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Abstract 

 
We used the Moran’s I index of global spatial autocorrelation with the aim 
of studying the distribution of the physicochemical or biological properties 
of amino acids within the genetic code table. First, using this index we are 
able to identify the amino acid property - among the 530 analyzed - that 
best correlates with the organization of the genetic code in the set of amino 
acid permutation codes. Considering, then, a model suggested by the 
coevolution theory of the genetic code origin - which in addition to the 
biosynthetic relationships between amino acids took into account also their 
physicochemical properties - we investigated the level of optimization 
achieved by these properties either on the entire genetic code table, or only 
on its columns or only on its rows. Specifically, we estimated the 
optimization achieved in the restricted set of amino acid permutation codes 
subject to the constraints derived from the biosynthetic classes of amino 
acids, in which we identify the most optimized amino acid property among 
all those present in the database. Unlike what has been claimed in the 
literature, it would appear that it was not the polarity of amino acids that 
structured the genetic code, but that it could have been their partition 
energy instead. In actual fact, it would seem to reach an optimization level 
of about 96% on the whole table of the genetic code and 98% on its 
columns. Given that this result has been obtained for amino acid 
permutation codes subject to biosynthetic constraints, that is to say, for a 
model of the genetic code consistent with the coevolution theory, we 
should consider the following conclusions reasonable. (i) The coevolution 
theory might be corroborated by these observations because the model 
used referred to the biosynthetic relationships between amino acids, which 
are suggested by this theory as having been fundamental in structuring the 
genetic code. (ii) The very high optimization on the columns of the genetic 
code would not only be compatible but would further corroborate the 
coevolution theory because this suggests that, as the genetic code was 
structured along its rows by the biosynthetic relationships of amino acids, 
on its columns strong selective pressure might have been put in place to 
minimize, for example, the deleterious effects of translation errors. (iii) 
The finding that partition energy could be the most optimized property of 
amino acids in the genetic code would in turn be consistent with one of the 
main predictions of the coevolution theory. In other words, since the 
partition energy is reflective of the protein structure and therefore of the 

.CC-BY-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted August 2, 2021. ; https://doi.org/10.1101/2021.08.01.454621doi: bioRxiv preprint 

https://doi.org/10.1101/2021.08.01.454621
http://creativecommons.org/licenses/by-nd/4.0/


 3 

enzymatic catalysis, the latter might really have been the main selective 
pressure that would have promoted the origin of the genetic code. Indeed, 
we observe that the β-strands show an optimization percentage of 94.45%, 
so it is possible to hypothesize that they might have become the object of 
selection during the origin of the genetic code, conditioning the choice of 
biosynthetic relationships between amino acids. (iv) The finding that the 
polarity of amino acids is less optimized than their partition energy in the 
genetic code table might be interpreted against the physicochemical 
theories of the origin of the genetic code because these would suggest, for 
example, that a very high optimization of the polarity of amino acids in the 
code could be an expression of interactions between amino acids and 
codons or anticodons, which would have promoted their origin. This might 
now become less sustainable, given the very high optimization that is 
instead observed in favor of partition energy but not polarity. Finally, (v) 
the very high optimization of the partition energy of amino acids would 
seem to make a neutral origin of the ability of the genetic code to buffer, 
for example, the deleterious effects of translation errors very unlikely. 
Indeed, an optimization of about 100% would seem that it might not have 
been achieved by a simple neutral process, but this ability should probably 
have been generated instead by the intervention of natural selection. In 
actual fact, we show that the neutral hypothesis of the origin of error 
minimization has been falsified for the model analyzed here. Therefore, we 
will discuss our observations within the theories proposed to explain the 
origin of the organization of the genetic code, reaching the conclusion that 
the coevolution theory is the most strongly corroborated theory. 
 
Key words: Moran I, spatial autocorrelation, amino acid physicochemical 
properties, genetic code physicochemical theories, genetic code 
coevolution theory, genetic code four-column theory, adaptive code 
hypothesis, neutral code hypothesis, code contingency, code β-strands, 
code β-sheets  
 

 

 

