
Eelbrain: A Python toolkit for time-continuous
analysis with temporal response functions
Christian Brodbeck1*, Proloy Das2, Marlies Gillis3, Joshua P. Kulasingham4, Shohini Bhattasali5,
Phoebe Gaston1, Philip Resnik6 & Jonathan Z. Simon6

1) University of Connecticut
2) Massachusetts General Hospital, Harvard Medical School
3) Katholieke Universiteit Leuven
4) Linköping University
5) University of Toronto
6) University of Maryland, College Park

* christian.brodbeck@uconn.edu

1 Abstract
Even though human experience unfolds continuously in time, it is not strictly linear; instead, it
entails cascading processes building hierarchical cognitive structures. For instance, during
speech perception, humans transform a continuously varying acoustic signal into phonemes,
words, and meaning, and these levels all have distinct but interdependent temporal structures.
Time-lagged regression using temporal response functions (TRFs) has recently emerged as a
promising tool for disentangling electrophysiological brain responses related to such complex
models of perception. Here we introduce the Eelbrain Python toolkit, which makes this kind of
analysis easy and accessible. We demonstrate its use, using continuous speech as a sample
paradigm, with a freely available EEG dataset of audiobook listening. A companion GitHub
repository provides the complete source code for the analysis, from raw data to group level
statistics. More generally, we advocate a hypothesis-driven approach in which the experimenter
specifies a hierarchy of time-continuous representations that are hypothesized to have
contributed to brain responses, and uses those as predictor variables for the
electrophysiological signal. This is analogous to a multiple regression problem, but with the
addition of a time dimension. TRF analysis decomposes the brain signal into distinct responses
associated with the different predictor variables by estimating a multivariate TRF (mTRF),
quantifying the influence of each predictor on brain responses as a function of time(-lags). This
allows asking two questions about the predictor variables: 1) Is there a significant neural
representation corresponding to this predictor variable? And if so, 2) what are the temporal
characteristics of the neural response associated with it? Thus, different predictor variables can
be systematically combined and evaluated to jointly model neural processing at multiple
hierarchical levels. We discuss applications of this approach, including the potential for linking
algorithmic/representational theories at different cognitive levels to brain responses through
computational models with appropriate linking hypotheses.
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2 Introduction
This paper introduces Eelbrain, a Python toolkit that makes it straightforward to express
cognitive hypotheses as predictive computational models and evaluate those predictions
against electrophysiological brain responses. The toolkit is based on the idea of decomposing
brain signals into distinct responses associated with different predictor variables by estimating a
multivariate temporal response function (mTRF), which maps those predictors to brain
responses elicited by time-continuous stimulation (Theunissen et al., 2001; Lalor et al., 2006;
David et al., 2007). This form of analysis has yielded valuable insights into the way that
perception and cognitive processes unfold over time (e.g. Ding and Simon, 2012; Broderick et
al., 2018; Brodbeck et al., 2018a; Daube et al., 2019; Di Liberto et al., 2020; Sohoglu and Davis,
2020).

2.1 How to read this Paper

Time-lagged regression using TRFs is a mathematical method for analyzing the
stimulus-response relationship between two signals that are evolving as a function of time, i.e.,
time series, like speech and brain activity measurements. The goal of this paper is to introduce
several categories of cognitive neuroscience questions that can be asked using TRFs, and
provide recipes for answering them. As such, the paper is not necessarily meant to be read in a
linear fashion. The Introduction provides a general motivation for the approach and explains the
underlying concepts in an accessible way. The Methods section explains the technical details
and implementation in Eelbrain. The Results section demonstrates how the technique can be
applied to answer specific questions. The Discussion section highlights some more advanced
considerations and caveats that should be kept in mind. The accompanying GitHub repository
(https://github.com/Eelbrain/Alice) provides the source code for everything discussed in the
paper (README.md contains instructions on how to get started). In addition, the Examples
section on the Eelbrain website provides many source code examples for several other basic
tasks.

Depending on the background of the reader, these resources can be approached differently –
for example, we recommend reading the Introduction and Results sections first to get an idea of
the questions that can be answered, and then referring to the Methods for more detailed
background information.

2.2 The convolution model for brain responses

The mTRF approach is built on the assumption that the brain response is continuously evolving
in time as a function of the recently encountered stimulus (Lalor et al., 2006). Brain responses
do not directly mirror a physical stimulus, but rather reflect a variety of transformations of that
stimulus. For example, while speech is transmitted through air pressure variations in the kHz
range, this signal is transformed by the auditory periphery, and macroscopic cortical responses
are better described as responses to the slowly varying envelope of the original broadband
signal. Thus, instead of directly predicting brain responses from the stimulus, the experimenter
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commonly selects one or several appropriate predictor variables to represent the stimulus, for
example the low frequency speech envelope (Lalor and Foxe, 2010).

The convolution model is a formal specification of how the stimulus, as characterized by the
predictor variables, leads to the response. The stimulus-response relationship is modeled as a
linear convolution in time, as illustrated in Figure 1. In contrast to classical analysis approaches
that require averaging, the convolution model applies to single trial data and does not require
any repetition of identical stimuli. A convolution kernel, or impulse response, characterizes the
influence of each elementary unit in a predictor on the response. This kernel is also called the
temporal response function (TRF), to distinguish it from the measured response to the stimulus
as a whole. In addition to modeling an individual predictor variable (Figure 1-B,C), the
convolution model can also incorporate multiple predictor variables through the assumption
that responses are additive (Figure 1-D). Each predictor variable is associated with its own TRF,
and thus predicts a separable response component. The ultimate response is the sum of those
response components at each time point. This additive model is consistent with the fact that
macroscopic measurements of electrical brain signals reflect an additive superposition of signals
from different brain regions, potentially reflecting separable neural processing (Nunez and
Srinivasan, 2006). When multiple predictor variables are jointly predicting a response, the
collection of their TRFs is called a multivariate TRF (mTRF). As such, predictor variables can be
thought of as hypotheses about how stimuli are represented by the brain, and multiple
concurrent predictors can embody distinct hypotheses about how the stimulus is transformed
across different brain regions (Brodbeck and Simon, 2020). The additive nature of the
convolution model allows it to be applied to comparatively natural stimulus conditions, such as
audiobook listening (Hamilton and Huth, 2020; Alday, 2019), while modeling natural variability
through different predictor variables rather than minimizing it through experimental design.
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Figure 1. The convolution model for brain responses as a generalization of the
averaging-based paradigm.
(A) The traditional event-related analysis method assumes that each stimulus (blue arrows)
evokes an identical, discrete response, and this response can be recovered by averaging. This
model assumes that responses are clearly separated in time. (B) In contrast, the convolution
model assumes that each time point in the stimulus could potentially evoke a response. This is
implemented with time series predictor variables, illustrated here with a time series containing
several impulses. These impulses represent discrete events in the stimulus that are associated
with a response, for example the occurrence of words. This predictor time series is convolved
with some kernel characterizing the general shape of responses to this event type – the
temporal response function (TRF), depicted on the right. Gray arrows illustrate the convolution,
with each impulse producing a TRF-shaped contribution to the response. As can be seen, the
size of the impulse determines the magnitude of the contribution to the response. This allows
testing hypotheses about stimulus events that systematically differ in the magnitude of the
responses they elicit, for example, that responses increase in magnitude the more surprising a
word is. A major advantage over the traditional averaging model is also that responses can be
overlapping in time. (C) Rather than discrete impulses, the predictor variable in this example is a
continuously varying time series. Such continuously varying predictor variables can represent
dynamic properties of sensory input, for example the acoustic envelope of the speech signal.
The response is dependent on the stimulus in the same manner as in (B), but now every time
point of the stimulus evokes its own response shaped like the TRF and scaled by the magnitude
of the predictor. Responses are therefore heavily overlapping. (D) The multivariate TRF (mTRF)
model is a generalization of the TRF model with multiple predictors: like in a multiple regression
model, each time series predictor variable is convolved with its own corresponding TRF,
resulting in multiple partial responses. These partial responses are summed to generate the
actual complete response. Source code: figures/Convolution.py

In most practical data analysis scenarios, the true TRFs are unknown, but the stimulus and the
brain responses are known. A TRF estimation algorithm addresses this, by estimating the mTRF
that is optimal to predict the brain response from the predictor variables representing the
stimulus. Figure 2 illustrates this with EEG responses being predicted from the speech envelope.
Typically, this is a very high-dimensional problem – including several predictor variables, each of
which can influence the brain response at a range of latencies. Due to the large number of
parameters, mTRFs are prone to overfitting, meaning that the mTRFs learn properties of the
noise in the specific dataset rather than the underlying, generalizable responses. TRF estimation
methods deal with this problem by employing different regularization schemes, i.e., by bringing
additional assumptions to the problem that are designed to limit overfitting (see Sparsity prior
below). A further step to avoid spurious results due to overfitting is evaluating model quality
with cross-validation, i.e., evaluating the model on data that was never used during training.
This step allows evaluating whether the mTRF model can generalize to unseen data and predict
novel responses, as opposed to merely explaining the responses it was trained on.
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Figure 2. Temporal response function (TRF) analysis of EEG speech tracking.
The left half illustrates the estimation of a TRF model, the right half the evaluation of this model
with cross-validation. First, the stimulus is used to generate a predictor variable, here the
acoustic envelope (A). The predictor and corresponding EEG data (here only one sensor is
shown) are then used to estimate a TRF (B). This TRF is then convolved with the predictor for
the held-out testing data to predict the neural response to the testing data (C; measured: black;
predicted: red). This predicted response is compared with the actual, measured EEG response
to evaluate the predictive power of the model (D). A topographic map shows the % of the
variability in the EEG response that is explained by the TRF model, estimated independently at
each sensor. This head-map illustrates how the predictive power of a predictor differs across the
scalp, depending on which neural sources a specific site is sensitive to. The sensor whose data
and TRF are shown is marked in green.
Source code: figures/TRF.py.

