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Abstract 
Storage needs represent a significant burden on the economy and the environment. Some of this can potentially 

be offset by improved density molecular storage. The potential of using DNA for storing data is immense. DNA 

can be harnessed as a high density, durable archiving medium for compressing and storing the exponentially 

growing quantities of digital data that mankind generates. Several studies have demonstrated the potential of 

DNA-based data storage systems. These include exploration of different encoding and error correction schemes 

and the use of different technologies for DNA synthesis and sequencing. Recently, the use of composite DNA 

letters has been demonstrated to leverage the inherent redundancy in DNA based storage systems to achieve higher 

logical density, offering a more cost-effective approach. However, the suggested composite DNA approach is still 

limited due to its sensitivity to the stochastic nature of the process. Combinatorial assembly methods were also 

suggested to encode information on DNA in high density, while avoding the challenges of the stochastic system. 

These are based on enzynatic assembly processes for producing the synthetic DNA. 

In this paper, we propose a novel method to encode information into DNA molecules using combinatorial 

encoding and shortmer DNA synthesis, in compatibility with current chemical DNA synthesis technologies. Our 

approach is based on a set of easily distinguishable DNA shortmers serving as building blocks and allowing for 

near-zero error rates. We construct an extended combinatorial alphabet in which every letter is a subset of the set 

of building blocks. We suggest different combinatorial encoding schemes and explore their theoretical properties 

and practical implications in terms of error probabilities and required sequencing depth. To demonstrate the 

feasibility of our approach, we implemented an end-to-end computer simulation of a DNA-based storage system, 

using our suggested combinatorial encodings. We use simulations to assess the performance of the system and 

the effect of different parameters.  

Our simulations suggest that our combinatorial approach can potentially achieve up to 6.5-fold increase in the 

logical density over standard DNA based storage systems, with near zero reconstruction error.  

Implementing our approach at scale to perform actual synthesis, requires minimal alterations to current 

technologies. Our work thus suggests that the combination of combinatorial encoding with standard DNA 

chemical synthesis technologies can potentially improve current solutions, achieving scalable, efficient and cost- 

effective DNA-based storage.  

1 Introduction 
DNA is a promising candidate to serve as storage media for long-term data archiving due to its high information 

density, long-term stability,  and robustness. In recent years, several studies have demonstrated the use of synthetic 

DNA for storing digital information on a megabyte scale, exceeding the physical density of current magnetic-tape 

based systems by roughly six orders of magnitude [1] [2]. 

Efforts in the field of DNA-based storage are mainly focused on using standard DNA synthesis and sequencing 

technologies, applying various encoding schemes to reduce error rate and ensure reliability [1] [2] [3] [4] [5] [6] 

[7]. Yet, despite the enormous benefits potentially associated with capacity, robustness, and size, existing DNA-

based storage technologies create information redundancy. This is due to the nature of DNA synthesis and 

sequencing methodologies, which process multiple molecules that represent the same DNA sequence in parallel. 

Recent studies suggested exploiting this redundancy to increase the system’s logical density, by extending the 

standard DNA alphabet using composite letters and thereby encoding more than 2 bits per letter [8] [9] [10]. 

A composite DNA letter uses all four DNA bases (A, C, G, and T), combined or mixed in a specified 

predetermined ratio 𝜎 = (𝜎𝐴, 𝜎𝐶 , 𝜎𝐺 , 𝜎𝑇). A resolution parameter 𝑘 = 𝜎𝐴 + 𝜎𝐶 + 𝜎𝐺 + 𝜎𝑇 is defined, to control the 

alphabet size. The full composite alphabet of resolution 𝑘, denoted Φ𝑘, is the set of all 𝜎 = (𝜎𝐴, 𝜎𝐶 , 𝜎𝐺 , 𝜎𝑇) , so 

that Σ𝑖∈(𝐴,𝐶,𝐺,𝑇}𝜎𝑖 = 𝑘. In order to “write” a composite letter onto a specific predefined position in a DNA 

sequence, the multiple molecules representing the custom encoded sequence must be synthesized, while 

preserving the desired ratio between the different letters across all the molecules. For this to be done, current 

synthesis technologies are utilized, which produce multiple copies, and thereby allow for the implementation of 
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the mixtures. Using the extended composite alphabet increases the logical density of the DNA based storage, 

breaking the theoretical limit of two bits per synthesis cycle as has been previsouly demonstrated [9] [10]. 

A recent study shows the power of using combinatorial assembly to encode information in DNA. Using propriety 

high throughput machinery, based on enzymatic assembly, the authors encoded information in a megabit per 

second write speed. As a proof of principle, they wrote a 25KB message into DNA, reading it using commercially 

available nanopore sequencing technology [11] [12]. 

