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ABSTRACT 

AlphaFold2 and related systems use deep learning to predict protein structure from co-evolutionary 

relationships encoded in multiple sequence alignments (MSAs). Despite dramatic, recent increases in 

accuracy, three challenges remain: (i) prediction of orphan and rapidly evolving proteins for which an 

MSA cannot be generated, (ii) rapid exploration of designed structures, and (iii) understanding the rules 

governing spontaneous polypeptide folding in solution. Here we report development of an end-to-end 

differentiable recurrent geometric network (RGN) able to predict protein structure from single protein 

sequences without use of MSAs. This deep learning system has two novel elements: a protein language 

model (AminoBERT) that uses a Transformer to learn latent structural information from millions of 

unaligned proteins and a geometric module that compactly represents Cα backbone geometry. RGN2 

outperforms AlphaFold2 and RoseTTAFold (as well as trRosetta) on orphan proteins and is competitive 

with designed sequences, while achieving up to a 106-fold reduction in compute time. These findings 

demonstrate the practical and theoretical strengths of protein language models relative to MSAs in 

structure prediction. 

 

INTRODUCTION 

Predicting 3D protein structure from amino acid sequence is a grand challenge in biophysics. Progress has 

long relied on physics-based methods that estimate energy landscapes and dynamically fold proteins 

within these landscapes1–4. A decade ago, the focus shifted to extracting residue-residue contacts from co-

evolutionary relationships embedded in multiple sequence alignments (MSAs)5 (Supplementary Figure 

1). Algorithms such as the first AlphaFold6 and trRosetta7 use deep neural networks to generate distograms 

that guide classic physics-based folding engines. These algorithms perform substantially better than 

algorithms based on physical energy models alone. More recently, the outstanding performance of 

AlphaFold28 on a wide range of protein targets in the recent CASP14 prediction challenge shows that 

when MSAs are available, machine learning (ML)-based methods can predict protein structure with 

sufficient accuracy to complement X-ray crystallography, cryoEM, and NMR as a practical means to 

determine structures of interest.   

Predicting the structures of single sequences using ML nonetheless remains a challenge: the 

requirement in AlphaFold2 for co-evolutionary information from MSAs makes it less performative with 

proteins that lack sequence homologs, currently estimated at ~20% of all metagenomic protein sequences9 

and ~11% of eukaryotic and viral proteins10. Applications such as protein design and quantifying the 

effects of sequence variation on function11 or immunogenicity12 also require single-sequence structure 
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prediction. More fundamentally, the physical process of a polypeptide folding in solution is driven solely 

by the chemical properties of that chain and its interaction with solvent (excluding, for the moment, 

proteins that require folding co-factors). An algorithm that predicts sequence directly from a single 

sequence is—like energy-based folding engines1–4—closer to the real-word process than an algorithm that 

uses MSAs. Thus, we speculate that ML-based single sequence prediction may ultimately provide new 

understanding of protein biophysics. 

Structure prediction algorithms that are fast and low-cost are of great practical value because they 

make efficient exploration of sequence space possible, particularly in design applications13. State of the 

art MSA-based predictions for large numbers of long proteins can incur substantial costs when performed 

on the cloud. Reducing this cost would enable many practical applications in enzymology and therapeutics 

including designing new functions14–16, raising thermostability17, altering pH sensitivity18, and increasing 

compatibility with organic solvents19. Efficient and accurate structure prediction is also valuable in the 

case of orphan proteins, many of which are thought to play a role in lineage-specific adaptations and are 

taxonomically restricted. OSP24, for example, is an orphan virulence factor for the wheat pathogen F. 

graminearum that controls host immunity by regulating proteasomal degradation of a conserved signal 

transduction kinase20. It is one of many orphan genes found in fungi, plants insects and other organisms21 

for which no MSA is available. 