2.3 Nonlinear responses

Convolution can only model linear responses to a given input, whereas true neural responses
are known to be nonlinear. Indeed, nonlinear transformations of the stimulus are arguably the
most interesting, because they can show how the brain transforms and abstracts away from the
stimulus, rather than merely mirroring it. We advocate a model-driven approach to study such
nonlinear responses. A non-linear response can be modeled by generating a predictor variable
that applies a non-linear transformation to the original stimulus, and then predicting brain
responses as a linear response to this new predictor variable. For instance, it is known that the
auditory cortex is disproportionately sensitive to acoustic onsets. This sensitivity has been
described with a neural model of auditory edge detection, implemented as a signal processing
routine (Fishbach et al., 2001). When this edge detection model is applied to the acoustic
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spectrogram, this results in a spectrogram of acoustic onsets, effectively mapping regions in the
signal to which specific neuron populations should respond. This transformed spectrogram as a
predictor variable thus operationalizes the hypothesis that neurons perform this non-linear
transformation. Indeed, such acoustic onset spectrograms are highly significant predictors of
auditory magnetoencephalography (MEG) responses (Daube et al., 2019; Brodbeck et al., 2020).
Because mTRF models can only use linear transformations of the predictor variables to predict
brain responses, a significant contribution from this predictor variable suggests that this
non-linear transformation captures the nature of the neural processes giving rise to the brain
responses.

This logic for studying nonlinear responses is taken to an even further level of abstraction when
language models are used to predict brain responses. For instance, linguistic theory suggests
that during speech comprehension, the continuous acoustic signal is transformed into discrete
representations such as phonemes and words. However, we do not yet have an explicit,
computational model of this transformation that could be used to generate an appropriate
predictor. Instead, experimenters can estimate the result of an implicitly specified
transformation based on extraneous knowledge, such as linguistic labels and corpus data. For
example, responses to phonemes or phonetic features have been modeled through predictors
reflecting discrete categories (Di Liberto et al., 2015). Furthermore, a series of such
investigations suggests that brain responses to speech reflect linguistic representations at
different hierarchical levels (Brodbeck et al., 2018a; Broderick et al., 2018; Weissbart et al.,
2020; Gillis et al., 2021; Brodbeck et al., 2022). Such linguistic properties are commonly
modeled as impulses corresponding to the onsets of words or phonemes. This does not
necessarily entail the hypothesis that responses occur at word onsets. Rather, since the mTRFs
allow responses at various latencies relative to the stimulus, such predictor variables can predict
any time-locked responses that occur in an approximately fixed temporal relationship with the
stimulus (within the pre-specified latency window).

During all this, it is important to keep in mind that even predictor variables that implement
highly non-linear transformations are still likely to be correlated with the original stimulus (or
linear transformations of it). For example, words and phonemes are associated with specific
spectro-temporal acoustic patterns which systematically relate to their linguistic significance.
Before drawing conclusions about non-linear transformations implemented by the brain, it is
thus always important to control for more basic stimulus representations. In the domain of
speech processing this includes at least an acoustic spectrogram and an acoustic onsets
spectrogram (see Figure 3 below). The latter in particular has been found to account for many
responses that might otherwise be attributed to phonetic feature representations (Daube et al.,
2019).

2.4 This Tutorial

For this tutorial, we use the openly available Alice dataset (Bhattasali et al., 2020) which
contains EEG data from 33 participants who listened to the first chapter of Alice in Wonderland
(12.4 minutes; 2,129 words). The dataset also includes several word-level regressors derived
from different syntactic language models, described in more detail in the original publication
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(Brennan and Hale, 2019). Here we implement a complete group level analysis for different
levels of representation using Eelbrain.

Eelbrain implements mTRF estimation using boosting (David et al., 2007), as well as a variety of
statistical tests, and ways to extract results for further analysis with other tools. The overall
implementation of Eelbrain has been guided by the goal of facilitating mTRF estimation, group
level analysis, and visualization of results, for a general audience. The choice of boosting is
significant as it encourages TRFs with a small number of non-zero coefficients, i.e., the boosting
algorithm prefers a simpler explanation over a complex one (Kulasingham and Simon, 2022).
This makes boosting suitable for estimating mTRFs for models consisting of structured, highly
correlated, and possibly redundant predictor variables (David and Shamma, 2013), as is typical
for models in cognitive neuroscience problems.

3 Methods
This section describes each step towards a group level analysis, starting from the data that is
included in the open Alice EEG dataset (Bhattasali et al., 2020): EEG recordings, stimulus Wave
(audio) files and a comma-separated values (CSV) table with information about the words
contained in the audiobook stimuli.

3.1 Overall architecture of the Eelbrain toolbox

Eelbrain provides high level functionality to represent time series data (such as EEG) and
functions to work with this data. The Dataset class provides a data-table in which each row
represents a measurement case (e.g., a trial), similar to a dataframe in R. The Var and Factor
classes represent continuous and categorical columns in such a Dataset. In addition, the
NDVar class (“n-dimensional variable”) provides a container for n-dimensional data. An NDVar
instance also carries meta-information, for example sampling rate in a time series, and sensor
locations in EEG data. This allows other functions to access that information without user
intervention. For example, a plotting function can directly generate topographic plots of an
NDVar representing event related potential data, without the user specifying which data point
corresponds to which sensor, which dimension corresponds to the time axis, what the sampling
rate is, etc. More detailed introductions can be found in the Examples section of the Eelbrain
online documentation.

3.2 Time series data

In the mTRF paradigm, a time series (for example, voltage at an EEG channel) is modeled as a
linear function of one or several other time series (for example, the acoustic envelope of
speech). The first step for an mTRF model is thus bringing different time-dependent variables
into a common representational format. This is illustrated in Figure 3, which shows an excerpt
from the first stimulus in the Alice dataset aligned to the EEG data from the first subject, along
with different representations of the stimulus, which can model different neural
representations.
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Figure 3. Time series representations of different commonly used speech representations,
aligned with the EEG data.
EEG: band-pass filtered EEG responses. Sound Wave: acoustic wave form, time-aligned to the
EEG data. Gammatone Spectrogram: spectrogram representation modeling processing at the
auditory periphery. Gammatone 8 Bands: the gammatone spectrogram binned into 8
equal-width frequency bins for computational efficiency. Gammatone Envelope: sum of
gammatone spectrogram across all frequency bands, reflecting the broadband acoustic
envelope. Acoustic Onsets: acoustic onset spectrogram, a transformation of the gammatone
spectrogram using a neurally inspired model of auditory edge detection. Words: Uniform
impulse predictor at all word onsets, predicting a constant response to all words. N-Gram:
Impulses at word onset, scaled with word-level surprisal, estimated from an n-gram language
model. This predictor will predict brain responses to words that scale with how surprising each
word is in its context. N-Gram Lexical: N-Gram surprisal only at content words, predicting a
response that scales with surprisal and occurs at content words only.
Source code: figures/Time-series.py

As Figure 3 suggests, time series will often have different dimensions. For example, EEG data
might be 2-dimensional with a time and a sensor dimension; a predictor might be
one-dimensional, such as the acoustic envelope, or also have multiple dimensions, such as a
spectrogram with time and frequency dimensions. To simplify working with different arbitrary
dimensions, Eelbrain uses the NDVar (n-dimensional variable) class. An NDVar instance
associates an n-dimensional numpy array (Harris et al., 2020) with n dimension descriptors. For
example, the EEG measurements can be represented by a 2-dimensional NDVar with two
dimensions characterizing the EEG sensor layout (Sensor) and the time axis, as a uniform time
series (UTS).

The first step for the mTRF analysis is thus to import the EEG measurements and predictor
variables as NDVar objects, and align them on the time axis, i.e., make sure they are described
by identical UTS dimensions. The eelbrain.load module provides functions for importing
different formats directly, such as MNE-Python objects and Wave files (NDVar objects can also
be constructed directly from numpy arrays). Keeping information about dimensions on the
NDVar objects allows for concise and readable code for tasks such as aligning, plotting, etc. The
code for Figure 2 includes an example of loading a Wave file and aligning its time axis to the EEG
data through filtering and resampling.

