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Abstract 16 

Diversity is frequently linked to the functional stability of ecological communities. However, its 17 

association with assembly mechanisms remains largely unknown, particularly under fluctuating 18 

disturbances. Here, we subjected complex bacterial communities in bioreactor microcosms to 19 

different frequencies of organic loading shocks, tracking temporal dynamics in their assembly, 20 

structure and function. Null modelling revealed a stronger role of stochasticity at intermediate 21 

disturbance frequencies, preceding the formation of a peak in α-diversity. Communities at extreme 22 

ends of the disturbance range had the lowest α-diversity and highest within-treatment similarity in 23 

terms of β-diversity, with stronger deterministic assembly. Stochasticity prevailed during the initial 24 

successional stages, coinciding with better specialized function (nitrogen removal). In contrast, 25 

general functions (carbon removal and microbial aggregate settleability) benefited from stronger 26 

deterministic processes. We showed that changes in assembly processes predictably precede changes 27 

in diversity under a gradient of disturbance frequencies, advancing our understanding of the 28 

mechanisms behind disturbance-diversity-function relationships. 29 

 30 

Key words: intermediate stochasticity hypothesis, ISH, intermediate disturbance hypothesis, IDH, 31 

succession, diversity, disturbance, community structure, community function, stochastic assembly, 32 

deterministic assembly.  33 
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Introduction 34 

Microbes exist typically as diverse, complex and dynamic communities1, responsible for all 35 

biogeochemical cycles worldwide2. These microbial communities or microbiomes provide crucial 36 

functions for global climate regulation, human health, biotechnology and bioremediation3. Microbial 37 

diversity is often related to community function4 and the ability to withstand environmental 38 

fluctuations that typically occur as disturbances5. Given the growing human population and its impact 39 

on natural and engineered ecosystems6, management and conservation practices are faced with 40 

increasing frequencies and magnitudes of various disturbances that occur on different scales. A 41 

concept of ecology that can be used to explore possible outcomes is the intermediate disturbance 42 

hypothesis (IDH), which predicts a diversity peak at intermediate levels of disturbance due to 43 

competition-colonization trade-offs faced by organisms7. Although the IDH has been influential in 44 

ecology8 and ecosystem conservation9,10, it is not a coexistence mechanism as initially thought11. 45 

Further, many studies have not found the diversity pattern predicted by the IDH12,13 and its relevance 46 

as a prediction tool is up for debate14,15. Therefore, studies are needed to address the mechanisms 47 

behind the observed disturbance-diversity relationships16. 48 

Intermediate frequencies of exposure to a xenobiotic pollutant in our recent replicated sludge 49 

bioreactor study demonstrated higher α-diversity and relative influence of stochastic assembly 50 

compared to other exposure levels, after a short succession period of 35 days17. We hypothesized that 51 

when intermediate disturbance levels result in unpredictable environments where specialized traits are 52 

less advantageous to taxa, the stochastic equalization of competitive advantages would lead to a 53 

higher α-diversity, a causal relationship we named the intermediate stochasticity hypothesis (ISH)17. 54 

In contrast, either no disturbance or press disturbance conditions at the extreme ends of a disturbance 55 

range would allow fewer adapted organisms to dominate, thus lowering the α-diversity. Unlike the 56 

IDH, the ISH incorporates the role of assembly mechanisms as shapers of community structure (α- 57 

and β- diversity) across a disturbance gradient. Further, it predicts patterns not only in species 58 

richness but also in higher-order α-diversity indices, since variations in the underlying assembly 59 

mechanisms would affect abundance distributions of taxa. The ISH also considers that the output of a 60 
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stochastic process is affected by some uncertainty, which means that there are several possible paths 61 

for the evolution of the structure and function of a community. In this regard, stochasticity operating 62 

at intermediate levels of disturbance in replicated systems could lead to similar high α-diversity 63 

(local, e.g., within a reactor), but not necessarily to similar β-diversity (compositional variation across 64 

sites, e.g., between reactors) and community function17. The idea of community assembly processes 65 

underlying the observed  patterns of diversity is reasonable, as such processes are believed to shape 66 

community structure18, which also links them to ecosystem function. These processes, either 67 

deterministic or stochastic, are known to act in combination to form community assembly19-22 and can 68 

cause replicate communities to reach a similar or variable structure and function17,23. Further, while 69 

recent studies have reported positive correlations of strength of stochasticity with α-diversity in 70 

bacterial24 and fungal25 communities, the role of assembly processes behind diversity patterns under 71 

fluctuating disturbances is still unclear. 72 

The objective of this work was to test the central tenet of the ISH that intermediate 73 

disturbance frequencies promote stochastic assembly processes, resulting in increased α-diversity and 74 

variable β-diversity17. We used an experimental system comprised of activated sludge sequencing 75 

batch reactors harboring complex microbial communities collected from a full-scale wastewater 76 

treatment plant. These were subjected to different frequencies of organic loading shocks, tracking 77 

temporal dynamics in their overall assembly, structure and function, without focusing on any 78 

particular taxa. The reactors had a working volume of 25 mL, representing a microcosm scale26. 79 

