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Key points: 
 
1. Heme induces platelet mtROS production by inhibiting complex-V activity via TLR4 

signaling. 
2. Heme stimulated platelet granule secretion is regulated by mtROS. 
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Abstract 

Hemolysis is a pathological component of many diseases and is associated with thrombosis and 

vascular dysfunction. Hemolytic products, including cell-free hemoglobin and free heme directly 

activate platelets. However, the effect of hemolysis on platelet degranulation, a central process 

in not only thrombosis, but also inflammatory and mitogenic signaling, remains less clear.  Our 

group showed that hemoglobin-induced platelet activation involved the production of 

mitochondrial reactive oxygen species (mtROS). However, the molecular mechanism by which 

extracellular hemolysis induces platelet mtROS production, and whether the mtROS regulate 

platelet degranulation remains unknown.  Here, we demonstrate using isolated human platelets 

that cell free heme is a more potent agonist for platelet activation than hemoglobin, and 

stimulates the release of a specific set of molecules from the α-granule of platelets, including the 

glycoprotein thrombospondin-1 (TSP-1).  We uncover the mechanism of heme-mediated platelet 

mtROS production which is dependent on the activation of platelet TLR4 signaling and leads to 

the downstream phosphorylation of complex-V by the serine kinase Akt. Notably, inhibition of 

platelet TLR4 or Akt, or scavenging mtROS prevents heme-induced granule release in vitro.  

Further, heme-dependent granule release is significantly attenuated in vivo in mice lacking TLR4 

or those treated with the mtROS scavenger MitoTEMPO. These data elucidate a novel 

mechanism of TLR4-mediated mitochondrial regulation, establish the mechanistic link between 

hemolysis and platelet degranulation, and begin to define the heme and mtROS-dependent 

platelet secretome. These data have implications for hemolysis-induced thrombo-inflammatory 

signaling and for the consideration of platelet mitochondria as a therapeutic target in hemolytic 

disorders. 
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Introduction 

Intravascular hemolysis occurs in a number of pathologies ranging from genetic 

hemoglobinopathies1-3 to more acute conditions such as sepsis4, pre-eclampsia5,6, parasitic 

infection7,8, or in patients after cardiac surgery9,10. It is well established that patients with chronic 

hemolysis, such as in sickle cell disease, are at significantly greater risk for thrombotic 

complications11,12 as well as endothelial dysfunction13,14 and chronic vasculopathy15-17 which 

lead to morbidities such as stroke18,19 and pulmonary hypertension (PH)20-24. However, the 

mechanisms that link hemolysis, thrombosis, and vasculopathy have not fully been elucidated. 

Platelets, when activated, are central mediators of thrombosis25-27, sentinels of inflammatory 

signaling 27,28, and can also propagate vascular responses through the synthesis and release of 

vasoactive molecules from alpha and dense granules29-31. Notably, cell-free hemoglobin (Hb) or 

free heme released via hemolysis stimulates platelet thrombotic activation32-36 and promotes 

inflammatory signaling37,38 . At a mechanistic level, these effects have been linked to Hb-

dependent modulation of platelet mitochondrial function. Specifically, Hb inhibits complex V of 

the platelet mitochondrial electron transport chain, leading to an increase in mitochondrial 

reactive oxygen species (mtROS) production, which stimulates platelet activation32. Consistent 

with this mechanism, specific scavengers of mtROS attenuate hemolysis-induced platelet 

activation32 and inflammatory signaling39 ex vivo and thrombosis in murine models40. Despite 

the recognition that Hb-induced mtROS regulates platelet activation and inflammatory signaling, 

the mechanisms by which hemoglobin or heme released via hemolysis stimulates mtROS 

production within the platelet is unknown.  

 

Platelet degranulation, while associated with platelet activation, is a tightly regulated process. 