Introduction  
 
The work plane 
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The origin of the genetic code is one of the most fascinating problems that 
can be dealt with because representing the birth of the relationship 
between the genotype and the phenotype, that is to say, of a unique 
adaptive moment in the history of life, it allowed the emergence of the 
biological complexity on our planet. Two factors seem to have occurred in 
the origin of the organization of the genetic code table: biosynthetic 
relationships between amino acids and their physicochemical properties 
(Di Giulio, 1997b, 2005, 2013; Wong, 2005; Koonin and Novozhilov, 
2009, 2017). However, there is no agreement on which of these actually 
played the decisive role. In fact, there are many studies tending to show 
that biosynthetic relationships between amino acids were extremely 
important in determining its structuring (Dillon, 1973; Wong, 1975; Taylor 
and Coates, 1989; Freeland et al., 2000; Di Giulio, 2004, 2008a, 2017a, 
2018b; Di Giulio and Amato, 2009). On the contrary, other works favour 
the conclusion that it was instead the physicochemical properties of amino 
acids that heavily affected his organization (Woese et al., 1966; 
Nelsestuen, 1978; Wolfenden et al., 1979; Sjostrom and World, 1985; Di 
Giulio, 1989a, 1989b; Lacey Jr. et al., 1992; Freeland et al., 2000; 
Buhrman et al., 2013; Błaz�ej et al., 2016, 2018, 2019). Models have also 
been proposed that take into account both the above factors 
simultaneously, in an attempt to better understand the origin of the genetic 
code organization. (Di Giulio, 1991; Freeland et al., 2000; Gilis et al., 
2001; Facchiano and Di Giulio, 2018). To achieve this, we first need a 
method that identifies, as far as possible, the physicochemical or biological 
properties of amino acids that actually played a key role in organizing the 
code. Many studies seem to have proved that the genetic code is very 
conservative with respect to polar requirement (Woese, 1965, 1967; 
Woese et al., 1966; Di Giulio, 1989a; Haig and Hurst, 1991; Freeland and 
Hurst, 1998; Butler et al., 2009; Buhrman et al., 2013; Błaz�ej et al., 
2016, 2018, 2019). Therefore, at present we might observe with Vetsigian 
et al. (2006) that: "although we do not know what defines amino acid 
'similarity' in the case of the code, we do know one particular amino acid 
measure that seems to express it quite remarkably in the coding context. 
That measure is amino acid polar requirement." In spite of this, in the first 
part of this study, we have tried again, but through a different approach, to 
identify the amino acid properties better related to the structure of the 
genetic code.  
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Also regarding the level of optimization actually achieved by 
physicochemical properties during the origin of the genetic code there is 
no unanimous consensus (Di Giulio, 2013). In fact, there are works which 
would indicate that this level is very high (Haig and Hurst, 1991; 1998 
Freeland and Hurst; Butler et al. 2009; Buhrman et al. 2013), thus 
accrediting the physicochemical theories of the origin of the code 
(Sonneborn, 1965; Woese, 1965, 1967; Lacey Jr. et al., 1992; Fitch and 
Upper, 1987; Higgs, 2009). While other studies would argue that 
physicochemical properties of amino acids have reached only a partial 
level of optimization, on the contrary, supporting theories such as that of 
the coevolution that attributes to physicochemical properties only a 
secondary role, identifying instead in biosynthetic relationships between 
amino acids the crucial factor that led to the structuring of the genetic code 
(Wong, 1980; Di Giulio, 1989a, 1989b; Di Giulio et al., 1994; Di Giulio 
and Medugno, 1998, 1999, 2001).  

As a result, we have here considered a model of the origin of the 
genetic code that takes into account both biosynthetic relationships 
between amino acids and their physicochemical properties (Di Giulio, 
1991; Freeland et al., 2000; Gilis et al., 2001; Facchiano and Di Giulio, 
2018). In particular, we have determined the level of optimization 
achieved during the origin of the genetic code, studying the optimization 
of the physicochemical or biological properties of amino acids not in the 
set of all possible codes of amino acid permutation (Di Giulio, 1989a) but 
only in a sub-set subject to the constraints imposed by biosynthetic 
relationships between amino acids (Facchiano and Di Giulio, 2018). 
Indeed, operating in this sub-set - with a limited number of elements, but 
having a very high biological meaning - we hope to be able to make more 
understandable the crucial steps that led to define the origin of the 
organization of the genetic code.  

In short, using a spatial autocorrelation index and analyzing a large 
list of amino acid physicochemical and biological properties, we try to: (i) 
identify the property that best correlates with the organization of the 
genetic code, without any constraint other than the preservation of the 
genetic code's codon block structure; (ii) identify the properties that are 
best optimized in the restricted set of amino acid permutation codes 
subject to the biosynthetic constraints, evaluating their optimization 
separately on columns, rows, and the entire table of genetic code. All this 
in the hope of being able to: (i) clarify the role actually played by 
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physicochemical properties of amino acids during the origin of the 
organization of the code; (ii) discriminate between the different theories 
proposed to explain its origin; and (iii) help to make the crucial steps that 
led to the structuring of the genetic code more understandable. 

 
The hypothesis: enzyme catalysis as a determining factor in the evolution 
of the genetic code 

 
One of the reasons that could have led to triggering the origin of the 
genetic code might have been that of enzyme catalysis, because the genetic 
code coding primarily for proteins, essentially catalysts, would seem not to 
be nothing more than the evolution of coded catalysis (Di Giulio, 2003). In 
other words, enzyme catalysis - one of the fundamental characteristics of 
living organisms (Di Giulio, 2015) - may have been the main selective 
pressure that promoted the origin of the genetic code and determined its 
structuring (Wong, 1976, 1980; Di Giulio, 1996, 1997a, 2003, 2015). This 
hypothesis could, among other things, allow to explain the birth of 
peptidyl-tRNA – the key intermediary of protein synthesis, otherwise not 
easily selectable (Wong, 1991; Wong and Xue, 2002; Di Giulio, 1997a, 
2003, 2007, 2015) – if it were assumed that at least part of catalysis during 
the origin of the genetic code had to be performed by RNAs covalently 
linked to peptides, i.e. "peptidyl-tRNAs" (Ageno, 1981; Wong, 1991; 
Wong and Xue, 2002; Di Giulio, 1997a, 2003, 2007, 2015). This would 
also allow a first form of coding to evolve naturally, admitting that the 
interaction between RNA-peptidated (Di Giulio, 1997a, 1997b, 2003, 
2007, 2008b, 2015) – which represented a rudimentary form of protein 
synthesis (Di Giulio, 1997a, 1997b, 2003, 2007, 2008b, 2015) – could be 
coded by pre-mRNAs, which would in fact have codified sequences of 
RNA-peptidated interactions (Di Giulio, 2015). From these precursors 
eventually emerged the actual mRNAs and then the genetic code (Di 
Giulio, 2015).  