 

We have previously described an end-to-end differentiable, ML-based recurrent geometric 

network (hereafter RGN1)22 that predicts protein structure from position-specific scoring matrices 

(PSSMs) derived from MSAs; related end-to-end approaches have since been reported23–25. RGN1 did not 

rely on the co-evolutionary information present in MSAs but a requirement for PSSMs necessitates that 

multiple homologous sequences be available. Here, we describe a new end-to-end differentiable system, 

RGN2 (Figure 1), that predicts protein structure from single protein sequences by using a protein language 

model (AminoBERT). Such models were first developed for natural language processing (NLP) as a 

means to extract semantic information from a sequence of words26. In the context of proteins, 

AminoBERT aims to capture the latent information in a string of amino acids that implicitly specifies 

protein structure. RGN2 also makes use of a natural way of describing polypeptide geometry that is 

inherently rotationally- and translationally-invariant at the level of the polypeptide as a whole. This 

involves using the Frenet-Serret formulas to embed a reference frame at each Cα carbon; the backbone is 

then easily constructed by a series of transformations. In this paper we describe the implementation and 

training of AminoBERT, the use of Frenet-Serret formulae in RGN2, and a performance assessment for 
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natural and designed proteins with no significant sequence homologs. We find that RGN2 consistently 

outperforms AlphaFold2 (AF2)8 and RoseTTAFold (RF)27 on naturally occurring orphan proteins without 

known homologs, and is competitive on de novo designed proteins (RGN2 outperforms trRosetta in both 

cases). While RGN2 is not as performant as MSA-based methods for proteins that permit MSAs, it is up 

to six orders of magnitude faster, enabling efficient exploration of sequence and structure landscapes.  

 
Figure 1. Organization and application of RGN2.  RGN2 combines a Transformer-based protein 
language model (AminoBERT) with a recurrent geometric network that utilizes Frenet-Serret frames to 
generate the backbone structure of a protein. Placement of side chain atoms and refinement of hydrogen-
bonded networks are subsequently performed using the Rosetta energy function. 
 

RESULTS 

RGN2 and AminoBERT models 

RGN122 processed a protein PSSM through a recurrent neural network that implicitly learned PSSM-

structure relationships. These relationships were parameterized as torsion angles between adjacent 

residues making it possible to sequentially position the protein backbone in 3D space (the backbone is 

described by 𝑁, 𝐶!, and 𝐶 ! atoms). All RGN1 components were differentiable and the system could 

therefore be optimized from end to end to minimize prediction error (as measured by distance-based root 

mean squared deviation; dRMSD). The RGN2 model described here involves two primary innovations. 

First, it uses amino acid sequence itself as the primary input as opposed to a PSSM, making it possible to 
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predict structure from a single sequence. In the absence of a PSSM or MSA, latent information on the 

relationship between protein sequence (as a whole) and 3D structure is captured using a protein language 

model we term AminoBERT. Second, rather than describe the geometry of protein backbones as a 

sequence of torsion angles, RGN2 uses a simpler and more powerful approach based on the Frenet-Serret 

formulas; these formulas describe motion along a curve using the reference frame of the curve itself. This 

approach to protein geometry is inherently translationally- and rotationally-invariant. We optionally refine 

predicted structures using a Rosetta-based protocol28 that imputes the backbone and side-chain atoms. 

Refinement is first performed in torsion space to optimize side-chain conformations and eliminate clashes 

and then in Cartesian space using quasi-Newton-based energy minimization. This protocol is non-

differentiable but improves the quality of predicted structures. 

Language models were originally developed for natural language processing and operate on a 

simple but powerful principle: they acquire linguistic understanding by learning to fill in missing words 

in a sentence, akin to a sentence completion task in standardized tests. By performing this task across large 

text corpora, language models develop powerful reasoning capabilities. The Bidirectional Encoder 

Representations from Transformers (BERT) model29 instantiated this principle using Transformers, a class 

of neural networks in which attention is the primary component of the learning system30. In a Transformer, 

each token in the input sentence can “attend” to all other tokens through the exchange of activation patterns 

corresponding to the intermediate outputs of neurons in the neural network. In AminoBERT we utilize the 

same approach, substituting protein sequences for sentences and using amino acid residues as tokens. We 

train a 12-layer Transformer using ~250 million natural protein sequences obtained from the UniParc 

sequence database31. To enhance the capture of information in full protein sequences we introduce two 

training objectives not part of BERT or previously reported protein language models26,32–36. First, 2-8 

contiguous residues are masked simultaneously in each sequence making the reconstruction task harder 

and emphasizing learning from global rather than local context. Second, chunk permutation is used to 

swap contiguous protein segments; chunk permutations preserve local sequence information but disrupt 

global coherence. Training AminoBERT to identify these permutations is another way of encouraging the 

Transformer to discover information from the protein sequence as whole. The AminoBERT module of 

RGN2 is trained independently of the geometry module in a self-supervised manner without fine-tuning 

(see Methods for details).  

