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ABSTRACT 12 

Recent literature suggests machine learning methods can capture interactions between loci 13 

and therefore could outperform linear models when predicting traits with relevant epistatic 14 

effects. However, investigating this empirically requires data with high mapping resolution 15 

and phenotypes for traits with known non-additive gene action. The objective of the present 16 

study was to compare the performance of linear (GBLUP, BayesB and elastic net [ENET]) 17 

methods to a non-parametric tree-based ensemble (gradient boosting machine – GBM) 18 

method for genomic prediction of complex traits in mice. The dataset used contained 19 

phenotypic and genotypic information for 835 animals from 6 non-overlapping generations. 20 

Traits analyzed were bone mineral density (BMD), body weight at 10, 15 and 20 weeks 21 

(BW10, BW15 and BW20), fat percentage (FAT%), circulating cholesterol (CHOL), glucose 22 

(GLUC), insulin (INS) and triglycerides (TGL), and urine creatinine (UCRT). After quality 23 

control, the genotype dataset contained 50,112 SNP markers. Animals from older 24 

generations were considered as a reference subset, while animals in the latest generation as 25 

candidates for the validation subset. We also evaluated the impact of different levels of 26 

connectedness between reference and validation sets. Model performance was measured 27 

as the Pearson’s correlation coefficient and mean squared error (MSE) between adjusted 28 

phenotypes and the model’s prediction for animals in the validation subset. Outcomes were 29 

also compared across models by checking the overlapping top markers and animals. Linear 30 

models outperformed GBM for seven out of ten traits. For these models, accuracy was 31 

proportional to the trait’s heritability. For traits BMD, CHOL and GLU, the GBM model 32 

showed better prediction accuracy and lower MSE. Interestingly, for these three traits there 33 

is evidence in literature of a relevant portion of phenotypic variance being explained by 34 

epistatic effects. We noticed that for lower connectedness, i.e., imposing a gap of one to two 35 

generations between reference and validation populations, the superior performance of GBM 36 

was only maintained for GLU. Using a subset of top markers selected from a GBM model 37 

helped for some of the traits to improve accuracy of prediction when these were fitted into 38 

linear and GBM models. The GBM model showed consistently fewer markers and animals in 39 

common among the top ranked than linear models. Our results indicate that GBM is more 40 

strongly affected by data size and decreased connectedness between reference and 41 

validation sets than the linear models. Nevertheless, our results indicate that GBM is a 42 

competitive method to predict complex traits in an outbred mice population, especially for 43 

traits with assumed epistatic effects. 44 

 45 
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 46 

INTRODUCTION 47 

The use of genome-wide markers as predictor variables for individuals’ unobserved 48 

phenotypes (Meuwissen et al., 2001) based on a reference population is known as genomic 49 

prediction (GP). In the past decade, high-throughput genotyping technologies made GP 50 

accessible and facilitated large-scale use of GP for animal (Boichard, 2016) and plant (Bhat 51 

et al., 2016) breeding, and in human genetics (Lappalainen et al., 2019). For animals and 52 

plants, GP has reduced breeding costs and speeded up breeding programs as individuals of 53 

interest can be selected in earlier stages of life, while reducing costs for performance testing. 54 

In humans, major efforts have been put into developing GP to score disease risks (Duncan 55 

et al., 2019), aiming for a more personalized medicine in the future (Barrera-Saldaña, 2020).  56 

Currently, most GP models implemented assume that observed phenotypes are 57 

controlled by numerous loci with additive effects throughout the genome and this approach 58 

has provided a robust performance in most cases (Meuwissen et al., 2001; Calus, 2010). 59 

However, in the literature it has been suggested that the genetic architecture of complex 60 

traits may involve significant proportions of non-additive genetic (dominance or epistasis) 61 

effects (Mackay, 2014) and that these could be much more common than previously thought 62 

(Sackton and Hartl, 2016). Although accounting for non-additive effects into parametric GP 63 

models has been reported to improve predictive performance (Forsberg et al., 2017) of 64 

phenotypes, implementing variable selection to prioritize among all possible SNP by SNP 65 

interactions, is computationally too costly for any practical application.  66 

Machine learning (ML) has been successfully used in many fields for text, image and 67 

audio processing at huge data volumes. Recently, these algorithms have found many 68 

applications in GP for offering an opportunity to model complex trait architectures in a much 69 

simpler framework than parametric models (Nayeri et al. 2019; Montesinos-López et al., 70 

2021; van Dijk et al., 2021). ML algorithms are free from model specification, can 71 

accommodate interactions between predictive variables and deal with large numbers of 72 
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predictor variables by performing automatic variable selection (Jiang et al., 2009; Li et al., 73 

2018).  74 

Howard et al. (2014), Ghafouri-Kesbi et al. (2015) and Abdolahi-Arpanahi et al. 75 

(2020) have compared the predictive performance of linear and ML models for simulated 76 

phenotypes controlled by additive or non-additive effects. In general, linear models were 77 

able to outperform ML models for traits controlled by additive effects, however they failed to 78 

do so when used to predict traits with purely epistatic architecture. The superiority of ML 79 

over traditional linear models was markedly observed for traits controlled by a low number of 80 

loci (100) with non-additive effects. For this type of scenario, Ghafouri-Kesbi et al. (2015) 81 

and Abdolahi-Arpanahi et al. (2020) also showed a consistent good performance of the 82 

gradient boosting machine (GBM) algorithm (Friedman, 2001), which has previously been 83 

reported to provide robust predictive ability when compared to other methods in the context 84 

of GP (González-Recio et al., 2011, 2013, 2014; Ogutu et al., 2011; Jimenez-Montero et al., 85 

2013; Grinberg et al., 2019; Srivastava et al., 2021). 86 

Although results in simulated data suggest the superiority of ML models in the 87 

presence of epistatic effects, the performance of such models have been much less 88 

consistent for GP using real datasets. Zingaretti et al. (2020) observed that convolutional 89 

neural networks (CNN) had 20% higher predictive accuracy than linear models for GP of a 90 

trait with a strong dominance component (percentage of culled fruit) in strawberry but 91 

underperformed for traits with predominant additive effects. On the other hand, in Azodi et al. 92 