In this paper, we present a novel approach to encode information in DNA using combinatorial encoding and 

shortmer DNA synthesis. The method described herein leverages the advantages of combinatorial encoding 

schemes, while relying on existing DNA chemical synthesis methods with some modifications. Using shortmer 

DNA synthesis also minimizes the effect of synthesis and sequencing errors. We formally define shortmer-based 

combinatorial encoding schemes, explore different designs, and analyze their performance. One such design is a 

variation of combinatorial encoding, wherein the size of the subset is fixed as part of the design, allowing for 

higher confidence in the reading process. We use computer-based simulations to demonstrate an end-to-end DNA 

data storage system based on combinatorial shortmer encodings, and study its performance. Finally, we discuss 

the potential of combinatorial encoding schemes and the future work required to enable these schemes in DNA-

based data storage systems. 

2 Results 

 Shortmer combinatorial encoding for DNA storage 

To get an improved capacity in DNA-based storage systems, we suggest a novel method that not only effectively 

extends the DNA alphabet, it also ensures a near-zero error rate. This encoding scheme is based on the following 

principles: 

1. A set 𝛀 of DNA k-mers that will serve as building blocks for the encoding scheme. Elements in Ω are 

designed to be sufficiently different from each other to minimize mix-up error probability. Hence, the set is 

designed to satisfy 𝑑(𝑋𝑖 , 𝑋𝑗) ≥ 𝑑, so that 𝑃(𝑟𝑒𝑎𝑑 𝑋𝑖|𝑤𝑟𝑖𝑡𝑒 𝑋𝑗) ≤ 𝛼, ∀𝑋𝑖 , 𝑋𝑗 ∈ Ω, 𝑖 ≠ 𝑗, where 𝑑(𝑥, 𝑦) is the 

Hamming distance between x and y. Note that 𝑁 = |Ω| ≤ 4𝑘. Table 4 demonstrates several examples of such  

sparse sets. 

2. DNA synthesis using the k-mers in 𝛀, which can be non-standard reagents. This is compatible with current 

DNA synthesis methods. This synthesis mixtures of k-mers from Ω in each position, i.e., similar to the 

synthesis of composite DNA letters [9]. 

3. A large combinatorial alphabet 𝚺 in which every letter is defined by a subset S of the k-mers in Ω. A letter 

𝜎 ∈ Σ (representing a subset S) is an N-dimensional binary vector, and the indices 𝜎𝑖 = 1, 1 ≤ 𝑖 ≤ 𝑁 

represent the k-mers included in the subset S. For example, 𝜎 = (0,1,0,1,1,1) means that 𝑆 = {𝑋2, 𝑋4, 𝑋5, 𝑋6} 

(and |Ω| = 𝑁 = 6). To write a combinatorial letter 𝜎 in a specific position, we synthesize a mixture of the 

four k-mers included in the subset S. To infer a combinatorial letter 𝜎, a set of reads needs to be analyzed to 

determine which k-mers are observed (See Sections 2.2 and 2.3, for more details). 

4. DNA barcodes that allow the grouping of reads representing the same sequence, for the inference of the 

combinatorial sequence. Our barcode length will be predefined as bc, representing optional barcodes in 

{𝐴, 𝐶, 𝐺, 𝑇}𝑏𝑐.  

The extended combinatorial alphabets allow for higher logical density of the DNA-based storage system, while 

minimizing error rates. Figure 1 depicts a complete workflow of DNA-based storage with combinatorial shortmer 

encoding. This includes the following steps: 

(i) Combinatorial message encoding. A binary message is encoded using a large k-mer combinatorial alphabet 

(e.g., trimer-based alphabet of size |𝛴| = 4096 letters, with 𝑁 = |𝛺| = 16). The complete message is 

broken into sequences of set length, each sequence is then marked with a standard DNA barcode  and 

translated using the table presented in the Encode Legend (See Section 2.2, for details about the Binomial 

Encoding). 

(ii) Error correction. 2D Systematic Reed-Solomon (RS) encoding is used for error correction. First, the 

barcode is encoded using RS(6,8) over 𝐺𝐹(24) and the payload is encoded using RS(120,134) over 𝐺𝐹(212). 

Next, the columns of each block of 42 sequences are encoded using RS(42,48) over 𝐺𝐹(212) [13] [14]. 

(iii) DNA synthesis. DNA molecules pertaining to the designed sequences are synthesized using combinatorial 

k-mer DNA synthesis (See Figure 2). In each position of the payload, each DNA molecule will contain one 

of the trimers included in the designed combinatorial letter 𝜎. 

(iv) DNA sequencing. DNA molecules are sequenced using any DNA sequencing technology. 

(v) Combinatorial sequence reconstruction. The sequenced reads are grouped by the barcode sequence, and 

the combinatorial sequences are recovered (See Sections 2.3 and 3.1). 

(vi) Error correction decoding. The recovered sequences are decoded to correct errors. The barcode, payload, 

and each block of sequences (48, in our example) are decoded separately. 