In RGN2 we parameterize backbone geometry using the discrete version of the Frenet-Serret 

formulas for one-dimensional curves37. In this parameterization, each residue is represented by its 𝐶! 	atom 

and an oriented reference frame centered on that atom. Local residue geometry is described by a single 
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rotation matrix relating the preceding frame to the current one, which is the geometrical object that RGN2 

predicts at each residue position. This rotationally- and translationally-invariant parameterization has two 

advantages over our use of torsion angles in RGN1. First, it ensures that specifying a single biophysical 

parameter, namely the sequential 𝐶! − 𝐶! distance of ~3.8Å (which corresponds to a trans conformation) 

results in only physically-realizable local geometries. This overcomes a limitation of RGN1 which yielded 

chemically unrealistic values for some torsion angles. Second, it reduces by ~10-fold the computational 

cost of chain extension calculations, which often dominate RGN training and inference times (see 

Methods). 

RGN2 training was performed using both the ProteinNet12 dataset38 and a smaller dataset 

comprised solely of single protein domains derived from the ASTRAL SCOPe dataset (v1.75)39. Since we 

observed no detectable difference between the two, all results in this paper derive from the smaller dataset 

as it required less computing time to train. 

 

Predicting structures of proteins with no homologs 

To assess how well RGN2 predicts the structures of orphan proteins having no known sequence homologs, 

we compared it to AlphaFold2 (AF2)8, RoseTTAFold (RF)27, and trRosetta7, currently the best publicly 

available methods. As a test set, we used 222 orphan proteins that constitute a complete cluster in the 

Uniclust30 dataset40 (i.e., they have no homologs). Of these, 196 have structures available in the Protein 

Databank (PDB)41 but are not part of the training sets used for RGN2 or trRosetta (Methods). However, 

more than 95% of these sequences are included in the training sets for AF2 and RF, which may result in 

an overestimate of their accuracy. We predicted the structures of these orphan proteins using all methods 

and assessed accuracy with respect to experimentally-determined structures (Figure 2A) using dRMSD 

and GDT_TS (the global distance test, which roughly captures the fraction of the structure that is correctly 

predicted). We found that RGN2 outperformed AF2, RF, and trRosetta on both metrics in 51%, 56%, and 

63% of cases, respectively (these correspond to the top-left quadrant in Figure 2B and Supplementary 

Figure 2). In 10%, 21%, and 4% of cases, AF2, RF, and trRosetta outperformed RGN2 on both metrics, 

respectively; split results were obtained in the remaining cases. When we computed differences in error 

metrics among methods, we found that RGN2 outperformed AF2 (and RF; trRosetta) by an average 

ΔdRMSD of 1.85Å (3.26Å; 4.36Å) and ΔGDT_TS of 3.51 (6.87; 10.21). 

To investigate the basis for these differences in performance we determined the fraction of each 

secondary structure element (alpha-helix, beta-strand, hydrogen-bonded turn, 3/10-helix, bend, beta-

bridge, and 5-helix) by applying the DSSP algorithm42 to the PDB structures in the orphan protein test set 
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(Figure 3A and Supplementary Figures 2, 3, and 4). We found that RGN2 outperformed all other 

methods on proteins rich in bends and on hydrogen-bonded turns interspersing helices, while other 

methods—AF2 in particular—better predicted targets with high fractions of beta-strand and beta-bridges 

(such as hairpins). Performance on the remaining ~30% targets was split between RGN2 and competing 

methods (Figure 2B). We also examined performance as a function of protein length and observed that 

RGN2 generally outperformed AF2 on longer proteins. One possible reason for these findings is that alpha 

helix formation is strongly driven by local sequence preferences, making helices more readily detectable 

from single sequences by RGN2. 
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Figure 2. (A) Absolute performance metrics for RGN2 (purple), AF2 (green), and RF (pink) across 196 
orphan proteins lacking known homologs. Outliers in RGN2 plot correspond to short targets where a few 
poorly predicted residues substantially lower GDT_TS. (B) Differences in prediction accuracy between 
RGN2 and AF2 / RF are shown for the 196 orphan proteins, using dRMSD and GDT_TS as metrics. RF 
failed to converge for 40 targets, yielding no predictions. Points in top-left quadrant correspond to targets 
with negative ΔdRMSD and positive ΔGDT_TS, i.e., where RGN2 outperforms the competing method 
on both metrics, and vice-versa for the bottom-right quadrant. The other two quadrant (white) indicate 
targets where there is no clear winner as the two metrics disagree. 
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Figure 3. (A) Stacked bar chart shows the relative fractions of secondary structure elements in orphan 
proteins where RGN2 outperforms AF2 (the 18 proteins on which AF2 outperforms RGN2 are shown in 
the gray inset). Bar height indicates protein length. (B-E) Alpha helical targets with bends or turns between 
helical domains tend to be better predicted by RGN2. AF2, as shown in 2KMP and 2AXZ, often predicts 
spurious beta strands for orphan proteins. 
 