(2019), ML did not consistently outperform linear models for traits with strong evidence of 93 

underlying non-additive architectures (for example height in maize and rice). The authors 94 

also describe that ML models presented less stable prediction across traits than linear 95 

models. Similar results were also reported by Bellot et al. (2018) while investigating the 96 

performance of GP for several complex human phenotypes. An important aspect to consider 97 

when investigating performance of GP models is that for most livestock and plant species 98 

there is currently limited knowledge over the genetic architecture of economically interesting 99 
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traits. This makes it difficult to perform inference about the real reasons why ML outperforms 100 

linear models in specific situations. This could be overcome by considering data from 101 

populations for which knowledge on genetic architecture of traits is more extensively and 102 

accurately described. 103 

The Diversity Outbred (DO) mice population is derived from eight inbred founder 104 

strains (Svenson et al. 2012). It is an interesting resource for high-resolution genetic 105 

mapping by having a low level of genetic relationship between individuals, low extent of LD 106 

(Churchill et al., 2012) and uniformly distributed variation across genomic regions of known 107 

genes (Yang et al., 2011). This structure represents an advantage over classical inbred 108 

strains of mice or livestock populations, which have limited genetic diversity (Yang et al. 109 

2011). These aspects allow the investigation of relevant traits in a structured scheme that 110 

closely reflects the genetic mechanisms of human disease (Churchill et al., 2012, Svenson 111 

et al., 2012).  112 

In the present study, the objective was to compare performance of GBM to several 113 

linear models (GBLUP, BayesB and elastic net) for predicting ten complex phenotypes in the 114 

DO mice population. All models were applied for scenarios where data was not available for 115 

one or more generations in between the reference and validation sets. Additionally, we 116 

explore the use of feature selection from the GBM algorithm as a tool for sub-setting relevant 117 

markers and to improve prediction accuracy through dimensional reduction. 118 

 119 

MATERIAL AND METHODS 120 

Data 121 

Phenotypes 122 

The DO mice dataset comprising 835 animals was obtained from The Jackson 123 

Laboratory (Bar Harbor, ME). The animals originated from 6 non-overlapping generations (4, 124 

5, 7, 8, 9 and 11) in which males and females were represented equally. The total number of 125 

animals per generation was 97, 48, 200, 184, 99 and 197 for generations 4, 5, 7, 8, 9, and 126 
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11, respectively, but numbers of missing records varied across traits (Figure 1). The mice 127 

were maintained on either standard high fiber (chow, n=446) or high fat diet (HFD; n=389) 128 

from weaning until 23 weeks of age. The proportion of males and females within each diet 129 

category was close to 50-50 for all generations. The same was observed for the frequency of 130 

males and females within each litter-generation combination (two litters per generation). A 131 

detailed description of husbandry and phenotyping methods can be found in Svenson et al. 132 

(2012). 133 

Table 1 shows a comprehensive description of each trait regarding dataset size, 134 

estimated heritability and assumed genetic architecture with associated literature. Among all 135 

phenotypes available we chose 10 traits based on their distinct assumed genetic 136 

architectures from previous results with the same dataset (Li and Churchill, 2010; Churchill 137 

et al.,2012; Zhang et al., 2012; Tyler et al.,2016, 2017; Keller et al., 2019; Keenan et al., 138 

2021) and other populations (Chitre et al., 2018). The analyzed traits were bone mineral 139 

density at 12 weeks (BMD), body weight at 10, 15 and 20 weeks (BW10, BW15 and BW20); 140 

circulating cholesterol at 19 weeks (CHOL), adjusted body fat percentage at 12 weeks 141 

(FATP), circulating glucose at 19 weeks (GLU), circulating triglycerides at 19 weeks (TRGL), 142 

circulating insulin at 8 weeks (INSUL) and urine creatinine at 20 weeks (UCRT). These traits 143 

can be categorized into measurements of body composition (weights and fat percentage), 144 

clinical plasma chemistries (triglycerides, glucose, insulin) and urine chemistry (urine 145 

creatinine). 146 

Prior to any analyses performed in this study, phenotypic records were pre-corrected 147 

for fixed effects of diet, generation, litter and sex. The pre-corrected phenotype (𝑦∗) can be 148 

represented by: 149 

𝒚∗ = 𝒂 + 𝒆 

where 𝒂 is the vector of animal additive genetic effects and 𝒆 the vector of residuals. 150 

 151 

 152 
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 153 

TABLE 1 154 

 155 

Genotypes 156 

Mice from 8 distinct founder strains were genotyped using either the MUGA and 157 

MegaMUGA SNP arrays (Morgan et al. 2016). The variant calls from the arrays in the 158 

animals contained in the current dataset were converted to founder haplotypes using a 159 

hidden Markov model (HMM) (Gatti et al. 2014), which uses the order of SNPs in an 160 

individual mouse to infer transition points between different DO founder haplotypes. After 161 

that, the probability of each parental haplotype at each SNP position in the genome (Gatti et 162 

al., 2014) was used to derive SNP genotype probabilities. To accomplish that, we used 163 

functions available in the “QTL2” R package (Broman et al. 2018).  The complete genotype 164 

file used for the analyses was composed of 64,000 markers reconstructed from the diplotype 165 

probabilities from the MUGA and MegaMUGA on an evenly spaced grid, and the average 166 

distance between markers was 0.0238 cM. The full genotype data (64K markers) was 167 

cleaned based on the following criteria: variants with minor allele frequency < 0.05, call rates 168 

< 0.90 and linear correlation between subsequent SNPs > 0.98 were removed. After quality 169 

control, a total of 52,840 SNP markers were available for the mice with both phenotypic and 170 

genotypic records. 171 

 172 

Genomic prediction models 173 

GBLUP 174 

The statistical model of GBLUP is: 175 

𝐲∗ = 𝟏𝜇 + 𝐚 + 𝐞, 

where 𝐲∗ is the vector of pre-corrected phenotypes, 1 is a vector of ones, 𝜇 is the 176 

intercept, 𝐚 is the vector of random additive genetic values, where 𝐚 ~ 𝑁(𝟎, 𝐆𝜎𝑎
2) and 𝐆 is the 177 
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additive genomic relationship matrix between genotyped individuals. It is constructed 178 

following the second method described by VanRaden (2008) as 
𝐙𝐙′

𝑚
 where 𝐙 is the matrix of 179 

centered and standardized genotypes for all individuals and 𝑚 is the number of markers, 180 

and 𝜎𝑎
2 is the additive genomic variance, 𝐞 is the vector of random residual effects where 181 

𝐞 ~ 𝑁(𝟎, 𝐈𝜎𝑒
2) with 𝜎𝑒

2 being the residual variance, and 𝐈 is an identity matrix. GBLUP was 182 

implemented using a Bayesian approach using the BGLR package (Pérez and de los 183 

