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Abstract 6 

Fewer DNA mutations have been identified in pediatric tumors than adult tumors, suggesting that 7 

alternative tumorigenic mechanisms, including aberrant DNA methylation, may play a prominent role in 8 

pediatric tumors. Methylation is an epigenetic process of regulating gene expression in which methyl 9 

groups are attached to DNA molecules, often in promoter regions. In Wilms tumors and acute myeloid 10 

leukemias, increased levels of epigenetic silencing have been associated with worse patient outcomes. 11 

However, to date, researchers have studied methylation primarily in adult tumors and for specific genes 12 

but not on a pan-pediatric cancer scale. We addressed these gaps first by aggregating methylation data 13 

from 309 noncancerous samples and establishing baseline expectations for each gene. Even though these 14 

samples represent diverse tissue types and population ancestral groups, methylation levels were highly 15 

consistent for most genes. Second, we compared tumor methylation levels against these baseline values 16 

for five pediatric cancer types—Wilms tumors, clear cell sarcomas of the kidney, rhabdoid tumors, 17 

neuroblastomas, and osteosarcomas. Hypermethylation was more common than hypomethylation—as 18 

many as 11.8% of genes were hypermethylated in a given tumor, compared to a maximum of 4.8% for 19 

hypomethylated genes. For each cancer type, genes with the highest variance exhibited consistently 20 
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divergent methylation patterns for distinct patient subsets. We evaluated whether genomic and 21 

epigenomic abnormalities contribute to pediatric tumorigenesis in a mutually exclusive manner but did 22 

not find evidence of this phenomenon. Furthermore, even though oncogenes are commonly upregulated in 23 

tumors, and tumor-suppressor genes are commonly downregulated in tumors, we did not find statistical 24 

evidence that methylation drives such patterns on a broad scale in pediatric tumors. 25 

Introduction 26 

Pediatric tumors are the leading cause of disease-related death for children in developed countries1, and 27 

those who survive pediatric cancer often experience adverse health challenges later in life2. Many 28 

mutations and structural variants have been associated with adult forms of cancer3; however, significantly 29 

fewer genomic abnormalities have been identified in pediatric tumors4. The mutation rate in pediatric 30 

tumors is 14 times less than the mutation rate in adult tumors, implying that different mechanisms may be 31 

involved in pediatric-cancer development than in adult cancers5. Of the mutations that have been 32 

identified in pediatric tumors, many are associated with epigenetic regulation1. In many pediatric tumors, 33 

molecular profiling does not identify genomic abnormalities but does show abnormal DNA methylation 34 

patterns6,7, suggesting the DNA methylation may play a critical role in tumorigenesis in these cases. 35 

Gene-expression levels in cancer cells often vary from those in normal cells8. Such abnormalities alter 36 

cellular environments and manipulate cellular processes, leading to increased survival, rapid proliferation, 37 

and metastasis9. Oncogenes are one type of genes that contribute to the development of these abnormal 38 

features. These genes are often expressed at higher levels in cancer cells than in normal cells10. Another 39 

type of genes known as tumor suppressor genes counteracts cellular changes that lead to cancer. These 40 

genes are often expressed at lower levels in tumor cells than in normal cells11, potentially leading to rapid 41 

cellular proliferation. Methylation of the promoter region is often negatively correlated with gene 42 

expression levels, suggesting that DNA methylation plays a role in regulating gene expression12,13. 43 
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However, relatively little is known about global methylation patterns in pediatric tumors, the interplay 44 

between methylation events and mutations in pediatric tumors, or how these observations may differ 45 

between known cancer genes (oncogenes and tumor suppressors) and other genes. Prior studies have 46 

focused on cancer cell lines, a single tumor type at a time, or adult cancers14–16. 47 

Computational models have been developed to identify differentially expressed genes across large sets of 48 

methylation data15,17. Applications of these methods have found several genes with highly variant 49 

methylation in adult tumors17. Many of the genes that exhibited highly variant methylation in tumors were 50 

not previously associated with cancer, and genomic aberrations in these genes were not characteristic of 51 

tumors. A small-scale study of Wilms tumors (a common pediatric cancer) showed similar results17. It has 52 

been shown that several distinct types of cancer, including endometrioid adenocarcinomas and 53 

glioblastomas, share many differentially methylated regions, suggesting that these epigenetic markers 54 

may be a universal feature of cancer18. 55 

While these findings hint that aberrant methylation patterns may also be characteristic of pediatric cancer, 56 

most pediatric cancers have not been analyzed for DNA methylation patterns. One study investigated 57 

genomic, transcriptomic, and epigenomic patterns in acute myeloid leukemia and identified dozens of 58 

hypermethylated genes and age-specific patterns19. Additionally, structural variations were found to be 59 

more common than single nucleotide polymorphisms. A separate analysis of acute lymphoblastic 60 

leukemia identified a number of genes on chromosome 3, including PPP2R3A, THRB and FBLN2, that 61 

were frequently hypermethylated16. 62 

Little work has been done to specifically investigate aberrant methylation of oncogenes and tumor 63 

suppressor genes in cancer. One study about endometrial cancer identified seven oncogenes that were 64 

hypomethylated and upregulated and twelve tumor suppressor genes that were hypermethylated and 65 

downregulated14, suggesting that changes in DNA methylation impact gene expression and may target 66 

oncogenes and tumor suppressor genes. 67 
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We address these gaps by analyzing methylation data for five types of pediatric cancers: Wilms tumors, 68 

clear cell sarcomas of the kidney, rhabdoid tumors, neuroblastomas, and osteosarcomas. We compare 69 

these cancer types against each other. Furthermore, as a baseline reference, we compare the tumor data 70 

against methylation levels for fetuses and children representing normal conditions for diverse cell types 71 

and human populations. Because methylation events tend to be gene specific20, we evaluate gene-level 72 

patterns. But we also consider global methylation patterns. For many of the tumors, we identify genomic 73 

alterations—single-nucleotide variants, small indels, and structural variants—in the tumors and evaluate 74 

whether these somatic mutations exhibited gene-specific mutual exclusivity with hypo- or 75 

hypermethylation events. In addition, we evaluate the consistency of these findings for oncogenes and 76 

tumor suppressor genes. 77 

Results 78 

Our goal was to evaluate gene-level DNA methylation patterns for pediatric-tumor cells and normal cells. 79 