3.2.1 EEG data

EEG data should be pre-processed according to common standards. In the Python ecosystem,
MNE-Python offers a unified interface to a variety of EEG file formats and preprocessing
routines (Gramfort et al., 2014). Here, we rely on the preprocessed data provided with the Alice
EEG dataset, referenced to the averaged mastoids, and processed for artifact reduction with
independent component analysis (see Bhattasali et al., 2020). However, a crucial additional step
is filtering and downsampling the EEG data. When analyzing continuous electrophysiological
recordings, removing low frequencies (i.e., high-pass filtering) takes the place of baseline
correction, by removing high-amplitude slow drifts in the EEG signal which would otherwise
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overshadow effects of interest. Removing high frequencies, beyond the signals of interest
(low-pass filtering), reduces noise and, more crucially, allows conducting the analysis at a lower
sampling rate. This makes the analysis faster, because TRF estimation is computationally
demanding, and processing times scale with the sampling rate. The major cortical phase-locked
responses decrease quickly above 10 Hz (Ding et al., 2014), although there can be exceptions,
such as a pitch-following response up to 100 Hz (Kulasingham et al., 2020). For the purpose of
this tutorial we are interested in the range of common cortical responses and apply a 0.5-20 Hz
band-pass filter. Theoretically, a sampling rate exceeding 2 times the highest frequency (also
known as Nyquist frequency) is necessary for a faithful representation of the signal. However,
Nunez and Srinivasan (2006) recommend a sampling rate 2.5 times the highest frequency due
to various empirical considerations, such as presence of random jitters, finite roll-off of the
band-pass filter, etc. An even higher rate could be desirable for some secondary analysis and
visualization, since it leads to smoother results. Here we conduct the analysis with a sampling
rate of 100 Hz.

EEG data usually contain markers that indicate the start of the stimulus presentation. These can
be used to quickly extract EEG data time-locked to the stimuli in the required time series
format, i.e. a 2-dimensional NDVar with Sensor and UTS dimensions (see source code to
Figure 2).

3.2.2 Predictor variables

Any hypothesis about time-locked neural processing that can be quantified can be represented
by a time series derived from the stimulus. Here we will illustrate two approaches: The first
approach implements hypotheses about spectro-temporal transformations of the acoustic
signal by directly applying those transformations to the speech waveform. The second approach
implements hypotheses about linguistic processing based on experimenter-determined,
discrete linguistic events.

3.2.2.1 Time-continuous predictor variables: gammatone spectrogram and derivatives

A common starting point for modeling acoustic responses is through a model of the cochlear
transformation of the sound. Here we use the gammatone spectrogram method to estimate
cochlear transformations (Patterson et al., 1992; Heeris, 2018). A gammatone spectrogram is
initially a high-dimensional representation, with more than a hundred time series representing
the acoustic power at different frequency bands. For computational efficacy, we reduce the
number of bands by summarizing several contiguous bands into one. Here we use 8 bands as a
compromise that leaves the global acoustic structure intact (Figure 3). An extreme form of this
dimension reduction is using the acoustic envelope, which summarizes the entire spectrogram
with a single band.

In addition to representing raw acoustic features, the auditory cortex is known to prominently
represent acoustic onsets (Daube et al., 2019). Here we model such representations by applying
the neurally inspired auditory edge detection transformation to the gammatone spectrogram
(Brodbeck et al., 2020). It is also common to approximate such a transformation through the
half-wave rectified derivative of the acoustic envelope (Fiedler et al., 2017; Daube et al., 2019).
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Because these predictor variables will be used repeatedly, it is convenient to generate them
once and save them for future use. The script predictors/make_gammatone.py loops
through all stimuli, computes a high-dimensional gammatone spectrogram (a 2-dimensional
NDVar with frequency and UTS dimensions), and saves it as a Python pickle file via the
eelbrain.save module. The script predictors/make_gammatone_predictors.py loads
these high-dimensional spectrograms via the eelbrain.load module and resamples them to
serve as predictors, and it also applies the onset transformation and saves the resulting
predictors.

Eelbrain provides functions to quickly generate this auditory model from audio files
(gammatone_bank and edge_detector), as well as some basic signal processing routines for
NDVars (e.g., filter_data; see the Reference section of the online documentation for a list).
Different models can be constructed using different tools and converted to NDVars (for an
example of importing data from a *.mat file, see the EEG speech envelope TRF example of the
online documentation).

3.2.2.2 Discrete predictor variables

The analysis of linguistic representations, which cannot be derived directly from the sound
waveform, commonly relies on forced alignment, a method that infers time-stamps for
phoneme and word boundaries by comparing the sound waveform with a transcript. An
example of an open source forced aligner with extensive documentation is the Montreal Forced
Aligner (e.g. McAuliffe et al., 2017). Because the forced alignment procedure requires some
additional steps that are well documented by the respective aligners we skip it here, and
instead use the word-onset time-stamps provided with the Alice dataset.

Discrete predictors come in two varieties: constant magnitude impulses and variable magnitude
impulses (see Figure 3, lower half). Constant magnitude impulses always have the same
magnitude, for example an impulse of magnitude 1 at each word onset. Such a predictor
implements the hypothesis that all words are associated with a shared characteristic brain
response, similar to an event-related potential (ERP). The TRF estimation algorithm will then
determine the latencies relative to those impulses at which the brain exhibits a consistent
response. Variable magnitude impulses implement the hypothesis that the brain response to
each word varies systematically with some quantity. For example, the N400 is assumed to
co-vary with how surprising the word is in its context. A predictor with an impulse at each word
onset, whose magnitude is equal to the surprisal of that word, will enable predicting a
stereotyped response to words whose amplitude linearly varies with word surprisal. The linking
hypothesis here is that for each event, the brain responds with population activity that scales in
amplitude with how surprising that event is, or how much new information it provides (see e.g.
Brodbeck et al., 2022).

The Alice dataset comes with a table including all time-stamps and several linguistic properties
(stimuli/AliceChapterOne-EEG.csv). Each row of this table represents one word, and
contains the time point at which the word starts in the audio file, as well the surprisal values
that were used to relate the EEG signal to several language models in the original analysis
(Brennan and Hale, 2019). Such a table listing event times and corresponding feature values is
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sufficient for constructing appropriate regressors on the fly, and has a much lower memory
footprint than a complete time series. The script predictors/make_word_predictors.py
converts the table into the Eelbrain Dataset format that can be directly used to construct the
regressor as an NDVar. To keep a common file structure scheme with the continuous regressors,
such a table is generated for each stimulus.

Eelbrain provides a function for turning any time/value combination, reflecting the occurrence
of discrete events, into a continuous predictor variable: event_impulse_predictor. The
time/value pairs can either be constructed directly in Python, or can be imported, for example
from a text file using the load.tsv function.

3.3 TRF estimation

3.3.1 Background: The convolution model

The key assumption behind the mTRF approach is that the dependent variable, y, is the result of
a convolution (linear filtering) of one or several predictor variables, x, with a corresponding filter
kernel h. For a single predictor variable, the model is formulated as the convolution of the
predictor variable with a one-dimensional filter kernel. For example, yt might be the value of an
EEG channel at time t, and xt the value of the acoustic envelope at time t:

𝑦
𝑡
=

τ=τ
𝑚𝑖𝑛

τ
𝑚𝑎𝑥

∑ ℎ
τ
𝑥
𝑡−τ

Here h represents the filter kernel, also known as TRF, and enumerates the time delays or lagsτ
between y and x at which can influence y. To extend this approach to multiple predictor𝑥
variables, it is assumed that the individual filter responses are additive. In that case, x consists
of n predictor time series and thus has two dimensions, one being the time axis and the other
reflecting n different predictor variables. The corresponding multivariate TRF (mTRF) is also
two-dimensional, consisting of one TRF for each predictor variable:

𝑦
𝑡
=

𝑖=0

𝑛

∑
τ=τ

𝑚𝑖𝑛

τ
𝑚𝑎𝑥

∑ ℎ
𝑖,τ
𝑥
𝑖,𝑡−τ

This model allows predicting a dependent variable , given predictors and mTRF .𝑦 𝑥 ℎ

In neural data analysis scenarios, typically the measured brain response and the stimuli are
known, whereas the filter kernel is unknown. This leads to two reformulations of the generalℎ
problem in which and are known, and is to be estimated; these represent alternative𝑥 𝑦 ℎ
approaches for analysis. In the first, the so-called forward or encoding model, is optimized toℎ
predict brain responses from stimulus representations. In the second, the so-called backward,
or decoding model, is optimized to reconstruct a stimulus representation from the neuralℎ
measurements. The problems can both be expressed in the same general form and solved with
the same algorithms. Eelbrain provides an implementation of the boosting algorithm (David et
al., 2007), further described in Background: Boosting implementation below.
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3.3.2 Forward model (encoding)

Given a continuous measurement and one or more temporally aligned predictor variables, the
reverse correlation problem consists of finding the filter kernel, or mTRF, that optimally predicts
the response from the stimuli. The result of the convolution now becomes the predicted
response:

𝑦
𝑡

^
=

𝑖=0

𝑛

∑
τ=τ

𝑚𝑖𝑛

τ
𝑚𝑎𝑥

∑ ℎ
𝑖,τ
𝑥
𝑖,𝑡−τ

(1)

The goal of the algorithm estimating the mTRF is to minimize the difference between theℎ
measured response and the predicted response . Figure 2 illustrates estimation of a𝑦

𝑡
𝑦
𝑡

^

forward model for EEG data.