Campos, 2014). The Gibbs sampler was run for 150,000 iterations, with a 50,000 burn-in 184 

period and a thinning interval of 10 iterations. Consequently, inference was based on 10,000 185 

posterior samples.  186 

 187 

BayesB  188 

BayesB has been widely used for genomic prediction (Meuwissen et al., 2001), and here we 189 

considered it for being a linear model with variable selection ability. The phenotype of the ith 190 

individual is expressed as a linear regression on markers: 191 

𝐲∗ = 𝟏𝜇 + 𝒁𝜷 + 𝒆 , 192 

where 𝐲∗ is the vector of pre-corrected phenotypes, 1 is a vector of ones, 𝜇 is the 193 

intercept, 𝜷 is the vector of random effect of markers, 𝒁 is the incidence matrix for markers 194 

and 𝒆 is a random residual where 𝐞 ~ 𝑁(𝟎, 𝐈𝜎𝑒
2) with 𝜎𝑒

2 being the residual variance, and 𝐈 is 195 

an identity matrix. Contrary to GBLUP, BayesB assumes a priori that all markers do not 196 

contribute to genetic variation equally. For BayesB, all markers are assumed to have a two-197 

component mixture prior distribution. Any given marker has either a null effect with known 198 

prior probability, π, or a 𝑡 prior distribution with probability (1 − 𝜋), with 𝜈 degrees of 199 

freedom and scale parameter 𝑠2. Therefore, marker effects 𝜷 ~ 𝑁(0, 𝜎𝑔𝑘
2 ), where 𝜎𝑔𝑘

2  200 

is the variance of the kth SNP effect. The BayesB model was implemented using the 201 

BGLR package (Pérez and de los Campos, 2014). The Gibbs sampler was run for 120,000 202 
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iterations, with a 20,000 burn-in period and a thinning interval of 100 iterations. 203 

Consequently, inference was performed based in 10,000 posterior samples.  204 

 205 

Elastic Net  206 

 The elastic net (ENET) is an extension of the lasso (Friedman et al., 2010) and is 207 

considered a robust method under the presence of strong collinearity among predictors, as 208 

is the case for genotype data. It can be described by the regression model: 209 

𝐲∗ = 𝒁𝜷 + 𝒆 , 210 

where 𝐲∗ is the vector of pre-corrected phenotypes, 𝜷 is the vector of random effect of 211 

markers, 𝒁 is the incidence matrix for markers and 𝒆 is a random residual where 212 

𝐞 ~ 𝑁(𝟎, 𝐈𝜎𝑒
2) with 𝜎𝑒

2 being the residual variance, and 𝐈 is an identity matrix.. 213 

The ENET uses a mixture of the ℓ1 (lasso) and ℓ2 (ridge regression) penalties and 214 

the estimator 𝜷̂𝐸𝑁𝐸𝑇 can be formulated as: 215 

𝜷̂𝐸𝑁𝐸𝑇 = (1 +  
λ2

𝑛
) {𝑎𝑟𝑔𝑚𝑖𝑛𝜷 ‖𝒚 − 𝑿𝜷‖2

2 +  λ2 ‖𝜷‖2
2 +  λ1‖𝜷‖1}, 

where ‖𝜷‖1 = ∑ |𝜷𝒋|
𝑝
𝑗=1  is the ℓ1- norm penalty on 𝜷, ‖𝜷‖2

2 = ∑ 𝜷𝒋
𝟐𝑝

𝑗=1  is the ℓ2- norm penalty 216 

on 𝜷, ‖𝒚 − 𝑿𝜷‖2
2 =  ∑ (𝒚𝑖 −  𝒙𝑖

𝑇𝜷)2𝑛
𝑖=1  is the ℓ2- norm (quadratic) loss function (residual sum 217 

of squares), 𝑥𝑖
𝑇 is the i-th row of 𝑿, λ1 is the parameter that controls the extent of variable 218 

selection and λ2 is the parameter that regulates the strength of linear shrinkage. 219 

When setting 𝛼 =  
λ2

(λ1 + λ2)
, the ENET estimator is equivalent to the minimizer of: 220 

𝜷̂𝐸𝑁𝐸𝑇2 = 𝑎𝑟𝑔𝑚𝑖𝑛𝜷 ‖𝒚 − 𝑿𝜷‖2
2, subject to 𝑃𝛼(𝜷)= (𝟏 −  𝛼)‖𝜷‖1 + 𝛼‖𝜷‖2

2  ≤ 𝑠 for some 𝑠 221 

where 𝑃𝛼(𝜷) is the ENET penalty (Zou and Hastie, 2005). The ENET is equivalent to ridge 222 

regression (Hoerl and Kennard, 1970) when 𝛼 = 1, and to the lasso when 𝛼 = 0. In practice, 223 
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the ℓ1 component performs automatic variable selection while the ℓ2 component ensures 224 

that a group of highly correlated variables get effect estimates of similar magnitude. 225 

 We implemented the ENET model using the h2o.ai R package (Click et al. 2016). To 226 

establish the best hyperparameter set for ENET, we performed a cross-validation (splitting 227 

the reference set into 80-20 for train/test sets, as depicted in Figure 1) on a two-step 228 

scheme. First a grid search of values for the parameter 𝛼 considering from 0 to 1, in intervals 229 

of 0.05. For tested value of 𝛼, the best value of λ was obtained by computing models 230 

sequentially, starting with λ = 1 and decreasing it exponentially until 0.01 in up to 20 steps. 231 

For each analysis, the best ENET model was chosen by the combination of 𝛼  and λ 232 

parameters obtained from the grid search that yielded the lowest mean squared error of 233 

prediction in the test set, and this model was used to predict the validation animals 234 

(Supplementary Material - Figure S1). 235 

 236 

Gradient Boosting Machine 237 

Gradient boosting machine (GBM) is an ensemble learning technique that applies an 238 

iterative process of assembling “weak learners” into a stronger learner, being largely used 239 

for both classification and regression problems (Friedman, 2002;). It relies on fitting decision 240 

trees as the base learner (Hastie et al., 2009). The first tree is fitted on the errors of an 241 

initialized prediction based on the distribution of the response variable and from this point, 242 

the algorithm fits sequential trees, in which every subsequent tree aims to minimize the 243 

prediction error from the previous one until no further improvement can be achieved. Many 244 

different parameters can be used to measure that “improvement”, in the present study we 245 

used the mean squared error (MSE). GBM does automatic feature selection, prioritizing 246 

important variables and discarding ones containing irrelevant or redundant information. We 247 

implemented the GBM model using the h2o.ai R package (Click et al. 2016).  248 

The performance of machine learning methods can be sensitive to hyper-parameters 249 