We used publicly available data to characterize five types of pediatric cancers as well as baseline 80 

methylation levels for normal cells. First, we evaluated the consistency of methylation levels representing 81 

non-cancerous states in fetuses and children. Second, we compared tumor methylation levels against the 82 

normal values and identified genes and tumor samples that exhibited patterns of hypomethylation or 83 

hypermethylation. Next, under the assumption that tumors with aberrant methylation would be subject to 84 

evolutionary constraints that are redundant with those resulting from somatic mutations, we evaluated 85 

whether these two event types were mutually exclusive in a given tumor. Finally, we examined these 86 

patterns within known oncogenes and tumor-suppressor genes. 87 

Consistency of methylation levels in normal samples and in pediatric tumors 88 

To aid in understanding how methylation levels change in cancer cells, we first characterized baseline 89 

methylation levels for individual genes. We obtained Illumina Infinium 450K data for four normal 90 
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datasets. We used data from diverse cell types and human populations with the goal of identifying 91 

methylation patterns that broadly represent baseline methylation states for healthy children. The datasets 92 

were from chorionic villi, kidney, spinal cord, brain, muscle, nasal epithelial, and blood cells and included 93 

data for a total of 309 patients of North American (n = 94), African American (n = 36), and Australian 94 

ancestry (n = 179). 95 

Because DNA methylation contributes to regulating gene expression, we expected most genes to exhibit a 96 

consistent baseline methylation range. We anticipated that many genes (such as tumor suppressor genes) 97 

would have consistently low methylation levels because those genes must be consistently expressed to 98 

properly regulate cellular division, growth, and other proliferation activities. We anticipated that other 99 

genes (such as oncogenes) would have consistently high levels of methylation because proper cellular 100 

functioning requires that these genes remain relatively inactive. We expected to see some variance across 101 

samples because we included data from multiple cell types and because methylation levels change as cells 102 

respond to internal and external cues. We also anticipated that some genes would deviate from these 103 

patterns, perhaps in part because they are regulated by mechanisms other than DNA methylation. Based 104 

on a preliminary inspection of the data, we identified thresholds for categorizing genes based on the 105 

magnitude and variance of methylation levels. We considered genes with a median value less than 0.2 106 

across all samples in a given dataset to be methylated at “low” levels, genes with a median greater than 107 

0.6 to be methylated at “high” methylation levels and the remaining genes as having “medium” 108 

methylation levels. We categorized genes with a coefficient of variation (CV) less than 0.5 in a given 109 

dataset as having “low” variance and the remaining genes as having “high” variance. In the largest normal 110 

dataset (GSE89278), most genes exhibited low (58.9%) or medium methylation levels (25.6%). 111 

Relatively few genes exhibited high methylation (15.5%), meaning that under normal conditions, most 112 

genes appear not to be subject to strong expression constraints as a result of DNA methylation. Nearly all 113 

genes (95.1%) exhibited low variance. The other normal datasets reflected similar patterns. 114 
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By combining these two ways of categorizing the genes (Additional Data File S1), we found that the most 115 

common combination across all datasets was low methylation / low variance (56.9-57.2% per dataset). 116 

For GSE89278, the following numbers of genes fell into each category: low methylation / low variance: 117 

12,874; low methylation / high variance: 534; medium methylation / low variance: 3,898; medium 118 

methylation / high variance: 14; high methylation / low variance: 5,246; high methylation / high variance: 119 

0. These results were similar for the other normal datasets. To explore the consistency of these patterns 120 

across the normal datasets, we classified each gene into the following consistency levels: consistent (same 121 

category in all four datasets), semiconsistent (same category in three datasets), and inconsistent (same 122 

category in two or fewer datasets). Of the 22,253 genes that we profiled, 20,089 were consistent, 1,512 123 

were semiconsistent, and 652 were inconsistent (Figure 1). Thus even though the normal datasets differed 124 

based on cell type and population ancestral groups, gene-level methylation levels were largely consistent. 125 

The gene with the smallest variance across the normal datasets was BTG3 (variance = 2.09E-5). In each 126 

of the normal datasets, BTG3 exhibited low methylation, suggesting that a biological constraint 127 

suppresses methylation of this gene under normal circumstances. The process that normally keeps BTG3 128 

methylation low may be disrupted in tumors. Indeed, hypermethylation of the promoter region of BTG3 129 

has previously been associated with several types of cancer, including breast21, prostate22, and renal23. The 130 

gene with the largest variance across the normal datasets was DOCK11. Information about this gene is 131 

sparse in the literature. Its role in cancer24 and hypercholesterolemia25 has been discussed. Its high 132 

variance in normal cells suggests that consistent expression of DOCK11 is inessential to normal cellular 133 

function and/or that processes other than promoter methylation regulate its expression. 134 