(vii) Binary message decoding. The resulting combinatorial sequence is decoded back to a binary message. 
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Figure 1. Workflow of a large-scale combinatorial trimer DNA-based data storage system. The workflow 

consists of the following steps: (i) Binary to combinatorial letter encoding. (ii) 2D RS error correction 

encoding. (iii) Combinatorial shortmer DNA synthesis. (iv) DNA sequencing. (v) Inference of combinatorial 

letters. (vi) Decoding of the 2D RS error correction code. (vii) Combinatorial letter to binary decoding. 
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The combinatorial shortmer encoding scheme is potentially based on using the standard phosphoramidite 

chemistry synthesis technology, with some alterations [15] [16] [17] [18] [19] [20]. Figure 2 demonstrates the 

required alterations: 

1. The use of DNA shortmers as building blocks. The DNA print head will be fed from more than four 

cartridges, each containing a different building block (from Ω).  

2. Synthesis of mixed building blocks in a single cycle. Each cycle in the synthesis process will be divided 

into two steps. First, all the desired building blocks will be added to a designated mixing chamber, and only 

then will the mixture of all desired building blocks be introduced (e.g, by injection) to the elongating 

molecules. 

Specifically, Figure 2 exemplifies the synthesis of a message encoded using binomial encoding, with  

𝑁 = 16, 𝐾 = 3, 𝑏𝑐 = 2. Note the 𝑁 + 4 = 20 (4 for the standard nucleotides) cartridges on the print head and the 

designated mixing chamber. The synthesized (combinatorial) DNA sequence is AT𝜎39𝜎270, with AT being the 

barcode and 𝜎39𝜎270 the payload 𝜎39 = {𝐴𝐴𝑇, 𝐴𝐺𝐶, 𝐶𝐺𝑇}, 𝜎270 = {𝐶𝐴𝐶, 𝐴𝑇𝐺, 𝐶𝑇𝐴}. As Figure 2 shows, first, the 

standard DNA letter barcode with length = 2 (namely AT here) is synthesized (steps 1-5). Next, a single 

combinatorial letter is synthesized (steps 6-10). This includes 𝐾 steps of adding trimers to the mixing chamber 

(steps 6-8), mixing (step 9) and, finally, phosphoramidite elongation (step 10). Then, a second combinatorial letter 

is synthesized (steps 11-15). At the end of the process, we can cleave the synthesized molecules from the surface 

(step 16). 
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Figure 2. Combinatorial shortmer synthesis. Synthesis starts with a linker connected to a solid surface (1). For 

barcode synthesis, standard DNA bases are injected, and the synthesized molecules elongate (2-5). For the 

synthesis of combinatorial trimers (6-10), each cycle consists of the following steps: each participating trimer is 

injected into the mixing chamber (6,7,8), then all the desired trimers are mixed together (9), and finally 

introduced, by injection, to the elongating molecules (10). The process repeats for the next combinatorial letter 

(11-15), and finally the resulting molecules are cleaved and collected (16). 
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 Binary and binomial combinatorial alphabets 
The main parameter that defines a combinatorial encoding scheme is the alphabet Σ. More specifically, the set of 

valid subsets of Ω that can be used as letters. Here we define two general approaches for the construction of Σ. 

Namely, the binomial encoding and the binary encoding. We start with the former.  

In the binomial encoding scheme, only subsets of Ω of size exactly 𝐾 represent valid letters in Σ, so that every 

letter 𝜎 ∈ Σ consists of exactly 𝐾 k-mers. This yields an effective output alphabet of size |Σ| = (
𝑁
𝐾

) letters. 

Therefore, all the letters in the alphabet  have the same Hamming weight - 𝑤(𝜎) = 𝐾, ∀𝜎 ∈ Σ. This way, an r-bit 

binary message will require 
𝑟

log2(|Σ|)
 synthesis cycles (and a DNA molecule with length 

𝑘𝑟

log2(|Σ|)
 ). Conversely, 

every single letter in the output alphabet encodes log2 (
𝑁
𝐾

) = ⌊log2(|Σ|)⌋ bits. Note that this calculation ignores 

the overhead caused by the error correction redundancy. 

For example, consider a binary message encoded using a binomial encoding alphabet Σ, derived from using trimer 

building blocks, a set Ω of size 𝑁 = 10 and 𝐾 = 5 distinct trimers for each letter in Σ. In this case the alphabet 

size is |Σ| = (
10
5

) = 252. To fit blocks of bits, a subset of 128 letters is used. The basic block capacity encodes 

7 bits in one single letter. A message of length 𝑟 = 10𝐾𝐵 can be synthsis with 
10𝐾𝐵

log2 128
< 12,000 synthsis cycles. 

If we use trimers and 120 synthesis cycles to yield oligos of length 120 ∗ 3 = 360𝑛𝑡, we will need 100 such 

oligos. 

Table 1 demonstrates the binomial alphabet (also used in Figure 1) with 𝑁 = |Ω| = 16 and K = |S| = 5. The 

effective alphabet has |Σ| = (
16
5

) = 4,368 letters. Since 4096 ≤ 4368, each synthesized letter encodes 12 bits. 