Replicates (n = 5) received double organic loading either never (L0, undisturbed), every 8, 6, 4 or 2 80 

days (L1-4, intermediately-disturbed), or every day (L5, press-disturbed), for 42 days. Samples were 81 

analyzed using 16S rRNA gene metabarcoding and effluent chemical characterization. Patterns of α- 82 

and β-diversity were employed to assess temporal dynamics of bacterial community structure. 83 

Assembly mechanisms were quantified via null model analysis of phylogenetic turnover for each 84 

bioreactor.  85 
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Results 86 

Intermediate disturbance frequencies exhibit higher taxonomic and phylogenetic α-diversity 87 

Taxonomic α-diversity was evaluated using Hill diversity indices27 of orders zero (0D, taxa 88 

richness), one (1D) and two (2D), the latter being a robust estimate of microbial diversity17. 89 

Phylogenetic α-diversity was also considered through Faith’s phylogenetic distance28 unweighted 90 

(PD) and abundance-weighted (PDW). There was a temporal decrease in α-diversity for all 91 

disturbance frequency levels compared to the sludge inoculum for both taxonomic and phylogenetic 92 

α-diversity indices (Fig. 1A, Fig. S1). This drop was more pronounced, particularly within the first 14 93 

days, when variability across same-level replicates was also highest. From d14 onwards, disturbance 94 

frequency had a significant effect on α-diversity (2D, Welch’s ANOVA Padj = <0.001-0.015) (Fig. 95 

1A). A peak in α-diversity at intermediate frequencies of disturbance was observed for all unweighted 96 

(0D, PD) and abundance-weighted (1D, 2D, PDW) indices evaluated in this study (Fig. 1A, Fig. S2, Fig. 97 

S3). Such parabolic pattern was significant from d21 onwards for 2D (Welch’s ANOVA Padj ≤ 0.003), 98 

from d28 onwards for 1D (Welch’s ANOVA Padj = 0.002-0.01), PD (Welch’s ANOVA Padj = 0.003-99 

0.037) and PDW (Welch’s ANOVA Padj = 0.005-0.013), and from d35 onwards for 0D (Welch’s 100 

ANOVA Padj = 0.03-0.035). 101 

Community assembly temporal dynamics precede α-diversity patterns across disturbance frequencies 102 

Assembly processes were first evaluated by modelling the phylogenetic dispersion of a given 103 

community against the null expectation, through the nearest taxon index (NTI)29. We observed higher 104 

stochasticity at the initial stages of the experiment (d0-14), which decreased in relative intensity over 105 

time across disturbance levels for both unweighted (ΝΤΙ) and abundance-weighted (ΝΤΙW) indices 106 

(Fig. 1A, Fig. S2). There was a stronger role of stochastic assembly processes at intermediate 107 

disturbance frequencies as shown by ΝΤΙ values closer to zero (i.e., lower |ΝΤΙ| values); this was 108 

significant from d14 onward (ΝΤΙ Welch’s ANOVA Padj = <0.001-0.037) but was reduced towards 109 

the end of the study becoming non-significant on d42. Games-Howell post-hoc grouping indicated 110 

that the parabolic pattern of ΝΤΙ across disturbance frequency levels preceded (d14-35) the formation 111 
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of a peak in α-diversity (d21-42) at intermediate levels of disturbance, with two to three groups 112 

significantly differentiated (Fig. 1A). Stochastic assembly processes were less prevalent when 113 

abundance weighing was included in the calculation of the ΝΤΙ index (ΝΤΙW), meaning that 114 

phylogenetic dispersion compared to the null expectation was higher among individual organisms 115 

than it was among taxa. Nonetheless, there was a significant peak in ΝΤΙW values at intermediate 116 

frequencies of disturbance on d7 and d14 (ΝΤΙW Welch’s ANOVA Padj = 0.001). This parabolic 117 

pattern of ΝΤΙW was evident on d7, preceding that of ΝΤΙ, but disappeared on d21 and reverted from 118 

d28 onwards. Also, significant phylogenetic signals were observed via mantel correlogram analysis 119 

(Fig. S5) mostly across relatively short phylogenetic distances, justifying the use of phylogenetic null 120 

modelling to evaluate community assembly processes in this study. 121 

Stochastic assembly was more important when α-diversity was higher, particularly for 122 

phylogenetic diversity. This was shown by significant Kendall correlation τ values (0.24-0.46, Padj < 123 

0.001) between ΝΤΙ and α-diversity indices (Figs. 1B-C, Fig. S4). Kendall correlation τ values were 124 

also positive (0.20-0.26) and significant (Padj < 0.001) between ΝΤΙW and phylogenetic α-diversity 125 

indices (PD, PDW) and unweighted taxonomic α-diversity (0D), but not between ΝΤΙW and 126 

abundance-weighted taxonomic α-diversity (1D, 2D) (Fig. S4). The estimation of all the 127 

aforementioned indices over time using rarefied ASV sequencing data yielded the same significant 128 

patterns via Welch’s ANOVA, with the exception of ΝΤΙW on d21 and d42 (see supplementary file). 129 

