have largely failed to describe targeting beyond the -2 519 

position of the WRC motif. We further identified having a C at the -3 position of WRC or a G at 520 

the +3 position of GYW as a strong negative contribution, i.e., as a reduced effect on targeting. 521 

Thus, our results suggest the typical AID hotspot definition might be extended to DWRCT 522 

(D=A/G/T). Comparing the mutation frequencies of the individual DWRCT hotspot motifs 523 

showed the 3' T to be more important for AID recognition than the 5' D alone, however, together 524 

they have a synergistic effect that makes mutability between 1.8-fold (for TAC) and 4.7-fold (for 525 

TGC) higher (Figure 5C, Supplementary Table 3). 526 

         We next applied the same t-SNE methodology on the two developed standalone models 527 

that separately predicted either the mutation frequency or substitution rates of the 15-mer middle 528 

nucleotides. The t-SNE embedding on the independent DeepSHM model predicting only mutation 529 

frequency revealed a significant negative correlation between the mutability of a site and the 530 

surrounding GC content of the 15-mer (Figure 7D). This finding alternatively suggests that highly 531 

mutated sites may have evolved to have a richer local AT content. This in vivo result is consistent 532 
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with earlier in vitro results that considered AID targeting on artificial substrates (Abdouni et al., 533 

2018).  534 

         On the other hand, the t-SNE embedding stemming from the standalone substitution model 535 

hinted at plausible associations, both positive and negative, between mutation frequency and 536 

certain transition and transversion mutations (Figure 8B-F). We next analyzed multiple genes 537 

representing different IGHV families containing the largest amounts of mutation data in order to 538 

avoid any potential sites with few observable mutations, such as coldspots. We observed a negative 539 

correlation between mutability and substitution rates specifically for C>A and G>T transversion 540 

mutations (Figure 8, Supplementary Figure 6) and, on the other hand, positive correlations for 541 

C>T and G>A transitions (Supplementary Figure 6). The trend for increased transition mutations 542 

at highly mutating AID hotspots mediated by UNG2 had previously been observed in experiments 543 

using 3T3 (mouse fibroblast) cells (Pérez-Durán et al., 2012), although the particular bias against 544 

C:G>A:T transversions was not apparent. Previous work has also shown that UNG2 is cell-cycle 545 

regulated, possibly mediated by FAM72A (Feng et al., 2020), and active primarily during G1 546 

(Sharbeen et al., 2012). Although AID is also primarily active during G1, it may sometimes persist 547 

for slightly longer than UNG2 and thus highly targeted sites may avoid BER especially when the 548 

mutations occur just before the cell enters S phase, which would lead to fixation of C>T transitions 549 

via replication bypass. Alternative polymerases may also be preferentially recruited to some sites. 550 

For example, in DT40 (chicken) B-cell lines, the POLD3 subunit of Polymerase delta (Polδ) has 551 

been proposed as a specific mechanism for both C>A and G>T mutations (Hirota et al., 2015; 552 

Pilzecker and Jacobs, 2019). 553 

Additionally, we investigated two outlier clusters from the substitution model embedding 554 

that contained 15-mers having a C and T middle nucleotide that did not group with their respective 555 
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larger clusters (Figure 8A). A closer analysis revealed that the T outlier contained a highly 556 

conserved AGYCTGGGGG consensus sequence that was derived from two independent sites 557 

located in FW1 from multiple IGHV3 alleles (Figure 9A, Table 2). Both outlier clusters also 558 

displayed significantly elevated T>G (Figure 9B, Table 2) and C>G substitution rates 559 

(Supplementary Figure 7, Table 2) respectively. In our recent study on  G-quadruplexes (G4s) 560 

in IGHV genes, we observed the IGHV3 family to form G4s more favorably on the top strand, as 561 

measured by their predicted G4 potential using a pre-trained CNN model (Tang and MacCarthy, 562 

2021). Given the strong preference for creating G mutations in these FW1 sub-regions, we 563 

evaluated the impact of these mutations on G4 potential. In some cases, the resulting G mutation 564 

led to a strong increase in G4 potential, particularly at position 21 (Figure 9C, Table 2), whereas 565 

for other sites, the effect was mostly negligible (Table 2). Notably however, a high A>G 566 

substitution rate was also observed at the +3 or +4 positions (Figure 9A), which were also 567 

associated with increase in G4 potential (Table 2). These biased A>G mutations may further be 568 

related to previous work that found that a repeated mutation that occurs in one IGHV allele often 569 

matches the sequence variant of a different allele (Saini and Hershberg, 2015). Alternatively, these 570 

mutations may be related to R-loop initiation, which forms in G-rich non-template DNA, possibly 571 

forming in FW1 of these IGHV3 genes. Studies have found that reducing G-density in mammalian 572 