The eelbrain.boosting function provides a high-level interface for estimating mTRFs and
returns a BoostingResult object with different attributes containing the mTRF and several
model fit metrics for further analysis. Usually, for a forward model, the brain response is
predicted from the predictors using positive (i.e. causal) lags. For example,

trf = boosting(eeg, envelope, 0, 0.500)

would estimate a TRF to predict EEG data from the acoustic envelope, with stimulus lags ranging
from 0 to 500 ms (Eelbrain uses seconds as the default time unit). This means that an event at a
specific time in the acoustic envelope could influence the EEG response in a window between 0
and 500 ms later. If the dependent variable has multiple measurements, for example as here
multiple EEG channels, Eelbrain automatically assumes a mass-univariate approach and
estimates a TRF for each channel. Negative lags, as in

trf = boosting(eeg, envelope, -0.100, 0.500)

are non-causal in the sense that they assume a brain response that precedes the stimulus event.
Such estimates can nevertheless be useful for at least two reasons. First, if the stimulus
genuinely represents information in time, then non-causal lags can be used as an estimate of
the noise floor. As such they are analogous to the baseline in ERP analyses, i.e., they indicate
how variable TRFs are at time points at which no true response is expected. Second, when
predictor variables are experimenter-determined, the temporal precision of the predictor time
series might often be reduced, and information in the acoustic speech signal might in fact
precede the predictor variable. In such cases, the negative lags might be diagnostic. For
example, force-aligned word and phoneme onsets assume the existence of strict boundaries in
the speech signal, when in fact the speech signal can be highly predictive of future phonemes
due to coarticulation (e.g. Salverda et al., 2003).

An advantage of the forward model is that it can combine information from multiple predictor
variables. The boosting algorithm in particular is robust with a large number of (possibly
correlated) predictor variables (e.g., David and Shamma, 2013). Eelbrain supports two ways to
specify multiple predictor variables. The first is using a multi-dimensional predictor, for example
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a two-dimensional NDVar, spectrogram with frequency and UTS dimensions. These are
used with the boosting function just like one-dimensional time series, and will be treated as
multi-dimensional predictor variables, i.e., the different frequency bands will be jointly used for
the optimal prediction of the dependent variable:

mtrf = boosting(eeg, spectrogram, 0, 0.500)

The second option for using multiple predictor variables is specifying them as a list of NDVar
(one and/or two-dimensional), for example:

mtrf = boosting(eeg, [envelope, spectrogram], 0, 0.500)

3.3.3 Backward model (decoding)

Instead of predicting the EEG measurement from the stimulus, the same algorithm can attempt
to reconstruct the stimulus from the EEG response. The filter kernel is then also called a
decoder. This can be expressed with (1), but now refers to a stimulus variable, for example𝑦

𝑡
the speech envelope, and refers to the EEG measurement at sensor i and time t. Accordingly,𝑥

𝑖,𝑡
a backward model can be estimated with the same boosting function. For example,

decoder = boosting(envelope, eeg, -0.500, 0)

estimates a decoder model to reconstruct the envelope from the EEG data. Note the
specification of delay values in the boosting function, from the point of view of the predictorτ
variable: because each point in the EEG response reflects the stimulus preceding it, the delay
values are negative, i.e., a given point in the EEG response should be used to reconstruct the
envelope in the 500 ms window preceding the EEG response.

Because the EEG channels now function as the multivariate predictor variable, all EEG channels
are used jointly to reconstruct the envelope. An advantage of the backward model is that it thus
combines data from all EEG sensors to reconstruct a stimulus feature. It provides a powerful
measure of how much information about the stimulus is contained in the brain responses, taken
as a whole. A downside is that it does not provide a straight-forward way for distinguishing
responses that are due to several, correlated predictor variables. For this reason, we will not
further discuss it here. However, backward models have applications in other domains, where
questions are not about specific representations, for instance attention decoding in auditory
scenes (O’Sullivan et al., 2015).

3.4 Background: The boosting algorithm

The general TRF estimation problem, i.e., finding the optimal filter kernels in forward and
backward models, can be solved with different approaches. The Eelbrain toolkit implements the
boosting algorithm, which is resilient to over-fitting and performs well with correlated predictor
variables (David et al., 2007; David and Shamma, 2013). The boosting algorithm is intentionally
designed with a bias to produce sparse mTRFs, i.e., mTRFs in which many elements are exactly
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zero. The algorithm thus incorporates a so-called sparsity prior, i.e., a prior to favor sparser
models over alternatives (see Section 5.2 Sparsity prior).

Boosting starts by dividing the data into training and validation folds, and initializing an empty
mTRF (all values hi,τ are initially set to 0). It then iteratively uses the training data to find the
element in the filter kernel which, when changed by a fixed small amount delta, leads to the
largest error reduction. Figure 4 shows pseudo-code for the boosting algorithm. For multiple
predictors, the search is performed over all the predictors as well as time lags, essentially letting
the different predictors compete to explain the dependent variable. At each step, only a single
element in the mTRF is modified. In that respect, boosting is a coordinate descent algorithm
because it moves only at right angles in the parameter space. This promotes sparsity, as most
elements stay at zero in every step. After each such delta change, the validation data is
consulted to verify that the error is also reduced in the validation data. Once the error starts
increasing in the validation set, the training stops. This early stopping strategy prevents the
model from overfitting to the training data. In other words, the early stopping strategy in the
boosting algorithm acts as an implicit prior to promote sparsity, i.e., it forces unimportant filter
kernel coefficients to remain exactly 0.

mTRF[:] = 0
n_validation_error_increased = 0

while n_validation_error_increased < 2:
current_training_error = error of mTRF in training set
current_validation_error = error of mTRF in validation set

# Find training error for all possible coordinate steps
for element in mTRF:
error_add[element] = error of mTRF with element = element + ∆
error_sub[element] = error of mTRF with element = element - ∆

# If no error reduction is possible, reduce ∆ or stop
if smallest error in error_add, error_sub > current_training_error:
∆ *= 0.5
if ∆ ≥ mindelta:
continue

else:
break

# Update the mTRF and check validation set error
mTRF = mTRF corresponding to smallest error in error_add, error_sub
new_validation_error = error of mTRF in validation set
if new_validation_error > current_validation_error:
n_validation_error_increased += 1

else:
n_validation_error_increased = 0

mTRF = the mTRF in the history with the smallest validation error
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Figure 4. Pseudo-code for the default version of the boosting algorithm.

The default implementation of the boosting algorithm constructs the kernel from impulses
(each element hi,τ is modified independently), which can lead to temporally discontinuous TRFs.
In order to derive smoother TRFs, TRFs can be constructed from a basis of smooth window
functions instead. In Eelbrain, the basis shape and window size are controlled by the basis and
basis_window parameters in the boosting function. Their use is described in more detail in
section 3.8.

Additionally, when using multiple predictors, it may be undesirable to stop the entire model
training when a single predictor starts overfitting. In that case, the selective_stopping
option allows freezing only the predictor which caused the overfitting, while training of the TRF
components corresponding to the remaining predictors continues, until all predictors are
frozen.

Finally, the default error metric for evaluating model quality is the widely used 𝓁2 error. Due to
squaring, however, the 𝓁2 error is disproportionately sensitive to time points with large errors.
Specifically in electrophysiology, large errors are typically produced by artifacts, and it is
undesirable to give such artifacts a large influence on the model estimation. Since it is not trivial
to exclude time-intervals containing such artifacts from the analysis in continuous data, Eelbrain
also allows use of the 𝓁1 error norm through the error='l1' argument, which improves
robustness against such outlier data.

Usually both the dependent variable and the predictor are centered around zero, and either
standardized against the standard deviation (for 𝓁2 error) or normalized by the 𝓁1 norm (for 𝓁1

error) before starting the boosting algorithm. The centering step is crucial to eliminate the
intercept, since the boosting algorithm prefers sparse solutions, i.e., solutions with exact zero
coefficients. When multiple predictors are used, this preprocessing step is applied separately to
each of them, to ensure none of them affects the boosting procedure disproportionately. If
required, this preprocessing step can be skipped through an argument to the boosting
function: scale_data=False.

3.4.1 Cross-validation

By default, the boosting function trains an mTRF model on all available data. Reserving some
data for cross-validation, which further reduces overfitting, can be enabled by setting the test
parameter to test=True. Since the boosting algorithm already divides the data into training
and validation sets, enabling cross-validation entails splitting the data into three segments for
each run: training, validation, and test sets. While the training and validation segments are
consulted for estimating the TRFs (as described above), the test segment does not influence the
estimation of the TRFs at all. Only once the TRF estimation is finalized, the final TRF is used to
predict the responses in the test segment. To use the data optimally, Eelbrain automatically
implements -fold cross-validation, whereby the data is divided into k partitions, and each𝑘
partition serves as the test set once (see Data partitions Eelbrain example). Thus, through k-fold
cross-validation, the whole response time series can be predicted from unseen data. The
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proportion of the explained variability in this response constitutes an unbiased estimate of the
predictive power of the given model. The BoostingResult object returned by the boosting
function contains all these metrics as attributes for further analysis.