Although it is estimated that platelet granules contain over three hundred diverse molecules41,42, 

specific patterns of granule contents are released in response to differential platelet agonists31,43-

45. Thrombospondin-1 (TSP-1) a multifunctional glycoprotein that is stored in and secreted from 

platelet α-granules regulates thrombosis46-48 as well as inflammatory49,50 and vascular 

signaling50,51. For example, once secreted, TSP-1 interacts with cell adhesive receptors and 

integrins to potentiate platelet activation and stabilize platelet aggregation47,52,53. Through its 

selective interaction with CD36 or CD47 on macrophages, other leukocytes, and endothelial 

cells, TSP-1 can stimulate the inflammatory response through the potentiation of NFkB54 and 
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TGF-β signaling49,55,56 and enhancement of leukocyte migration49,57. Thrombospondin-1 also 

inhibits endothelial nitric oxide signaling and enhances matricellular remodeling to propagate 

vascular remodeling58,59. Notably, plasma and platelet TSP-1 levels are significantly increased 

in conditions with components of hemolysis such as sickle cell disease60,61 and sepsis62,63 

respectively, and genetic inhibition of TSP-1 signaling attenuates vasculopathy in murine models 

of sickle cell disease64 and prevents inflammation and morbidity in a murine model of cecal 

ligation and puncture induced sepsis65. While these studies highlight the role of platelet-derived 

TSP-1 as a mediator of thrombo-inflammation and vasculopathy, it is unknown whether 

hemolysis-derived products stimulate TSP1 release, what other granule molecules are released 

by platelets upon encountering heme, and whether heme-dependent degranulation is regulated 

by platelet mtROS production.   

 

In this study, we test whether heme and Hb released via hemolysis stimulate platelet granule 

release and determined the role of mtROS in this process. We demonstrate that cell free heme 

is a more potent stimulator of platelet mtROS production and TSP-1 release than Hb, and that 

mtROS production is required for the heme-dependent release of TSP-1 and other granule 

molecules.  Further, we demonstrate that mechanistically heme-induced mtROS production 

requires the activation of platelet TLR4 signaling culminating in the activation of the 

serine/threonine kinase Akt, which phosphorylates complex V to inhibit its activity, leading to 

mtROS generation. These data have implications for the regulation of hemolysis induced 

thrombotic and vascular signaling, as well as for platelet mitochondria as a therapeutic target in 

hemolytic disease. 

 

Materials and Methods 

All Chemicals were purchased from Sigma-Aldrich (St. Louis, MO) and antibodies from BD 

Biosciences (San Jose, CA) unless otherwise noted.  

 

Human blood collection and platelet isolation 

Venous blood was collected from human participants by standard venipuncture after written 

informed consent was obtained and in accordance with study #19030018 (approved by the 

Institutional Review Board of the University of Pittsburgh).  
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Platelet rich plasma (PRP) was separated from whole blood collected in acid-citrate dextrose 

(ACD) Solution-A anticoagulant by centrifugation at 500 rpm for 20 minutes. Platelets were then 

pelleted in the presence of PGI2 (1μg/mL) by centrifuging the PRP at 1500xg for 10 minutes. 

These platelets were washed with erythrocyte lysis buffer containing PGI2 to remove any residual 

erythrocytes and resuspended in modified Tyrode’s buffer (20 mM HEPES, 128 mM NaCl, 12 

mM sodium bicarbonate, 0.4 mM sodium phosphate monobasic, 5 mM dextrose, 1 mM MgCl2, 

2.8 mM KCl, pH 7.4). The platelet count was determined by Hemavet® 950. 

 

Murine Studies 

TLR4-flox and global TLR4 knockout mice (TLR4-/-) were used in accordance with approval from 

the University of Pittsburgh Institutional Animal Care and Use Committee. Male mice 10-12 

weeks in age (24-27g) were administered cell free heme (110 mg/kg) or saline (vehicle) by tail 

vein injection. Some groups of mice were pre-treated with MitoTEMPO (300 μM) administered 

in the drinking water for 72 hours.  Platelet mtROS (assessed via mitoSOX as described below) 

and cell free plasma concentrations of TSP-1, interleukin-1 beta (IL-1β), and platelet derived 

growth factor-B (PDGF-B) were measured 20 min after heme administration. 