β-diversity patterns display similarity at low and high disturbance frequencies and higher variability 130 

at intermediate ones 131 

Community structure in terms of β-diversity showed temporal changes, which varied across 132 

disturbance levels for both Unifrac phylogenetic distances (Fig. 2A) and Bray-Curtis taxonomic 133 

distances (Fig. 2B). Unconstrained ordination displayed a dispersion effect in overall community 134 

structure over time, particularly after 7 days, with communities in each reactor diverting from each 135 

other (Fig. 2A). To disentangle the effect of disturbance from temporal dynamics, constrained 136 

ordination via canonical analysis of principal coordinates (CAP) was used at each time point (Fig. 137 
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2B). Group-average cluster similarity (60%) was included to detect formations of clusters of 138 

community structure. Differences in β-diversity across disturbance levels were statistically significant 139 

at all time points evaluated (PERMANOVA Padj < 0.001), without significant effects of 140 

heteroscedasticity (PERMDISP Padj > 0.14) (Table S1). Replicate reactors at the undisturbed (L0) and 141 

press-disturbed level (L5) clustered separately from intermediate disturbance levels on all sampling 142 

days (except on d7 and d21 for L0) (Fig. 2B), both levels having 0% misclassification error at all time 143 

points assessed (Fig. 2C). Comparatively, reactors at intermediate disturbance frequencies (L1-4) 144 

clustered together and showed higher dispersion across replicates within the same level, with CAP 145 

misclassification errors above zero (Fig. 2B-C). Thus, replicate reactors were less similar to each 146 

other at intermediate levels of disturbance, while replicates at low (undisturbed) and high (press-147 

disturbed) disturbance frequencies were more similar. Likewise, community assembly assessed via 148 

the beta nearest taxon index (βNTI)30 showed a higher relative contribution of stochasticity at 149 

intermediate levels of disturbance (Fig. 2D), with βΝΤΙ values closer to zero, indicating that 150 

phylogenetic turnover across within-treatment replicates was closer to the null expectation. Similarly 151 

to what we observed through the NTI, the relative importance of stochasticity decreased with time in 152 

the experiment (i.e., higher |βΝΤΙ| values) and when abundance weighing was included in the 153 

calculation of the βΝΤΙ values (βΝΤΙW) (Fig. S6). The observed temporal changes in bacterial 154 

community structure across disturbance frequencies were consistent with phylum-level dynamics in 155 

relative abundances (Fig. S7), although the focus of this study was on overall community dynamics 156 

and not on any particular group of taxa. 157 

Community function dynamics and correlations with community structure and assembly 158 

Bacterial community function was assessed over time via influent chemical oxygen demand 159 

(COD) removal, sludge volume index (SVI), and influent total Kjeldahl nitrogen (TKN) removal, as 160 

measure of carbon removal, sludge settleability and nitrogen removal, respectively (Fig. 3A). Carbon 161 

removal and sludge settleability, which are functions associated with a broad range of taxa (i.e., 162 

general functions), improved over time during the experiment. High carbon removal (> 0.97) was 163 

achieved at all disturbance frequency levels from d21 onwards, with no significant differences on 164 
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days 35 and 42, after a period of high variability for same-level replicates during the first 14 days. 165 

Sludge settleability increased with disturbance frequency, with undisturbed (L0) reactors showing the 166 

lowest settleability from d21 onwards and intermediately disturbed levels reaching the highest 167 

settleability on d42 (SVI Welch’s ANOVA Padj = 0.018). The nitrogen removal function (TKN 168 

removal), which is related to specialized bacteria (ammonia oxidizers), significantly differed across 169 

disturbance frequencies (TKN removal Welch’s ANOVA Padj < 0.001) with the highest removal at 170 

intermediately disturbed levels during the first 21 days. From d28 onwards, L0 to L4 reactors had 171 

similarly high average nitrogen removal (> 0.9), and only the press disturbed reactors (L5) continued 172 

to have lower nitrogen removal (< 0.7) than that of the initial sludge inoculum (0.8). Effluent values 173 

of TKN, ammonia, nitrite and nitrate showed that TKN removal occurred via nitrification (Fig. S8). 174 

Carbon removal had an overall significant negative Kendall correlation with α-diversity 175 

indices (τ < -0.21, Padj < 0.001), whereas sludge settleability and nitrogen removal showed non-176 

significant correlations with α-diversity across the study (Fig. S9). Correlations between general 177 

functions of carbon removal and sludge settleability and both ΝΤΙ and ΝΤΙW were negative and 178 

significant across all time points and disturbance frequencies of the study (Fig. 3B-C, Fig. S9), 179 

indicating improved performance of these functions under stronger deterministic assembly 180 

mechanisms. Nitrogen removal had a non-significant overall correlation with ΝΤΙ and ΝΤΙW (Fig. 3D, 181 