(Azodi et al., 2019). To obtain the best possible results from the GBM algorithm, a grid 250 
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search approach was used to determine the combination of hyperparameters that 251 

maximized prediction performance for each trait. Hyperparameters (and range of values) 252 

included were number of trees (ntree = 100, 150, 200, 300, 500, 1000, 2000 and 5000), 253 

learning rate (lrn_rate = 0.01; 0.05 and 0.10) and maximum tree depth (max_depth = 2, 3, 5 254 

and 10). For each trait analyzed, the hyperparameter tuning scheme was performed inside 255 

the reference subset (cf. ENET and Figure 1). The best set of hyperparameters was chosen 256 

based on the lowest mean squared error obtained from the grid-search. Results reported in 257 

the present study for GBM model refer to the best performing model out of the grid search 258 

for each trait (Supplementary Material - Figure S1). 259 

 260 

Model performance 261 

Performance of predictions from the models was measured by the accuracy, 262 

computed as the Pearson correlation (𝑟𝑦∗,𝑦̂), and the mean squared error of prediction 263 

(MSE) between predicted (𝑦̂) and pre-corrected phenotypes (𝑦∗): MSE = 
1

𝑛
 ∑ (𝑛

𝑖=1 𝑦∗ − 𝑦̂)2. 264 

In all analyses, we used a forward prediction validation scheme in which animals from older 265 

generations (4, 5, 7, 8 and 9) were used as the reference and animals from the younger 266 

generation (11) as the validation subset. Uncertainties around the 𝑟𝑦∗,𝑦̂  estimates were 267 

obtained by using bootstrapping (Davison and Hinkley, 1997), implemented in the “boot” R 268 

package (Canty and Ripley, 2021). 269 

 270 

 271 

FIGURE 1 272 

 273 

 274 
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Impact of the distance between a fixed-size reference and the validation set 275 

 Here we tested the impact of an increase in distance between the reference and 276 

validation sets on the prediction performance of each model. To accomplish that, we 277 

considered 3 scenarios using generation 11 as validation as before: Using generations 4, 5, 278 

7, 8 and 9 as reference (NoGAP), using generations 4, 5, 7 and 8 as reference and omitting 279 

phenotypes from generation 9 (GAP9), using generation 4, 5 and 7 as reference and 280 

omitting phenotypes from generations 8 and 9 (GAP8+9). Considering the full dataset there 281 

were in total 638 animals from generations 4 to 9 available to be sampled for the validation 282 

subset. To analyze the proposed scenarios, the number of animals sampled for the 283 

reference subset was kept the same in all scenarios (N=300), with a constraint on the 284 

number of animals sampled from each generation to match its representativeness in NoGAP 285 

scenario (Supplementary Material - Table S2 for details). The fixed sample size of 300 was 286 

arbitrarily chosen based on the number of records available in GAP89, the scenario with the 287 

least available data to be sampled for the reference subset (N=345). Every scenario was 288 

evaluated in 20 replicates, inference was based on the average and standard deviation of 289 

accuracies obtained from replicates. All described models were applied to each of the 20 290 

replicates (in every scenario) considering the same sampled dataset in each replicate across 291 

models. The complete list of animals sampled in each of the 20 replicates used for the 292 

analyses is provided in the Supplementary Material. 293 

 294 

Feature importance for dimensionality reduction   295 

For GBM, the importance of a feature is determined by assessing whether that 296 

feature was selected to split on during the tree building process, and the contribution of that 297 

to decrease the squared error (averaged over all trees) as a result (Friedman and Meulman, 298 

2003; Hastie, Tibshirani and Friedman, 2009). The feature importance is expressed in a 299 

percentage scale that can be ranked to assess the magnitude of importance of each feature. 300 
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Here we investigate if the feature importance performed by the GBM model can be 301 

used to improve performance by fitting only extracted relevant features, i.e., SNPs, in GBM 302 

or any of the other models. We considered the top 100, 250, 500 and 1000 features from a 303 

GBM model using the cross-validation strategy previously explained as input for GBLUP, 304 

ENET and GBM models. The important features were obtained using the same strategy 305 

described for the hyperparameter tuning previously explained, thus using a random split (80-306 

20) within the reference subset (Figure 1). 307 

 308 

Similarities among top SNPs and prediction rankings 309 

 To assess the relationship between model’s prediction at the animal level, we 310 

quantified the number of animals in common in the top 20 ranked animals (approximately top 311 

10% of generation 11) from each model. The latter metric gives an indication of the extent to 312 

which the same animals would be selected using these different models in a breeding 313 

program where each generation 10% of the animals are selected as parents of the next 314 

generation. Also, to understand the relationship between predictions from the models at the 315 

genome level, we quantified the overlap between the top 1000 ranked SNP among the 316 

models and traits analyzed. For any given trait, an “overlapping SNP” between two models A 317 

and B was defined as any SNP in the top 1000 ranked for model A identical or in high LD (r2 318 

> 0.90) with a SNP among the top 1000 ranked from model B. This approach may yield 319 

different results depending on one starting the comparison from model A to model B or vice 320 

versa and, therefore, here we report results for both directions. 321 

 322 

Data and software availability 323 

All data associated with this manuscript can be obtained at 324 

https://figshare.com/s/8bdd723be9d0e748cadf. The code developed and used to perform 325 
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analyzes described in this manuscript are included as Supplementary Material, as well as a 326 

detailed description of results. All software used is publicly available.  327 

 328 

RESULTS 329 

Model performance 330 

 The accuracy of predicted phenotypes from GBLUP, BayesB, ENET and GBM for 331 

animals in the validation set (generation 11) is shown in Figure 2. The best performing model 332 

varied according to the trait being analyzed. 333 

 Prediction accuracies obtained for traditional linear models (GBLUP and BayesB) 334 

were, in general, proportional to the trait’s heritability, with GBLUP overcoming BayesB for 335 

BMD, GLUC, INSUL, TRGL and UCRT. Predictive accuracy obtained with GBLUP was 336 

never the worst among tested models for any of the traits. The highest prediction accuracies 337 

were observed for body composition traits (BW10, BW15, BW20 and FATP), for which 338 

