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Abstract

Summary: We present NewWave, a scalable R/Bioconductor package for the dimensionality reduction
and batch effect removal of single-cell RNA sequencing data. To achieve scalability, NewWave uses mini-
batch optimization and can work with out-of-memory data, enabling users to analyze datasets with millions

of cells.

Availability and implementation: NewWave is implemented as an open-source R package available
through the Bioconductor project at https://bioconductor.org/packages/NewWave/
Supplementary information: Supplementary data are available at Bioinformatics online.

1 Introduction

Dimensionality reduction is a key step for the analysis of single-cell RNA-
seq (scRNA-seq) data. Principal component analysis (PCA) is a simple and
efficient method that can be employed for this step. However, it suffers
from several drawbacks, e.g., it assumes that the data are Gaussian and does
not allow to correct for technical variability and biases. While transforming
the data (e.g., by running PCA on log-normalized counts) can ameliorate
these problems, count-based factor analysis models often yield better low-
dimensional data representations (Risso et al., 2018; Townes et al., 2019).

In particular, our recent method, ZINB-WaVE (Risso et al., 2018), uses
a zero inflated negative binomial model to find biologically meaningful
latent factors. Optionally, the model can remove batch effects and other
confounding variables (e.g., sample quality), leading to a low-dimensional
representation that focuses on biological differences among cells.

ZINB-WaVE has been shown to be among the top performing
methods in recent benchmarks (Sun ez al., 2019; Raimundo et al., 2020).
However, its main drawback is the lack of scalability, due to large
memory requirements that prevent its use with more than a few cores.
To address this, we have re-implemented the model of ZINB-WaVE in a
new Bioconductor package, NewWave, which allows users to massively
parallelize computations using PSOCK clusters. Here, we show that
NewWave is able to achieve the same, or even better, performance of
ZINB-WaVE at a fraction of the computational speed and memory usage,
reducing the runtime by 90% with respect to ZINB-WaVE.
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2 Software implementation

NewWave uses a factor analysis framework similar to that of ZINB-WaVE
(Risso et al., 2018), with the important difference that the gene-level
read counts are assumed to come from a negative binomial distribution
without zero inflation. In fact, the majority of large scRNA-seq data use
unique molecular identifiers (UMIs) and UMI data are not zero inflated
(Townes et al., 2019; Svensson, 2020). Briefly, the log of the expected
value of the read count matrix is modeled as a regression of three terms:
known cell covariates (X, e.g., batch), known gene covariates (V/, e.g., an
intercept with the role of normalization) and latent factors (W) that define
a low-dimensional space that describe the unknown biological signal (Fig.
1A and Supplementary Information). With a high number of cells, these
matrices are large and it may not be easy to control how many times they
are copied during parallel execution.

The three main strategies that NewWave uses to limit the computational
problems of working with large matrices are: (i) the use of shared memory
objects in PSOCK clusters to avoid redundant data copies, (ii) the use of
mini-batch optimization algorithms to speed-up computations, and (iii) the
use of out-of-memory data representations (such as HDFS5 files) to limit
memory usage.

The optimization procedure can be represented as a cycle of three steps,
iterated until convergence: (i) optimization of the dispersion parameters
(either common dispersion or gene-wise dispersion); (ii) optimization of
gene-wise parameters; (iii) optimization of cell-wise parameters.

One of the main advantages of our model specification is that it
naturally results in an embarrassingly parallel task. In fact, except for the
optimization of the global dispersion parameter (common to all genes), all
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Fig. 1. Implementation and performance of NewWave. Unless otherwise noted, we used 10% of the observations as the size of the mini-batches and 10 cores. A. Schema of the NewWave

model, indicating which matrices are in shared memory (see Supplementary Information for more details). B. Speed (top) and Adjusted Rand Index (ARI, bottom) of NewWave (in-memory
data) with different choices of the parameters and ZINB-WaVE applied to the BICCN dataset (Yao et al., 2020) with a maximum of 312,000 cells and after selecting the 1,000 most variable
genes. The reported ARI is computed as the mean ARI of 100 k-means clustering procedures with the number of centroids set to the known number of labels (k = 20). C. Speed and RAM

usage of NewWave using a subset of 100,000 cells varying the number of cores used for computation. D. RAM usage (top) and speed (bottom) of NewWave on the 10X 1.3M cell datasets

with 1,000 most varable genes.