Fig. S9), which became positive and significant when only the first 21 days of the study were 182 

considered (ΝΤΙ τd0-21 = 0.39, Padj < 0.001, Fig. 3D; ΝΤΙW τd0-21 = 0.46, Padj < 0.001, Fig. S10), 183 

suggesting better performance of this function under higher stochastic assembly throughout the initial 184 

weeks of the study. 185 

Discussion  186 

In this study we found stochastic assembly processes to be more important at intermediate 187 

disturbance frequencies where the highest α-diversity was also observed, together with high β-188 

diversity dispersion across within-treatment replicates as predicted by the ISH17. Furthermore, we 189 

showed that a peak in the relative contribution of stochasticity preceded a peak in α-diversity across a 190 

disturbance frequency range. Also, we observed that higher stochasticity during initial successional 191 
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stages correlated with better nitrogen removal (specialized function) at intermediate disturbance 192 

frequencies, while carbon removal and microbial aggregate settleability (general functions) improved 193 

in step with more deterministic forces. These findings highlight the utility of the ISH for a 194 

mechanistic understanding of disturbance-diversity-function relationships. 195 

We expanded our earlier work17 by using a different type of disturbance and microbial 196 

community inoculum, a relevant scenario given the multidimensional nature of disturbance31. 197 

Employing taxonomic and phylogenetic diversity metrics, in both unweighted and abundance-198 

weighted forms, allowed us to cover a broader aspect of α-diversity. Taxonomic resolution was also 199 

improved by the use of amplicon sequence variants (ASVs) compared to operational taxonomic unit 200 

(OTU) clustering32 with about one to two orders of magnitude fewer spurious units33, allowing for a 201 

better estimation of unweighted α-diversity (i.e., taxa richness). We further verified that the observed 202 

patterns occurred independently of data rarefaction, given the lack of consensus about this practice34 203 

and the fact that it is known to affect (mainly unweighted) estimations of α-diversity35. Assembly 204 

processes were tracked over time using a phylogenetic null modelling methodology, which has been 205 

tested and recommended in microbial ecology20,30,36. Additionally, general and specific functions were 206 

evaluated against structure and assembly. All the aforementioned enhancements allowed us to test the 207 

ISH, while also gaining new insights into the role of assembly processes behind disturbance-induced 208 

changes in community structure and function over time.  209 

Our experimental system produced a succession scenario in which bacterial communities had to 210 

adapt to change from a full-scale system to a bioreactor microcosm setup along a disturbance 211 

frequency gradient, similarly to what we described in a prior study37. With regards to community 212 

structure, succession led to a significant hump-backed pattern of α-diversity for all composition- and 213 

abundance-based indices employed in the study, which occurred after 21 days for 2D, 28 days for 1D, 214 

PD and PDW, and 35 days for 0D. Thus, the observed dynamics in community structure were stronger 215 

in terms of relative abundances than richness (2D, 1D vs. 0D), as well as at the phylogenetic versus 216 

taxonomic level (PD vs. 0D). The appearance of higher phylogenetic α-diversity at intermediate levels 217 

of disturbance for both unweighted (PD) and abundance-weighed (PDW) indices suggests that 218 

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted August 3, 2021. ; https://doi.org/10.1101/2021.08.02.454702doi: bioRxiv preprint 

https://doi.org/10.1101/2021.08.02.454702
http://creativecommons.org/licenses/by-nc-nd/4.0/


10 
 

considering evolutionary relationships among organisms38 could also aid in assessing the effect of 219 

varying disturbances on community structure under succession. In our study, disturbance promoted 220 

the co-occurrence of phylogenetically distinct organisms, suggesting that additional niches were 221 

created at intermediate disturbance frequencies that were occupied by ecologically different species, 222 

thus reducing competitive exclusion. Conversely, phylogenetic clustering at undisturbed and press-223 

disturbed levels can be interpreted as communities structured by environmental filtering29. 224 

Additionally, temporal analysis of community structure in terms of β-diversity revealed three different 225 

clusters for undisturbed, press-disturbed and intermediately disturbed reactors. Further comparison of 226 

replicates within the same disturbance frequency level showed higher β-diversity variability at 227 

intermediate disturbance levels, which was coherent with prior observations in freshwater ponds39 and 228 

sludge bioreactors17 where β-diversity increased with stochastic assembly. Our findings are relevant 229 

for understanding disturbance-diversity relationships, since few studies have reported parabolic α-230 

diversity patterns using abundance-based indices8. Furthermore, variations in β-diversity among 231 

ecological communities that are subject to large and fluctuating disturbances are believed to provide 232 

insights about the mechanisms driving changes in α-diversity and function40. 233 

We observed similar trends of phylogenetic dispersion within a single community (NTI) and 234 

the phylogenetic turnover between communities of the same treatment level (βNTI), compared to the 235 

null expectation. Stochasticity was more important during initial successional stages of the study, with 236 

initial NTI and βNTI values closer to zero (i.e., closer to the null expectation of the model). 237 