Tumor methylation relative to normal levels 135 

Under the hypothesis that tumorigenesis alters local and global methylation patterns, we evaluated the 136 

extent to which methylation levels and variances differed for a given gene between normal and tumor 137 

conditions. For each gene, we compared the most common median / variance category across the four 138 

normal datasets against the most common category across the five cancer datasets. Typically genes stayed 139 
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under the same category. For example, of the 12,368 genes that were categorized as low methylation / low 140 

variance for the normal datasets, only 549 (4.4%) changed categories: either to low methylation / high 141 

variance (n = 462) or to medium methylation / low variance (n = 87) (Table 1). The 227 genes in the 142 

medium methylation / high variance category were most likely to change categories, with 137 genes 143 

(60.0%) changing to low methylation / high variance and 19 genes (8.4%) changing to medium 144 

methylation / low variance. For the 512 genes that changed median methylation levels, approximately half 145 

(n = 259, 50.6%) increased (from low to medium or medium to high). For the 562 genes that changed 146 

variance categories, 519 (92.3%) increased from low to high variance. These increased variances suggest 147 

that the factors that normally keep methylation levels stable under normal conditions often become 148 

dysregulated in tumors. Altered expression of these genes may play a role in tumor development or may 149 

lead to downstream effects that affect tumor development. For example, if methylation levels of an 150 

oncogene are decreased, higher expression of the gene may result, leading to increased cellular growth, 151 

proliferation, or survival9. On the other hand, increased methylation levels of a tumor suppressor gene 152 

could cause lower gene expression and prevent it from performing regulatory functions13. 153 

To identify genes that may influence pediatric tumorigenesis, we compared tumor methylation levels for 154 

each gene against the respective normal values on a per-cancer basis. We used a two-sided, Mann-155 

Whitney U test and adjusted for multiple tests using the Benjamini-Hochberg False Discovery Rate 156 

(FDR)26. We considered genes with an FDR < 0.05 and an absolute methylation change > 0.02 to be 157 

statistically significant. Out of the 22,253 genes we analyzed, 37 exhibited differential methylation for at 158 

least one cancer type. Of these genes, 19 had decreased methylation in tumors, and 18 had increased 159 

methylation, including 15 genes that were differentially methylated for Wilms tumors, 0 for clear cell 160 

sarcomas, 6 for rhabdoid tumors, 17 for neuroblastomas, and 4 for osteosarcomas; 4 genes were 161 

statistically significant for 2 or more cancer types (Table S1; Figure 2). We note that the number of 162 

significant genes was smaller for cancer types with relatively small sample sizes. 163 

.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted August 3, 2021. ; https://doi.org/10.1101/2021.08.02.454814doi: bioRxiv preprint 

https://doi.org/10.1101/2021.08.02.454814
http://creativecommons.org/licenses/by/4.0/


 8

We performed a pathway analysis for the significant genes from each cancer type using reactome.org27,28. 164 

For Wilms tumors, rhabdoid tumors, and osteosarcomas, pathways associated with ubiquitination, 165 

transcriptional regulation, and growth signaling were significant; for neuroblastomas, growth-signaling, 166 

integrin-signaling, and blood-biosynthesis pathways were among the most significantAdditional Data 167 

Files S2-S5. These functions have plausible connections to tumor biology because they are central to 168 

cellular function in general,29,30 but it is difficult to make precise inferences due to the relatively small 169 

numbers of significant genes. 170 

To characterize differences in methylation across the five cancer types, independent of normal 171 

methylation levels, we performed a one-way ANOVA test for each gene and adjusted the p-values using 172 

the FDR correction. Methylation levels of most genes were consistent across the 5 cancer types, including 173 

for genes that we had identified as being differentially methylated in tumors compared to normal cells. 174 

Methylation levels for 19 genes differed significantly across the cancer types (FDR < 0.05; Table S2; 175 

Figure 3). But in most cases, the mean differences were small. For example, the largest absolute 176 

difference in mean methylation between tumor types for any of the significant genes was an increase of 177 

0.24 in CCSK compared to RT (KCNQ1OT1 gene). Of the 19 genes, 10 fell into the medium methylation 178 

/ low variance category, a higher proportion (0.526) than the overall proportion of genes in this category 179 

(0.175). 180 

Next we focused on the 20 genes for which methylation levels varied most across all tumor types and 181 

plotted the methylation values, relative to normal levels, for each patient (Figure 4). Some tumors 182 

exhibited relatively high methylation levels for nearly all of these genes, whereas other tumors exhibited 183 

relatively low methylation levels for the same genes. This was especially true for Wilms tumors, rhabdoid 184 

tumors, and osteosarcomas. For example, the average methylation difference (relative to normals) for 185 

these 20 genes was 0.13 for 58 (44.3%) of the Wilms tumors but -0.11 for the remaining tumors. For the 186 

osteosarcomas and rhabdoid tumors, we observed a similar pattern in which subsets of 49 (57.0%) and 35 187 

(51.5%) tumors, respectively, showed markedly higher methylation levels than the remaining tumors. 188 
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These patterns of consistently divergent methylation might be useful for identifying tumor subtypes in a 189 

precision-medicine context31 and may be driven by factors such as the presence of somatic mutations and 190 

structural alterations that affect global methylation in characteristic ways. 191 