It is clear that such a model, while, on the one hand, would be able to 
elegantly explain the raison d'être of the genetic code (Di Giulio, 2008b), 
on the other hand it would deny any form of stereochemical interaction 
between codons or anticodons and amino acids as a mechanism for the 
origin of the code (Di Giulio, 2008a). Indeed, such a model would tie the 
origin of the genetic code to a great biological complexity that would have 
facilitated its triggering (Di Giulio, 1996, 1997a, 2003, 2015). Although 
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some authors have seen in this biological complexity an obstacle to the 
origin of the code (Kun and Radvinyi, 2018), on the contrary, in our view 
of an evolutionary stage with a relatively high biological complexity 
would represent a necessary condition for the origin of the genetic code. In 
other words, we believe that the genetic code cannot originate in a 
protocell with low or very low biological complexity precisely because, 
under these conditions, its origin would be completely useless and 
unnecessary (Di Giulio, 1996, 1997, 2003, 2015). So the catalysis 
mediated by RNAs bonded covalently to peptides might have been the 
only propulsive force that would have determined the structuring of the 
genetic code (Wong, 1976, 1991, 1980; Di Giulio, 1996, 1997a, 2003, 
2015).  

If this were true, then at a certain evolutionary stage of the origin of 
the genetic code the physicochemical or biological properties of amino 
acids should have played an important role in helping the evolution of the 
primordial enzymatic catalysis. Thus, if this were indeed found for some 
properties particularly functional to catalysis, this data could provide 
clarification on the allocations of amino acids within the table of the 
genetic code.  In any case, one would still expect to find the 
physicochemical properties of amino acids in the table of the genetic code 
if indeed enzyme catalysis had been the main selective pressure of its 
origin. A prediction, evidently, shared with the physicochemical theories 
of the origin of the genetic code (Sonneborn, 1965; Woese, 1965, 1967; 
Lacey Jr. et al., 1992; Fitch and Upper, 1987; Higgs, 2009) although for 
completely different reasons (Di Giulio, 1997b). Thus, the 
physicochemical properties of amino acids reflected in the genetic code 
(Woese et al., 1966; Alff-Steinberger, 1969; Jungck, 1978; Nelsestuen, 
1978; Wolfenden et al., 1979; Sjostrom and World, 1985; Di Giulio, 
1989a, 1989b; Lacey Jr. et al., 1992; Freeland et al., 2000; Buhrman et al., 
2013; Błaz�ej et al., 2016, 2018, 2019; Wnętrzak et al., 2018) might be an 
expression of enzyme catalysis and may not reflect physicochemical 
constraints imposed by its origin. So, it is also to try to give some answer 
to this problem that we have undertaken this study.  
 To recap, since we are convinced of the substantial correctness of the 
coevolution theory of the origin of the genetic code (Wong, 1975; Di 
Giulio, 2008a) - which assumes, among other things, that enzyme catalysis 
was precisely the main selective pressure that promoted the origin of the 
code (Wong, 1976, 1980; Di Giulio, 1996, 1997a, 2003, 2015) - we tried 
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to understand if the physicochemical properties of amino acids observed in 
the genetic code are reflective of enzyme catalysis or whether they may 
otherwise be an expression of interactions of codons or anticodons and 
amino acids or other types of interactions or physicochemical mechanisms 
that would have promoted the origin of the genetic code. 
 
 
Materials and Methods 
 
The database 
 
Here we refer to the list of 544 physicochemical and biological properties 
for the 20 amino acids imported in the R package ‘seqinr’ (version 4.2-5; 
2020-12-17; http://seqinr.r-forge.r-project.org/) from release 9.1 (Aug 
2006) of the aaindex1 database (Kawashima and Kanehisa, 2000). After 
deleting binary variables and properties containing NA values, we 
extended the database to include the Original Polar Requirements (Woese 
et al., 1966), Updated Polar Requirements (Mathew and Luthey-Shulten, 
2008), Mobilities of amino acids on chromatography paper (Aboderin, 
1971) and the Effective Mean Energy (Miyazawa-Jernigan, 1996), so that 
a total of 530 properties for the 20 amino acids were analyzed. 
 
Computational methods 
  
Results presented here were obtained using R programming language and 
free software environment (version 4.0.3, https://cran.r-project.org/) for 
statistical computing (R Core Team, 2020), using - in addition to the 
'seqinr' package (Charif and Lobry, 2007) described above - the spdep  
library (version 1.1-5), a collection of tests for spatial autocorrelation 
(Bivand et al., 2018), and the 'gtools' package (version 3.8.2), various R 
programming tools including permutations and combinations (Warnes et 
al., 2020). R codes written by the authors can be obtained upon request. 
 
 
The spatial autocorrelation index 
 
To find out which database properties are best correlated with the 
organization of the genetic code, we use an autocorrelational approach. In 
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actual fact, if you keep the blocks of synonymous codons unchanged, 
which in the genetic code encode for the 20 amino acids and for the 
termination signal, you can locate the neighbours for each block and 
assign weights that measure the intensity of the relationship between pairs 
of blocks. In other words, blocks of synonymous codons (B1, B2, ..., B20) 
coding for amino acids are seen as locations or spatial units, so - from an 
operational point of view - the notion of spatial proximity is formally 
expressed through a 20 x 20 weight matrix W, whose generic off-diagonal 
element, wij, represents the relationship between Bi and Bj. In particular, 
in our model, wij represents the number of pairs that differ exactly by one 
base, among all those that can be formed by choosing the first codon in Bi 
and the second in Bj. It should also be noted that the blocking of 
termination codons is not taken into account (however, it indirectly 
manifests its action in the smaller number of neighbors assigned – on the 
same terms – to the locations adjacent to it). Of course, depending on how 
the 20 amino acids are uniquely assigned to the blocks, the corresponding 
values (x1, x2, …, x20) of a given physicochemical or biological property 
can take up different places in space. In this context, spatial 
autocorrelation refers to the relationship between spatial proximity 
between blocks of synonymous codons and the numerical similarity 
between values of amino acids coded by them. Therefore, spatial 
autocorrelation indices allow us to measure the correlation of a specific 
physicochemical or biological property with itself, taking into account the 
spatial arrangement of its values assigned to the synonymous codons 
blocks. 