 

trimers, 𝜴 Alphabet 𝜮 

𝑋1 = AAT 

𝑋2 = ACA 

𝑋3 = ATG 

𝑋4 = AGC 

𝑋5 = TAA 

𝑋6 = TCT 

𝑋7 = TTC 

𝑋8 = TGG 

𝑋9 = GAG 

𝑋10 = GCC 

𝑋11 = GTT 

𝑋12 = GGA 

𝑋13 = CAC 

𝑋14 = CCG 

𝑋15 = CTA 

𝑋16 = CGT 

𝜎1 = {𝑋1, 𝑋2, 𝑋3, 𝑋4, 𝑋5} 

𝜎100 = {𝑋1, 𝑋2, 𝑋4, 𝑋7, 𝑋8} 

𝜎2519 = {𝑋3, 𝑋4, 𝑋8, 𝑋11, 𝑋15} 

𝜎2312 = {𝑋2, 𝑋9, 𝑋11, 𝑋12, 𝑋13} 

𝜎1812 = {𝑋2, 𝑋4, 𝑋8, 𝑋13, 𝑋16} 

𝜎1741 = {𝑋2, 𝑋4, 𝑋6, 𝑋11, 𝑋16} 

𝜎310 = {𝑋1, 𝑋2, 𝑋9, 𝑋10, 𝑋12} 

𝜎23 = {𝑋1, 𝑋2, 𝑋3, 𝑋5, 𝑋16} 

𝜎797 = {𝑋1, 𝑋4, 𝑋8, 𝑋10, 𝑋14} 

𝜎1349 = {𝑋1, 𝑋10, 𝑋13, 𝑋15, 𝑋16} 

𝜎33 = {𝑋1, 𝑋2, 𝑋3, 𝑋6, 𝑋16} 

𝜎5 = {𝑋1, 𝑋2, 𝑋3, 𝑋4, 𝑋9} 

𝜎3 = {𝑋1, 𝑋2, 𝑋3, 𝑋4, 𝑋7} 

𝜎1010 = {𝑋1, 𝑋5, 𝑋10, 𝑋13, 𝑋14} 

𝜎201 = {𝑋1, 𝑋2, 𝑋6, 𝑋7, 𝑋9} 

𝜎1499 = {𝑋2, 𝑋3, 𝑋6, 𝑋8, 𝑋12} 

 

… 4096 letters in total 

Table 1. Example of binomial shortmer alphabet. 𝑵 = |𝜴| = 𝟏𝟔, 𝑲 = 𝟓.  

The Hamming distance of this 𝜴 is 𝒅 = 𝟐. |𝜮| = 𝟒𝟎𝟗𝟔 ≤ 𝟒𝟑𝟔𝟖 = (
𝟏𝟔
𝟓

) 

In the binary encoding scheme, all possible nonempty subsets of Ω represent valid letters in the alphabet. This 

yields an effective alphabet of size |Σ| = 2𝑁 − 1 letters. This way, an r-bit binary message will require 
𝑟

log2(|Σ|)
 

synthesis cycles (yielding a DNA molecule of length 
𝑘𝑟

log2(|Σ|)
 ). Every single letter in the output alphabet encodes 

𝑁 − 1 = ⌊log2(|Σ|)⌋ bits. Note that this calculation ignores the overhead caused by the error correction 

redundancy. 

For example, consider a binary message encoded using a binary encoding alphabet Σ, derived from using a trimer 

building blocks, a set Ω of size 𝑁 = 10. In this case, the alphabet size is |Σ| = 210 − 1 = 1023. The basic block 

capacity encodes 9 bits in every letter. 

 

  

.CC-BY-NC 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is 

The copyright holder for this preprintthis version posted August 1, 2021. ; https://doi.org/10.1101/2021.08.01.454622doi: bioRxiv preprint 

https://doi.org/10.1101/2021.08.01.454622
http://creativecommons.org/licenses/by-nc/4.0/


7 

 Reconstruction probabilities for binomial encoding 

With binomial encoding, it is possible to collect reads and stop after observing all the 𝐾 distinct k-mers at every 

position. This simplifies the analysis of the reconstruction probability and reduces error rates, making it the 

preferred combinatorial encoding system. 

Since every letter 𝜎 ∈ Σ consists exactly of the 𝐾 participating k-mers, the required number of reads for observing 

at least one read of each k-mer follows the coupon collector distribution [21]. The number of reads required to 

achieve this goal can be described as a random variable 𝑅 = ∑ 𝑅𝑖
𝐾
𝑖=1  where 𝑅1 = 1 and 𝑅𝑖~𝐺𝑒𝑜𝑚 (

𝐾−𝑖+1

𝐾
) , 𝑖 =

2, … , 𝐾. The expected number of required reads is then: 

𝐸[𝑅] = ∑ 𝐸[𝑅𝑖]

𝐾

𝑖=1

= 𝐾 ∑
1

𝑖

𝐾

𝑖=1

≅ 𝐾𝑙𝑜𝑔(𝐾) 

The expected number of reads required for observing all the participating k-mers remains reasonable for the 

relevant values of 𝐾.  