3.4.2 Comparison to ridge regression

An alternative approach to boosting is ridge regression (Crosse et al., 2021), which uses Tikonov
regularization. Tikonov regularization biases the mTRFs to suppress mTRFs in the stimulus
subspace with low signal to noise ratio, effectively imposing a smooth prior on the mTRF. In
other words, Tikonov regularization tends to distribute the TRF power over all time-lags. In
contrast, boosting minimizes nonzero parameters in mTRFs, effectively imposing a sparseness
prior on the mTRF, i.e., boosting concentrates the TRF power within a few time-lags. For a
detailed discussion on the differences between boosting and ridge regression see David et al.
(2007). Figure 5 shows a side by side comparison between boosting and ridge regression in a
simulation study where a gammatone spectrogram was used to simulate the time-locked EEG
response.

Figure 5. Simulation study comparing boosting with ridge regression when modeling multiple
correlated variables.
(A) The mTRF used to generate the simulated EEG data (left panel), and mTRFs recovered by
boosting and ridge regression (middle and right panel). (B) Overlays of boosting, ridge
regression and ground truth TRFs at different center frequencies for comparison. Note that the
ridge TRF follows the ground truth closely, but produces many false positives. On the contrary,
the boosting TRF enjoys an excellent true negative rate, at the expense of biasing TRF peaks and
troughs toward 0.
a.u.: arbitrary units. Source code: figures/Collinearity.py.

Briefly, two adjacent gammatone bands (structured, highly correlated variables) were assumed
to drive the auditory response with a spatiotemporally alternating pattern (Figure 5-A, left
panel). The simulated auditory response was then corrupted with additive pink noise to
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simulate EEG activity. We used the boosting function from Eelbrain and the ridge regression
implementation from the pyEEG toolbox (https://github.com/Hugo-W/pyEEG) to recover the
mTRFs from the simulated EEG. For both algorithms, we used 10-fold cross-validation to select
the optimum amount of regularization. With boosting we further tuned the
selective_stopping hyper-parameter according to the explained variances in unseen data
(with the test=True setting), i.e., we chose the model with the maximal
selective_stopping, after which the explained variance started decreasing. For boosting,
the TRFs are constructed from a basis of hamming windows with window length of 50 ms,
resulting in smoother TRFs. Both the mTRFs recovered by boosting and ridge regression capture
the dominant features of the ground truth mTRF. However, the boosting mTRF is has only a few
peaks and troughs, giving a simpler representation with peaks and troughs closely
corresponding to those of the ground truth, while the ridge regression mTRF includes many
additional noisy peaks and troughs (Figure 5-A, middle and right panel) (see also David et al.,
2007; David and Shamma, 2013). In order to emphasize the differences between the estimates,
the mTRF components are shown at the two Gammatone frequency-bands driving the response
(Figure 5-B, left and middle panel), and at another frequency-band with no response (rightmost
panel). The ridge regression follows the dominant peaks and troughs of the ground truth mTRF
closely, but, in doing so, acquires numerous false positives, i.e., small non-zero values when the
true mTRF is actually zero. On the other hand, the boosting mTRF displays a high true negative
rate, while biasing the peaks and troughs towards zero. The two algorithms are further
compared using multiple criteria in Kulasingham and Simon (2022).

3.5 Evaluating predictive power

In practice, a research question can often be operationalized by asking whether a specific
predictor variable is neurally represented, i.e., whether it is a significant predictor of brain
activity. Different predictor variables of interest are very often correlated in naturalistic stimuli
such as speech. It is thus important to test the explanatory power of a given variable while
controlling for the effect of other, correlated variables. A powerful method for this is comparing
the predictive power of minimally differing sets of predictor variables using cross-validation.

In this context, we use the term ‘model’ to refer to a set of predictor variables, and ‘model
comparison’ refers to the practice of comparing the predictive power of two models on
held-out data. It is important to re-estimate the mTRFs for each model under investigation to
determine the effective predictive power of that model, because mTRFs are sensitive to
correlation between predictors and can thus change depending on what other predictors are
included during estimation.

When building models for a specific model comparison, we recommend a hierarchical
approach: both models should include lower-level properties that the experimenter wants to
control for, while the models should differ only in the feature of interest. For example, to
investigate whether words are associated with a significant response after controlling for
acoustic representations, one could compare the explained variability of (2) and (3):
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gammatone spectrogram + onset spectrogram (2)

gammatone spectrogram + onset spectrogram + word onset impulses (3)

If the model in (3) is able to predict held-out test data better than that in (2) then this difference
can be attributed to a predictive power of word onset impulses over and above the
spectrogram-based representations.

Estimating such mTRF models is the computationally most demanding part of this analysis. For
this reason, it usually makes sense to store the result of the individual estimates. The script
analysis/estimate_trfs.py implements this, by looping through all subjects, fitting
mTRFs for multiple models, and saving the results for future analysis.

3.6 Group analysis

In order to statistically answer questions about the predictive power of different models we will
need to combine the data from different measurements, usually different subjects. To combine
data from multiple subjects along with meta-information such as subject and condition labels
Eelbrain provides the Dataset class, analogous to data-table representations in other statistics
programs such as a dataframe in R or Pandas, but with the added capability of handling data
from NDVars with arbitrary dimensionality.

A standard way of constructing a Dataset is collecting the individual cases, or rows of the
desired data table, and then combining them. The following short script provides a template for
assembling a table of model predictive power for several subjects and two models (assuming
the mTRF models have been estimated and saved accordingly):

cases = []

for subject in ['1', '2', '3']:

for model in ['sgrams', 'sgrams+words']:

mtrf = load.unpickle(f"path/to/{subject}_{model}.pickle")

cases.append([subject, model, mtrf.proportion_explained])

column_names = ['subject', 'model', 'explained']

data = Dataset.from_caselist(column_names, cases)

Thus, even though the proportion_explained attribute might contain 64 EEG channels
(i.e., an NDVar with sensor dimension) it can be handled as a single entry in this data-table.

3.6.1 Statistical tests

Statistical analysis of mTRFs faces the issue of multiple comparison common in neuroimaging
(Maris and Oostenveld, 2007). One way around this is to derive a univariate outcome measure.
The (average) predictive power across all sensors is a measure of the overall predictive power of
a model. If a prior hypothesis about the location of an effect is available, then the average
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predictive power at a pre-specified group of sensors can serve as a more targeted measure, for
example:

sensors = ['45', '34', '35']

data['explained_average'] = data['explained'].mean(sensor=sensors)

Eelbrain implements a limited number of basic univariate statistical tests in the test module,
but more advanced statistical analysis can be performed after exporting the data into other
libraries. All univariate entries in a Dataset can be transferred to a pandas.DataFrame
(Reback et al., 2021) with

dataframe = data.as_dataframe()

for analysis with other Python libraries like Pingouin (Vallat, 2018), or saved as a text file with

data.save_txt('data.txt')

to be transferred to another statistics environment like R (R Core Team, 2021).

Instead of restricting the analysis to a priori sensor groups, Eelbrain implements several
mass-univariate tests (Nichols and Holmes, 2002; Maris and Oostenveld, 2007; Smith and
Nichols, 2009). These tests, implemented in the eelbrain.testnd module (for n-dimensional
tests), are generally based on calculating a univariate statistic at each outcome measure (for
example, a t value corresponding to a repeated-measures t-test comparing the predictive power
of two models at each EEG sensor), and then using a permutation-based approach for
estimating a null distribution for calculating p-values that control for family-wise error. In
Eelbrain, these tests can be applied to NDVars similarly to univariate tests, with additional
arguments for controlling multiple comparison correction. The script to Figure 8 demonstrates a
complete group analysis pipeline, from loading pickled mTRF models into a Dataset to plotting
statistical results.

Mass-univariate tests can provide a detailed characterization of a given comparison, but
calculating effect sizes for such results is not straight-forward. For power analyses, carefully
selected univariate outcome variables are usually more effective.

3.7 TRF analysis

While predictive power is the primary measure to assess the quality of a model, the TRFs
themselves also provide information about the temporal relationship between the brain
response and the stimuli. A TRF is an estimate of the brain’s response to an impulse stimulus of
magnitude 1 (i.e., the impulse response). It thus characterizes the brain response as a function
of time relative to stimulus events, analogous to an ERP to a simple stimulus. For example, the
TRF estimated to an acoustic envelope representation of speech commonly resembles the ERP
to simple tone stimuli. The mTRFs can thus be analyzed in ways that are analogous to ERPs, for
example using mass-univariate tests or based on component latencies. Figure 8 demonstrates a
representative analysis of TRFs and mTRFs corresponding to different auditory features.
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3.8 Meta-parameter: basis function

There are at least two reasons for selecting a basis function as part of the boosting algorithm for
TRF estimation. First, constraining the TRFs to neurally more realistic shapes may increase the
predictive power of the TRF model. Second, the resulting TRFs are smoother and thus easier to
interpret and compare across subjects. Figure 6 illustrates the effect of using a basis function,
comparing a 50 or 100 ms wide Hamming window basis with the default impulse basis (“0”). In
this case a 50 ms Hamming window basis leads to significantly better predictive power than the
default impulse basis (Figure 6-A). TRFs are illustrated using a single sensor which exhibits a
strong auditory response (Figure 6-B). Figure 6-C shows that using a wider basis window leads
to markedly smoother TRFs, and increases the overlap of the TRFs between two subjects. The
basis windows themselves are shown in panel D.