In Figure 3B-E we show examples of structures for which RGN2 outperformed AF2. PDB 

structure 2MN9 (76% alpha helical) has two short alpha helices (Figure 3B) connected by a hydrogen-

bonded turn and a polypeptide bend. RGN2 correctly predicts the challenging, less-structured bends and 

turns in this protein, yielding a 37-point gain in GDT_TS (ΔdRMSD > 6Å) over AF2. Similar trends were 

observed for structures 2KMP, 2KJF, and 2AXZ (Figure 3C-E). 2AXZ is another protein with a single 

stranded helical bundle connected by bends, albeit one that is longer than 2KJF (305 residues as opposed 

to 60 residues). AF2 predicted the majority of helical domains in 2AXZ accurately, but a 24 amino acid 

fragment from Y17 through R40 was incorrectly predicted to be a beta-beta hairpin; in contrast, RGN2 
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correctly predicted this polypeptide sequence to comprise two helices connected by a bend. This 

contributed to a ~17-point gain in GDT_TS and 5.3Å increase in dRMSD by RGN2 relative to AF2. 

 
 

 

Figure 4. (A) Absolute performance metrics for RGN2 (purple), AF2 (green), and RF (pink) across 35 de 
novo designed proteins with no known homologs. (B) Differences in prediction accuracy between RGN2 
and AF2/RF are shown for these 35 proteins, using dRMSD and GDT_TS as metrics. Points in top-left 
quadrant correspond to targets with negative ΔdRMSD and positive ΔGDT_TS, i.e., where RGN2 
outperforms the competing method on both metrics, and vice-versa for the bottom-right quadrant. The 
other two quadrant (white) indicate targets where there is no clear winner as the two metrics disagree. 
 

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted August 4, 2021. ; https://doi.org/10.1101/2021.08.02.454840doi: bioRxiv preprint 

https://doi.org/10.1101/2021.08.02.454840
http://creativecommons.org/licenses/by-nc-nd/4.0/


Predicting the structures of de novo (designed) proteins 

To determine RGN2 accuracy on designed proteins we used a set of 35 proteins generated de novo using 

the Rosetta energy function; such proteins are expected to be well-suited to prediction by RF and trRosetta. 

The designed proteins primarily have therapeutic applications ranging from anti-microbial activity (1D9J 

and 6CL3) to blocking of human potassium channels (1WQD). As before, we assessed prediction accuracy 

using dRMSD and GDT_TS. We found that RGN2 outperformed AF2, RF, and trRosetta on both metrics 

in 17%, 26%, and 45% of cases, respectively (Supplementary Figure 5) but underperformed on both 

metrics in 49%, 54%, 7% of cases (Figure 4). On average, AF2 exhibited the best overall performance; 

however, relative to RF, RGN2 exhibited a 3.5Å better average dRMSD and marginally worse (lower) 

average GDT_TS of 3.2 (Figure 4B). When we grouped proteins by secondary structure content (Figure 

5) we found that AF2 outperformed RGN2 for proteins such as 6D0T, 87% of which is a beta sheet 

arranged in a radially symmetric manner. In contrast, RGN2 outperformed AF2 (and RF) on structures 

such as 6TJ1 that comprise alpha helices held in place by hydrogen-bonded turns. We conclude that RGN2 

can learn sequence-structure relationships for de novo regions of protein space, but that beta sheet 

prediction from single sequences remains a challenge. The superior performance of RGN2 relative to AF2 

on a non-trivial fraction of de novo proteins also suggests that the two methods may be complementary 

and a hybrid model may outperform either one alone. 
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Figure 5. (A) Stacked bar chart shows the relative fractions of secondary structure elements in 35 de novo 
proteins. Bar height indicates protein length. AF2 outperforms RGN2 on proteins with high beta-sheet 
content. (B) Alpha helical target 6TJ1 does not have a bend, but AF2 predicts a spurious bend while the 
RGN2 prediction is closer to the experimental structure. (C) 6D0T, a combination of an hour-glass shaped 
beta barrel connected by disordered loops, is better predicted by AF2. 
 