Using the independence of 𝑅𝑖 we can derive that 𝑉𝑎𝑟(𝑅) = ∑ 𝑉𝑎𝑟(𝑅𝑖)
𝐾
𝑖=1 <

𝜋2

6
𝐾2. By Chebyshev inequality, we 

get an upper bound (a loose bound) on the probability of requiring more than 𝐸[𝑅] + 𝑐𝐾 reads to observe at least 

one read of each k-mer: 

𝑃(|𝑅 − 𝐸[𝑅]| ≥ 𝑐𝐾) ≤
𝜋2

6𝑐2
 

𝑃(|𝑅 − 𝐻𝑎𝑟(K)| ≥ 𝑐𝐾) ≤
𝜋2

6𝑐2
 

When we examine an entire read of length 𝑙, assuming independence and not taking error correction into account, 

we get the following relationship between 𝑐 and any desired confidence level 1 − 𝛿: 

 

𝑃(|𝑅(𝑙) − 𝐻𝑎𝑟(K)| ≥ 𝑐𝐾) ≤ 1 − (1 −
𝜋2

6𝑐2
)

𝑙

< 𝛿 

𝑃(R(𝑙) < 𝐻𝑎𝑟(K) + 𝑐𝐾) ≥ (1 −
𝜋2

6𝑐2
)

𝑙

≥ 1 − 𝛿 

 

Table 2 presents several examples for the loose upper bound, derived as above, on the number of reads required 

to 1 − 𝛿  ensure reconstruction of a binomial message with 𝐾 = 5, sequence of length 𝑙. As demonstrated in the 

simulations, these numbers are definitely not tight (Section 2.4).   

 

  Error probability (𝛿) 

Sequence 

length (𝑙) 
 10−2 10−3 10−4 10−5 

100 642 2030 6415 20282 

150 786 2486 7857 24839 

Table 2. Upper bounds on the required number of reads to reconstruct a binomial sequence 

Clearly, for reasonable values of 𝐾 (i.e., 𝐾 ≤ 10), a standard coverage of 100 reads per oligos yields low 

probabilities for missing one of the included k-mers. Note that with an online sequencing technology (i.e., 

nanopore sequencing) we can simply keep sequencing until 𝐾 distinct k-mers have been confidently observed. 

The above bounds will then provide an estimate on the sequencing cost. 

To take into account the probability of observing a k-mer that is not included in the designed set of 𝐾 k-mers, we 

can require at least 𝑚 > 1 reads of each of the 𝐾 k-mers to be observed. In this case, the derivation of the number 

of required reads is not as trivial, but is expected to be approximated by 𝐸[𝑅] ≅ 𝐾(log(𝐾) + 𝑚 loglog(𝐾)) [21]. 

Again, we obtain reasonable numbers for relevant values of 𝐾 and 𝑚, and can use the selective nanopore approach 

to guide the process, avoiding reconstruction issues. 

This analysis is based on neglecting mix-up errors (i.e., there are no incorrect k-mer readings). This assumption 

is based on the near-zero mix-up probability that is attained by the construction of Ω with a minimal Hamming 

distance, see Table 4. 

 Simulation of an end-to-end combinatorial shortmer storage system 

To demonstrate our suggested encoding approach, we created an in-silico end-to-end system based on 

combinatorial shortmer encoding, simulated combinatorial DNA synthesis, simulated DNA sequencing, and 

message decoding (See Section 3). We simulated systems with different binomial alphabets and error 

probabilities, and measured the resulting reconstruction and decoding rates. Figure 3 depicts a schematic 

representation of our simulation workflow and indicates how the error rates are calculated. 
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Figure 3. A schematic view of the simulation workflow. A 10KB text message (1) is translated into a 

combinatorial message (2). Barcode and payload RS error correction is added to each sequence (3). Every 

block is encoded using RS error correction (4). DNA synthesis and sequencing is simulated. Combinatorial 

sequences are reconstructed from the sequencing reads (5). RS decoding is performed on each block (6) and 

each sequence (7). Finally, the combinatorial message is translated back to a text message (8). Errors are 

calculated on the text files (i), the “clean” payloads (ii), and the payloads with RS (iii, iv). 

The results of the simulation runs are summarized in Figure 4 and Figure 5. Each run included 30 repeats with 

random input texts of 10KB each. The results presented are for an alphabet of size |Σ| = 4,096 (𝑁 = |Ω| = 16, 

𝐾 = 5), barcode length of 12nt with 4nt of RS, payload of length 120 trimers with payload RS 14 trimers. The 

crosswise RS consists of 6 trimers for every block of 42 payloads, in any given position. From each barcode, 1000 

copies were synthesized (simulated). Errors are then simulated into the resulting sequences, to represent synthesis 

and sequencing errors, as expected in actual usage [22].  

The following is a summary of the conclusions from the simulation study:  

• As expected, higher synthesis and sequencing error probabilities produce a lower reconstruction rate.  

• Smaller samples of 10 and 20 reads per barcode did not allow for full reconstruction, even with zero error 

rate. Also, increasing the sampling rate results in better reconstruction. This demonstrates the crucial effect 

of random sampling on the overall performance of the system.  