Figure 6. The effect of using a basis function for TRF estimation.
(A) Predictive power of the TRFs estimated with different basis windows (expressed as percent
of the variability in the EEG data that is explained by the respective TRF model). (B) Sensor
selected for illustrating TRFs. (C) TRFs for a single subject and the average across subjects. (D)
Basis windows. Notice that the impulse basis (“0”) is only a single sample wide, but it appears as
a triangle in a line plot with the apparent width determined by the sampling rate.
Source code: figures/TRF-Basis.py

4 Results
A critical goal of mTRF analysis for studying perception is evaluating brain responses that are
nonlinear functions of the stimulus. In this section we illustrate this by addressing increasingly
complex nonlinear responses.
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4.1 Response scale

A basic nonlinearity is that of scale: brain responses can grow nonlinearly with the scale of the
input. For instance, in the auditory system, neural responses tend to scale logarithmically with
acoustic power encoded in a spectrogram (Rahman et al., 2020). This means that the same
amount of power increase in the acoustic signal will cause a different increase in the brain
response depending on the initial acoustic power value (see Figure 7-A). Such nonlinear
responses are typically modeled by scaling the predictor variable and assuming a linear
relationship between the scaled predictor and response (e.g., Fox, 2008). Here we determine
the nonlinear relationship between acoustic power and brain response by comparing linear,
logarithmic and power law (Biesmans et al., 2017) scales.

Figure 7. Nonlinear response scales.
(A) Illustration of logarithmic and power-law scales. (B) Gammatone spectrograms transformed
to correspond to linear, power-law and logarithmic response scales. Topographic maps show the
predictive power of the three different spectrogram models (the colorbar represents percent of
the variability in the EEG data that is explained by the respective mTRF model). (C) Statistical
comparison of the predictive power, averaged across all sensors.
***: p≤.001; Source code: figures/Auditory-scale.py

Figure 7-B shows the gammatone spectrogram, transformed to linear, power-law and
logarithmic response scales, along with the predictive power for EEG data resulting from the
different transformations. When considering the average predictive power at all electrodes, the
power-law scale spectrogram was a better predictor than linear scale (t(32) = 4.59, p < .001),
and the log scale further improved predictions compared to the power-law scale (t(32) = 4.67, p
< .001). Furthermore, nonlinear responses may mix properties of different scales. We thus
tested whether the response may exhibit a linear component in addition to the logarithmic
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component by fitting a model including both the linear and the logarithmic spectrogram (i.e.,
twice as many predictors; similarly, polynomial regression combines multiple nonlinear
transformations (Fox, 2008)). The linear+log combined model did not improve predictions over
the linear model (Figure 7-C), suggesting that the EEG responses to the acoustic power are
sufficiently described by the logarithmic response scale and do not contain an additional linear
component.

4.2 Auditory response functions

One goal of perception is to detect complex patterns present in the input signal, and we thus
expect brain responses to represent features beyond simple acoustic intensity. Such features
can be described as increasingly complex nonlinear transformations. Here we illustrate this
using acoustic onsets, a nonlinear transformation that is associated with strong responses and is
a critical potential confound for higher level features (Daube et al., 2019). Acoustic features of
speech input are shown in Figure 8-A: The upper panel shows the log-transformed gammatone
spectrogram, quantifying acoustic energy as a function of time in different frequency bands. The
gammatone filters simulate response characteristics of the peripheral auditory system. A
simplified, one-dimensional representation of this spectrogram is the envelope, which is the
summed energy across all frequency bands (blue line). The lower panel of Figure 8-A shows an
acoustic onset spectrogram based on a neurally inspired acoustic edge detection model
(Fishbach et al., 2001), as described in Brodbeck et al. (2020). Again, a simplified
one-dimensional version of this predictor, summing across all bands, signifies the presence of
onsets across frequency bands (blue line).
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Figure 8. Auditory temporal response functions.
(A) Common representations of auditory speech features: an auditory spectrogram (upper
panel), and the acoustic envelope, tracking total acoustic energy across frequencies over time
(blue line); and an acoustic onset spectrogram (lower panel), also with a one-dimensional
summary characterizing the presence of acoustic onsets over time (blue line). (B) Brain
responses predicted from the acoustic envelope of speech alone. Left: Cross-validated
predictive power is highly significant (p < .001) at a large cluster covering most anterior sensors.
The black outline marks a cluster in which the predictive power is significantly larger than
chance (p ≤ .05, family-wise error correction for the whole head map; colorbar represents
percent variability explained). Right: the envelope TRF – the y-axis represents the different EEG
channels (in an arbitrary order), and the x-axis represents predictor-response time lags. The
green vertical lines indicate specific (manually selected) time points of interest, for which head
map topographies are shown. The black outlines mark significant clusters (p ≤ .05, correction for
the whole TRF). For the boosting algorithm, predictors and responses are typically normalized,
and the TRF is here analyzed and displayed in this normalized scale. (C) Results for an mTRF
model including the acoustic envelope and acoustic onsets (blue lines in A). The left-most head
map shows the percentage increase in predictive power over the TRF model using just the
envelope (p < .001; colorbar represents change in percent variability explained). Details are
analogous to (B). (D) Results for an mTRF model including spectrogram and onset spectrogram,
further increasing predictive power over the one-dimensional envelope and onset model (p <
.001; colorbar represents change in percent variability explained). Since the resulting mTRFs
distinguish between different frequencies in the stimulus, they are called spectro-temporal
response functions (STRFs). In (D), these STRFs are visualized by summing across the different
frequency bands. (E) To visualize the sensitivity of the STRFs to the different frequency bands,
STRFs are instead averaged across sensors sensitive to the acoustic features. The relevant
sensors are marked in the head map on the left, which also shows the predictive power of the
full spectro-temporal model (colorbar represents percent variability explained). Because
boosting generates sparse STRFs, especially when predictors are correlated, as are adjacent
frequency bands in a spectrogram, STRFs were smoothed across frequency bands for
visualization.
a.u.: arbitrary units. Source code: figures/Auditory-TRFs.py

To illustrate auditory features of increasing complexity we analyzed the following (m)TRF
models:

acoustic envelope (4)

acoustic envelope + acoustic onsets (5)

acoustic spectrogram + onset spectrogram (6)

Figure 8-B shows response characteristics to the acoustic envelope alone. A topographic
head-map shows the envelope’s predictive power. The envelope alone is already a very good
predictor of held-out EEG responses, with variability explained reaching 82% of that of the full
spectro-temporal model (6) at anterior electrodes. The TRF to the envelope exhibits features
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characteristic of auditory evoked responses to simple acoustic stimuli such as tones or isolated
syllables, including a P1-N1-P2 sequence.

Figure 8-C shows the result of adding the one-dimensional acoustic onset predictor to the
model. Together, onset and envelope significantly improve the prediction of held-out responses
compared to just the envelope (p < .001), indicating that the onset representation is able to
predict some aspects of the EEG responses that the envelope alone cannot. The typical TRF to
the onsets is of shorter duration than that to the envelope, and is characterized by two
prominent peaks around 60 and 180 ms. The envelope TRF here is not much affected by adding
the onset to the model (compare with Figure 8-B).

Figure 8-D shows the additional benefit of representing the envelope and onsets in different
frequency bands, i.e., predicting EEG from an auditory spectrogram and an onset spectrogram
(here 8 bands were used in each, for a total of 16 predictors). As the predictors are
2-dimensional (frequency × time), the resulting mTRFs are 3-dimensional (frequency × lag × EEG
sensor), posing a challenge for visualization on a two-dimensional page. One approach,
assuming that response functions are similar across frequency bands, is to sum responses
across frequency bands. As shown in Figure 8-D, this indeed results in response functions that
look very similar to the one-dimensional versions of the same predictors (Figure 8-C). To
visualize how the response functions differ for different frequency bands in the spectrograms,
Figure 8-E shows the full spectro-temporal response functions (STRFs), averaged across the
electrodes that are most sensitive to the auditory stimulus features.

In sum, while the acoustic envelope is a powerful predictor of EEG responses to speech,
additional acoustic features can improve predictions further, suggesting that they characterize
neural representations that are not exhaustively described by the envelope. While the increase
in prediction accuracy might seem small, more importantly, it allows the critical inference that
the different predictors are characterizing separable neural representations. For instance, a
significant response to acoustic onsets (after controlling for the envelope/spectrogram) provides
evidence for a nonlinear component of the brain response to speech that represents acoustic
onsets. Separating the influence of different predictors is also important because different
neural representations can have different response characteristics under different situations.
For example, acoustic onsets might be especially important in segregating multiple auditory
streams (Brodbeck et al., 2020; Fiedler et al., 2019).