RGN2 prediction speed 

Rapid prediction of protein structure is essential for tasks such as protein design and analysis of allelic 

variation or disease mutations. By virtue of being end-to-end differentiable, RGN2 predicts unrefined 
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structures using fast neural network operations and does not require physics-based conformational 

sampling to assemble a folded chain. Moreover, by virtue of operating directly on single sequences, RGN2 

avoids expensive MSA calculations. To quantify these benefits, we compared the speed of RGN2 and 

other methods on orphan and de novo proteins datasets of varying lengths (breaking down computation 

time by prediction stage; Table 1). In MSA-based methods, MSA generation scaled linearly with MSA 

depth (i.e., the number of homologous sequences used) whereas distogram prediction (by trRosetta) scaled 

quadratically with protein length. AF2 predictions scale cubically with protein length. In contrast, RGN2 

scales linearly with protein length and both template-free and MSA-free implementations of AF2 and RF 

were >105 fold slower than RGN2. In the absence of post-prediction refinement, RGN2 is up to 106 folds 

faster, even for relatively short proteins Moreover, predictions for 40 orphan targets (e.g., 2MN9 and 

2MOA) failed to converge using MSA or template-free versions of RF, despite being less than 65 residues 

long on average. Adding physics-based refinement increases compute cost for all methods, but even so 

RGN2 remains the fastest available method. Of interest, even when MSA generation is discounted, neural 

network-based inference for AF2 and RF remains much slower than RGN2, inclusive of post-prediction 

refinement. This gap will only widen for design tasks involving longer proteins, as is increasingly 

becoming possible, and we interpret it to be a measure of the value of using a protein language model such 

as AminoBERT in a prediction algorithm. 

 

Table 1. Comparison of prediction times between RGN2 and AF2, RF, and trRosetta across 231 targets 
spanning our orphan and de novo protein datasets. RGN2 predictions were performed in batches with 
maximum permissible batch size set to 128 targets. The trRosetta MSA generation step was not used since 
none of the targets had known homologous proteins. 
 
 
 

Protein length 
(L) bins  
(# residues) 

Total 
targets 
 

Mean 
protein 
length  
(# 
residues) 

Mean trRosetta prediction time  
per structure (s) 

Mean  
AF2 
prediction 
time  
(s) 

Mean  
RF 
prediction 
time  
(s) 

Mean  
RGN2 
prediction 
time  
(ms) 

Mean RGN2  
prediction + 
refinement 
time (s) 

 
 

 Distogram 3D-Structure  
 

  

0 < 𝐿 ≤ 100 124 33.35 1868 1021 227.8 346.2 2.6 140.36 

100 < 𝐿 ≤ 200 69 132.68 2762 1845 252.2 376.3 2.5 169.87 

200 < 𝐿 ≤ 300 18 240.27 2940 1698 221.6 389.4 3.6 178.41 

300 < 𝐿 ≤ 400 10 328.8 3511 2135 226.9 388.6 5.1 202.31 

400 > 𝐿 10 457.3 4003 2977 235.1 386.8 5.3 226.23 
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DISCUSSION 

RGN2 represents one of the first attempts to use ML to predict protein structure from a single sequence. 

This is computationally efficient and has many advantages in the case of orphan and designed proteins for 

which generation of multiple sequence alignment is not possible. RGN2 accomplishes this by fusing a 

protein language model (AminoBERT) with a simple and intuitive approach to describing Cα backbone 

geometry based on the Frenet-Serret formulation. Whereas most recent advances in ML-based structure 

prediction have relied on MSAs5, AminoBERT learns information from proteins as a whole without 

alignment and was trained to capture global structural properties by using sequences with masked residues 

and block permutations. We speculate that the latent space of the language model also captures recurrent 

evolutionary relationships43. The use of Frenet-Serret formulas in RGN2 addresses the requirement that 

proteins exhibit translational and rotational invariance. From a practical standpoint, the speed and 

accuracy of RGN2 shows that language models are nearly as effective as MSAs at learning structural 

information from primary sequence while being able to extrapolate beyond known proteins, allowing for 

effective prediction of orphan and designed proteins. 