BayesB outperformed all other models. Conversely, BayesB particularly underperformed 339 

when analyzing GLUC which was one of the traits with the lowest overall accuracy across 340 

linear models. The ENET had lower prediction accuracy when compared to other models 341 

across traits. It was never the best performing model for a particular trait and showed the 342 

worst performance for BMD, BW10, BW15, BW20, INSUL and TRGL. 343 

 344 

FIGURE 2 345 
  346 

The GBM model showed best predictive performance for BMD, CHOL and GLUC. 347 

For other traits, prediction accuracy from GBM varied from being competitive to the linear 348 

models for BW10, BW15 and TRGL, to a poorer performance observed for UCRT. It only 349 

showed the worst predictive ability among all models for FATP, but with a small difference 350 

from the next performing model (- 1.76% absolute difference). The GBM model performed 351 

particularly well when analyzing GLUC, showing predictive performance much higher than 352 
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the linear models. Overall, GBM showed a less consistent pattern of predictive performance 353 

across trait categories when compared to the linear models.   354 

  355 
In terms of prediction error, GBLUP was the model with best performance for most 356 

traits, in most cases followed by GBM. The GBM model showed the lowest MSE for BMD, 357 

CHOL and GLUC. For all traits, BayesB showed the highest MSE when compared to other 358 

models, even for traits for which it had the best prediction accuracy. Relative differences 359 

between MSE from the best and worst model were lower for body weight traits (BW10, 360 

BW15 and BW20) and higher for CHOL and INSUL. 361 

 362 

TABLE 2 363 

 364 

Impact of feature selection on prediction performance 365 

 Figure 3 shows the prediction accuracy obtained by GBLUP, ENET and GBM when 366 

fitting only the top 100, 250, 500, 1000 from a GBM run or all SNPs (52K). When compared 367 

to fitting all SNPs (SNPALL), fitting only a subset of important features showed distinct 368 

pattern depending on the trait analyzed and model applied.  369 

When fitting the GBLUP model, including increasingly more important SNPs resulted, 370 

for most traits, in an incremental increase in accuracy, reaching its maximum value in the 371 

SNPALL scenario. This was especially the case for traits which were expected to be highly 372 

polygenic like BW10, BW15, BW20 and FATP. For CHOL, GLUC and INSUL, fitting GBLUP 373 

with a subset of top importance SNPs selected by the GBM model yielded higher accuracy 374 

than SNPALL, the number of top SNPs that resulted in the highest prediction accuracy was 375 

dependent on the trait being analyzed.  376 

When fitting ENET, including subsets of relevant SNP as predictors for BW10, BW15 377 

and BW20 yielded similar results as for GBLUP. For FATP, there was an incremental 378 

increase in accuracy by including more important SNPs, but with SNP500 and SNP1000 379 
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showing even higher prediction accuracies than in SNPALL and comparatively higher than 380 

the accuracies obtained for FATP by GBLUP. For most other traits (except for BW10 and 381 

UCRT), fitting an ENET considering only some top SNPs showed higher prediction 382 

accuracies than SNPALL. 383 

 The GBM model showed for almost all traits a higher predictive accuracy when 384 

considering a subset of SNPs compared to fitting all available SNP (SNPALL). The only 385 

exception to that was UCRT, for which the inclusion of important SNPs up to 500 resulted in 386 

only a marginal increase in accuracy. For each tested subset of important SNPs, GBM 387 

outperformed GBLUP and ENET for prediction accuracy, except for FATP. For this trait, 388 

ENET yielded around 0.02 higher absolute accuracy than GBM for SNP1000. For BMD and 389 

UCRT, the total number of features selected by GBM was 364 and 419. Consequently, for 390 

these traits, running SNP1000 was not possible and SNP500 indicate SNP364 and SNP419, 391 

respectively. 392 

 393 

FIGURE 3 394 

 395 

 396 

Generation gaps and connectedness between reference and validation sets  397 

 Figure 4 shows the prediction accuracies obtained for different scenarios considering 398 

increasing distance between reference and validation sets. The increase in distance 399 

between the reference and validation sets resulted in a decrease in prediction accuracy for 400 

almost all trait/model combinations, in different magnitudes. The exception to that pattern 401 

was observed for GLU, for which a marginal increase in accuracy (although not drastically 402 

different across scenarios) was observed for GBLUP and GBM. Independent of the trait 403 

analyzed or model used, differences in accuracy between NoGAP and GAP9 were much 404 

lower than between NoGAP and GAP89 or between GAP9 and GAP89. These differences 405 

varied from - 0.20 (BMD – GBM) to +0.03 (GLUC – GBLUP). 406 
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The GBLUP model showed the lowest decrease in accuracy between NoGAP and 407 

GAP89 scenarios among traits when compared to other models, except for FATP, for which 408 

the difference in performance between NoGAP and GAP89 for GBLUP was the highest 409 

among all models (-0.12). On the other hand, the GBM model showed the highest drop in 410 

accuracy when comparing NoGAP and GAP89 scenario, especially for BMD, TRGL and 411 

UCRT. Especially for these traits, using GBM on a GAP89 scenario resulted in negative 412 

average prediction accuracies.  413 

Independent of the model used, the traits BW10, BW15, BW20 and FATP showed 414 

the lowest decrease in accuracy while BMD, TRGL and UCRT showed the highest decrease 415 

in accuracy between NoGAP and GAP89 scenarios. For CHOL the prediction accuracy of 416 

GAP89 was higher than observed for GAP9 for all models tested, while for GLU this pattern 417 

was observed for predictions from GBLUP, BayesB and GBM, although in smaller 418 

differences between scenarios. 419 

 The ranking of model accuracy across traits observed using the full dataset (Figure 420 

2) and for the generation gap scenarios (Figure 4) was not the same. When considering the 421 

full dataset, GBM yielded the best accuracy for BMD, CHOL and GLU, however the same 422 

pattern was not observed for the generation gap scenarios. Overall, when under any of the 423 

generation gap scenarios, GBLUP had the best accuracy across traits. 424 

  425 

FIGURE 4 426 

 427 

 428 

Animal predictions and SNP ranking similarities between models 429 

 The number of unique animals among the top 20 ranked using GBLUP, BayesB 430 

ENET and GBM models is shown in Figure 5 (top) for BW10 (A) and GLUC (B). 431 

Respectively for these two traits, the number of unique animals in the top 20 rank was 4 and 432 