Relatively, the overall strength of deterministic processes increased with time, with higher |NTI| and 238 

|βNTI| values. Similarly, late succession stages were shown to be governed by deterministic processes 239 

in plant forest41 and microbial groundwater communities42. Furthermore, α-diversity-based temporal 240 

assembly dynamics revealed a parabolic pattern in ΝΤΙ and ΝΤΙW, through the disturbance frequency 241 

gradient, which was evident after 14 and 7 days of the study, respectively, before the appearance of 242 

similar parabolic patterns across various α-diversity indices. This preceding pattern is considered here 243 

as a strong indicator of assembly mechanisms operating to shape community structure. It is, therefore, 244 

plausible that stochastic assembly mechanisms were first favored at intermediate disturbance 245 
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frequencies, prompting subsequent changes of community structure that resulted in the observed 246 

higher α-diversity as the ISH proposes17. These observations are also coherent with the idea that 247 

secondary succession is community assembly in action43. The disturbance range in this study 248 

produced different secondary succession scenarios, with communities in the sludge of each bioreactor 249 

likely experiencing different re-colonization processes from their bacterial seed-bank (i.e, low-250 

abundance or rare taxa), via stochastic processes such as priority effects44 followed by historical 251 

contingency45 and legacy effects3. Importantly, external dispersal processes46 (i.e., bacterial 252 

immigration) could not influence community assembly since bioreactors within this study were 253 

operated as closed systems. Indeed, microbial seed-banks are thought to contribute to the maintenance 254 

of microbial diversity47 and have been described as essential for understanding temporal community 255 

changes48. Further, stochastic assembly processes were shown to be more preponderant within the rare 256 

fraction of the microbial community22. Nonetheless, other processes might also be promoting 257 

stochastic assembly at intermediate disturbance frequencies, like ecological drift36 and feedback 258 

mechanisms linked to density dependence and species interactions49. Hence, a disturbance frequency 259 

gradient can not only result in nonlinearities for growth rates that would affect the outcome of 260 

competition14,31, it could also alter the relative contribution of stochastic and deterministic 261 

mechanisms of community assembly that underlie changes in community structure17. Furthermore, 262 

our results showed that, over a range of disturbance frequencies, assessing temporal community 263 

assembly patterns during succession can act as a sentinel of upcoming patterns of diversity. 264 

Stochasticity was positively correlated with better nitrogen (as TKN) removal via nitrification 265 

at intermediate disturbance frequencies during the initial successional stages where stochastic 266 

processes were also generally prevalent. Nitrification functions are carried out by specific taxa (i.e., 267 

nitrifiers), which are slow growers, nutritionally inflexible, sensitive to inhibitors and less 268 

phylogenetically diverse than many other key functional guilds50. Yet, the recruitment of nitrifying 269 

organisms from the microbial seed-bank was important for the recovery of nitrification, following the 270 

removal of a long-term disturbance of altering food-to-biomass and carbon-to-nitrogen ratios in 271 

sludge bioreactors, although resilience varied across identically treated replicates51. Also, partial 272 

recovery of nitrification in sludge bioreactors was observed at intermediate frequencies of 3-273 
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chloroaniline disturbance, where stochastic assembly processes and within-treatment variability were 274 

also higher17. Conversely, general functions of carbon removal and settleability performed better 275 

when deterministic processes were stronger (higher |NTI| values). Carbon removal was better when α-276 

diversity was lower, similarly to what was reported previously using a different xenobiotic 277 

disturbance in bioreactors17. Hence, a more diverse community does not necessarily translate into 278 

better ecosystem functions17,52. Our data suggest that general functions thrive during stronger 279 

deterministic processes, while specialized functions might be favored by stochasticity at initial 280 

successional stages. Future studies assessing the effect of fluctuating disturbances on community 281 

diversity and function should also consider the type of function (e.g., specific or general), the stage of 282 

succession after the disturbance, and the underlying assembly mechanisms. 283 

The observed patterns in community assembly, structure and function were time-dependent. 284 

The ISH successional pattern appears to be transient, as assembly mechanisms across disturbance 285 

frequency levels were not significantly different towards the end of the study on d42, while α-286 

diversity continued to display a significant parabolic pattern. If the gradient of disturbance frequencies 287 

is maintained over time, then the peak in α-diversity at intermediate levels might continue during the 288 

late successional stages, but this remains to be investigated. Nonetheless, most relevant bacteria in 289 

activated sludge have generation times of less than 24 h. Hence, the 42-day length of this study 290 

represented around tens to hundredths of generations of many different taxa, allowing the detection of 291 

significant patterns in assembly and structure. Further research in a variety of ecosystems is needed to 292 

validate the broad applicability of the ISH, particularly considering that disturbance can vary in type, 293 

frequency, intensity, driver and impact31,53. Studies at different scales are also necessary since 294 

ecological patterns can vary across spatial, temporal and phylogenetic scales3, while the effect of 295 

dispersal processes could also be evaluated within open systems.  296 

Although a similar study on communities of larger organisms would require considerably larger 297 

scales of space and time, some modelling approaches suggest that ISH-like patterns (Fig. 4) could 298 

emerge in community assembly and structure under varying disturbances. For example, forest fire 299 

modelling showed that intermediate lightning strike frequency values yielded higher diversity with a 300 
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close balance between stochastic and deterministic forces, which were highly sensitive to probabilistic 301 

events leading the system to diverse trajectories54. Likewise, a conceptual model developed for plants 302 

and animals suggested that high variation in resource abundance and location in space and time, 303 

which could be caused by disturbance, would favor diversity via adaptation through novelty and 304 

innovation (i.e., stochasticity) generation55. The predictions of the ISH could help to identify cases 305 

when disturbance-induced stochastic assembly promotes alternative states of community structure that 306 

compromise or enhance ecosystem function, so as to design mitigation or intensification strategies. 307 