 Our measurement of spatial autocorrelation is based on the Moran I 
statistic (Moran, 1948, 1950; Cliff and Ord, 1973, 1981), arguably the 
most well known and most widely applied statistic for testing spatial 
autocorrelation. We denote by  the observed value of a given 
physicochemical or biological property in the block Bi (i=1,2, … , n), by   
the mean of all the observed  (i.e.,   and by wij the generic 
element of the spatial weight matrix W. Using this notation, the Moran I 
coefficient of global spatial autocorrelation can be defined as:  
 

  ( )   [1] 

 
Thus, we see that the numerator is a measure of covariance among the  
and the denominator is a measure of variance. It should also be noted that 
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this coefficient is based upon the cross-products of the deviations from the 
mean and that a key role is played by the weighting matrix W. Values of 
the index usually fall in the [-1, 1] interval and can be interpreted by 
analogy with Pearson correlation coefficient. In our context, Moran I is 
positive when nearby blocks of synonymous codons tend to encode similar 
amino acids, negative when the coded amino acids tend to be more 
dissimilar than one might expect, and approximately zero when they are 
arranged randomly and independently in their relative blocks. 

Under fairly wide assumptions (Cliff and Ord, 1971), the sampling 
distribution of Moran’s I statistic is known to be asymptotically normal. In 
such a case, the expected value and the variance of I can algebraically be 
evaluated (Cliff and Ord, 1981), under the null hypothesis of spatial 
randomness, either by: (i) assuming that the observed  (i=1,2,…n) are 
random independent drawings from a normal population (assumption N - 
normality); and (ii) considering the observed value of I with reference to 
the set of all the possible values  which I could take on if the  values 
were repeatedly randomly permuted around the n spatial units (assumption 
R - randomisation). 

When normality cannot be assumed, a reference distribution under 
the null hypothesis of spatial randomness is empirically generated for I by 
a Monte Carlo simulation that generates a large number of permutations of 
the observed {xi} over all locations and by re-computing Moran I for each 
sample. In our case, let Icode be the Moran I obtained for the (not 
randomized) observed {xi} in the standard genetic code, if we denote by 
Nsim the number of permutations in the simulation and by NGE the number 
of times I under simulation was greater than or equal to Icode, than a 
pseudo-significance can be computed as: 
 

    [2] 

 
In the event that the set of permutations permutations is not too large, 

then - through a complete enumeration procedure - we can evaluate the 
value of index I for each element of the collection and identify as well the 
element with the maximum value of the index. 

Taking into account all possible single base and sense changes 
between the codons of the genetic code, we indicated with I the global 
Moran index of spatial autocorrelation associated with the spatial matrix of 
W weights, as defined above.  But, by specializing the analysis to sense 
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and single base changes involving only the columns of the code, or only 
those of the rows, or those involving changes only in the first, or only in 
the second position of codons, we come in a similar way to the definition 
of other global spatial autocorrelation indices (IC, IR, I1 and I2) associated 
with different weight matrices (WC, WR, W1, W2), respectively.  

Lastly, the spatial weight matrix is often row-standardized (each 
weight is divided by its row sum), but "there is no mathematical or 
statistical requirement for this" (Anselin, 1988, page 23). Undoubtedly, 
this strategy facilitates the interpretation of the statistics: for instance, it 
effectively enables us to interpret the spatial lag term as a spatially-
weighted average of neighbouring values. Mainly, row-standardization is 
used to mitigate the effect due to the unequal number of neighbours. But, 
despite its popularity, row-standardization has disadvantages. Primarily, it 
upsets the internal weighting structure of the spatial weight matrix, 
realistically destroying any symmetry and, perhaps, risking to distort the 
very nature of the spatial interactions we are modelling. Moreover, due to 
row-standardization each row sums 1 and the total influence on each 
spatial unit becomes the same. All this can hardly be considered neutral. In 
our model, in practice, row-standardization penalizes blocks with a high 
(>2) number of synonym codons, favoring the remaining, especially when 
these are contiguous to the termination codons and/or included in the same 
codon box. Thus, due to the effect of row-standardization alone, blocks 
with a small number of synonymous codons will have a stronger impact on 
the global Moran I. On the contrary, the natural structure of the 
synonymous codon block system requires that in our model the size of the 
blocks must be taken into account adequately, since it reflects an essential 
trait, important for the evolution of the genetic code: for example, a 
significant correlation between the number of codons and the molecular 
weight of amino acids is known (Hasegawa and Miyata, 1980; Taylor and 
Coates, 1989; Di Giulio, 1989b, 1997b, 2005; Dufton, 1997). Therefore, 
we believe that results obtained with non-standardized matrices are to be 
considered more reliable from a strictly evolutionary point of view. On the 
other hand, row-standardization leads to a substitution matrix (whose 
entries represent transition probabilities between synonymous codon 
blocks) which certainly has its biological relevance as well, since it 
highlights the mutational effects between blocks that encode for different 
amino acids. For these reasons we present both results, with and without 
row-standardization. 
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Amino acid permutation codes and genetic code optimality  
 