• Substitution errors are easier to detect and correct than deletion and insertion errors. This is because 

substitution errors affect the nucleotide level rather than the trimer level. The minimal Hamming distance 

𝑑 = 2 of the trimer set Ω allows for the correction of single-base substitutions.  

• 2D RS error correction significantly improved reconstruction rates.  
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(ii) Rate of full combinatorial 

message reconstruction. 

Before RS decoding. 

 

 

(iii) Rate of full combinatorial 

message reconstruction. 

After payload RS decoding. 

 

 

(iv) Rate of full combinatorial 

message reconstruction. 

After 2D RS decoding. 

 

 

(i) Rate of full text reconstruction. 

After 2D RS decoding. 

 

 

Figure 4. Simulation of the entire binomial process, full reconstruction rate. Full reconstruction rate, 

calculated on simulated data with different error types (substitution, insertion, and deletion) and error rates (0, 

0.0001, 0.001, 0.01, respectively), and different sampling depths (10 – 1000 reads on average per barcode). 

Different stages shown: (ii) Before RS decoding. (iii) After payload RS decoding. (iv) After 2D RS decoding. (i) 

Text After 2D Rs Decoding. 

 

Fu
ll 

re
co

n
st

ra
ct

io
n

 r
at

e 

 

Fu
ll 

re
co

n
st

ra
ct

io
n

 r
at

e 
Fu

ll 
re

co
n

st
ra

ct
io

n
 r

at
e 

 

Fu
ll 

re
co

n
st

ra
ct

io
n

 r
at

e 

 

.CC-BY-NC 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is 

The copyright holder for this preprintthis version posted August 1, 2021. ; https://doi.org/10.1101/2021.08.01.454622doi: bioRxiv preprint 

https://doi.org/10.1101/2021.08.01.454622
http://creativecommons.org/licenses/by-nc/4.0/


10 

(ii) Combinatorial message 

reconstruction error. 

Before RS decoding. 

 

 

(iii) Combinatorial message 

reconstruction error. 

After payload RS decoding. 

 

 

(iv) Combinatorial message 

reconstruction error. 

After 2D RS decoding. 

 

 
(i) Text reconstruction error. 

After 2D RS decoding. 

 

  

Figure 5. Simulation of the entire binomial process, normalized Levenshtein distance. 

Similar to Figure 4. Levenshtein distance normalized by the length of the original message. 
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3 Methods 

 Implementation of a combinatorial k-mer storage system 
In our first run of simulations encoding/storing/decoding, we will address some of the process parameters. Table 

3 presents a message encoding example. 

The data will be encoded using molecules of length 418nt. Each molecule will contain 16nt barcode bases (out of 

which 4nt are dedicated for RS error correction), 402nt payload bases representing 402nt/3=134 trimers (out of 

which 14 trimers are dedicated for RS error correction). To protect from sequence dropouts, every 48 molecules 

are treated as a single block for RS error correction, to protect from sequence dropout). 

1. Encoding 

1.1. Data padding. To fit the binary data onto the molecule, it must be divided by the molecule size and the 

block size. If the division results in a gap, the data is padded with zeros to close this gap.  

1.2. 2D-error correction using Reed-Solomon decoding. Reed Solomon (RS) is used a total of three times. It 

is applied lengthwise on each sequence twice, error correcting each barcode sequence and then each payload 

sequence. It is also used crosswise on all the sequences in one block size. (See Section 3.2).  

2. Synthesis and sequencing 

2.1. Simulating the synthesis process. The synthesis of each combinatorial sequence was simulated separately. 

For a fixed sequence we first draw, from 𝑋~𝑁(𝜇 =predtermined, 𝜎2 = 100), the number of molecules that 

will represent it. Let this number be x. All k-mers that occur within a single position (cycle) are then 

generated. To do this, x numbers of the subset are selected, representing the relevant 𝜎. The size of this 

subset is 𝐾, and its members will most likely be represented many times. This random composition is 

achieved by drawing a total of x independent times, according to 𝑌~𝑈(1, 𝐾). 1s in 𝜎 are indexed at 

1, …, 𝐾, and the appropriate k-mers are “synthesized” in accordance with the drawn index.  

2.2. Mixing. Once all of the molecules are synthesized, they are mixed to mimic real molecules in a container. 

2.3. Error simulation. To replicate a real synthesis and sequencing process, several error scenarios were 

simulated. These include the three error types Deletion, Insertion, and Substitution of a letter in the sequence, 

each predefined by an error percentage. A Bernoulli trial is then performed on every sequence and letter 

position, where 𝑃 is the predefined error, inserting the errors in each position. To replicate the Substitution 

error, we implemented the error per nucleotide, and for the Insertion and Deletions errors we implemented 

the error on each full k-mer. This method is closest to the expected error scenarios in combinatorial DNA 

synthesis and sequencing. 

2.4. Reading and sampling. Several different samples were drawn, to analyze their impact on the accuracy of 

the data retrieved. 