  

Measurement of Platelet activation 

Platelet activation was measured in washed platelets by staining with anti-CD41a-PE, anti-

CD62P (P-selectin)-APC and PAC1 binding antibody-FITC (to bind activated GPIIb/IIIa), and 

then quantification of these markers and CD41a (as a marker of platelets) by flow cytometry 

(LSR-Fortessa; Becton Dickinson).  

In all experiments, washed platelets (2.0-2.5 x 106/mL) were incubated with heme for 30 minutes 

prior to measurement of activation. In some experiments, platelets were pre-treated with TLR4 

neutralizing antibody (5 µg/mL), 2 µM of BX795 (TBK1 inhibitor), 100 nM of N-[1-[2-(4-

Morpholinyl) ethyl]-1H-benzimidazol-2-yl]-3-nitrobenzamide (IRAK1/4 inhibitor), 5 nM of (5Z)-7-

Oxozeaenol (TAK1 inhibitor), and/or 10µM of MitoTEMPO (mtROS scavenger). 

 

Measurement of mtROS 

Treated washed platelets were pelleted at 1500xg for 5 min, resuspended in HBSS and 

incubated with 10 µM of MitoSOX™ Red for 5 min, after which fluorescent intensity (510/580 
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nm) was measured kinetically as previously described32. During the pretreatment of platelets 

with ARQ092 DMSO was used as vehicle control. 

 

Measurement of Thrombospondin-1 (TSP-1) release from platelets 

TSP1 levels were measured using the Human Thrombospondin-1 DuoSet ELISA kit (R&D 

systems; DY3074) in the supernatant surrounding treated platelets. During the pretreatment of 

platelets with ARQ092 DMSO was used as vehicle control. 

 

Dot blot assay 

Conditioned supernatant collected from treated washed platelets was blotted (30µL) on to the 

0.4µm nitrocellulose membrane using Bio-Dot Apparatus. The membrane was blocked with 

blocking buffer for 30 min at room temperature and followed by incubation with primary antibody 

overnight at 4oC (all primary antibodies used for dot blot were purchased form , R&D systems; 

anti-Cathepsin A, AF1049; anti-Angiostatin, AF226; anti-CD40L, AF617; anti-Kininogen, 

AF1569; anti-PAI-1, AF1786; anti-Thrombospondin-1, AF3074; AF795; anti-CXCL7, AF393; 

anti-IL-1β, AF201; anti-PDGF-B, AF220; anti-TGF- β, AF246; anti-FGF basic, AF233) and 

IRDye® 800CW Donkey anti-Goat IgG secondary antibody for 40min at room temperature. The 

blots were imaged using a LI-COR imaging system and analyzed using Image Studio software. 

 

Mitochondrial Complex V activity assay 

The enzymatic activity of complex V was measured by spectrophotometrically by kinetic assay 

as previously described32. 

 

Immunoprecipitation of Complex V 

Treated platelets were lysed with RIPA lysis buffer including Halt protease and phosphatase 

inhibitor cocktail. The beta subunit of complex V and proteins bound to it were 

immunoprecipitated using an antibody to the beta subunit of ATP synthase (Millipore, MAB3494) 

in accordance with the Pierce™ Co-Immunoprecipitation Kit (Cat.No:26149). 

Immunoprecipitated samples were subjected to western blot by standard procedure using anti-

pAKT (S473; Cell Signaling, 4060S) and anti-ATP synthase beta subunit antibodies.  The blots 

were imaged using a LI-COR imaging system and analyzed using Image Studio software. 
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Statistics 

Unpaired parametric t-tests were used to compare individual group samples and ANOVA along 

with Tukey post-hoc test were used to make multiple comparisons. Statistical analyses were 

performed using GraphPad Prism 9 software. P-values <0.05 were considered significant. Data 

are presented as mean ± standard error of the mean (SEM) unless otherwise specified. 