In this work, we will look at two models. In the first, for each specific 
amino acid property, we were going to consider – as a set of admissible 
permutations - all 20! possible permutations of its values (Di Giulio, 
1989a). In the second model, on the other hand, we will operate in the 
restricted set of amino acid permutations subject to biosynthetic 
constraints, in which the amino acids of the same biosynthetic family are 
allowed to permutate exclusively on the blocks of synonymous codons 
really assigned by the genetic code to the family itself (Facchiano and Di 
Giulio, 2018). The biosynthetic constraints considered are derived from 
the following biosynthetic classes (Wong, 1975; Taylor and Coates, 1989; 
Di Giulio, 2008a, 2018; Facchiano and Di Giulio, 2018): 
1. Ser, Gly, Cys, Trp; 
2. Phe, Tyr; 
3. Val, Leu, Ala; 
4. Glu, Gln, His, Arg, Pro; 
5. Asp, Asn, Lys, Thr, Met, Ile.  

Since the number of amino acid permutations (Di Giulio, 1989a) 
allowed by this model is 4!2!3!5!6!= 24,883,200 (see also, Facchiano and 
Di Giulio, 2018), it is now possible to evaluate index I for each element of 
the set. In particular, you can know the number (Nsg) of all values of I 
strictly greater than Icode and identify the maximum value (Imax). As a 
result, an estimate of the level of optimization achieved by the genetic 
code can be made using the optimization percentage (Opt) calculated - in 
analogy with the percentage of minimization (Wong, 1980; Di Giulio, 
1989b) - by the expression: 

    [3] 
 
where Icode is the Moran’s I value of the genetic code, Imean is the average 
value of the index, and Imax is its maximum value.  
 All the R codes written by the authors can be obtained upon request. 
 
 
Results 
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Identification of physicochemical properties of amino acids that best 
correlate with the organization of the genetic code 
 
We performed calculations of Moran’s I statistics (Moran, 1948, 1950; 
Cliff and Ord, 1973, 1981) of global spatial autocorrelation for all 530 
physicochemical and biological properties for the 20 amino acids of the 
database described above, with the aim of identifying properties which had 
a more significant spatial autocorrelation. In this sense, we can briefly 
refer to these properties as the best correlated with the structure of the 
genetic code. Particularly, in a first scan, for each amino acid property we 
analytically computed five global Moran’s statistics (I, I1, I2, Ic, and Ir), 
using both row-standardized and non-row-standardized spatial weight 
matrices. Namely, this has been made or considering all possible changes 
of single base and of sense between codons of the genetic code (I), or 
those involving only the columns (Ic), or only those of the rows (Ir), or 
those involving changes only in the first (I1), or only in the second (I2) 
position of codons (see Materials and Methods). In this way, it is possible 
to obtain a first overview of the behavior of the various indices, by 
observing how these descriptive measures vary from one variable to 
another. Then, the 50 best-performing properties with respect to global I 
index (corresponding to the largest zeta values, analytically estimated 
under the randomization assumption) were chosen for a more careful 
assessment of the significance of observed values of the various indices by 
simulation experiments that randomize the values of a given property over 
the synonymous codon blocks. Thus, for any given spatial weighting 
scheme, a permutation test was performed to establish the rank (and the 
pseudo p-value) of the observed statistic of the genetic code in relation to 
the simulated values, by using 107 (= 9999999 + 1) random permutations, 
sampled from all 20! possible (Di Giulio, 1989a), for the more significant 
indices (I, I1 and Ic) and 105 (=99999 + 1) random permutations for the 
remaining indices (I2 and Ir). Finally, properties were then ordered 
according to the non decreasing pseudo p-values relative to the global I 
index. Results of the top 20 properties are presented in table 1 (without 
row-standardizing) and table 2 (with row-standardized spatial weight 
matrices). 
 First, taking into account index I, it must be said that all properties 
listed in tables 1 and 2 have - as widely expected - pseudo p-values so 
small that it is completely unlikely that the data can support the null 
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hypothesis of spatial randomness. That said, we can consider the pseudo p-
values as “exploratory tools”, capable of providing us with indications if a 
given hypothesis is able to provide an adequate description of the data or if 
new ones and more plausible alternatives should be investigated. In 
particular, at the various amino acid properties analyzed, we can consider 
the pseudo p-values as a computational summary of the extremeness of the 
observed statistic for the genetic code with reference to the distribution of 
the simulated random permutation codes.  
 The data reported so far in the literature support the hypothesis that 
polarity is the property best correlated with the structure of the code 
(Woese, 1965, 1967; Woese et al., 1966; Di Giulio, 1989a, 1989b; Haig 
and Hurst, 1991; Freeland and Hurst, 1998; Butler et al., 2009; Błaz�ej et 
al., 2016, 2018, 2019). On the other hand, by analyzing both Tabs. 1 and 2, 
the observation that is evident is that it is rather the measures of the 
partition energy of amino acids (Miyazawa-Jernigan, 1985, 1996, 1999) 
that achieve the best performance, that is to say, to seize the ranks smaller 
ones. Particularly in Tab. 1 (where, in our opinion, the most reliable 
situation is represented from a strictly biological point of view, having 
been used non-standardized spatial weight matrices) appears only in 11th 
place a single measure of polarity: Updated Polar Requirements (Mathew 
and Luthey-Schulten, 2008). Now, while it is true that in Tab. 2 
(standardized weight matrices) there are four measures of polarity, on the 
other hand, it should be noted that in both tables, three measures of the 
partition energy of amino acids are the first to win the top ranks: the 
relative partition energies derived by the Bethe approximation (Miyazawa-
Jernigan, 1999), effective mean energy (Miyazawa-Jernigan, 1996) and 
optimized relative partition energies - method A (Miyazawa-Jernigan, 
1999). In conclusion, it would seem that the partition energy of amino 
acids is the property best correlated with the structure of the genetic code 
and not the polarity of amino acids. Therefore, although conclusions of 
significance tests must always be confirmed by further measurements, at 
present it seems that our findings question the adequacy of the polarity 
model, suggesting a more plausible one based on the partition energies. An 
even worse behavior than that of polarity is observed for the hydration 
potential of amino acids (Wolfenden et al., 1979) which does not appear to 
be present in Tabs. 1 and 2, and not even within the first fifty ranks, 
although some analyses (Wolfenden et al., 1979) indicated that it was 
strongly correlated with the organization of the genetic code.    
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 When analyzing the Tabs. 1 and 2, while it is appropriate to compare 
the values of a given index varying from one variable to another, it is 
incorrect to directly compare the results of two different indices, since they 
correspond to different spatial weighting schemes. Nevertheless, it is clear 
that the general trend is that most of the optimization of the genetic code is 
relegated to the columns (Ic) and this would be consistent with the 
observations reported in the literature that it is mainly the columns of the 
genetic code that are well-accommodated by physicochemical properties 
of amino acids (Nelsestuen, 1978; Wolfenden et al., 1979; Sjostrom and 
World, 1985; Di Giulio, 1989b, 2017a, 2018b; Chiusano et al., 2000). 
 The contrast between the results of the two tables is not very marked, 
since their only difference consists in the row-standardization of the 
weighting matrix. They share 12 properties which seem roughly to show 
the same trend, since the correlation coefficient between their ranks is 
highly significant (r = + 0.900, p=8.3x10-5, n = 12). The introduction of the 
row-standardization of the weighting matrix does not penalize the 
measures of partition energy at all (on the contrary, in Tab. 2 there are two 
more, in addition to the 4 shared with Tab. 1) and seems in some way to 
favor polarity (with the inclusion in the top 20 of 3 other new measures, in 
addition to the shared one that, moreover, wins a lower rank). The ability 
of partition energy to be, unlike polarity, relatively insensitive to changes 
in model assumptions induced by row-standardization, could be 
interpreted as a further indication of its most reliable suitability to provide 
an adequate description of the data. Indeed, the partition energy is not only 
capable of providing the most significant values, but is also able to 
manifest them both in presence and in the absence of standardization. This 
suggests that it might have been the partition energy that played the main 
role in structuring the genetic code, not the polarity. The latter, in actual 
fact, being penalized by the absence of standardization, is as if it were not 
able to guarantee a good performance just when considering, without 
further modification, the natural structure of the synonymous codon 
blocks, an essential attribute for the evolution of the genetic code (Di 
Giulio, 1989b, 2005a).  
 Can we be reasonably certain that we have identified in the partition 
energy of amino acids the property that best correlates with the 
organization of the genetic code? We believe that the answer to this 
question can only be affirmative, of course within the limits imposed by 
the analysis itself. So, in the next section we will investigate whether this 
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performance of partition energy is also preserved in the codes of amino 
acid permutations but subject to biosynthetic constraints between amino 
acids, that is to say, in the set of codes expected from the coevolution 
theory of the genetic code (Di Giulio, 2016b, 2017a, 2018b). 
 