10 for GBLUP, 10 and 14 for BayesB, 7 and 9 for ENET; and 7 and 11 for GBM. Detailed 433 
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results for all traits are included in Supplementary Material – Figure S2. Overall, the number 434 

of overlapping animals between pairs and triples of models was slightly higher for BW10 435 

than for GLUC. The number of animals uniquely in common between any model and GBM 436 

varied between 0 and 4 for BW10 and between 0 and 3 for GLUC. 437 

 Figure 5 also shows the count of overlapping markers among the top 1000 ranked by 438 

the models investigated for BW10 (C) and GLUC (D). Overall, the number of overlapping 439 

markers between any pair of models was higher for BW10 than for GLUC. Within traits, 440 

higher values were usually observed for comparisons between two linear models than 441 

between a linear model and GBM, while the lowest overlap was observed between ENET 442 

and GBM; and between BayesB and GBM. Comparisons between GBLUP and any other 443 

model had more overlapping markers than between other models. The largest differences 444 

between values above diagonal and the respective comparison below diagonal were 445 

observed for comparisons between GBLUP and any other model, with values above the 446 

diagonal (GBLUP x other model) being considerably higher than values below the diagonal 447 

(other model x GBLUP). 448 

 449 

FIGURE 5 450 

 451 

DISCUSSION 452 

In the present study we compared predictive performances of commonly applied 453 

linear methods (GBLUP, BayesB and ENET) and a non-parametric machine learning 454 

ensemble method (GBM) for GP of 10 complex phenotypes in the DO mouse population. 455 

Although the evaluation of feasibility of genomic selection in mice was not our focus, results 456 

of predictive accuracy can be used as a guide if selection is intended for this population. 457 

Currently, the mating scheme used for the DO population is a randomized outbreeding 458 

strategy (Churchill et al., 2012), however, being able to predict phenotypes could be useful if 459 

any directional selection is of interest in the future. 460 
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Accuracies of GP have been reported by previous authors in another mice population 461 

(Legarra et al., 2008; Lee et al., 2008). Overall results showed low to medium predictive 462 

accuracies, ranging from 0.10 to 0.65 depending on the trait analyzed and cross-validation 463 

strategy considered. Our results confirmed that the performance of genomic prediction 464 

methods seem to be highly dependent on the trait’s genetic architecture. When analyzing the 465 

traits that are mostly polygenic (BW10, BW15, BW20, FATP and TRGL), linear models were 466 

able to outperform GBM in both the full dataset (Figure 1) and for scenarios with lower 467 

connectedness between reference and validation subsets (Figure 4). BayesB was the best 468 

model for the three BW traits and FATP, while GBLUP had the best results for TRGL. In a 469 

genome-wide study using data from the same population, Zhang et al. (2010) showed an 470 

absence of QTL with pronounced effects for TRGL, with mostly small effects detected for 471 

genome-wide markers. This could explain why GBLUP had better predictive performance 472 

than BayesB or ENET for this trait. 473 

Among the ten traits analyzed, evidence of non-additive effects has been reported for 474 

BMD (Tyller et al. (2016), CHL (Stewart et al., 2010; Li and Churchill, 2010) and GLU 475 

(Stewart et al., 2010; Chen et al., 2017). Coincidently for these traits GBM showed a better 476 

predictive performance than the linear models in the full dataset. Based on their results in 477 

strawberry using convolution neural networks, Zingaretti et al. (2020) suggested that 478 

machine learning methods may outperform parametric and semi-parametric models when 479 

the epistatic component is relevant (proportionally to the additive genetic variance) and 480 

narrow-sense heritability is medium to low (below 0.35). This is roughly in line with our 481 

results for CHL (h2 = 0.33), GLU (h2 = 0.11) and BMD (h2 = 0.39). Interestingly, in our results 482 

the superiority of predictive ability from GBM compared to the parametric models was higher 483 

for the trait with lower heritability (GLU) than for CHL and BMD. Low-heritability traits imply 484 

that a smaller portion of observed variance is explained by the additive component, and 485 

therefore, any other non-linear effects might explain proportionally more of the phenotypic 486 

variance than in high-heritability traits. This larger proportion of the phenotypic variance with 487 
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a non-linear origin can more easily be captured by the GBM model, increasing performance 488 

of the model for such traits. Overall, the observed ranking of model performance across 489 

anticipated trait architecture was in line with previously reported results. In a detailed 490 

simulation study, Abdolahi-Arpanahi et al. (2020) showed that for traits controlled by many 491 

QTL (1000) with only additive effects, GBLUP and BayesB outperformed any machine 492 

learning approach, while for traits controlled by a small number of QTL (100) with non-493 

additive effects, GBM largely outperformed other parametric and non-parametric models. 494 

Note that in their study, traits were simulated with only additive or non-additive effects, which 495 

is not expected to be the case in real world situations. However, their results on these 496 

extreme cases, are a robust indication of what to expect from each type of genomic 497 

prediction model. The similarity between results obtained in the present- and the afore-498 

mentioned studies are in line with the current knowledge of genetic architecture of the 499 

analyzed traits (Table 1). 500 

The efficient built-in feature extraction from GBM enables pre-screening of SNPs 501 

(Lubke et al., 2013; Li et al., 2018); and, therefore, minimize the loss in accuracy when 502 

reducing the number of markers in a genotype panel. The performance of GBM on pre-503 

selection of informative SNP markers varied across traits and models subsequently used for 504 

phenotype prediction. When considering the highly polygenic traits (BW10, BW15, BW20, 505 

FATP and TRGL), using pre-selected SNP markers generally decreased accuracy of 506 

GBLUP. However, for ENET and GBM, in certain situations a subset of pre-selected SNP 507 

tended to yield higher predictive accuracy than using the complete SNP panel (Figure 3). For 508 

traits with evidence of non-linear effects (BMD, CHL and GLU), a similar pattern was 509 

observed, with the difference that the use of subsets of markers more commonly resulted in 510 

higher predictive accuracy than when fitting the models with all available SNP. After pre-511 

selection of informative markers, GBM showed the biggest gains in accuracy across traits 512 

and models, which is expected, since we used a GBM model to accomplish the former. 513 