 
Results 
 
Heme is a more potent platelet agonist than Hb 

To determine whether heme stimulates platelet activation as potently as Hb, isolated washed 

human platelets were incubated with heme (0-20µM) or Hb (0-40µM) and platelet activation was 

measured. Platelets treated with heme or Hb both showed a concentration dependent increase 

in surface P-selectin levels and PAC-1 antibody binding (as a measure of activated GPIIb/IIIa), 

indicative of platelet activation (Figure 1A-B). However, heme treatment stimulated a greater 

level of surface P-selectin and active GPIIb/IIIa at every concentration measured (70.9 ± 4.03% 

P-selectin; 68.14 ± 2.76% PAC-1 binding at 2.5 μM) compared to Hb (7.59 ± 0.40% P-selectin; 

10.41 ± 2.24% PAC-1 binding at 2.5 μM) (Figure 1A-B). These results indicate that heme and 

Hb both activate platelets, but heme is a more potent agonist than Hb for platelet activation. To 

investigate the role of heme in modulating platelet function beyond activation, we measured the 

release of TSP-1 from α-granules of heme or Hb treated platelets, as a marker of platelet granule 

secretion. We observed significantly greater levels of TSP-1 release in heme stimulated platelets 

compared to those stimulated with Hb (Figure 1C), similar to the effect on platelet activation. 

Since the platelet granule secretome is agonist specific, we next measured the level of release 

of a panel of nine common platelet granule molecules in response to heme stimulation.  We 

found that heme induced the release of seven of the granule factors measured (CXCL7, FGF 

basic, TGFβ, IL-1β, PDGF-B, angiostatin, kininogen), while it did not stimulate the release of 

CD40L and PAI-1 (Figure 1D). These data demonstrate that heme stimulates the release of a 

specific pattern of granule molecules. 

 

Heme- induced mtROS production stimulates platelet granule release 
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We previously showed that Hb inhibits platelet mitochondrial complex V activity, which increases 

mitochondrial inner membrane potential to promote mtROS production, an effect that was 

associated with platelet activation32.  To test whether heme similarly modulates platelet 

mitochondrial function, we treated platelets with heme and measured complex V activity and 

mtROS production. Heme treatment significantly decreased platelet mitochondrial complex V 

activity (Figure 2A), and concomitantly increased mtROS production (Figure 2B).  

To determine whether mtROS production was required for platelet granule release, we 

measured the levels of release of the eight granule factors identified to be stimulated by heme 

(TSP1, CXCL7, FGF basic, TGFβ, IL-1β, PDGF-B, angiostatin, kininogen) from heme treated 

platelets in the presence and absence of MitoTEMPO (10µM), a mtROS scavenger. Treatment 

of platelets with MitoTEMPO significantly decreased heme-induced mtROS levels (Figure 2B) 

and also significantly attenuated heme-induced release of TSP1, CXCL7, FGF basic, IL-1β, 

PDGF-B, angiostatin (Figure 2C-D). 

 

Heme inhibits mitochondrial complex V and induces mtROS in a TLR4 dependent manner  

To determine the mechanism by which extracellular heme mediates intra-platelet signaling, we 

tested whether a platelet surface receptor was required for heme-mediated platelet granule 

secretion, focusing on TSP-1 as a marker of heme induced granule release. Since TLR4 is 

known to mediate heme-dependent responses in other cell types66,67, we blocked platelet TLR4 

with TLR4 neutralizing antibody (5 µg/mL) and measured complex V activity and mtROS 

production in platelets after treatment with heme (2.5 μM). Blocking platelet TLR4 attenuated 

heme-dependent complex V inhibition (Figure 3A) and significantly decreased heme-induced 

mtROS production (Figure 3B). Consistent with heme induced TSP-1 secretion being 

dependent on mtROS production, the presence of TLR4 neutralizing antibody also significantly 

decreased heme-induced TSP-1 secretion (Figure 3C).  