the steps use only one gene (cell) at a time for the optimization of gene
(cell) parameters. In addition to parallelization, this setup is ideal for mini-
batch optimization strategies. At any one step, we can use a random subset
of cells (genes) to estimate the gene (cell) parameters.

On-disk datasets are managed through the DelayedArray package
(Pages et al., 2019), which allows block processing and delayed operations
on data stored in HDFS5 files. While all covariates and parameter matrices
are stored in shared memory among child processes, the input data can
reside either in shared memory or on-disk as an HDFS5 file (Fig. 1A).

3 Results and discussion

The application of NewWave to subsamples of large datasets, in particular
when relying on mini-batches, shows a better scalability than ZINB-
WaVE without loss of accuracy (Fig. 1B; see Supplementary Information
for details on the analysis). Strikingly, the negative binomial model
outperforms its zero-inflated counterpart, confirming that this is a
preferable model for UMI data (Townes et al., 2019; Svensson, 2020).

In addition to speed, we measured the scalability of NewWave in terms
of RAM usage (Fig. 1C, D). As expected, there is a speed-RAM trade-off
when using data in-memory or on-disk. Runtimes increase when using
HDFS5, due to the additional I/O, but this dramatically decreases the RAM
consumption (Fig. 1D). This in turns allows the use of more cores. Using
40 cores, the computational time of our HDF5 implementation is lower
than that of of the in-memory data with 10 cores, allowing us to analyze
of 1.3M cells in 271 minutes using 109GB of RAM.

NewWave is available as an open-source package through the
Bioconductor project. The package includes a vignette with a tutorial. In
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addition, the code to reproduce all the analyses presented here is available
at https://github.com/fedeago/New Wave-script.
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1 Model specification

NewWave assumes a negative binomial distribution for the expression data. Given
n samples and J genes across all samples and denoting by Y;; the count of gene j
in cell 7, the likelihood function for the observed count y;; is

T(y;; + 6, 0, \"( w; \"
Frnvijs iz 0)) = r(y,.(,.y " l)r’()gj)( 3 +’Mj) (Mj“ " Hj) ()
in this parametrization the variance is
O-z'zj:/lij+/;_l::ﬂij+¢ﬂij (2)
We specify the following regression model:
In(u;) = (XB+ (V)" + Wa) 3)

where X is a matrix with dimension n X M where M is the number of cell-level
covariates. It typically contains a set of dummy variables that specify the batch
of the samples and by default includes an intercept. V is a matrix with dimension
J x L where L is the number of gene-level covariates. It typically only contains an
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intercept, used as library size normalization. W is a matrix with dimension n X K,
where K is the number of latent factors, and it contains the low-rank representation
of the cells. The parameters «, 3, and y are the regression coefficients for W, X,
and W, respectively.

We note that (3) is a special case of the model of Risso et al. (2018) and we
refer the reader to that paper for additional details.

2 Parameter estimation

The log-likelihood function to be maximized is

n J
By, Woar0) = ) > I fup(Yij s 6)) @)

i=1 j=1

The estimation of the parameters is done with a penalized approach for 8, a, W,y
and not penalized for ¢:

mvélegl(ﬁ, ¥, W, {) — Pen(B,y, W, )
Y, W,

B
€ €. € ea (5)
Pen(B,y, W,a) = fILBOIIZ+37|b/OII2 + TWIIWOII2 + Ellaoll2

this penalization prevents overfitting (Risso et al., 2018).
Our iterative estimation procedure follows closely from Risso et al. (2018),
considering the special case of no zero inflation.