 

Optimality of the genetic code in the coevolution theory framework: 
partition energies of amino acids and their conformational preference for 
parallel beta-strands are the only properties to be highly optimized 

  
In the previous section we considered, as the set of allowed 

permutations for each specific amino acid property, all 20! possible 
permutations of its values (Di Giulio, 1989a). When, on the other hand, we 
operate in the set of amino acid permutations subject to biosynthetic 
constraints, the number of allowed permutations is restricted to only 
24883200, thus making it possible to evaluate the Moran’s I index for each 
element of the set. Thus we are able to compute the optimization 
percentage (see Materials and methods) reached by the genetic code and 
the number of codes that have better performance than it.  
Specifically, by sampling in the subset of restricted permutations, we first 
estimated the optimization level achieved by the genetic code with respect 
to the global Moran's I index of spatial autocorrelation and with reference 
to each of the 530 properties of the database. Out of the 50 properties with 
the highest estimates, the I index of global spatial autocorrelation was then 
exhaustively calculated for each of the 24,883,200 amino acid permutation 
codes subject to biosynthetic constraints. Finally, only the top 20 
properties were selected and the calculations of the remaining indices (I1, 
I2, IC, IR) were performed. The results obtained are shown in Tab. 3 
(without row-standardizing) and Tab. 4 (with row-standardized spatial 
weight matrices). 

Since the first step (on which the choice of the first 50 properties 
with the highest estimates depends) is based on sampling, there could be 
doubts (even with a large sample of codes, equal to 1/50 of the population 
size) that could be expected some uncertainty in the results, in relation to 
which properties will appear in the final tables. To dispel any doubts, we 
exhaustively computed the optimization percentage of the top 100 
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properties with the highest estimates, confirming the stability of the tables. 
In conclusion, Tabs. 3 and 4 actually report the 20 properties with the 
highest optimization percentages, relating to index I, among all the 
properties analyzed in the database. 

It turns out that the only properties able of exceeding the 95% 
threshold in the optimization percentage relative to index I in both Tabs. 3 
and 4 are the partition energies of the amino acids and the conformational 
preference for parallel beta-strands. Therefore, it is difficult to escape the 
conclusion that they played the key role in the origin of the organization of 
the genetic code. 