Azodi et al. (2019) observed that feature selection (using the random forest method) notably 514 
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improved prediction accuracies when using artificial neural networks (ANN) in multiple plant 515 

species. However, in their case, predictive accuracies using ANN were overall lower than 516 

other models. Using data from Brahman cattle, Li et al. (2018) investigated the potential of 517 

three different ensemble learning methods to pre-select SNPs and showed that GBLUP 518 

accuracies using SNPs preselected with GBM in some cases were actually similar to 519 

accuracies based on all SNPs. Together with our findings, the above-mentioned results 520 

suggest that GBM can be used for pre-screening informative markers, even when further 521 

genomic prediction is performed using traditional linear models, such as GBLUP. One 522 

limitation of ours and all investigations found in literature is the focus in performing feature 523 

selection and further fitting top relevant markers into univariate models. Further research is 524 

needed to expand this from a univariate to multivariate approach for practical implementation 525 

in genomic selection breeding programs.  526 

Curiously, for UCRT the inclusion of pre-selected SNP (from 100 to 500) did not 527 

affect predictive accuracy, which was similar across scenarios and models, but always lower 528 

than using the full SNP panel. This may occur because the optimum number of informative 529 

markers might be above 500 or just that GBM was not successful at pre-selecting 530 

informative markers for this particular trait.  A similar pattern was previously reported by 531 

Azodi et al. (2019) when fitting different numbers of informative pre-selected markers into a 532 

model for genomic prediction in sorghum. Authors observed low and stable prediction 533 

accuracy (around 0.40) when using up to 5% of top markers, but a strong increase when 534 

using more than 5% of top relevant markers, reaching up to 0.60 when using 80% of 535 

available markers. We have replicated the feature selection of top 100, 250, 500 and 1000 536 

SNPs using BayesB instead of GBM. Results suggest a superiority of GBM for pre-selecting 537 

informative markers (Supplementary Material – Figure S1) as predictive accuracy across 538 

traits was consistently lower when using BayesB compared to using GBM for the same task. 539 

The size of the reference population and the strength of the connectedness between 540 

reference and validation subsets have been shown to influence GP accuracies from linear 541 
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models (Habier et al., 2007; Wientjes et al., 2013; Liu et al., 2015). In terms of 542 

connectedness, maximizing predictive performance involves maximizing connectedness 543 

between reference and validation populations, while simultaneously minimizing 544 

connectedness within the reference population (Pszczola et al., 2012). Although extensive 545 

research has been done over this topic regarding traditional GP using parametric models, 546 

this is not the case for ML models. In addition to that, much has been discussed in literature 547 

about how “data-hungry” machine learning models could be. However, studies have not only 548 

shown no clear superiority of predictive performance from machine learning over parametric 549 

models when using large datasets (Bellot et al., 2018), but also good performance of the 550 

same machine learning models when using datasets of hundreds of individuals (Azodi et al., 551 

2019; Zingaretti et al., 2020; Bargelloni et al., 2021). When compared to the predictive 552 

performance of linear models, GBM had competitive results for most traits and a superior 553 

performance for BMD, CHL and GLU when using the full dataset (Figure 2). However, this 554 

relatively good performance was not maintained for NoGAP, GAP9 and GAP89 scenarios 555 

that contained less data (Figure 4). This pattern was observed across all traits and scenarios 556 

and may indicate that using only 300 individuals in the reference subset affected more 557 

drastically the predictive performance of the GBM model than GBLUP, BayesB or ENET. 558 

Overall, the decrease in accuracy observed from NoGAP to GAP89 was also more severe 559 

for GBM than for other models. We hypothesize that this could happen because as the 560 

distance between reference and validation populations increases, the frequency of 561 

recombination events also increases between genotypes from individuals in the two subsets. 562 

As GBM implicitly fits SNPxSNP interactions, the increased number of recombinations will 563 

impair the accurate estimation of allele combinations and interactions. 564 

The ultimate aim of genomic prediction in the breeding context is to make accurate 565 

selection decisions early in the animal’s life. Therefore, comparing the top ranked individuals 566 

between methods is a useful way to understand how different these are in practical terms. In 567 

the present study, independent of the trait analyzed, linear models shared many more 568 
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individuals among the top 20 best from the three models (GBLUP, BayesB and ENET) than 569 

with GBM. For GLUC, for which we expected non-additive effects, the similarity between 570 

rankings for linear models was lower, while the number of unique animals for a single model 571 

were higher. On the other hand, as we consider BW10 to be controlled mostly by additive 572 

effects, the absence of relevant non-additive effects is probably the cause of lesser 573 

differences between linear models and GBM regarding selection decisions. 574 

We evaluated the overlap among top ranked SNP between the different models 575 

(Figure 5, Supplementary Material – Figure S3). One thing that must be acknowledged is 576 

that there are differences in the way each of the different models estimate the relevance of a 577 

single SNP. This may affect the comparison of the overlapping relevant genomic regions 578 

between methods for a certain trait. For the linear models, SNP relevance is based on 579 

changes observed at the phenotypic level by the change in allelic dosage (0,1,2), while for 580 

GBM a SNP is considered relevant when the inclusion of this SNP in the decision tree 581 

contributes to a reduction in prediction error, and this can be affected by other SNP also 582 

used in the same decision tree. On the other hand, when used for genomic prediction, these 583 

differences will impact the obtained genomic predictions and thereby indirectly impact 584 

selection decisions. Therefore, this simple comparison of SNP ranks is informative to 585 

understand the similarity of outcomes from different models. 586 

The asymmetry of results obtained from the overlapping top ranked SNP between 587 

models can be seen comparing values below and above diagonals in Figure 5 (C and D). 588 

The strongest driver of the differences observed seems to be the ability of models to perform 589 

variable selection. When starting comparisons from GBLUP (first row above diagonals in 590 

Figure 5 - C and D), there were many SNP located in specific short genomic regions among 591 

the top 1000 ranked SNP for this model. Several top markers from GBLUP were in high LD 592 

with at least one top ranked marker from the other models. In contrast, the variable selection 593 

applied by BayesB, ENET and GBM, resulted in fewer SNPs within a given genomic region 594 

to be among the top ranked ones. As a consequence, the number of top ranked SNP in high 595 
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LD with top ranked SNPs from the other models was much lower. Therefore, the difference 596 

between values above and below diagonal are directly related to the difference in magnitude 597 

of penalization applied to markers between any given pair of models. When comparing 598 

results from genomic prediction of height in maize using BayesA, ENET and random forest 599 

models, Azodi et al. (2019) have observed marked dissimilarity among the top 8000 600 

markers. Results showed that BayesA and ENET shared 1589 (20%) markers, while RF 601 

shared 328 (4%) markers with BayesA and 475 (6%) with ENET. In the present study, this 602 

higher similarity among SNP ranks between linear models in addition to much lower 603 

similarity between linear models and an ensemble machine learning model (random forest in 604 