4.3 Word onsets as discrete events: Comparing ERPs and TRFs

While speech is continuous, perception is often characterized through discrete events. For
example, in speech, words may be perceived as perceptual units. Such events have been
analyzed using ERPs, but they can also be incorporated into an mTRF model, by using predictors
that contain impulses at relevant time points (see Figure 1). In contrast to an ERP analysis, the
mTRF analysis allows controlling for brain responses related to acoustic processing, and
overlapping responses to events (words) that are close in time. Here, we directly compare these
two analysis approaches.

Word onset TRFs controlling for acoustic processing were estimated using model (7):
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acoustic spectrogram + onset spectrogram + all words (7)

These word onset TRFs are shown in Figure 9 alongside the classical ERP. As expected from
earlier discussion, the TRF and ERP patterns are similar. The scalp regions where the two
estimates of the brain response to words differ significantly are contoured (assessed via
related-measures t-tests controlling for multiple comparisons). A prominent difference is that
the ERP contains stronger activity in the baseline period, and a larger deflection at late lags
(starting at 600 ms), with a topography similar to acoustic activity (compare with Figure 8),
indicating artifactual leakage from acoustic responses. Additionally, there is a significant
difference at around 200 to 450 ms which could be attributed to the temporal spread of the
observed P2 peak in the ERPs. Namely, the P2 peak in the TRF is temporally better defined (i.e.,
sharper) than in the ERPs.

Consistent with expectations, the ERPs overestimate the responses to words. The elevated
baseline activity in particular shows that the ERP is more prone to including brain activity that is
not strictly a response to the stimulus feature. This is not surprising considering that the ERP is
just an average of neural signals before and after word onsets, which includes, besides the
responses to the words, neural responses to the acoustic signal, as well as activities that are not
time-locked (including overlapping responses to the previous and next word, given that the
average interval between word onsets in this stimulus set is only 334 ms). This highlights an
advantage of the TRF paradigm over classical ERPs: the TRF enables characterization of only the
neural response time-locked to the particular feature of interest, while explicitly controlling for
the variances in other lower level features of the stimuli.
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Figure 9. Temporal response functions (TRFs) to discrete events are similar to event-related
potentials (ERPs), but control for acoustic processing and overlapping responses.
To visualize ERP and TRF on a similar scale, both ERP and TRF were normalized (parametric
normalization). (A) Visualization of the ERP and TRF response over time for a frontocentral
channel, as indicated on the inset. The gray bars on the time axis indicate the temporal clusters
in which the ERP and TRF differ significantly. (B) Visualization of ERP and TRF responses across
all channels: the ERP responses to word onsets (left), the TRF to word onsets while controlling
for acoustic processing (middle), and the difference between the ERP and the TRF (right). The
black outline marks clusters in which the ERP and TRF response differs significantly in time and
sensors, assessed by a mass-univariate related-measures t-test. (C) Visualization of the
topographies at selected time points, indicated by the vertical, dashed lines in (B), for
respectively the ERP (top row), TRF (middle row), and their difference (bottom row). The
contours mark regions where the ERP differs significantly from the TRF, as determined by the
same mass-univariate related-measures t-test as in (B).
a.u.: arbitrary units. Source code: figures/Comparison-ERP-TRF.py

4.4 Categories of events: Function and content words

Given the powerful response to acoustic features of speech, it is important to take these
responses into account when investigating linguistic representations. To illustrate the advantage
of an mTRF analysis that can take into account the acoustic stimulus features, we revisit an old
question: do brain responses differentiate between content words (roughly, words conveying a
meaning) and function words (words necessary for a grammatical construction)? In a first, naive
approach, we ask literally whether brain responses differ between function and content words,
while ignoring any potential confounding influences from acoustic differences. For this, we
compare the predictive power of models (8) and (9), all based on predictors with unit
magnitude impulses at word onsets:

All words + function words + content words (8)

All words (9)

Note that all words and the two word-class-based predictors are mathematically redundant
because the all words vector equals the sum of the function words and content words vectors.
However, because of the sparsity prior employed through the boosting algorithm and
cross-validation, such redundant predictors can still improve a model – for example, if there is a
shared response among all words, then attributing this response once as a TRF to all words is
sparser than attributing it twice, once for function words and once for content words separately
(see also Sparsity prior below).

The predictive power of the model with the word class distinction (8) is significantly higher
compared to the model without it (9) at a right anterior electrode cluster (p = .002, Figure 10-A,
top). To investigate why the word class distinction improves the model’s predictive power, we
compare the TRFs to function and content words (Figure 10-B). Both TRFs are reconstructed
from the relevant model components: Whenever a function word occurs in the stimulus, there
will be both an impulse in the all words, and one in the function words predictor (and vice versa
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for content words). Accordingly, the full EEG response occurring at the function word is split into
two components, one in the all words, and one in the function words TRF. In order to visualize
these full EEG responses, the displayed TRF for function words consists of the sum of the TRFs
of the all words and the function words predictors, and the TRF for content words consists of
the sum of the TRFs of all words and content words. This comparison suggests that function
words are associated with a larger positive response at anterior sensors than content words.
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Figure 10. The difference in response to content and function words explained by acoustic
differences.
(A) Model comparisons of predictive power across the scalp. Each plot shows a head-map of the
change in predictive power between different pairs of models. Top: (8) > (9); middle: (10) > (7);
bottom: (7) > (9); colorbars represent difference in percent variability explained.. (B) Brain
responses occurring after function words differ from brain responses after content words.
Responses were estimated from the TRFs of model (8) by adding the word-class-specific TRF to
the all words TRF. The contours mark the regions that are significantly different between
function and content words based on a mass-univariate related-measures t-test. (C) Function
words are associated with a sharper acoustic onset than content words. The average
spectrograms associated with function and content words were estimated with time-lagged
regression, using the same algorithm also used for TRF estimation, but predicting the acoustic
spectrogram from the function and content word predictors. A dotted line is plotted at 70 ms to
help visual comparison. Color scale is normalized.
Source code: figures/Word-class-acoustic.py

To investigate whether this difference in responses might be due to acoustic confounds, we
control for brain responses to acoustic features in both models and compare (10) with (7),
repeated here for convenience:

acoustic spectrogram + onset spectrogram + all words + function words + content
words

(10)

acoustic spectrogram + onset spectrogram + all words (7)

In contrast to the comparison without acoustics, the comparison of the predictive power of (10)
with (7) no longer indicates a significant difference (p = .065, Figure 10-A, middle). This suggests
that the information in the acoustic predictors can explain the difference between function and
content words in model (8). To directly characterize the influence of the acoustic features we
plot the predictive power of the acoustic features by comparing models (7) and (9). This
comparison suggests that acoustic features are highly predictive of brain signals at anterior
sensors (Figure 10-A, bottom), encompassing the region in which the word class distinction
originally showed an effect.

If the difference between brain responses to function and content words disappears when
controlling for acoustic features, that suggests that acoustic features should differ between
function and content words. We can assess this directly with another time-lagged regression
model. First, we estimate filter kernels (analogous to the mTRFs) to predict the auditory
spectrogram from models (9) and (8) (script: analysis/estimate_word_acoustics.py). To be able
to statistically evaluate these results, we use 15-fold cross-validation and treat the predictive
accuracy from each test fold as an independent estimate of predictive power (for a similar
approach see Etard et al., 2019). With predictive power averaged across frequency bands, the
model distinguishing function and content words is significantly better at predicting the
spectrogram than the model treating all words equally (t(14) = 13.49, p < .001), suggesting that
function and content words indeed differ acoustically. Finally, the filter kernels to function and
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content words from this analysis can be interpreted as average acoustic patterns corresponding
to the two word classes (Figure 10-C). This comparison suggests that function words on average
have a sharper acoustic onset. Since auditory cortex responses are known to be sensitive to
acoustic onsets, a reasonable explanation for the difference in neural responses by word class,
when not controlling for acoustic features, is that it reflects these sharper acoustic onsets of
function words.

5 Discussion
While the sections above provide recipes for various aspects of mTRF analysis, we use this
section to discuss a number of advanced considerations and caveats, and possible extensions.

5.1 TRF analysis vs. predictive power

In the various Results sections, we always tested the predictive power of a predictor variable
before analyzing the corresponding TRF. This has good reason: model comparisons based on
predictive power are generally more conservative than comparisons based on TRF estimates.
First, TRFs are directly estimated on the training data, and are still prone to some overfitting
(although the boosting algorithm aims to minimize that using the validation step and early
stopping). Second, as in conventional regression models, if two predictors are correlated, that
means that they might share some of their predictive power. Model comparisons address this
by testing for the unique predictive power of a variable, after controlling for all other variables,
i.e., by testing for variability in the dependent measure that can only be explained by the
predictor under investigation. The mTRFs (i.e., regression coefficients) cannot properly be
disentangled in this way (Freckleton, 2002), and will usually divide the shared explanatory
power amongst themselves. This means that mTRF estimates may always be contaminated by
responses to correlated variables, especially when the correlations among predictor variables
are high. This consideration highlights the importance of testing predictive power of individual
model components before interpreting the corresponding TRFs for avoiding spurious
conclusions due to correlated predictors. In sum, a significant result in a model comparison
provides strong evidence that a given predictor contributes unique predictive power when
compared to the other predictors included in the model. In contrast, a significant effect in a TRF
should always be interpreted with care, as it may also reflect the influence of other, correlated
variables, even if those are included in the model.