Furthermore, three measures of the partition energy of amino acids - 
highly correlated with each other - show on the columns of the genetic 
code (index IC) an optimization percentage of about 98% occupying the 
first three ranks in both Tabs. 3 (without row-standardizing) and 4 (with 
row-standardized spatial weight matrices). 

Conversely, operating with non-row-standardized weight matrices, 
no measure of amino acid polarity is present within the first twenty more 
optimized properties (Tab. 3). However, we had the opportunity to verify 
that the first polarity measure to appear is that of Grantham (1974) with 
only 85.51% of optimization; if, however, we restrict the analysis to only 
the columns of the genetic code (Ic index) it manages to achieve a good 
level of optimization of 95.68%. However, it is appropriate to specify that 
it is the genetic code in its entirety that is subjected to the scrutiny of 
natural selection, therefore it is the first percentage that is truly relevant, 
that is, the one referred to the changes involving the whole code and not 
just a part of it, as happens for column optimization. It follows that, with 
optimization percentages of 85.51% or lower, it is reasonable to believe 
that polarity might not have played a key role in the origin of the 
organization of the genetic code. Optimization levels lower than 90% are, 
in actual fact, completely common among the physicochemical properties 
of amino acids (Tabs. 3 and 4) so this behavior could simply reflect the 
strong correlation between the polarity measurements and those of the 
partition energies of the amino acids. 

Standardization, on the other hand, seems to somehow favor polarity, 
but the level of optimization achieved is still quite low (90.21% for the I 
index and 92.31% for Ic); however, various polarity measures are present 
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in the tables constructed using standardized weights (four measures in Tab. 
2 and two in Tab. 4). However, we believe that the natural condition is 
better preserved by operating using the weights provided directly by the 
structure of the genetic code, i.e. without row-standardizing the spatial 
weight matrices (Tabs. 1 and 3), as opposed to standardization which 
inevitably destroys their symmetry. 

Another observation in favor of polarity is that concerning the good 
performance of the Updated Polar Requirements (Mathew and Luthey-
Schulten, 2008) in achieving the lowest value among those recorded in the 
second column of Tab. 4. It refers to the number of codes with strictly 
better values of the Moran's I than the one achieved by the genetic code. It 
should be noted, however, that the relevance of the result is reduced by the 
fact that the corresponding optimization percentage is only about 88% 
(Tab. 4). 

 
 
The codes that perform better than the genetic code and their relationships 
with the latter: the genetic code is neither a global nor a local maximum, 
also there is a directed path by the genetic code to a code with a value of 
Moran I close to the maximum absolute value  
 

Referring to the global Moran’s I index of spatial autocorrelation 
(Tab. 3) and relative partition energies derived by the Bethe approximation 
(Miyazawa-Jernigan, 1999), Fig. 1 plots the histogram and Fig. 2 reports 
the permutation of amino acids within the code table that maximizes the 
value of the index (Imax). As you can see the genetic code differs from this 
code with maximum value of Moran I for the different encoding of seven 
blocks of synonymous codons. In particular, in order to move from the 
genetic code to the code of Fig. 2b, a number of base substitutions should 
be made. In a sense, this indicates a considerable mutational distance 
because the (Asp Thr Lys) 3-cycle and the (Glu Pro) transposition (Kirson, 
2017) imply multiple mutational events, while still occurring between 
amino acids belonging to the same biosynthetic class. It should also be 
noted that all these seven amino acid changes (Fig. 2) involve only amino 
acids of the biosynthetic families of Asp and Glu and that - at least at 
certain points in the evolutionary history of the genetic code - they might 
have taken place, precisely because of the existence of the mechanism that 
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allowed amino acids belonging to the same biosynthetic family to be 
distributed on contiguous codons (Di Giulio, 2002, 2019). However, this 
probably did not happen due to the presence of strong historical constraints 
on the Asp and Glu codons, which were among the first amino acids to be 
encoded in the genetic code (Ikehara et al., 2002; Di Giulio, 2008a). The 
(Arg Gln) transposition might also have been hampered because Arg 
appears to have had strong physicochemical constraints due to its ability to 
stabilize the structure of proteins at high temperature and high pressure (Di 
Giulio, 2000a, 2005a, 2005b, 2005c). Such physicochemical constraints 
would have required a high number of codons to code for this amino acid 
in the genetic code (Di Giulio, 2000a, 2005a, 2005b, 2005c). If this was 
the case, then the organization of the structure of the genetic code would 
be close to that of a global optimum more than the optimization 
percentages reported in Tabs. 3 and 4 would indicate.  