Furthermore, it could be used to promote community resistance and resilience to future disturbances 308 

via increased α-diversity and functional-gene diversity. Alternatively, this theoretical framework 309 

could help develop functionally resilient communities that do not occur naturally, through the 310 

stochastic mechanisms that are initially elicited at intermediate frequencies of disturbance. Therefore, 311 

we propose that the ISH has potential for a general understanding of disturbance-induced changes in 312 

community structure and function during succession, by integrating the influence of the underlying 313 

assembly processes over time. 314 

Materials and Methods 315 

Experimental design and function analyses 316 

We employed 30 sequencing batch bioreactors at a microcosm scale (25-mL working volume), 317 

inoculated with activated sludge from a full-scale wastewater treatment plant in Singapore and 318 

operated for 42 days at 30°C in an incubator shaker. The daily complex synthetic feeding regime 319 

(adapted from Santillan et al.51) included double organic loading at varying disturbance frequencies. 320 

Six levels of disturbance were set in quintuplicate independent reactors (n = 5), which received double 321 

organic loading either never (undisturbed), every eight, six, four, or two days (intermediately-322 

disturbed), or every day (press-disturbed). Level numbers were assigned from 0 to 5 (0 for no 323 

disturbance, 1 to 5 for low to high disturbance frequency). Disturbance frequency was further 324 

calculated from the rate of high organic loading at each disturbance level resulting in values of 0, 1/8, 325 

1/6, 
1/4, 

1/2, and 1. Ecosystem function, in the form of process performance parameters at the end of a 326 

cycle, was measured weekly in accordance with Standard Methods56 where appropriate, and targeted 327 
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the removal of soluble COD and TKN from the mixed liquor after feeding. Sludge settling capacity 328 

was measured via the SVI (mL/g), considering 30 minutes of settling time. Concentrations in the 329 

mixed liquor of the bioreactors after feeding (i.e, beginning of a new cycle) were regularly 305.8 330 

(±7.4) mg COD/L and 45.6 (±0.8) mg TKN/L, or 594.7 (±18.6) mg COD/L and 46.1 (±0.2) mg 331 

TKN/L when double organic loading occurred. A food-to-biomass ratio (F:M) control approach was 332 

used as previously described51, for which biomass was measured weekly as total suspended solids 333 

(TSS) after which sludge wastage was done to target a TSS of 1,500 mg/L. The latter resulted in 334 

average solids residence time (SRT) values of 30, 26, 23, 22, 19 and 15 days, for disturbance levels 335 

from 0 to 5, respectively. Note that these SRT values are well above the doubling times of relevant 336 

bacteria in activated sludge57. Sludge samples of 2 mL (m = 184) were collected on the initial day of 337 

the study (four samples, taken at random from the inoculum mix) and weekly from each reactor 338 

afterwards (180 samples), for DNA extraction as previously described37.  339 

16S rRNA gene metabarcoding and reads processing 340 

Bacterial 16S rRNA metabarcoding was done in two steps as described in Santillan et al.51. Primer set 341 

341f/785r targeted the V3-V4 variable regions of the 16S rRNA gene58. The libraries were sequenced 342 

in-house at SCELSE on an Illumina MiSeq (v.3) with 20% PhiX spike-in, at 300 bp paired-end read-343 

length. Sequenced sample libraries were processed with the dada2 (v.1.3.3) R-package33, allowing 344 

inference of ASVs32. Illumina adaptors and PCR primers were trimmed prior to quality filtering. 345 

Sequences were truncated after 280 and 255 nucleotides for forward and reverse reads, respectively. 346 

After truncation, reads with expected error rates higher than 3 and 5 for forward and reverse reads, 347 

respectively, were removed. After filtering, error rate learning, ASV inference and denoising, reads 348 

were merged with a minimum overlap of 20 bp. Chimeric sequences (0.17% on average) were 349 

identified and removed. For a total of 184 samples, an average of 18,086 reads were kept per sample 350 

after processing, representing 47% of the average forward input reads. Taxonomy was assigned using 351 

the SILVA database (v.132)59. Diversity and assembly analyses were carried on both unrarefied and 352 

rarefied datasets. To generate the rarefied dataset, samples were rarefied to the lowest number of reads 353 

(5,089) in a sample after processing (Fig. S11).  354 
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Bacterial community structure analyses and statistics 355 

All reported P-values for statistical tests in this study were corrected for multiple comparisons using a 356 

false discovery rate (FDR) of 5%. Hill diversity indices27 were used to quantify taxonomic α-diversity 357 

as described elsewhere17. Phylogenetic α-diversity was assessed through Faith’s phylogenetic 358 

distance28 (PD) including its abundance-weighted version (PDW). Community structure in terms of 359 

taxonomic β-diversity was evaluated through: i) canonical analysis of principal coordinates (CAP) 360 

ordination including ellipses of 60% group-average cluster similarity; ii) misclassification error 361 

analysis for each disturbance frequency level over the six time points sampled, via the leave-one-out 362 

allocation of observations to groups from CAP; and iii) multivariate tests of permutational analysis of 363 

variance (PERMANOVA) and permutational analysis of dispersion (PERMDISP); all from Bray-364 