2.1 Dispersion parameters

Special attention must be paid to the estimation of the dispersion parameters 6;.
These can be estimated in a gene-wise fashion, or assuming a common dispersion
parameter ¢; = 6 for all the genes.

This choice yields two different implementations. When the user wants to
estimate a common dispersion parameter, our implementation takes advantage of
the mini-batch strategy outlined below. However, the computation cannot leverage
parallel computations, since only one value needs to be estimated. On the other
hand, when the user requires gene-wise dispersion parameters, the computations
can proceed in parallel for each gene, but the mini-batch strategy is not effective,
as it slows down computations.
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2.2 Mini-batches

Even when the mini batch approach is chosen, the first iteration will be done
using all the observation; this method shows better performance in terms of time
needed to converge. If the common dispersion approach is chosen, starting from
the second iteration, only a random subset b of size m of the observations is used
at each iteration to estimate the parameter. Note that the parameter estimate is
assumed to describe the variation across all observations, even those that do not
belong to b.

At each iteration, the estimated parameter is optimal for b, but there is no
guarantee of its optimality on the full data. Hence, the value of the parameter
estimate is updated only if it leads to an increase in the log-likelihood function in
the full data.

The optimization of the cell- and gene-specific parameters is performed with a
mini-batch approach after a first iteration that uses all data. When parallel comput-
ing is used, each child process uses only m/c observations where m is the number
of observations in the mini-batch and ¢ is the number of child processes.

3 Details on the benchmark

3.1 Compared strategies

We benchmarked different estimation strategies implemented in the Newwave
package and we compared their results with those of ZINB-WaVE, both with and
without zero inflation.

The estimation strategies in Newwave are

e Default (Common dispersion, no mini-batches). A single dispersion pa-
rameter, common to all genes, is estimated. All cells and genes are used for
the estimation of gene- and cell-specific parameters.

e Common dispersion + mini-batch. A single dispersion parameter, com-
mon to all genes, is estimated. Mini-batches of 10% total cells and m = 100
genes are used to estimated for the estimation of gene- and cell-specific
parameters, respectively.

¢ Gene-wise dispersion + mini-batch. Gene-wise dispersion parameters are
estimated. Mini-batches of 10% total cells and m = 100 genes are used to
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estimated for the estimation of gene- and cell-specific parameters, respec-
tively.

3.2 Datasets used

We used two publicly available datasets for our benchmark, namely the BICCN
dataset and the 10X Brain dataset.

BICCN data. We created the first dataset starting from the mouse primary mo-
tor cortex datasets generated by the BRAIN Initiative Cell Census Network (BICCN)
(Yao et al., 2020), which we refer to as the BICCN dataset.

The raw data was generated as part of the BICCN consortium and can be
downloaded from http://data.nemoarchive.org/biccn/lab/zeng/transcriptome/.

The known batch effect present in this dataset is due to the difference be-
tween platforms, namely 10X Chromium single-cell sequencing v2 and v3 and
10X Chromium single-nucleus sequencing.

We selected the 1,000 most variable genes after correcting for the batch ef-
fects using the mutual nearest neighbor method (Haghverdi et al., 2018), as im-
plemented in the fastMNN function of the batchelor Bioconductor package (v.
1.3.14). All the methods were applied to these 1,000 genes.

10X Brain data. The second dataset is the 1.3 million brain cell single-cell
RNA-seq (scRNA-seq) data set generated by 10X Genomics without known batch
effect.

The dataset is available in dense HDF5 format as part of the TENxBrainData
Bioconductor package athttps://bioconductor.org/packages/TENxBrainData.
We selected the 1,000 most variable genes on the entire dataset.
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5 Supplementary Tables

Table 1: Time, Akaike Information Criterion (AIC), and Adjusted Rand Index
(ARI) for the different dimentionality reduction methods on the BICCN dataset.
This table reports the data displayed in Fig. 1B.