Ig Switch regions compromises class-switch recombination efficiency and R-loops from forming 573 

(Roy et al., 2008; Zhang et al., 2014). The high rate of T>G and C>G transversions also suggests 574 

that particular repair enzymes may be recruited to these sub-regions during SHM. 575 

 576 

Limitations of the study 577 
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 578 

In principle, a wider range of k-mers, as well as a greater variety of neural network architectures, 579 

might have been considered for this study. However, since the tuning of each model takes a 580 

substantial amount of computational resources and time, we considered a reduced number of 581 

models. Additionally, we limited this study to consider data only for human, the species for 582 

which we had high quality (UMI barcoded) data in high abundance, although the approach could 583 

be extended to other species such as mouse in future work. 584 
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STAR Methods 728 

 729 

Resource availability  730 

 731 

Lead contact 732 

Further information and requests for resources and reagents should be directed to and will be 733 

fulfilled by the lead contact, Thomas MacCarthy (thomas.maccarthy@stonybrook.edu). 734 

Materials availability 735 

This study did not generate new unique reagents. 736 

Data and code availability 737 

Data used for this research was published previously by Tang et al, 2020. A custom Python 738 

package developed for this project is available at https://gitlab.com/maccarthyslab/deepshm. 739 

 740 

Methods details 741 

 742 

Generating k-mer data 743 
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         Germline IGHV reference sequences were downloaded from the international 744 

ImMunoGeneTics information system (IMGT) website (Lefranc, 2001). The leader portion of each 745 

reference sequence was also extracted if available. To generate the k-mers of a given germline 746 

sequence, ±⌊k/2⌋ nt sequences were extracted from the start of the V exon, where k is the length of 747 

the subsequence, and ⌊k/2⌋ represents the greatest integer less than or equal to k/2. This process 748 

was continued, moving 1 nt at a time, until the end of the exon was reached. Next, all k-mers were 749 

converted to their respective one-hot encodings. A one-hot encoding is a transformation of a DNA 750 

sequence using a 2-D matrix containing only zeros and ones, where each row represents one of the 751 

four ordered DNA bases and each column is an individual site in the sequence. For each column, 752 

a "1" is filled in the row that matches the nucleotide of that site and a "0" in the remaining 753 

unmatched rows (Figure 1). 754 

 Calculating mutation frequencies, substitution rates, and weighted substitutions of k-mers 755 

         Using a high-quality data set previously published by us (Tang et al., 2020), we calculated 756 

the mutation frequencies of every k-mer in a germline sequence as the number of observed 757 

mutations at each site (corresponding to a single k-mer), divided by the total number of sequences 758 

the germline IGHV allele contained. The substitution rate of each k-mer was computed as the 759 

number of times the middle nucleotide mutated from the germline nucleotide to the other four 760 

DNA bases, divided by the total number of overall mutations. Note that a zero was recorded in the 761 

instance the mutated base was the same as the germline context. Lastly, the weighted substitution 762 

of a k-mer was simply calculated as the observed mutation frequency multiplied by the substitution 763 

rate vector. 764 

CNN architecture and model optimization 765 
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         We implemented a convolutional neural network (CNN) to analyze the k-mer input data. 766 

Three separate architectures were used to predict different SHM outcomes: mutation frequency, 767 

substitution rate, and weighted substitution (see above). Although the hyperparameters that were 768 

ultimately selected varied from model-to-model, all CNNs followed the same general architecture, 769 

which consisted of one convolution layer, followed by two fully connected layers (Figure 1). 770 

Additional parameters, such as dropout and batch normalization, were optimized by generating 771 

100 separate models with randomly selected hyperparameters for each k-mer and corresponding 772 

model architecture we generated. The range of values for all parameters and hyperparameters that 773 

were tested for each architecture and output type are specified in Supplementary Table 1. 774 

         Next, we utilized 4-fold cross-validation to evaluate the performance of the model on 775 

unseen (test) data. In total, there are seven IGHV families (IGHV1-7), where each IGHV family 776 

consists of genes that share a high percentage of sequence similarity (Lefranc, 2001). The k-mers 777 

derived from the three largest IGHV families, IGHV1, IGHV3, and IGHV4, formed three separate 778 

groups, and the k-mers belonging to the remaining 4 smaller IGHV families constituted the final 779 

group in order to create a data set comparable in size with the other groups. Thus, we separated 780 

the data by their respective IGHV family to reduce the chances of model overfitting, since it is 781 

likely that k-mers from the same IGHV family will be similar even if they come from different 782 

genes and, therefore, bias the results if they appear in both training and test sets. In every cross-783 

validation fold, three of the data groups were used as training set, and the fourth used as test set. 784 