Curtis dissimilarity matrixes at each time point sampled (30 bioreactors, n = 5), constructed from 365 

square-root transformed abundance data using PRIMER (v.7)60. Phylogenetic β-diversity was 366 

assessed via non-metric multidimensional (NMDS) ordination of a weighted Unifrac dissimilarity 367 

matrix, constructed from Hellinger transformed abundance data of all 184 samples using the 368 

phyloseq61 R-package (v.1.30.0) in R. The ggplot2 package (v.3.3.2) in R62 was used for local 369 

polynomial regression fitting via the loess function (including 95% confidence intervals) and box 370 

plots construction (using Tukey style whiskers). The ggdist R-package (v.2.4.1) was used to make the 371 

βNTI raincloud plot. Univariate testing through Welch’s analysis of variance (ANOVA) with Games-372 

Howell post-hoc grouping was done using the rstatix63 (v.0.6.0) R-package. Kendall correlations were 373 

done using the ggpubr64 package (v.0.4.0) in R. Heat maps for bacterial phyla relative abundances 374 

were constructed using the ampvis265 package (v.2.6.2) in R.  375 

Bacterial community assembly analyses and statistics 376 

The effect of underlying assembly mechanisms was assessed using phylogenetic-based null modelling 377 

approaches on both α- and β-diversity. First, the nearest taxon index (NTI)29 was calculated for each 378 

community to assess whether α-diversity was more or less structured than would be expected by 379 

random chance. The model uses the mean nearest taxon distance (MNTD)29, which quantifies the 380 

phylogenetic distance between each ASV in one community, as a measure of the clustering of closely 381 
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related ASVs. Phylogenetic relatedness of ASVs was characterized by multiple-alignment of ASV 382 

sequences using decipher (v.2.14.0) R-package66. The phylogenetic tree was then constructed and a 383 

GTR+G+I maximum likelihood tree was fitted using the phangorn (v.2.5.5) R-package67. To quantify 384 

the degree to which MNTD deviates from a null model expectation, ASVs and abundances were 385 

shuffled across the tips of the phylogenetic tree. After shuffling, MNTD was recalculated to obtain a 386 

null value, and repeating the shuffling 1,000 times provided a null distribution. Then, NTI was 387 

calculated as the difference between the mean of the null distribution and the observed MNTD in 388 

units of standard deviation29. The closer to zero a NTI value is, the closer to the null expectation (i.e., 389 

higher stochasticity) is the phylogenetic dispersion of a given community. Positive NTI values 390 

suggest phylogenetic clustering while negative values indicate phylogenetic overdispersion. Second, 391 

β-diversity null modelling via the β-nearest taxon index (βNTI) was done to investigate if the 392 

phylogenetic turnover across two samples was significantly more or less similar than would be 393 

expected by just random chance30. The model uses the β−mean nearest taxon distance (βMNTD), 394 

which quantifies the phylogenetic distance between pairs of ASVs drawn from two distinct 395 

communities. To quantify the degree to which βMNTD deviates from a null model expectation, ASVs 396 

and abundances were shuffled across the tips of the phylogenetic tree. After shuffling, βMNTD was 397 

recalculated to obtain a null value, and repeating the shuffling 1,000 times provided a null 398 

distribution. Then, βNTI was calculated as the difference between the mean of the null distribution 399 

and the observed βMNTD in units of standard deviation30. The closer to zero a βNTI value is, the 400 

closer to the null expectation (i.e., higher stochasticity) is the phylogenetic turnover between two 401 

communities. By convention, a value of |βNTI| > 2 indicates that the observed turnover is 402 

significantly deterministic, while |βNTI| < 2 indicates dominance of stochastic assembly processes20. 403 

Similarly, here we consider that |NTI| < 2 indicates dominance of stochastic phylogenetic clustering. 404 

Both unweighted and abundance-weighted NTI and βNTI values were calculated. These analyses 405 

were done using the metagMisc68 (v.0.0.4) and picante69 (v.1.8.2) R-packages. To test for a 406 

phylogenetic signal across phylogenetic distances, Mantel correlograms were constructed using the 407 

vegan70 (v.2.5.6) R-package, relating between-ASV niche differences to between-ASV phylogenetic 408 
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distances across a given phylogenetic distance, following the previously described methodology20,30. 409 

Environmental niches were constructed from bioreactor effluent process data (COD removal, TKN 410 

removal and SVI). Phylogenetic distances were quantified for 50 phylogenetic distance bins, while the 411 

significance of Pearson correlations was assessed using 1,000 permutations and FDR (5%) correction. 412 
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 584 

Fig. 1 – Community dynamics in α-diversity. (A) Community structure assessed via 2nd order true α-585 

diversity (2D, upper panels) and community assembly evaluated via the nearest taxon index (NTI, 586 

lower panels), from bacterial ASV data for different frequencies of organic loading disturbance (n = 587 