 

Given that blocking platelet surface TLR4 resulted in decreased heme-induced platelet mtROS 

production by improving complex V activity and attenuated TSP-1 secretion from heme treated 

platelets, we sought to determine how TLR4 downstream signaling inhibits complex V activity. 

We used pharmacological inhibitors to inhibit key downstream kinases in the TLR4 pathway.  

We blocked signaling associated with the TLR4 adaptor protein MyD88 with inhibitors of kinases 
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downstream of MyD88 - IRAK1/4 and TAK1. Additionally, we used inhibitors of TBK1 kinase to 

test the role of MyD88-independent signaling. Inhibition of TBK1, IRAK1/4 or TAK1 individually 

significantly attenuated heme-dependent complex V inhibition (Figure 3A). Similarly, mtROS 

production in heme-treated platelets was significantly decreased in the presence of the inhibitors 

of TBK1, IRAK1/4 or TAK1. (Figure 3B). Consistent with the requirement for complex V inhibition 

and mtROS production to induce TSP-1 release by heme, inhibitors of downstream TLR4 

signaling also significantly attenuated TSP-1 release from the heme-treated platelets (Figure 

3C). Collectively, these data suggest that heme-dependent TLR4 activation inhibits 

mitochondrial complex V and induces mtROS production through MyD88 dependent and 

independent pathways. 

 

Heme mediated TLR4 signaling promotes AKT phosphorylation to inhibit complex V 

activity. 

Akt is a serine/threonine-specific protein kinase that can be activated downstream of TLR4 and 

is known to bind to and phosphorylate a number of mitochondrial proteins, including the α and β 

subunits of complex V, to regulate their function 68,69.  To determine whether heme-induced TLR4 

activation requires AKT activation to inhibit complex V activity, we tested whether AKT binds to 

complex V and examined the phosphorylation status of AKT in heme treated platelets.  

Immunoprecipitation of the beta-subunit of complex V from heme treated platelets showed that 

significant levels of Akt were associated with complex V, and measurement of pAKT(S473) 

showed significant activation of the kinase (Figure 4A). When phosphorylation of AKT was 

assessed in heme treated platelets pre-treated with blockers of TLR4 signaling (TBK1, IRAK1/4 

or TAK1 inhibitors), lower levels of pAKT(S473) bound to complex V were measured (Figure 

4A). These data demonstrate that heme-mediated activation of TLR4 stimulates downstream 

AKT phosphorylation and binding to complex V.   

To determine whether heme-induced activation of AKT regulates complex V activity, we treated 

platelets with heme in the presence and absence of ARC0092, a small molecule that prevents 

phosphorylation of AKT at S47370, and measured complex V activity. While heme treatment 

inhibited complex V activity, this effect was significantly attenuated when AKT phosphorylation 

was blocked (Figure 4B). Collectively, these data demonstrate that heme-induced TLR4 
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activation stimulates the downstream activation of AKT, which binds to complex V and inhibits 

its activity. 

 

Given that heme induced mtROS production is essential for TSP-1 release from platelets, and 

complex V inhibition (which leads to mtROS production) is dependent on AKT phosphorylation, 

we tested whether blocking AKT activation decreases heme-induced mtROS production and 

TSP-1 release. We pretreated platelets with ARC0092, incubated them with heme and 

measured platelet mtROS production and TSP-1 release. As expected, heme increased both 

platelet mtROS production and TSP-1 release.  However, both these effects were significantly 

decreased upon blocking AKT phosphorylation (Figure 4C-D). 