Model # of cells | Time in minutes AIC ARI
NewWave 10000 15.64 39097804 | 0.3963
NewWave (common dispersion + minibatch) 10000 5.67 39177295 | 0.3932
NewWave (genewise dispersion + minibatch) | 10000 3.96 38933804 | 0.3895
ZINB-WaVE 10000 44.06 43068497 | 0.3802
ZINB-WaVE (Negative Binomial) 10000 16.24 50010784 | 0.3939
NewWave 30000 2715.70 116840934 | 0.3873
NewWave (common dispersion + minibatch) 30000 618.29 117173555 | 0.3861
NewWave (genewise dispersion + minibatch) | 30000 679.45 116363662 | 0.3849
ZINB-WaVE 30000 7036.46 128899425 | 0.3730
ZINB-WaVE (Negative Binomial) 30000 2659.80 149574224 | 0.3812
NewWave 50000 5155.36 194632320 | 0.3863
NewWave (common dispersion + minibatch) 50000 1668.14 195018975 | 0.3857
NewWave (genewise dispersion + minibatch) | 50000 1274.62 193863319 | 0.3849
ZINB-WaVE 50000 12697.25 214638707 | 0.3775
ZINB-WaVE (Negative Binomial) 50000 4487.82 249048748 | 0.3847
NewWave 100000 10288.96 389698453 | 0.3835
NewWave (common dispersion + minibatch) | 100000 3617.65 390483587 | 0.3863
NewWave (genewise dispersion + minibatch) | 100000 2827.11 388019619 | 0.3853
ZINB-WaVE 100000 28576.99 430023667 | 0.3733
ZINB-WaVE (Negative Binomial) 100000 9515.64 498933752 | 0.3851
NewWave 200000 22358.31 780334158 | 0.3836
NewWave (common dispersion + minibatch) | 200000 6970.93 782011394 | 0.3844
NewWave (genewise dispersion + minibatch) | 200000 5923.64 777041944 | 0.3793
ZINB-WaVE 200000 61668.90 861598414 | 0.3758
ZINB-WaVE (Negative Binomial) 200000 20600.85 999580927 | 0.3838
NewWave 300000 38478.19 1211144264 | 0.3866
NewWave (common dispersion + minibatch) | 300000 12992.71 1213490638 | 0.3858
NewWave (genewise dispersion + minibatch) | 300000 7919.25 1205982980 | 0.3841
ZINB-WaVE 300000 90670.66 1338439179 | 0.3762
ZINB-WaVE (Negative Binomial) 300000 33036.59 1551562402 | 0.3768
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Table 2: Time and RAM usage of NewWave and ZINB-WaVE varying the number
of CPUs. This table reports the data displayed in Fig. 1C.

Model Time in minutes | #of cores | RAM in in GB
NewWave 46.97 10 54
NewWave 31.69 20 74
NewWave 25.00 30 99
NewWave 24.22 40 127

ZINB-WaVE 472.53 10 150
ZINB-WaVE 332.94 20 268
ZINB-WaVE 307.83 30 395
ZINB-WaVE 256.19 40 530
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Table 3: Time and RAM usage of NewWave on the 1.3 million cell dataset. This

table reports the data displayed in Fig. 1D.

Model # of cells | RAM in GB | Time in minutes
hdf5 10000 9 28.364
hdf5_40cores 10000 33 9.063
matrix 10000 5 3.768
pca 10000 1 5.452
hdf5 100000 12 98.240
hdf5_40cores | 100000 40 31.081
matrix 100000 26 36.611
pca 100000 5 13.375
hdf5 200000 16 153.370
hdf5_40cores | 200000 46 49.374
matrix 200000 61 79.583
pca 200000 9 19.562
hdf5 300000 19 222.784
hdf5_40cores | 300000 48 68.381
matrix 300000 98 132.788
pca 300000 11 30.691
hdf5 600000 25 372.509
hdf5_40cores | 600000 55 124.352
matrix 600000 197 198.116
pca 600000 19 51.960
hdf5 1300000 55 730.297
hdf5_40cores | 1300000 109 271.085
matrix 1300000 419 494.515
pca 1300000 40 102.940
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