TRF analysis may have an additional utility in diagnosing a special relationship between
predictors. Assume that the brain represents a signal, say xt, and this signal can be decomposed
into x1,t and x2,t such that xt=x1,t+x2,t. In a model using the predictors x1,t and x2,t, both will
contribute significantly. Thus, one might conclude that the brain represents two quantities
separately, when in fact it represents only the average of them. However, because xt=x1,t+x2,t,
TRFs to x1,t and x2,t in the model including only these two predictors should look identical, thus
providing a diagnostic for such a case. If the TRF shapes do not look identical, then that means
that the properties in x1,t and x2,t are represented at different latencies, i.e., that they are
separable.
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5.2 Sparsity prior

In its general formulation, mTRF analysis is a regression problem, albeit a high dimensional one.
Such high dimensional analysis methods are almost always marred by overfitting. Presence of a
large number of free parameters and correlated predictor variables makes the mTRFs prone to
discovering noise patterns that are idiosyncratic to the particular dataset, and which do not
generalize well to other datasets. Most regression analysis methods deal with this problem
through regularization using a well-informed prior and some form of cross-validation. These
regularization schemes vary considerably; some employ an explicitly formulated prior, e.g., the
regularization in ridge regression (Crosse et al., 2016b); while others are defined on the
algorithmic level, e.g., the early stopping criterion for boosting (see Background: The boosting
algorithm). The implicit prior in the boosting algorithm promotes sparsity, i.e., it forces
unimportant filter kernel coefficients to exactly 0. It has been shown that for problems with
large numbers of correlated predictors, the boosting algorithm might be preferable to other
sparsity enforcing algorithms such as LASSO (Hastie et al., 2007).

This sparsity prior has some consequences that might be counterintuitive at first. For example,
in regression models it is common to center predictors. This does not affect the explanatory
power of individual regressors, because a shift in the mean of one predictor will simply lead to a
corresponding shift in the coefficient for the intercept term. In contrast to this, a sparsity prior
will favor a model with smaller coefficients. Consequently, an uncentered predictor that can
explain responses with a small coefficient in the intercept term will be preferable over a
centered predictor that requires a large intercept coefficient.

Another consequence of the same preference for sparser models is that sometimes
mathematically redundant predictors can improve the predictive power of a model. An example
is that when splitting an impulse predictor into two categories, such as when dividing words into
function and content words, the original all words predictor does not necessarily become
redundant (see Categories of events: Function and content words). This can make model
construction more complex, but it can also be informative, for example by showing whether
there is a common response component to all words, that can be learned better by including an
all words predictor, in addition to word-class-specific responses.

5.3 Discrete events and coding

In practice, the assumption of millisecond-precise time-locking to force-aligned features might
seem hard to defend. For example, identification of clear word and phoneme boundaries is an
artificial imposition, because the actual acoustic-phonetic features blend into each other due to
co-articulation. An mTRF analysis only requires time-locking on average to produce some
consistent responses. Nevertheless, more precise time estimates enhance the model’s ability to
isolate the response. In order to model cognitive events more precisely, one might thus want to
consider alternative event locations, for example the words’ uniqueness points instead of word
onsets.

Impulse coding is not the only coding that is available. Impulses are based on the linking
hypothesis of a fixed amount of response per impulse. An alternative linking hypothesis
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assumes that the brain response is increased for the duration of an event. This could be
modeled using a step function instead of impulses. Yet another type of hypothesis might
concern a modulation of another predictor. For example, the hypothesis that the magnitude of
the neural representation of the speech envelope is modulated by how linguistically informative
a given segment is can be implemented by scaling the speech envelope according to each
phoneme’s linguistic surprisal (Donhauser and Baillet, 2020). A related set of questions concerns
whether the same predictor is more or less powerful in different experimental conditions
(Sohoglu and Davis, 2020).

5.4 Source localization

EEG data is often analyzed at sensor space. However, because each sensor records a mixture of
underlying neural (and artifactual) signals from different sources, sensor space data is
inherently noisy. When data is recorded from a dense enough sensor array, neural source
localization can be used to estimate a reconstruction of the sources contributing to the mixture
signal, and assign the different brain responses to their cortical locations (Nunez and Srinivasan,
2006). Approaches combining source localization with mTRF analysis can differentiate responses
related to processing of continuous stimuli anatomically as well as temporally, and thus provide
a way to investigate hierarchical models of sensory and cognitive processing involving multiple
anatomical regions. In many cases, source localization can also improve the signal-to-noise ratio
of a specific response, because it acts as a spatial filter, aggregating information that is relevant
for a given brain region across sensors, and suppressing signals whose likely origin is a different
location.

A straight-forward extension of the approach described here is to apply a linear inverse solution
to the continuous data, and apply mTRF analyses to the virtual current dipoles (Brodbeck et al.,
2018b). For this purpose, Eelbrain contains functions that directly convert MNE-Python source
estimate objects to NDVars. A more advanced approach is the Neuro-Current Response
Function technique, which performs mTRF estimation and source localization jointly, in a unified
estimation problem. This approach allows an mTRF model at each virtual current dipole, and
estimates those mTRFs collectively to optimize prediction of MEG measurements in sensor
space (Das et al., 2020).

5.5 Choosing the reference strategy

Since EEG data consists of voltage measurements, but only voltage differences are physically
meaningful, the choice of referencing strategy matters. There are several common choices for a
voltage reference for EEG data, including the average signal recorded at the mastoid electrodes,
the central electrode Cz, and the average across all channels (also called the common average
reference). Although the reference has minimal influence on the magnitude of the prediction
accuracies averaged across channels or the latencies of the TRF peaks, it does have a substantial
impact on the distribution across the EEG channels (Figure 11). This is because, depending on
the chosen referencing strategy, the neural sources are projected differently across the scalp.
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Therefore, the activity of the neural dipoles of interest might be more (or less) prominent
depending on the chosen referencing strategy.

Figure 11. Comparison of EEG reference strategies.
Predictive power topographies and TRFs for an envelope model according to three different
referencing strategies: mastoids (top), the central electrode Cz (middle), and the common
average (bottom). (A) Visualization of the predictive power obtained with the different
referencing strategies (colorbar represents percent variability explained). (B) The envelope TRFs
for the different referencing strategies. The insets indicate the topographies corresponding to
the vertical red dashed lines at latencies of 40, 140, and 240 ms.
Source code: figures/Reference-strategy.py

5.6 Further applications

While cortical processing of speech has been a primary application for mTRF analysis, the
technique has potential applications in any domain where stimuli unfold in time, and has
already been successfully applied to music perception (Di Liberto et al., 2020; Leahy et al.,
2021), audiovisual speech perception (Crosse et al., 2016a), and subcortical auditory processing
(Maddox and Lee, 2018). Furthermore, mTRF analysis as discussed here assumes that TRFs are
static across time. However, this is not always a valid assumption. For example, in multi-talker
speech, TRFs to speech features change as a function of whether the listener attends to the
given speech stream or not (Ding and Simon, 2012; Brodbeck et al., 2018a; Broderick et al.,
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2018). Thus, moment-to-moment fluctuations in attention might be associated with
corresponding changes in the TRFs. While modeling this is a highly complex problem, with an
even larger number of degrees of freedom, some initial progress has been made towards
estimating mTRF models with dynamic TRFs that can change over time (Babadi et al., 2010;
Miran et al., 2018; Presacco et al., 2019).

5.7 Conclusions

TRF analysis has several advantages over ERP based methods. In the Results section we
demonstrated, with several examples, how TRFs can be used to estimate the brain response
associated with a given feature while controlling for (1) responses associated with other
features that are correlated with the feature of interest, including correlations across different
time lags (e.g., controlling for acoustics while analyzing responses to words), and (2) overlapping
responses to events close in time (e.g., disentangling early responses to the current word from
late responses to the previous word). In addition, analysis of the prediction accuracy allows
determining whether a given feature makes a unique contribution over and beyond other
features of the same stimulus. This is especially important in naturalistic stimuli where features
are correlated in complex ways, because neural response estimates may be reliably different
from zero even if the corresponding predictor does not provide unique predictive power. Finally,
using cross-validation, models are assessed based on their predictive power, not just their
explanatory power, thus providing an overall stronger test than conventional models.
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7 Data Availability
The data analyzed here was originally released with DOI: 10.7302/Z29C6VNH and can be
retrieved from https://deepblue.lib.umich.edu/data/concern/data_sets/bg257f92t. For the
purpose of this tutorial, the data were restructured and rereleased with DOI:
10.13016/pulf-lndn at http://hdl.handle.net/1903/27591. Intermediate results (the TRFs) can
also be downloaded from that location. The companion GitHub repository contains instructions
on replicating the analyses, including a downloader script for the data
(https://github.com/Eelbrain/Alice).
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