Transformers and their embodiment of local and distant attention is a key feature of language 

models such as AminoBERT. Very large Transformer-based models trained on hundreds of millions and 

potentially billions of protein sequences are increasingly available26,35,36 and the scaling previously 

observed in natural language applications44 makes it likely that the performance of RGN2 and similar 

methods will continue to improve. AlphaFold2 also exploits attention mechanisms based on Transformers 

to capture the latent information in MSAs. Similarly, the self-supervised MSA Transformer45 uses a 

related attention strategy that attends to both positions and sequences in an MSA, and achieves state-of-

the-art contact prediction accuracy. It is possible that language models will replace MSAs in general use 

but more likely are new architectures that merge the two. Data augmentation by learning from high-

confidence structures in the newly reported AlphaFold Database8 is expected to further improve 

performance. Finally, training on experimental data is likely to be invaluable in selected applications such 

as predicting structural variation within kinases or G protein-coupled receptors. 

We consider RGN2 to be a first step in learning a direct sequence-to-structure map without a 

requirement for explicit evolutionary information. One limitation of RGN2 as currently implemented is 

that the immediate output of the recurrent geometric network only constrains local dependencies between 

Cα atoms (curvature and torsion angles) resulting in sequential reconstruction of backbone geometry. 

Allowing the network to reason directly on arbitrary pairwise dependencies throughout the structure, and 
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using a better inductive prior than learning immediate contacts may further improve the quality of model 

predictions. Furthermore, as currently implemented, refinement in RGN2 is not yet part of an end-to-end 

implementation; refinement via a 3D rotationally- and translationally-equivariant neural network would 

be more efficient and likely yield better quality structures.  

It has been known since Anfinsen’s refolding experiments that single polypeptide chains contain 

the information needed to specify fold46. The demonstration that a language model can learn information 

on structure directly from protein sequences and then guide accurate prediction of an unaligned protein 

suggests that RGN2 behaves in a manner that is more similar to the actual folding process than MSA-

based methods. Language models learned by deep neural networks are readily formulated in a maximum 

entropy framework47 and the physical process of protein folding is also entropically driven, potentially 

suggesting a means to compare the two. A fusion of biophysical and learning-based perspectives may 

ultimately prove the key to direct sequence-to-structure prediction from single polypeptides at the 

accuracy of experimental methods. 

 

 

METHODS 
 
AminoBERT summary 
AminoBERT is a 12-layer Transformer where each layer is composed of 12 attention heads. It is trained 
to distill protein sequence semantics from ~260 million natural protein sequences obtained from the 
UniParc sequence database31 (downloaded May 19, 2019). 
 
During training each sequence is fed to AminoBERT according to the following algorithm: 
1. With probability 0.3 select sequence for chunk permutation, and with probability 0.7 select sequence 

for masked language modeling. 
2. If sequence was selected for chunk permutation, then: 

With probability 0.35 chunk permute, else (with probability 0.65) leave the sequence unmodified. 
3. Else if the sequence was selected for masked language modeling, then: 

With probability 0.3 introduce 0.15	×	sequence_length masks into the sequence with clumping, else 
(with probability 0.7) introduce the same number of masks into the sequence randomly across the 
length of the sequence (standard masked language modeling). 

 
The loss for an individual sequence (seq) is given by: 

𝐿𝑜𝑠𝑠(𝑠𝑒𝑞) = 𝐼[𝑠𝑒𝑞	𝑖𝑠	𝑐ℎ𝑢𝑛𝑘	𝑝𝑒𝑟𝑚𝑢𝑡𝑒𝑑] × 	𝑐ℎ𝑢𝑛𝑘_𝑝𝑒𝑟𝑚𝑢𝑡𝑎𝑡𝑖𝑜𝑛_𝑙𝑜𝑠𝑠(𝑠𝑒𝑞) + (1
− 𝐼[𝑠𝑒𝑞	𝑖𝑠	𝑔𝑙𝑜𝑏𝑎𝑙𝑙𝑦	𝑝𝑒𝑟𝑡𝑢𝑟𝑏𝑒𝑑] × 𝑚𝑎𝑠𝑘𝑒𝑑_𝑙𝑚_𝑙𝑜𝑠𝑠(𝑠𝑒𝑞) 
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where I[x] is the indicator of the event x, and returns 1 if x is true, and 0 if x is false. 
Chunk_permutation_loss(seq) is a standard cross entropy loss reflecting the classification accuracy of 
predicting whether seq has been chunk permuted. Finally, masked_lm_loss(seq) is the standard masked 
language modeling loss as previously described in Devlin et al.29. Note, that mask clumping does not 
affect how the loss is calculated.  
 