 

To determine whether the heme-induced pathway elucidated ex vivo was relevant in a 

physiological setting in vivo, TLR4-/- mice and corresponding control mice (TLR4 flox) were 

administered cell free heme (110mg/kg) to mimic hemolysis and platelet mtROS was measured. 

While heme induced platelet mtROS production in control mice, this effect was significantly 

attenuated in TLR4-/- mice (Figure 5A). Measurement of plasma levels of TSP-1, PDGF-B, and 

IL-1β showed that heme-induced release of these factors was also significantly attenuated in 

TLR4-/- mice. Consistent with the dependence of mtROS on TLR4 signaling, treatment with 

MitoTEMPO attenuated heme-induced granule secretion in control mice but had no effect in 

TLR4-/- mice (Figure 5B).  

 

Discussion 

In this study we demonstrate that while heme and hemoglobin both stimulate platelet activation 

and TSP-1 release, heme is a more potent platelet agonist than Hb. Mechanistically, we show 

that heme-mediated TSP-1 release relies on the production of platelet mtROS generation. 

Further, we elucidate the mechanism by which heme stimulates mtROS production, and find 

that mtROS production is dependent on heme-mediated activation of TLR4 signaling, 

culminating in the Akt-dependent phosphorylation and inhibition of complex V activity.  This 

pathway has implications for not only understanding the pathogenesis of hemolysis-induced 

thrombotic and inflammatory diseases, but also for the development of potential therapeutics for 

these conditions. 
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Prior studies have independently reported that heme35,36 and Hb32-34 stimulate platelet activation, 

however their potency in the context of platelet agonism has previously not been compared.  We 

show here that heme is a more potent mediator of both platelet activation and TSP-1 release 

than Hb.  It is unclear what factors underlie this increased potency of heme. Heme and Hb are 

biochemically distinct species and heme can selectively bind to multiple receptors and 

transcription factors35,67,71,72. Thus, it is likely that heme is either a stronger activator of TLR4 or 

stimulates multiple signaling pathways that concomitantly contribute to platelet activation and/or 

TSP-1 secretion. While prior studies demonstrate heme-induced activation of TLR467,71, it 

remains unclear whether heme activates TLR4 through traditional ligand binding, and whether 

Hb acts similarly.  However, consistent with the potential of heme activating concomitant 

pathways of platelet agonism, Bourne and colleagues showed that heme-mediated activation of 

C-type-lectin-like-receptor-2 (CLEC-2) contributes to platelet activation35. Notably, CLEC-2 

activation was observed with higher concentrations of heme (6.25 μM)35 than used in our study 

(2.5 μM). Given the biphasic effect of heme observed by both groups, in which maximal platelet 

agonism is observed at ~5-6μM heme, it is possible that while both pathways contribute to heme-

mediated platelet agonism, the contribution of these pathways potentially shifts with increasing 

concentrations of heme. Further study is required to delineate the contribution of each pathway, 

their potential cross-talk, and whether stimulation of multiple pathways makes heme a more 

efficient platelet agonist than Hb. 

Though heme-mediated platelet activation is well documented 35,36, heme-induced platelet 

granule release has not been extensively studied.  It is estimated that platelet granules store 

over three hundred molecules, including mitogens, chemokines, and thrombotic regulators, 

which are released in discreet patterns dependent on the specific stimulus31,43-45. This study 

begins to define the heme-dependent platelet secretome by showing that heme induces the 

release of TSP-1, PDGF-B, IL-1β, FGF basic, angiostatin and CXCL7. Importantly, we also 

identified molecules that are not released in response to heme such as CD40L and PAI-1. 