We also evaluated the model performance, for each fold, by calculating the Pearson correlation(s) 785 

between the predicted mutation frequency and/or substitution rate of the test set k-mers and the 786 

equivalent output type of the empirical data. The average correlation across the 4 validation folds 787 

was reported for the model, as in Figure 2. 788 
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         As an additional step, we wrote a custom, universal Python script (available at 789 

https://gitlab.com/maccarthyslab/deepshm) to automatically generate the CNN architecture, 790 

parameters, and hyperparameters of each model, regardless of the output specified, to ensure that 791 

all models were constructed in a consistent manner. All CNNs were generated using the built-in 792 

Keras API in Tensorflow 2.4.1 and trained on GPU processors using three Nvidia GeForce RTX 793 

2080 graphics cards. 794 

Inferring an S5F targeting model  795 

         In order to ensure a fair comparison between S5F values and our deep learning predictions, 796 

we used the SHazaM R package (Yaari et al., 2013) to create an S5F targeting model, which 797 

provides analogous 5-mer mutability and substitution scores based on the same data set we used 798 

to train our CNN models with. We specified the S5F targeting model to count both silent and 799 

replacement mutations ("rs" parameter) since the mutation data we used was derived from non-800 

functionally rearranged VDJ coding sequences (i.e. in the absence of selection) and with each 801 

sequence being clonally independent (Tang et al., 2020). Multiple mutations were handled 802 

specifying the "independent" parameter, which treats each mutation independently. Default values 803 

were used for all other parameters. 804 

 805 

Quantification and statistical analysis 806 

 807 

Neural network encodings analysis 808 
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         The output (encoding) of the penultimate layer of the CNN model was used as a way to 809 

explain the SHM patterns learned by the model. To generate the encodings from this layer, we 810 

removed the last layer of the CNN while keeping the remaining layers intact. Next, we processed 811 

the k-mers through the truncated model to retrieve the ensuing output values. We then applied t-812 

distributed stochastic neighbor embedding (t-SNE) in Python on these multidimensional encodings 813 

to visually represent the resulting embedding in two dimensions. 814 

 Cluster identification 815 

         We implemented k-means clustering to identify clusters within the t-SNE embedding of 816 

the weighted substitution model (Supplementary Figure 1). We separated all k-mers sharing the 817 

same middle nucleotide and then applied k-means clustering independently on each group to 818 

facilitate the clustering process. All clustering assignments were performed using the kmeans 819 

function in R. For each middle nucleotide, we specified the algorithm to identify 5 distinct clusters 820 

and subsequently inspected the clusters to ensure a proper separation between clusters of distinct 821 

mutabilities occurred. In the case of G and T nucleotides, there were resulting clusters (one for 822 

each nucleotide) containing hot and cold sequences (i.e one “cold” and one “hot” subcluster per 823 

cluster), so we manually split each of these clusters into two distinct (“cold” and “hot”) clusters to 824 

reduce the disparity in mutation frequencies. 825 

Identifying recurring genomic patterns using TF-MoDISco 826 

         We applied TF-MoDISco (Shrikumar et al., 2018), a machine learning interpretability 827 

method, to identify recurring motifs our model detected in the 15-mer data. From the data, we 828 

isolated four groups of 15-mers based on the middle nucleotide (A, C, G, or T) of the 15-mer, with 829 

the additional condition that the middle nucleotide conformed to WRC or GYW AID hotspots, or 830 
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WA or TW Polη hotspots, respectively. TF-MoDISco requires importance scores to be used as 831 

input, which can be generated by utilizing one of several attribution methods. Here we generated 832 

the importance scores for each group by applying Integrated Gradients (Sundararajan et al., 2017) 833 

to the most accurate 15-mer mutation frequency model. Using the resulting importance scores, we 834 

then ran TF-MoDISco for all groups separately, still subject to the hotspot constraint, and requiring 835 

each of the identified patterns to be associated with at least 20 input sub-sequences (or “sequelets”). 836 

 837 

Key resources table 838 

 839 

REAGENT or RESOURCE SOURCE IDENTIFIER 
Deposited data 

Data from the memory, marginal zone, and plasma 

cell subsets (B10-B14, B16-21, HD001-10) 

Tang et al., 2020 NCBI SRA 

BioProject IDs 

381394, 591804 

Software and algorithms 

DeepSHM This paper https://gitlab.com/m

accarthyslab/deepsh

m 

TF-MoDISco Shrikumar et al., 

2018 

https://github.com/k

undajelab/tfmodisco 

SHazaM Yaari et al., 2013 https://shazam.readt

hedocs.io/en/stable/ 

 840 
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