Chunk permutation is performed by first sampling an integer x uniformly between 2 and 10, inclusively. 
The sequence is then randomly split into x equal-sized fragments, which are subsequently shuffled and 
rejoined.  
 
Mask clumping is performed as follows: 
1. Sample an integer clump_size ~ Poisson (2.5) + 1 
2. Let n_mask = 0.15 × sequence_length. Randomly select n_mask/clump_size positions in the sequence 

around which to introduce a set of clump_size contiguous masks  
 
AminoBERT architecture 
Each multi-headed attention layer in AminoBERT contains 12 attention heads, each with hidden size 768. 
The output dimension of the feed-forward unit at the end of each attention layer is 3072. As done in 
BERT29, we prepend a [CLS] token at the beginning of each sequence, for which an encoding is 
maintained through all layers of the AminoBERT Transformer. Each sequence was padded or otherwise 
clipped to length 1024 (including the [CLS] token). 
 
For chunk permutation classification, the final hidden vector of the [CLS] token is fed through another 
feed forward layer of output dimension 768, followed by a final feed forward layer of output dimension 
2, which are the logits corresponding to whether the sequence is chunk permuted or not. Masked language 
modeling loss calculations are set up as described in Devlin et al. 29.  
 
AminoBERT training procedure 
AminoBERT was trained with batch size 3072 for 1,100,000 steps, which is approximately 13 epochs 
over the 260 million sequence corpus. For our optimizer we used Adam with a learning rate of 1e-4, β1 = 
0.9, β2 = 0.999, epsilon=1e-6, L2 weight decay of 0.01, learning rate warmup over the first 20,000 steps, 
and linear decay of the learning rate. We used a dropout probability of 0.1 on all layers, and used GELU 
activations as done for BERT. Training was performed on a 512 core TPU pod for approximately one 
week. 
 
Geometry module 
The geometry of the protein backbone as summarized by the 𝐶! trace can be thought of as a one-
dimensional discrete open curve, characterized by a bond and torsion angle at each residue. Following 
Niemi et al.37, the starting point for describing such discrete curves is to assign a frame, a triplet of 
orthonormal vectors, to each 𝐶! atom. If we denote by 𝑟" the vector characterizing the position of a 𝐶! 
atom at the 𝑖-th vertex, we could then define a unit tangent vector along an edge connecting two 
consecutives 𝐶! atoms  
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𝑡" =
𝑟"#$ − 𝑟"
|𝑟"#$ − 𝑟"|

 

 
 
For assigning frames to each 𝑖-th 𝐶! atom, we need two extra vectors, the binormal and normal vectors 
defined as follows: 
 

𝑏" =
𝑡"%$ ×	𝑡"
|𝑡"%$ ×	𝑡"|

 

 
𝑛" = 𝑏" × 𝑡" 

 
 
While for a protein (in a given orientation) the tangent vector is uniquely defined, the normal and binormal 
vectors are arbitrary. Indeed, when assigning frames to each residue we could take any arbitrary 
orthogonal basis on the normal plane to the tangent vector. Such arbitrariness does not affect our strategy 
of predicting 3D structures starting from bond and torsion angles.  
 
To derive the equivalent of the Frenet-Serret formulas—which describe the geometry of continuous and 
differentiable one-dimensional curves—for the discrete case, we need to relate two consecutive frames 
along the protein backbone in terms of rotation matrices  
 
 

E
𝑛"#$
𝑏"#$
𝑡"#$

F= ℛ"#$," 	E
𝑛"
𝑏"
𝑡"
F			 

 
In three-dimensions, rotation matrices are in general parametrized in term of three Euler angles. However, 
in our case the rotation matrices relating two consecutive frames are fully characterized by only two 
angles, a bond angle 𝜓 and a torsion angle 𝜃, as the third Euler angle vanishes, reflecting the following 
condition 	𝑏"#$	.		𝑡" = 0. We can now write the equivalent of the Frenet-Serret formulas for the discrete 
case  
 