To investigate global methylation patterns, we calculated gene-level z-scores for each tumor using the 192 

normal data as a reference. In cases where a tumor’s methylation value was more than three standard 193 

deviations higher than the mean normal value for a particular gene, we classified that gene as being 194 

hypermethylated in that tumor. In cases where a tumor’s methylation value was more than three standard 195 

deviations lower than the mean normal value for a particular gene, we classified that gene as being 196 

hypomethylated in that tumor. Then we calculated the proportion of hypomethylated and hypermethylated 197 

genes for each patient. We categorized tumors for which greater than 1% of genes were hypermethylated 198 

as being “frequently hypermethylated” and tumors for which greater than 1% of genes were 199 

hypomethylated as being “frequently hypomethylated.” Frequent hypermethylation was more common 200 

(17.5% of tumors) than frequent hypomethylation (3.4%)(Figure 5). The maximum percentage of 201 

hypermethylated genes for any particular patient was 11.8%, compared to a maximum of 4.8% for 202 

hypomethylated genes. 203 

Cancer mutation data analysis 204 

Although they occur less frequently in pediatric tumors than in adult tumors, somatic mutations often 205 

contribute to pediatric tumorigenesis4,5. To evaluate the frequency of and interplay between somatic 206 

mutations and methylation events, we examined pediatric tumors for which both data types were 207 

available. Mutation data were available for somatic single nucleotide variants (SNVs), 208 

insertions/deletions (indels), and RNA fusions. We used the RNA fusion data as indicators of structural 209 

DNA variants. Copy-number data were available for only a small number of tumors, so we did not 210 

include this data type in the analysis. Methylation, SNV, indel, and RNA fusion data were available for 211 

Wilms tumors (n = 41), neuroblastomas (n = 65), and osteosarcomas (n = 66) but not for the other tumor 212 

types. For a given tumor, we considered genes with at least one SNV, indel, or RNA fusion event to be 213 
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“mutated.” Across all tumor types, aberrant methylation—via either hypomethylation or 214 

hypermethylation of a given gene—occurred less frequently (in 1.1% of tumors) than mutations (2.8%); 215 

the largest disparity occurred for neuroblastomas (Table S3). Wilms tumors and osteosarcomas were 216 

aberrantly methylated nearly twice as often as neuroblastomas (1.4% vs. 0.8%; Table S3). In contrast, 217 

Wilms tumors and osteosarcomas were mutated less than half as often as neuroblastomas (1.7-1.8% 218 

vs. 4.6%). 219 

Aberrant methylation levels and damaging mutations can have similar downstream effects in tumors32. 220 

After one of these alteration types has occurred in a given gene, it may be less likely for cells with a 221 

second alteration in the same gene to gain an additional selective advantage. Thus, having both a mutation 222 

and aberrant methylation in one gene may be less likely than expected by random chance. This mutual-223 

exclusivity hypothesis has been examined extensively for pairs of genes in which somatic mutations 224 

might occur across diverse types of cancers33–36. It has also been investigated for DNA methylation 225 

events, though to a lesser extent37. Little is known about mutual exclusivity between methylation events 226 

and somatic mutations in pediatric tumors. 227 

Treating each combination of tumor and gene as an independent observation, we examined whether DNA 228 

methylation events are mutually exclusive with somatic mutations. Mutations and aberrant methylation 229 

co-occurred rarely (0.03%) in the same gene and the same tumor (Table S3). Because both of these event 230 

types are rare, we reduced the data to the 962 genes for which at least 5 mutation events and at least 5 231 

aberrant methylation events had occurred across the cancer types. We used a permutation test to evaluate 232 

whether mutations and aberrant methylation in the same gene and tumor co-occurred less frequently than 233 

would be expected by random chance. Across all tumors and the 962 genes, we observed 318 co-234 

occurrences, whereas the average number of co-occurrences in the permuted data was 341.6. However, 235 

this difference was not statistically significant (p = 0.092). 236 
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Oncogenes and tumor suppressor genes 237 

Because oncogenes are typically expressed at relatively high levels and tumor suppressor genes are 238 

typically expressed at relatively low levels, we expected that oncogenes would have higher methylation 239 

levels than tumor suppressor genes. We identified 80 “tier 1” oncogenes and 141 “tier 1” tumor 240 

suppressor genes in the Cancer Genome Census38 and calculated the mean methylation value for each 241 

gene in the normal datasets and used a two-sample t-test to evaluate whether these mean values differed 242 

between the oncogenes and tumor suppressor genes. Under the hypothesis that oncogenes would be 243 

methylated at higher levels than tumor-suppressor genes, we used a one-sided test. The mean of the 244 

means for oncogenes was 0.02 higher than for tumor-suppressor genes; however, this difference was not 245 

statistically significant (p = 0.109). Many tumor-suppressor genes were highly methylated, and many 246 

oncogenes were methylated at low levels (Figure S1). 247 

Next we evaluated the extent to which methylation levels differed for oncogenes and tumor-suppressor 248 

genes between tumor and normal conditions. First, we filtered the results from the two-sided Mann-249 

Whitney U tests described above to include only oncogenes and tumor suppressor genes. Using FDR < 250 

0.05 and an absolute mean difference > 0.02 as constraints, only 1 tumor suppressor gene was statistically 251 

significant (CTCF in Wilms tumors). No oncogenes reached statistical significance. We relaxed the 252 

threshold to FDR < 0.2 and removed the mean difference constraint. In this case, CTCF was significant 253 

for all cancer types except CCSKFigure S2. DNM2 (a tumor suppressor gene) was significant for OS, and 254 

GNA11 (an oncogene) was significant for NBLTable S4. Mean methylation values for none of the 255 

oncogenes or tumor suppressor genes differed across the tumor types (FDR < 0.2; Table S2). 256 