3. Decoding 

3.1. Sequence retrieval. To retrieve the original sequence, first each sequence barcode undergoes RS error 

correction. Next, each sequence payload is reviewed individually, and undergoes RS, too. For sequences in 

the same block, RS is also done, crosswise on the block. 

3.2. Grouping by barcode and determining 𝝈 in each position. Once barcode retrieval is complete, sequences 

are grouped by the same barcode. In each of the groups, all the sequences are reviewed at the same exact 

position, where we extract the 𝐾 most common k-mers to determine the 𝜎 in that position. In the process of 

determining the 𝐾 most common k-mers, we may encounter invalid k-mer (not in Ω). Should an invalid k-

mer be encountered in the payload sequence, the following steps are taken: 

• If the length of the sequence is equal to the predetermined length. The sequence is reviewed, and 

if an invalid k-mer is encountered, which is not part of our alphabet, an 𝑋𝑑𝑢𝑚𝑚𝑦 is inserted instead, 

followed by skipping 3nts. 

• If the length of the sequence is smaller than the predetermined length. When Δ<SL*, it indicates 

that there is a deletion in the sequence. We pad it with a dummy nucleotide 𝑅 that restores it to the 

predetermined length, and then review the sequence.  

• If the length of the sequence is greater than the predetermined length. When Δ>SL*, it indicates 

that there is an insertion in the sequence. We cut the sequence to restore it to the predetermined length, 

and then review the sequence.  

* Δ −  𝐶𝑢𝑟𝑟𝑒𝑛𝑡 𝑠𝑒𝑞𝑢𝑒𝑛𝑐𝑒 𝑙𝑒𝑛𝑔𝑡ℎ, 𝑆𝐿 −  𝑃𝑟𝑒𝑑𝑒𝑡𝑒𝑟𝑚𝑖𝑛𝑒𝑑 𝑠𝑒𝑞𝑢𝑒𝑛𝑐𝑒 𝑙𝑒𝑛𝑔𝑡ℎ  
3.3. Missing barcode. After the reading process is complete, if a barcode is found missing, the missing barcode 

and a dummy sequence is added to enable Reed Solomon to retrieve the data correctly.  

4. Validation 

4.1. Levenshtein distance. After recovering the data, the magnitude of the error in the information recovery 

process is reviewed, by assessing the Levenshtein distance between the input 𝐼 and output 𝑂 [23] [24]. The 

normalized Levenshtein distance is shown in our graphs in Figure 4 and Figure 5. 
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 Data Padding and Error Correction Using 2D Reed Solomon codes 
The binary message is first padded, so that its total length is divisible by 𝑟 (𝑟 is the number of bits per letter). Next 

it is encoded into a combinatorial message. The combinatorial message is broken down into sequences of length 

𝑙, and another padding is done to complete a block of 𝐵 − 1 full sequences. The padding information is included 

in the final single combinatorial sequence to complete a block of 𝐵 sequences. 

For the barcode sequence, a systematic (6, 8) RS code over 𝐺𝐹(24) was used to transform the unique 12nt barcode 

to a 16nt sequence. The 120 combinatorial letter payload sequence was encoded using a (120, 134) RS code over 

𝐺𝐹(29), 𝐺𝐹(212), 𝐺𝐹(213) for the binomial alphabets (
16
3

) , (
16
5

) , (
16
7

), respectively. This resulted in sequences 

of length 134 combinatorial letters + 16nt barcodes. Using trimers, the (theoretical) resulting oligos have overall 

length of 418nt.  

To protect against sequence dropouts, we used RS error correction on the columns of the matrix (See Figure 6). 

In each block of 42 sequences, we apply a (42,48) RS code over 𝐺𝐹(29), 𝐺𝐹(212), 𝐺𝐹(213) for the binomial 

alphabets (
16
3

) , (
16
5

) , (
16
7

), respectively. This is applied in each column separately. 

Figure 6 demonstrates the encoding of ~0.1 KB using the following parameters: 

• A (3,5) RS code over 𝐺𝐹(42) for the barcodes. 

• A (12,18) RS code over 𝐺𝐹(29) for the (
16
3

) binomial alphabet payload sequence. 

• A 10-sequence block encoded, column wise, using a (10,15) RS code over 𝐺𝐹(29). 

The 824 bits are first padded to be 828 = 92 ∗ 9. The 92 combinatorial letter message is split into 7 sequences of 

12 letters and an additional sequence of 8 letters. Finally, a complete block of 12 sequences (total of 12 ∗ 12 =
144 letters) is created by padding with one additional sequence of 12 letters and including the padding information 

as the last sequence. 
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Barcode  

 
Payload 

 
Payload Lengthwise RS 

 
Barcode RS 

 
Payload Crosswise RS   

Figure 6. Example of message coding including padding and Reed-Solomon error correction. Encoding of a 

~0.1KB message to a 4096 letter binomial alphabet (N= 𝟏𝟔, 𝑲 = 𝟑). (i) First, bit padding is added, included 

here in the letter . (ii) Next, block padding is added, included here in  and  (iii) Padding information 

is included in the last sequence of all blocks. The last sequence holds the number of padding binary bits. In this 

example,  represents 148 bits of padding, composed of 𝟒 + (𝟒 ∗ 𝟗) + (𝟏𝟐 ∗ 𝟗) 𝒃𝒊𝒕𝒔 , 4 bits from ,  

4 letters from  and 12 letters from . 