Identification of the heme specific platelet secretome may provide a critical link between 

hemolysis and pathogenic vascular signaling. For example, platelet derived TSP-1 can promote 

both thrombosis and vascular pathogenesis through its interaction with CD36 on circulating cells 

and CD47 in endothelial cells 47,73-75.  In severe sepsis patients, plasma TSP-1 levels have been 

found to be significantly elevated63, and recent murine studies of sepsis models show that 
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independent of pathogen load, free heme promotes thrombosis76. Thus, it is interesting to 

speculate that heme-induced platelet TSP-1 release potentially drives pathogenic thrombosis in 

sepsis. Similarly, in sickle cell disease, platelet TSP-1 has been implicated in the pathogenesis 

of pulmonary hypertension77, which is a major cause of morbidity in these patients and is also 

associated with hemolysis60. Notably, plasma TSP-1 levels are significantly elevated in patients 

with sickle cell disease in steady state60,78. In patients who are in vaso-occlusive crisis, which is 

associated with even higher rates of hemolysis than in steady state, TSP-1 levels associate with 

lower rates of hemolysis60 .  This is likely consistent with the biphasic curve (Figure 1) for heme-

dependent TSP-1 release that we demonstrate in this study. 

 

While prior studies have demonstrated that heme induces ROS production in the platelet, this 

study is the first to demonstrate the mitochondrion as a significant source of heme-induced ROS 

and to define the mechanism by which heme induces mtROS. Our data demonstrate that heme 

inhibits mitochondrial complex V to induce mtROS production, and that this inhibition of complex 

V requires heme-mediated activation of platelet TLR4 signaling which ultimately results in Akt 

activation and association with complex V. Our data are consistent with accumulating reports 

demonstrating that phosphorylated Akt can translocate and accumulate in the mitochondria, and 

specifically that Akt can phosphorylate mitochondrial complexes, including the β-subunit of 

complex-V68,69. Our data are not entirely consistent with other reports of Akt-dependent complex 

V phosphorylation which show that this association leads to activation of the complex V rather 

than the inhibition shown in this study. However, inhibitory and activating phosphorylation sites 

have been identified on complex V β-subunit.  Thus, it is possible that separate stimuli propagate 

Akt-dependent phosphorylation of different sites. Further study identifying the heme-dependent 

phosphorylation site is required for comparison with other stimuli. 

 

The data presented in this study demonstrate that mtROS regulate heme-dependent granule 

release. While a growing number of reports have established the association between mtROS 

production and platelet activation in multiple pathologies79-81, the specific role of mtROS in 

regulating platelet function, particularly granule secretion in response to specific agonists, is less 

clear.  Notably, a recent study demonstrates that agonists such as thrombin receptor activator 

peptide-6 (TRAP-6) activates platelets in a mtROS independent manner, and while scavenging 
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mtROS does not affect TRAP-6 dependent platelet activation, it significantly attenuates platelet 

aggregation80. These data are consistent with mtROS regulation of platelet granule secretion 

independent of regulation of platelet activation. However, further study is required to dissect 

mtROS regulation of platelet activation versus granule secretion, as well as the molecular 

mechanisms by which mtROS cause granule release. However, our in vivo data suggest that 

mtROS scavenging (or TLR4 inhibition to prevent mtROS production) is a potentially viable 

option in preventing heme-induced platelet dysfunction. 

 

In conclusion, this study demonstrates the mechanism by which extracellular heme signals 

through platelet TLR4 to induce platelet mtROS production. Further, we demonstrate that heme-

induced mtROS stimulates platelet granule secretion. The data begin to define the heme-

induced platelet secretome and its regulation by mtROS.  Overall, these studies advance the 

understanding of the mechanisms that link hemolysis to platelet dysfunction.  While further study 

of the secretome is required to determine whether heme-induced secreted products are 

responsible for hemolysis-associated inflammation and vasculopathy, the data herein 

demonstrate a central role for the mitochondrion in heme-dependent platelet dysfunction and 

suggest this organelle as a potential therapeutic target in hemolytic conditions. 
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Figure 1. Heme is a more potent platelet agonist than hemoglobin . Platelet activation

measured by (A) platelet surface P-selectin or (B) activated GPIIb/IIIa levels in heme (blue line) or

methemoglobin (red line) treated platelets. (C) Thrombospondin-1 levels quantified in the releasate

from heme (blue line) or methemoglobin (red line) treated platelets. (D) Dot blot with quantification of