E
𝑛"#$
𝑏"#$
𝑡"#$

F=E
cos𝜓	 cos 𝜃	 cos𝜓	sin 𝜃 −sin𝜓
−sin 𝜃 cos 𝜃 0

sin𝜓	cos 𝜃 sin𝜓	sin 𝜃 cos𝜓
F	E

𝑛"
𝑏"
𝑡"
F 

 
The bond and torsion angles are defined by the following relations 
 

cos 	𝜓"#$,"		= 𝑡"#$. 𝑡" 
		cos 	𝜃"#$," 		= 𝑏"#$. 𝑏" 
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We now turn to backbone reconstruction starting from bond and torsion angles. First, using tangent vectors 
along the backbone edges, we can reconstruct all 𝐶! atom positions, and thus the full protein backbone in 
the 𝐶! trace, by using the following relation: 
 

𝑟( =Q|𝑟"#$ − 𝑟"|	.		𝑡"

(%$

")*

 

 
where |𝑟"#$		 − 𝑟"| is the length of the virtual bonds connecting two consecutive 𝐶! atoms. In most cases, 
the average virtual bond length is 	∼	3.8 Å, which corresponds to trans conformations. In terms of the 
familiar torsion angles 𝜙,𝜓, and 𝜔, those conformations are achieved for 𝜔 ∼ 𝜋. For cis conformations, 
mainly involving proline residues, the virtual bond length is ∼ 3.0	Å (and it corresponds to 𝜔 ∼ 0).	In 
RGN2, for backbone reconstruction, we impose the condition that the virtual bond length is strictly equal 
to 3.8 Å, and for reconstructing the backbone we use the following relation: 
 

𝑟( = Q3.8	 ×	𝑡"

(%$

")*

 

 
The intuition behind the previous equation is the idea of a moving observer along the protein backbone. 
We could think of the tangent vector 𝑡" as the velocity of the observer along a given edge, and the constant 
virtual bond length as the effective time spent for travelling along the edge. The only freedom allowed for 
such observer is to abruptly change the direction of the velocity vector at each vertex. 
 
The model outputs bond and torsion angles. By centering the first 𝐶! atom of the protein backbone at the 
origin of our coordinate system, we sequentially reconstruct all the 𝐶! atom coordinates using the 
following relation: 
 

Z

𝑛"#$
𝑏"#$
𝑡"#$
𝑟"#$

[=Z ℛ"#$,"

0
0
0

0 0 	3.8 1

[Z

𝑛"
𝑏"
𝑡"
𝑟"

[ 

 

Data preparation for comparison with trRosetta 
Performance of RGN2 was compared against trRosetta across two sets of non-homologous proteins: (i) 
196 orphans from the Uniclust30 database40, and (ii) 35 de novo proteins by Xu et al.48. Both sets were 
filtered to ensure no overlap with the training sets of RGN2 and trRosetta. While RGN2 is trained on the 
ASTRAL SCOPe (v1.75) dataset39, trRosetta was trained on a set of 15,051 single chain proteins (released 
before May 1, 2018). 
 
Structure prediction with trRosetta, AF2, and RF 
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Conventional trRosetta-based structure prediction involves first feeding the input sequence through a deep 
MSA generation step. For orphans and de novo proteins without any sequence homologs, the MSA only 
includes the original query sequence. Next, the MSA is used by the trRosetta neural network to predict a 
distogram (and orientogram) that captures inter-residue (C𝛼-C𝛼 and Cβ-Cβ) distances and orientations. This 
information is subsequently utilized by a final Rosetta-based refinement module. This module first threads 
a naïve sequence of polyalanines of length equaling the target protein that maximally obeys the distance 
and orientation constraints. After side-chain imputation that reflects the original sequence, multiple steps 
including clash elimination, rotamer repacking, and energy minimization are performed to identify the 
lowest energy structure.  
 AF2 and RF predictions did not require MSAs since our target proteins don't have homologs and 
so we made our predictions using their respective official Google Colab notebooks. 
 
Structure refinement in RGN2 
Raw predictions from RGN2 contain a single C𝛼 trace of the target protein. After performing a local 
internal coordinate building step to generate the backbone and side-chain atoms corresponding to the target 
sequence, we use Rosetta-based refinement to finetune the structure. This refinement comprises hybrid 
optimization of side chains using five invocations of energy minimization in torsional space followed by 
a single step of quasi-Newton all-atom minimization in Cartesian space (using the FastRelax protocol of 
RosettaScripts49). An optional CartesianSampler49 mover step can be added to further correct local strain 
density in the predicted model. The six-step FastRelax protocol is repeated for 300 cycles for each target. 
Finally, 100 cycles of coarse-grained, fast minimization using MinMover49 is applied to obtain the 
predicted structure. 
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