Azodi et al. [2019] or GBM in the present study) was also observed for BW10. At the same 605 

time, the difference between average SNP overlaps between two linear models or between a 606 

linear model and GBM was much lower for GLUC. From these results we can hypothesize 607 

that linear models have similar SNP rankings for polygenic traits because the underlying 608 

genetic architecture is in line with assumptions and parametrization considered in such 609 

models, while the presence of non-linear effects is probably captured differently by the 610 

distinct linear models, generating the observed overall dissimilarity. 611 

 612 

CONCLUSION 613 

 Gradient boosting machine had a competitive performance for genomic prediction of 614 

complex phenotypes in mouse specifically for traits with non-additive effects where it can 615 

outperform linear models. The gradient boosting machine was more affected by datasets 616 

with less data points and by decrease in relationship between reference and validation 617 

populations than linear models. Considerable differences between the top ranked animals 618 

suggest that using linear models versus GBM will result in clear differences in selection 619 

decisions. The built-in feature selection from GBM seems beneficial to extract a smaller 620 

number of informative markers and in some cases can improve accuracies even when 621 

parametric models are used for prediction.  622 
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Table 1. Number of available observations (N), estimated heritability, assumptions from 845 
literature regarding the genetic architecture of the trait and references. 846 

Trait N Heritability Genetic Architecture Reference 

BMD 831 0.39 Evidence of epistatic effects Tyller et al. (2016) 

BW10 834 0.42 Highly polygenic 
Tyller et al. (2017) 
Chitre et al. (2018) 

BW15 829 0.34 Highly polygenic 
Tyller et al. (2017) 
Chitre et al. (2018) 

BW20 827 0.37 Highly polygenic 
Tyller et al. (2017) 
Chitre et al. (2018) 

FATP 831 0.44 Highly polygenic Tyller et al. (2017) 

CHOL 819 0.33 
QTL with high effect 

Evidence of epistatic effects 

Stewart et al., (2010)  
Li and Churchill (2010) 

Zhang et al. (2012) 

GLUC 816 0.12 Evidence of epistatic effects 
Stewart et al. (2010) 
Chen et al. (2017) 

INSUL 820 0.21 
QTL with high effect 

 
Keller et al. (2019) 

TRGL 820 0.29 Highly polygenic Stewart et al. (2010) 

UCRT 799 0.13 
Highly polygenic 

Evidence of dominance effects 
Perry (2019) 

1 Standard error was close to 0.08 for all traits. 847 

 848 

 849 

 850 

 851 

 852 

 853 

 854 

 855 

 856 

 857 

 858 

 859 

 860 

 861 

 862 

.CC-BY-NC-ND 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is 

The copyright holder for this preprintthis version posted August 4, 2021. ; https://doi.org/10.1101/2021.08.02.454826doi: bioRxiv preprint 

https://doi.org/10.1101/2021.08.02.454826
http://creativecommons.org/licenses/by-nc-nd/4.0/


31 
 

Table 2. Prediction error (mean squared error) obtained from GBLUP, BayesB, ENET and 863 
GBM for 10 phenotypes analyzed in the diversity outbred mouse population. Per trait, the 864 
lowest values are indicated in bold. 865 

Trait1 GBLUP BayesB ENET GBM 

BMD 0.886 0.929 0.904 0.885 

BW10 0.023 0.029 0.025 0.024 

BW15 0.025 0.030 0.026 0.025 

BW20 0.029 0.033 0.030 0.030 

CHOL 0.068 0.104 0.080 0.066 

FATP 0.486 0.523 0.488 0.493 

GLUC 0.054 0.061 0.056 0.051 

TRGL 1.339 1.503 1.373 1.367 

INSUL 0.198 0.261 0.233 0.202 

UCRT 0.019 0.022 0.020 0.020 
1Bone mineral density at 12 weeks (BMD), Body weight at 10, 15 and 20 weeks (BW10, 866 
BW15 and BW20); circulating cholesterol at 19 weeks (CHOL), adjusted body fat percentage 867 
at 12 weeks (FATP), circulating glucose at 19 weeks (GLU), circulating triglycerides at 19 868 
weeks (TRGL), circulating insulin at 8 weeks (INSUL) and urine creatinine at 20 weeks 869 
(UCRT) 870 
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FIGURES DESCRIPTION 886 

 887 

Figure 1. Graphical representation of the hyper-parameter tuning grid-search scheme 888 
implemented to obtain the best GBM and ENET models. 889 

 890 

Figure 2. Prediction accuracy, including standard errors, obtained from GBLUP, BayesB, 891 
elastic net (ENET) and gradient boosting machine (GBM) for the traits: bone mineral density 892 
at 12 weeks (BMD), Body weight at 10, 15 and 20 weeks (BW10, BW15 and BW20); 893 
circulating cholesterol at 19 weeks (CHOL), adjusted body fat percentage at 12 weeks 894 
(FATP), circulating glucose at 19 weeks (GLUC), circulating triglycerides at 19 weeks 895 
(TRGL), circulating insulin at 8 weeks (INSUL) and urine creatinine at 20 weeks (UCRT). 896 
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Figure 3. Prediction accuracy, including standard errors, for the analyzed traits for GBLUP 898 
(top), ENET (mid) and GBM (bottom) fitting exclusively the top 100 (SNP100), 250 899 
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(INSUL) and urine creatinine at 20 weeks (UCRT). 905 
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Figure 4. Distribution of prediction accuracies (from 20 replicates) for scenarios including 907 
progressive distance between reference and validation sets using GBLUP, BayesB, elastic 908 
net (ENET) and gradient boosting machine (GBM) models. Traits: Bone mineral density at 909 
12 weeks (BMD), Body weight at 10, 15 and 20 weeks (BW10, BW15 and BW20); circulating 910 
cholesterol at 19 weeks (CHOL), adjusted body fat percentage at 12 weeks (FATP), 911 
circulating glucose at 19 weeks (GLUC), circulating triglycerides at 19 weeks (TRGL), 912 
circulating insulin at 8 weeks (INSUL) and urine creatinine at 20 weeks (UCRT) 913 

 914 

Figure 5. (A and B) Venn diagrams showing the unique animals among the top 20 (above) 915 
predicted values (10% of the validation subset) between models and (C and D) the number 916 
of SNP markers in common or in high LD (r2 > 0.90) among the top 1,000 SNP from GBLUP, 917 
BayesB (BB), elastic net (ENET) and gradient boosting machine (GBM) for BW10 (A and C) 918 
and GLUC (B and D). In C and D, values represent the overlap of SNP when Model_1 (y-919 
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