4 Discussion 

 Information capacities for selected encodings 
Table 3 demonstrates the encoding of a 1GB input file, with standard encoding and two combinatorial encoding 

schemes, binomial and binary, using six different alphabets. In the binomial encoding scheme, three different 

trimer alphabets of sizes (
16
3

) , (
16
5

) , (
16
7

) were used.  In the binary encoding scheme, three different trimer sets 

of sizes 10, 16, 20 were used. All calculations are based on error correction parameters similar to those previously 

described [9] [10] [2] [14]. 

With these alphabets, up to 9.5-fold and 6.5-fold increase in information capacity is achieved per synthesis cycle 

and per DNA base respectively, compared with standard DNA based storage. We note that the 6.5 increase 

obtained using the binary coding also guarantees near zero  reconstruction error. 
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Table 3. Logical densities for selected encoding schemes. The numbers represent encoding a 1 GB binary 

message using oligos with 14nt barcodes +2nt RS (standard DNA), and 120 payload letters with 14 extra RS for 

the payload (combinatorial with N and K as indicated) 

We briefly touched on analytically evaluating reconstruction errors when using the schemes proposed herein. 

Further research is required to obtain better estimates of the theoretical reconstruction rates or Levenshtein 

distances.  

Finally, it is important to note that none of the methods described here has been tested in the lab for actual 

synthesis. This is mostly due to hardware limitations. Modifications to the existing phosphoramidite DNA 

synthesis machinery needs to include a mixing chamber [25], such as depicted in Figure 2. They should also 

include access to multiple feeding containers, holding the 𝑁 = |Ω|  reagents necessary for the desired alphabet 

design. 

 

 

  

Type 𝑵 𝑲 (
𝑵
𝑲

) 𝟐𝑵 − 𝟏 

Bits 

per  

Letter 

Alphabet 

Size 

Bits 

per  

Sequence 

Number of 

Sequences 

Reed 

Solomon 

(RS) 

Bits per 

Synthesis 

Cycle, 

Payload 

Only 

Bits per 

Synthesis 

Cycle 

Fold 

Increase 

Standard     2 4 240 33,333,334 38,095,248 1.57 1.40 1.0 

Binomial 16 3 560  9 512 1,080 7,407,408 8,465,616 7.05 6.30 4.5 

Binomial 16 5 4,368  12 4,096 1,440 5,555,556 6,349,248 9.40 8.40 6.0 

Binomial 16 7 11,440  13 8,192 1,560 5,128,206 5,860,848 10.19 9.10 6.5 

Binary 10   1,023 9 512 1,080 7,407,408 8,465,616 7.05 6.30 4.5 

Binary 16   65,535 15 32,768 1,800 4,444,445 5,079,408 11.75 10.50 7.5 

Binary 20   1,048,575 19 524,288 2,280 3,508,772 4,010,064 14.89 13.30 9.5 
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6 Supplement 
Table 4 is an example of k-mer sets. To the left, two sets of trimers that have a minimal 

Hamming distance of 2, with |𝛺1| = 16 𝑎𝑛𝑑 |𝛺2| = 12. To the right, a set of 54 6-mers that 

have a minimal Hamming distance of 4.  

 

trimers 6-mers 

𝛀𝟏 𝛀𝟐 𝛀𝟑 

AAT ACG TTGACG CAGTCA GCATTA 

ACA AAA AAAAAA CATGAC GCCGGC 

ATG AGC AACCCC CCAACC GCTAAT 

AGC ATT AAGGGG CCCCAA GGAAGG 

TAA CAC AATTTT CCGGTT GGCCTT 

TCT CCA ACACGT CCTTGG GGGGAA 

TTC GAG ACCATG CGATAT GGTTCC 

TGG GCC ACGTAC CGCGCG GTACAC 

GAG GGA ACTGCA CGGCGC GTGTGT 

GCC TAT AGAGTC CGTATA GTTGTG 

GTT TTA AGCTGA CTAGGA TAATGC 

GGA  AGTCAG CTCTTC TACGTA 

CAC  ATCGAT CTTCCT TAGCAT 

CCG  ATGCTA GAAGCT TCAGAG 

CTA  ATTAGC GACTAG TCCTCT 

CGT  CAACTG GAGATC TCTCTC 

  CACAGT GATCGA TGACCA 

  TTTTAA TGTGGT TGCAAC 

 

Table 4. Example of k-mer sets, 𝜴. For 𝜴𝟏 and 𝜴𝟐 the minimum Hamming distance is 2. For 𝜴𝟑 the 

minimum hamming distance is 4. 
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