Across the tumor types, mutation rates for oncogenes and tumor suppressor genes (0.031-0.089) were 257 

approximately twice the mutation rates for other genes (0.017-0.046) (Table 2), which aligns with prior 258 

evidence that mutations in these genes are associated with tumorigenesis. However, aberrant methylation 259 

rates for oncogenes and tumor suppressor genes (0.007-0.014) were approximately equal to methylation 260 

rates for other genes (0.008-0.014). In Wilms tumors and osteosarcomas, mutation rates for oncogenes 261 
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and tumor suppressor genes were approximately three times higher than aberrant methylation rates, while 262 

mutation and methylation rates were approximately equal for other genes. In neuroblastomas, mutation 263 

rates for oncogenes and tumor suppressor genes were approximately twelve times higher than aberrant 264 

methylation rates but only six times higher for other genes. 265 

We performed a modified version of the permutation-based, mutual-exclusivity analysis in which we 266 

searched for co-occurrences of either 1) a mutation in an oncogene and aberrant hypomethylation of the 267 

same gene or 2) a mutation in a tumor suppressor gene and hypermethylation of the same gene. Because 268 

few genes met these criteria, we performed this analysis with the oncogenes (n = 4) and tumor-suppressor 269 

genes (n = 29) that were mutated in at least 2 tumors and aberrantly methylated in at least 2 tumors. These 270 

event combinations were not mutually exclusive for oncogenes (p = 0.90) nor for tumor suppressors (p = 271 

0.54). 272 

Discussion 273 

Using publicly available data, we examined methylation patterns for five childhood cancers. We 274 

summarized baseline methylation levels for healthy children, identified deviations from these baseline 275 

levels in tumors, and evaluated mutual exclusivity of methylation events and somatic mutations. 276 

Subsequently, we evaluated these patterns for oncogenes and tumor-suppressor genes specifically. In the 277 

309 healthy samples we studied, DNA methylation levels were highly consistent, suggesting that 278 

biological processes maintain this consistency in diverse tissue types and ancestral groups. In the 531 279 

tumors we studied, hypermethylation or hypomethylation of promoter regions was a common feature, 280 

providing additional evidence that the tumor epigenome contributes to pediatric tumorigenesis. 281 

Hypermethylation was more common than hypomethylation. Hypermethylation of promoter regions has 282 

been associated with decreased gene expression12—tumors with frequent hypermethylation may result in 283 

broad silencing of proteins necessary for normal cellular function. Hypermethylation affecting multiple 284 
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genes in the same tumor has been identified in adult thyroid neoplasms39 and colorectal tumors40 and has 285 

been associated with multidrug resistance in cell cultures41. However, global hypomethylation has 286 

garnered more attention than multigene hypermethylation42. Yet in the pediatric-tumor samples that we 287 

examined, widespread hypomethylation in a given tumor was uncommon. We also observed tumor 288 

subsets that exhibited divergent methylation—methylation levels for specific genes were consistently 289 

either high or low in many tumors of a given cancer type. While methylation dysregulation may be a 290 

common feature of pediatric tumors in general, specific mechanisms may drive these divergent changes in 291 

each tumor subset, and there may be overlap in these mechanisms across cancer types. Identifying such 292 

mechanisms may be useful for developing targeted treatments and informing patients. 293 

Our mutual-exclusivity analysis did not provide evidence that somatic mutations and aberrant methylation 294 

are mutually exclusive with each other, whether for oncogenes and tumor-suppressor genes specifically or 295 

across all genes. However, we had access to a limited number of tumors (n = 172) for which both 296 

mutation data and methylation data were available; a larger-scale analysis is warranted. Furthermore, we 297 

evaluated single-nucleotide variants, indels, and structural variants because data were available for these 298 

mutation types. But large-scale amplifications and deletions occur regularly in tumors43, so including 299 

copy-number data in this type of analysis would also be useful in future research. 300 

In normal cells, methylation levels did not differ significantly between known cancer genes (oncogenes 301 

and tumor suppressors) and other genes. In tumors, few oncogenes and tumor suppressors had high rates 302 

of aberrant methylation, suggesting that while aberrant methylation occurs in pediatric tumors, 303 

dysregulation likely does not occur disproportionately in these known gene categories. Global 304 

hypermethylation and/or hypomethylation patterns may be more important indicators of pediatric-tumor 305 

biology than local events. However, CTCF may be one exception. CTCF promoter methylation was 306 

significantly increased relative to normal conditions in every cancer type that we examined, except clear 307 

cell sarcoma of the kidney, which had a small sample size. CTCF codes for a zinc finger nuclease that is 308 

highly conserved in eukaryotes44. As a regulatory protein involved in DNA methylation45, improper 309 
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function of this gene could lead to epigenetic abnormalities. Mutations in CTCF have previously been 310 

associated with several cancer types, including breast cancers, prostate cancers, and Wilms tumors46,47. 311 