5). Disturbance frequency levels (L): 0 (undisturbed), 1-4 (intermediately disturbed), 5 (press-588 

disturbed). In: sludge inoculum (day 0, n = 4). Each panel represents a sampling day, red diamonds 589 

display mean values. Characters above boxes display Games-Howell post-hoc grouping (Padj < 0.05). 590 

Welch’s ANOVA P-values adjusted at 5% FDR shown within panels. Correlations of (B) 2D and (C) 591 

phylogenetic diversity (PD) versus NTI from bacterial ASV data across all frequency levels and time 592 

points evaluated in this study (m = 184). Kendall correlation τ- and adjusted P-values are indicated 593 

within the panel. Blue line represents locally estimated scatterplot smoothing regression (loess) with 594 

confidence interval in dark-grey shading. Note the inverted y-axis for NTI, as values closer to zero 595 

indicate a higher relative contribution of stochastic assembly. Shaded in grey is the zone of significant 596 

stochastic phylogenetic dispersion, |NTI| < 2.  597 
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 598 

Fig. 2 – Temporal dynamics of β-diversity community structure and assembly for bacterial ASV data 599 

across different frequencies of organic loading disturbance (n = 5 bioreactors). (A) Unconstrained 600 

NMDS ordination (weighed Unifrac β-diversity, Hellinger transformed data) for all 184 samples 601 

collected. Disturbance frequency levels (L): 0 (undisturbed), 1-4 (intermediately disturbed), 5 (press-602 

disturbed). I: Sludge inoculum (day 0, n = 4). (B) Constrained canonical analysis of principal 603 

coordinates (CAP) ordinations (Bray-Curtis β-diversity, squared root transformed data) on different 604 

sampling days, including ellipses of 60% group-average cluster similarity and PERMANOVA 605 

adjusted P-values. (C) Misclassification errors at each disturbance frequency level, via the leave-one-606 

out allocation of observations to groups from CAP at each time point after d0 (n = 6 sampling days). 607 

Bray-Curtis β-diversity, squared root transformed data. Red diamonds display mean values. (D) Beta 608 

nearest taxon index (βNTI) at each disturbance frequency level, from pairwise comparisons across 609 

within-treatment replicates at each time point after d0 (n = 60 comparisons). Red diamonds display 610 

mean values. Notches show the 95% confidence interval for the median. When notches do not 611 

overlap, the medians can be judged to differ significantly. Shaded in grey is the zone where stochastic 612 

processes significantly dominate, |βNTI| < 2. βNTI values closer to zero indicate a higher relative 613 

contribution of stochastic assembly.  614 
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 615 

Fig. 3 – Community function assessed via influent chemical oxygen demand removal (carbon 616 

removal, upper panels), sludge volume index (sludge settleability, middle panels), and influent total 617 

Kjeldahl nitrogen removal (nitrogen removal, lower panels) for different frequencies of organic 618 

loading disturbance (n = 5). Disturbance frequency levels (L): 0 (undisturbed), 1-4 (intermediately 619 

disturbed), 5 (press-disturbed). In: sludge inoculum (day 0, n = 4). Each panel represents a sampling 620 

day, red diamonds display mean values. Characters above boxes display Games-Howell post-hoc 621 

grouping (Padj < 0.05). Welch’s ANOVA P-values adjusted at 5% FDR shown within panels. 622 

Correlations of (B) carbon removal, (C) sludge settleability, and (D) nitrogen removal, versus NTI 623 

from bacterial ASV data across all frequency levels and time points evaluated in this study (m = 184). 624 

Kendall correlation τ- and adjusted P-values are indicated within the panels. Blue line represents 625 

locally estimated scatterplot smoothing regression (loess) with confidence interval in dark-grey 626 

shading. Shaded in grey is the zone of significant stochastic phylogenetic dispersion, |NTI| < 2. Red 627 

ellipse and τ- and P-value in panel (D) indicate data at initial stages of succession (d0 to d21). Note 628 

the inverted axis for sludge settleability, as it increases with decreasing SVI values, and for NTI, since 629 

values closer to zero indicate a higher relative contribution of stochastic assembly.  630 
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 631 

Fig. 4 - Conceptual representation of the intermediate stochasticity hypothesis (ISH) to describe 632 

patterns of assembly and structure along a disturbance frequency gradient, for communities in 633 

secondary succession (starting at time point t0). (A) Initially, stochastic assembly mechanisms (e.g., 634 

priority effects, historical contingency and legacy effects) are favored at intermediate disturbance 635 

frequencies, promoting re-colonization processes from the low-abundance fraction of the community 636 

or seed-bank. (B) Subsequently, these are followed by changes in the community structure that 637 

manifest as a peak of α-diversity at intermediate levels of disturbance. (C) At least three separated 638 

clusters of β-diversity ordination would form over time across the disturbance range. However, 639 

stochasticity operating at intermediate disturbance levels may lead to variable within treatment (D) β-640 

diversity and (E) community function. (F) The overall relative contribution of stochasticity decreases 641 

with succession time. The observed patterns of diversity are stronger in terms of relative abundances 642 

than richness, as well as at the phylogenetic versus the taxonomic level. 643 
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