IL-1β, CXCL7, FGF basic, PDGF-B, angiostatin, TGFβ, kininogen, CD40L, PAI-1 levels in the

releasate from heme (2.5µM) treated platelets. Data are represented as Mean ± SEM. ****p<0.0001,

**p<0.01, *p<0.05, ns- not significant. n=3.

(A) (B)

(C)

(D)
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Figure 2. Heme inhibits platelet complex V activity and induces mtROS production that

stimulates granule release. Platelets were treated with heme (2.5 µM) in the presence or

absence of MitoTEMPO (10 µM) or with mitoTEMPO alone and (A) Platelet mitochondrial

complex V activity and (B) mtROS production were measured. (C) Thrombospondin-1 levels in

the platelet releasate were measured. (D) Dot blot along with the quantification of levels of IL-

1β, CXCL7, FGF basic, PDGF-B, angiostatin, TGFβ and kininogen in the platelet releasate.

Data are Mean ± SEM. ****p<0.0001, ***p<0.001, *p<0.05, ns- not significant. n=4

(A) (B) (C)

(D)
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(C)

Figure 3. Heme inhibits platelet complex V activity to induces mtROS production and

TSP-1 release via TLR4. (A) Platelet mitochondrial complex V activity, (B) platelet mtROS

production, and (C) thrombospondin-1 levels in the releasate were measured in heme-treated

platelets in the presence or absence of TLR4 neutralizing antibody (5 µg/mL), pharmacological

inhibitors of TBK1 (2 µM of BX795), IRAK1/4 (100 nM of N-[1-[2-(4-Morpholinyl)ethyl]-1H-

benzimidazol-2-yl]-3-nitrobenzamide), TAK1 ( 5 nM of (5Z)-7-Oxozeaenol). Data are

represented as Mean ± SEM. ****p<0.0001, **p<0.01, ***p<0.001. n=4

(A)

(B)
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pAKT (S473)

Complex-V β-subunit

(A)

(B)

Figure 4. Heme-induced TLR4 signaling activates AKT to inhibit complex V activity in

platelets.

(A) Platelets were treated with heme (2.5 µM) in the presence or absence of TLR4 downstream

signaling blockers (2 µM of BX795 (TBK1.inh), 100 nM of N-[1-[2-(4-Morpholinyl)ethyl]-1H-

benzimidazol-2-yl]-3-nitrobenzamide (IRAK1/4.inh) or 5 nM of (5Z)-7-Oxozeaenol (TAK1.inh),

and pAKT(S473) was measured in immunoprecipitated Complex-V beta subunit from platelet

lysates. pAKT(S473) levels were normalized with complex V beta subunit and plotted as fold

change. (B) Platelet mitochondrial complex V activity (C) mtROS production and (D)

thrombospondin-1 release were measured in platelets pre-treated with or without ARQ092 (10

µM) treated with heme (2.5 µM). Data are represented as Mean ± SEM. ****p<0.0001,

***p<0.001, **p<0.01, ns – not significant. n=4.

(C) (D)
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Figure 5. Heme infused TLR4-/- mice show attenuated mtROS production and heme

induced granule release in platelets. TLR4-/- mice and TLR4fl/fl mice (control mice) were

pretreated with MitoTEMPO (300μM) and injected (i.v.) with heme (110mg/kg). (A) Platelets

mtROS was measured and plasma levels of (B) Thrombospondin-1, (C) Interleukin-1β and (D)

Platelet derived growth factor-B were measured. Data are represented as Mean ± SEM.

****p<0.0001, **p<0.001, ns- not significant. n=5 mice per group in control and heme treated

groups; n=3 to 4 mice in MitoTEMPO treated groups.

(A) (B)

(C) (D)
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