Our findings across multiple pediatric cancer types suggest that CTCF hypermethylation—and 312 

consequent inhibition of gene expression— may influence pediatric tumorigenesis broadly and cause 313 

downstream effects. 314 

In performing these analyses, we needed to choose arbitrary thresholds at times. For example, we 315 

specified three standard deviations above or below the mean in the normal data as a conservative 316 

threshold to indicate aberrant methylation. Using this threshold, we found that tumors were mutated more 317 

frequently than they were aberrantly methylated. However, if we had relaxed this threshold to two 318 

standard deviations, the average aberrant methylation rate would have been 0.045 rather than 0.012 (the 319 

average mutation rate was 0.027). Thus, our conclusions would have been moderately different. The use 320 

of arbitrary thresholds in research is common and cannot be completely avoided, especially when 321 

discipline-specific precedents have yet to be specified by the research community. In this scenario, we 322 

have introduced a new way of identifying aberrant methylation events. Future quantitative, experimental, 323 

and translational work will be necessary to improve our ability to determine when a particular gene in a 324 

given biological sample is methylated to an extent that alters that gene’s behavior and may in turn have 325 

clinical relevance. 326 

A better understanding of DNA methylation’s role in pediatric tumors could shed light on mechanisms of 327 

tumorigenesis and eventually lead to insights about patient care and treatments. DNA methylation 328 

inhibitors have proven effective in some adult cancers, especially hematologic malignancies20 and may 329 

prove beneficial in pediatric cases. However, these therapies primarily target hypermethylation in a broad 330 

sense and thus may not be suitable for targeting specific genes48,49. Furthermore, as we have shown, 331 

hypermethylation events may be more common than hypomethylation events in pediatric tumors. Little is 332 

understood about how to reverse hypomethylation in vivo; however, global-hypomethylation patterns 333 
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may be useful as biomarkers for therapies for targeting genes that have been activated as a result of 334 

hypomethylation. 335 

Methods 336 

Normal methylation datasets 337 

We downloaded datasets containing DNA methylation levels for cohorts of normal patients as a way to 338 

establish a baseline against which tumor methylation could be compared for pediatric samples. We 339 

selected four datasets from Gene Expression Omnibus that used Illumina Infinium 340 

HumanMethylation450K arrays to profile normal cells in healthy fetuses and children aged 18 or under 341 

for which raw (.idat) files were available. Illumina Infinium HumanMethylation450K is a microarray 342 

platform that detects DNA methylation at over 450,000 locations in the human genome. Beta values from 343 

these arrays indicate the ratio of methylated signals to unmethylated signals50. Values closer to one 344 

indicate relatively high methylation levels; values closer to zero indicate relatively low methylation 345 

levels. Below we describe each dataset included in the study and provide accession identifiers from Gene 346 

Expression Omnibus. 347 

GSE69502 originated from a study of Canadian second trimester fetuses51. Tissue was collected from 348 

chorionic villi, kidney, spinal cord, brain, and muscle. The original study analyzed DNA methylation 349 

differences in fetuses with spina bifida and anencephaly compared to normal fetuses. We included only 350 

data from the 65 normal fetuses. 351 

GSE65163 originated from a study of nasal epithelial cells from African American children aged 10-1252. 352 

The original study analyzed DNA methylation differences in children with or without asthma. We 353 

included only data from the 36 children without asthma. 354 
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GSE109446 originated from a study of children aged 5-18 living in Cincinnati, Ohio (USA)53. Similar to 355 

GSE65163, nasal epithelial cells were used, and the goal of the original study was to understand 356 

methylation differences in children with or without asthma. We included only data from the 29 children 357 

without asthma. 358 

GSE89278 originated from a study of Australian infant blood spot samples taken at birth54. The goal of 359 

the original study was to understand methylation differences in children with and without 360 

docosahexaenoic acid deficiency. We included only control data from 179 infants. 361 

We chose these samples because they represented a variety of cell types and ancestral groups, which we 362 

hoped would make our findings more broadly generalizable than if our samples had been from a single, 363 

homogeneous population. Another factor in our decision was the age of the individuals. We searched for 364 

datasets representing relatively young patients to limit the possible confounding factor of methylation 365 

changes accumulating throughout life. In this process, we considered one additional normal dataset 366 

(GSE72556)55; however, we found that the beta levels from this dataset were consistently different from 367 

the other four normal datasets. This dataset originated from saliva samples, which often result in 368 

systematically different methylation levels than other types of samples56–58, perhaps due to external 369 

contaminants or different sample-collection procedures. As a result, we excluded this dataset from our 370 

analysis. 371 

Normal data processing 372 

We processed the data using the minfi package (version 1.34.0) from R (version 4.0.2) and the 373 

Bioconductor suite59,60. We followed a standard workflow to process the methylation array files. The steps 374 

in this workflow included preprocessing, ratio conversion, and beta value calculations. We then 375 

summarized the beta values at the gene level. We mapped probes to genes based on an annotation file 376 

created by Price et al. (see http://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GPL16304)61. Because 377 

we were interested in methylation changes in the promoter regions of genes, we included only probes 378 
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within 300 base pairs of transcription start sites. We then calculated gene-level beta values for each 379 

patient as the mean beta value across all remaining probes in a given gene. 380 

Methylation data acquisition and processing 381 

We obtained methylation data representing five tumor types from the Therapeutically Applicable 382 

Research to Generate Effective Treatments (TARGET) Data Matrix (retrieved August 24, 2020 from 383 

Website, https://ocg.cancer.gov/programs/target/data-matrix). We acquired data for 131 patients with 384 

Wilms tumor, 11 patients with clear cell sarcoma of the kidney, 68 patients with rhabdoid tumor, 235 385 

patients with neuroblastoma, and 86 patients with osteosarcoma. We downloaded the data from TARGET 386 

using the rvest package (version 0.3.6)62. The data for Wilms tumors, clear cell sarcomas of the kidney, 387 

neuroblastomas, and osteosarcomas were generated using the Illumina Infinium HumanMethylation450K 388 

platform, and the data for rhabdoid tumors were generated using the Illumina Infinium MethylationEPIC 389 

platform. The HumanMethylation450K platform produces beta values for 22,579 genes, and EPIC 390 

produces values for 22,411 genes; we limited our analysis to the 22,253 genes that overlapped between 391 

the two platforms. 392 

We followed the same workflow that we used to process the normal data. We calculated probe-level beta 393 

values using minfi and summarized values at the gene-level. We used principal component analysis to 394 

assess high-level patterns across the datasets and visualized the results using a scatter plot of the first two 395 

principal components. Methylation samples from each dataset generally clustered tightly with other 396 

samples from the same dataset, demonstrating that batch effects were presentFigure S3. To reduce the 397 

impact of these effects, we applied batch correction to a combined dataset that included all of the normal 398 

datasets. We used the dataset identifier as the batch variable. In addition, we logit transformed the data 399 

before performing the batch correction and inverse logit transformed the data after performing the batch 400 

correction to ensure the beta values stayed between 0 and 1. We performed these transformations using 401 

functions from the gtools package (version 3.8.2)63. Because the logit function cannot handle exact values 402 

of 0 or 1, we removed genes in which the beta values were exactly 0 or 1. We also removed genes in 403 
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which beta values were NA. Filtering the data in this way removed 155 (0.7%) genes (out of 22,411 total 404 

genes). To perform the batch correction, we used the ComBat function from the sva package (version 405 

3.36.0)64. After completing the batch correction, we performed another principal component analysis and 406 

visualized the results. The points no longer clustered by datasetFigure S3. We used these newly corrected 407 

values for all remaining analyses. 408 

Somatic-mutation data acquisition and processing 409 

We obtained somatic-mutation data for TARGET patients via the Genomic Data Commons portal65–67. 410 

We first selected the Repository section. Under the Cases tab, we specified the TARGET program. We 411 

also specified Wilms tumor, neuroblastoma, and osteosarcoma as the tumor types of interest (data were 412 

unavailable for the other two tumor types). Under the Files tab, we selected “simple nucleotide variation” 413 

and “annotated somatic mutation” as the data category and type, and we indicated that we would use 414 

variants that had been called using Mutect268. The data were stored in VCF format (version 4.2)69. 415 

We wrote custom code to parse the mutation data for each patient. We included only mutations that had 416 

either 1) “HIGH” impact according to the variant annotations or 2) had “MODERATE” impact and were 417 

considered to be “deleterious” by SIFT70 or either “damaging” or “probably_damaging” according to 418 

Polyphen-271.We considered using the specified minor-allele-frequency (MAF) values for filtering, but 419 

those values were unavailable for a significant portion of the variants, so we focused on functional 420 

annotations. 421 

RNA-fusion data acquisition and processing 422 

We downloaded data for RNA fusions via the Genomic Data Commons portal. Under the Cases tab, we 423 

applied the same filters that we used for obtaining the somatic-mutation data. Under the Files tab, we 424 

selected “structural variation” and “Transcript Fusion” as the data category and type. We specified 425 

“STAR-Fusion”72 as the workflow type and “bedpe” as the data format. We wrote custom code to parse 426 

the RNA fusion data for each patient. The bedpe files described RNA transcripts from each patient that 427 
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had genetic information originating from two separate genes. We considered an RNA fusion to have a 428 

functional impact on both genes affected by the fusion. 429 

Methylation and mutation data integration 430 

Different naming conventions were used to identify neuroblastoma and osteosarcoma patients in the 431 

methylation data files versus the somatic-mutation and RNA fusion data files. We used a sample sheet 432 

provided by the Genomic Data Commons (gdc_sample_sheet.2021-03-11.tsv) and the sdrf metadata files 433 

for neuroblastoma and osteosarcoma to map the patient identifiers between these sources (see 434 

https://target-435 

data.nci.nih.gov/Public/OS/methylation_array/METADATA/TARGET_OS_MethylationArray_20161103436 

.sdrf.txt and https://target-437 

data.nci.nih.gov/Public/NBL/methylation_array/METADATA/TARGET_NBL_MethylationArray_20160438 

812.sdrf.txt). A few files did not map properly across naming conventions. One fusion data sample was 439 

mapped to two patients, so we excluded this sample. There were also two pairs of single nucleotide 440 

mutation samples that were mapped to single patients, so we excluded these samples. 441 

Inferring hypermethylation and hypomethylation states 442 

To determine hypermethylation and hypomethylation status, we scaled the beta values for each gene to 443 

have a zero mean and a standard deviation of one across all normal samples. Then for each tumor sample, 444 

we compared the beta value for a given gene against the standardized values from the normal samples. If 445 

a tumor’s beta value was more than three standard deviations above the mean of the normal samples, we 446 

classified that tumor as being hypermethylated for that gene. If a tumor’s beta value was more than three 447 

standard deviations below the mean of the normal samples, we classified that tumor as being 448 

hypomethylated for that gene. 449 

.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted August 3, 2021. ; https://doi.org/10.1101/2021.08.02.454814doi: bioRxiv preprint 

https://doi.org/10.1101/2021.08.02.454814
http://creativecommons.org/licenses/by/4.0/


 20

Mutual exclusivity 450 

We evaluated whether aberrant methylation—either hyper- or hypomethylation—was mutually exclusive 451 

with somatic-mutation events for a given gene. We calculated the total number of times a gene was both 452 

mutated and aberrantly methylated in the same tumor. Next we permuted methylation status for all tumors 453 

and kept mutation status constant. We repeated the permutation process 10,000 times to create an 454 

empirical null distribution to use as a baseline. For each permutation, we calculated the number of times a 455 

gene was both mutated and aberrantly methylated. We then compared the number of times that mutations 456 

co-occurred with aberrant methylation in the non-permuted data relative to the permuted data and 457 

calculated a p-value based on these numbers. 458 

Oncogenes vs tumor suppressor genes 459 

We identified genes known to be oncogenes or tumor suppressor genes, based on information from The 460 

Cancer Gene Census38. We included only tier 1 genes classified as “oncogene” or “TSG” and ignored any 461 

for which it was ambiguous or unknown. To be classified as a tier 1 gene, there must be scientific 462 

evidence that a gene plays a role in cancer development and that mutations in the gene modify the activity 463 

of the associated protein. Several genes were listed in the Cancer Genome Census as both oncogenes and 464 

tumor suppressor genes; because of this ambiguity, we excluded these from our analysis. 465 

In evaluating our hypothesis that oncogenes generally have decreased methylation levels in tumor 466 

samples relative to normal samples and that tumor suppressor genes generally have increased methylation 467 

levels in tumor samples relative to normal samples, we applied a two-sided, Mann-Whitney U test to each 468 

oncogene and tumor suppressor gene to identify genes that did (or did not) align with these expectations. 469 

Abbreviations 470 

Abbreviation Term 

WT Wilms tumor 
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CCSK Clear cell sarcoma of the kidney 

RT Rhabdoid tumor 

NBL Neuroblastoma 

OS Osteosarcoma 

TSG Tumor suppressor gene 

 471 

  472 
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Tables 473 

Table 1: Summary of changes in methylation level/variance categories between normal and cancer 474 

datasets. We assigned each gene to a category that indicated whether it was methylated at low, medium, 475 

or high levels and whether it had low or high variance across samples in a given dataset. The table shows 476 

the total number of genes in each category for the normal datasets and the number (and percentage) of 477 

genes that changed from one category to another in the tumor datasets. 478 

Normal category Tumor category Total # 

genes 

# genes 

changed 

% genes 

changed 

high methylation / low variance medium methylation / low variance 3403 41 1.2 

low methylation / high variance low methylation / low variance 604 20 3.3 

low methylation / high variance medium methylation / high variance 604 9 1.5 

low methylation / high variance medium methylation / low variance 604 4 0.66 

low methylation / low variance low methylation / high variance 12368 462 3.7 

low methylation / low variance medium methylation / low variance 12368 87 0.7 

medium methylation / high variance low methylation / high variance 227 137 60 

medium methylation / high variance medium methylation / low variance 227 19 8.4 

medium methylation / low variance high methylation / low variance 5651 159 2.8 

medium methylation / low variance low methylation / high variance 5651 23 0.41 

medium methylation / low variance low methylation / low variance 5651 52 0.92 

medium methylation / low variance medium methylation / high variance 5651 34 0.6 

 479 

  480 
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Table 2: Aberrant methylation and mutation rates in oncogenes, tumor suppressor genes, and all 481 

other genes. For three pediatric tumor types, we identified aberrant methylation events (either 482 

hypomethylation or hypermethylation) that had occurred in a given tumor and gene. For the same 483 

tumor/gene combinations, we identified somatic single-nucleotide variants, indels, and structural variants 484 

that had occurred. These numbers indicate overall rates of aberrant methylation or mutation across all 485 

tumors of a given type. Methylation rates and mutation rates were typically similar across all three gene 486 

categories, but mutation rates for oncogenes and tumor suppressor genes were always higher than for 487 

other genes. 488 

Tumor type Aberration type Oncogenes TSG Other 

Wilms tumor Mutation 0.04 0.034 0.017 

Wilms tumor Methylation 0.012 0.012 0.014 

Neuroblastoma Mutation 0.083 0.089 0.046 

Neuroblastoma Methylation 0.007 0.007 0.008 

Osteosarcoma Mutation 0.031 0.034 0.018 

Osteosarcoma Methylation 0.014 0.011 0.014 
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Figures 489 

 490 

Figure 1: Consistency of DNA methylation levels and variances in normal cells. We assigned each 491 

gene to a category that indicated whether it was methylated at low, medium, or high levels and whether it 492 

had low or high variance across samples in a given dataset. For each gene, we counted the maximum 493 

number of datasets for which the level / variance category was consistent. For most genes, the category 494 

was consistent across all four datasets. 495 
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 496 

Figure 2: Volcano plots showing differentially methylated genes for each tumor type. For each tumor 497 

type, we compared methylation levels at the gene level between tumors and the normal samples. Genes 498 

showing significantly different methylation levels between tumor and normal conditions are highlighted. 499 
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 500 

Figure 3: Methylation levels for genes that differed significantly across the tumor types. One-way 501 

ANOVA tests applied to tumor methylation levels identified 19 genes for which the means differed 502 

significantly across the tumor types. These violin plots show the range and density of the methylation 503 

values for these genes across the tumor types. 504 
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Figure 4: Gene-level DNA methylation changes for high-variance genes. Rows in these heatmaps 506 

indicate methylation levels, relative to the normal data, for the 20 genes with the largest variance across 507 

the tumor types. Columns represent individual tumors. Approximately half of all tumors exhibited 508 

consistently lower methylation levels than the remaining tumors. 509 

  510 
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 511 

Figure 5: Distributions of the proportion of hypermethylated or hypomethylated genes in a given 512 

tumor. Using the normal data as a reference, we identified genes that were hypermethylated or 513 

hypomethylated in a given tumor. All five tumor types are represented. A relatively large number of 514 

hypermethylated genes in a given tumor was more common than a relatively large number of 515 

hypomethylated genes. 516 
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