The genetic code is not a local maximum. Indeed, of the 190 possible 
unordered amino acid pairs, only 35 are those with both amino acids 
belonging to the same biosynthetic family. Therefore, in the restricted set 
of amino acid permutations subject to biosynthetic constraints, only 35 are 
those that differ by a single amino acid exchange from that of the genetic 
code. Choosing as distance between permutations (and between 
corresponding codes) an edit-distance counting how many interchanges 
(i.e., transpositions of two arbitrary amino acids) have to be performed to 
transform one permutation into another, these 35 permutations are the only 
ones to have not null minimal distance from the genetic code. Now, for the 
genetic code to be a local maximum, all of these 35 permutations must 
have a Moran’s I value no higher than the value of the code itself (Icode). 
Instead, some of these [precisely: (Pro Arg), (Gly Ser), (His Pro), (Asp 
Asn), (Asn Thr), (Asp Thr) and (Glu Pro)] have a Moran’s I value greater 
than Icode, so it follows that the genetic code is not a local maximum. For 
example, an exchange between Asn and Thr (which differ by a single base 
in some of their codons) is enough to achieve an improvement in the 
Moran’s I corresponding to an increase of 1.16% in the optimization 
percentage. All other transpositions listed have lower increments, except 
(Asp Thr) (an increase of 2.46%), in this case, however, their codons differ 
by at least two bases. 
 Continuing to refer to the relative partition energies derived by the 
Bethe approximation (Miyazawa-Jernigan, 1999), we find that in the 
restricted set of 24,883,200 codes obtained from amino acid permutations 
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subject to biosynthetic constraints there are 4429 codes with a Moran I 
strictly greater than the natural code (Table 3). Defining adjacent two of 
these (4429+1) codes if and only if they differ by a single transposition of 
two amino acids encoded by (at least some) codons differing by only a 
single nucleotide; it is of some interest to verify the reachability of the 
code with the maximum value of Moran I (Fig. 2) - starting from the 
natural code - through a directed path in which each step is associated with 
a non-negative [or even slightly negative (≥-0.0005)] variation of Moran’s 
I. Well, under these conditions it is shown that such a path does not exist. 
However, another code with an index value (I'=0.38009) very close to the 
global maximum (Imax=0.38190) is accessible, which can be obtained from 
the natural code through the following sequence of transpositions: (Arg 
Pro), (Asp Asn), (Lys Thr), (Gln Arg), (Asp Thr), and (Asn Thr). 
Therefore, in recalculating the optimization percentage (being invariant 
Icode=0.36853 and Imean=0.00497) instead of Imax=0.38190 we should 
consider I'max=0.38009, thus recording a slight increase from 96.45% to 
96.92% of the optimization percentage. In other words, even if under quite 
biologically reasonable conditions, the code with the highest value of 
Moran I is not actually achievable, nevertheless the optimization 
percentage is not affected when it is referred to the maximum value that is 
actually achievable. In short based on these assumptions, the reachability 
or not of the code with the maximum value of Moran’s I does not 
significantly affect the conclusions. 
 
Discussion 
 
The partition energy of amino acids: its importance in the origin of the 
genetic code and implications for the theories proposed to explain this 
origin 
 

Some considerations would seem to be highly sustainable based on 
the results reported here. The first is that the partition energy (Miyazawa 
and Jernigan, 1985, 1996, 1999) is the amino acid property that seems to 
be better reflected in the organization of the genetic code and not the 
polarity of amino acids (Tabs. 1, 2, 3 and 4), as instead widely supported 
and assumed in literature (Woese, 1965, 1967; Woese et al., 1966; Di 
Giulio, 1989a; Haig and Hurst, 1991; Freeland and Hurst, 1998; Butler et 
al., 2009; Buhrman et al., 2013; Błażej et al., 2016, 2018, 2019; Wnętrzak 
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et al., 2018). This consideration would be consistent with a vision of the 
origin of the genetic code that focuses on enzymatic catalysis as the main 
selective pressure that would have triggered its origin (Wong, 1976, 1991, 
1980; Di Giulio, 1997a, 2003, 2008b, 2015). Indeed, the partition energy 
of amino acids would be closely related to the structure of proteins (Guy, 
1985; Miyazawa and Jernigan, 1985, 1996) which in turn would reflect the 
enzymatic catalysis. In extreme synthesis, Miyazawa and Jernigan (1985, 
1996, 1999) inter-residue contact energies were extracted, using methods 
of statistical mechanics, from observed contact frequencies of residue pairs 
in known crystalline structures of globular proteins and are generally 
considered a good approximation of realistic protein interactions. Based on 
these data, the partition energies were also derived for the 20 amino acids, 
which are related to the propensity of residues to be buried in the interior 
of proteins or to be exposed to water on the surface (Miyazawa and 
Jernigan, 1985, 1996). Now, the finding that precisely the amino acid 
properties so exquisitely related to the protein structure as the partition 
energies are also the best autocorrelated in the structure of the genetic code 
(Tabs. 1 and 2)  and the best optimized there (Tabs. 3 and 4), suggests that 
the structuring itself of the genetic code might have been to a large extent 
oriented by the need to preserve protein structure and its basic functions, 
first of all enzymatic catalysis, and to promote its evolutionary 
improvement. 
 On the contrary, the low performances of other properties, in 
particular of polarity, which refer to stereochemical interactions between 
amino acids and codons or anticodons, indicate that physicochemical 
properties found in the organization of the genetic code (Woese et al., 
1966; Alff-Steinberger, 1969; Jungck, 1978; Nelsestuen, 1978; Wolfenden 
et al., 1979; Sjostrom and World, 1985; Di Giulio, 1989a, 1989b, 1991, 
2017a, 2018b; Chiusano et al., 2000; Lacey Jr. et al., 1992; Freeland et al., 
2000; Buhrman et al., 2013; Błażej et al., 2016, 2018, 2019; Wnętrzak et 
al., 2018) might more likely be considered expressions of the enzyme 
catalysis itself rather than of presumed interactions between amino acids 
and codons or anticodons. 
 The whole argument appears more easily interpretable within the 
coevolution theory of the genetic code (Wong, 1976, 1980; Di Giulio, 
2018a) than within the physicochemical theories (Sonneborn, 1965; 
Woese, 1965, 1967; Lacey Jr et al., 1992; Fitch and Upper, 1987; Higgs, 
2009). Indeed, for the coevolution theory, enzymatic catalysis would have 
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been the main selective pressure that would have triggered the origin of 
the genetic code (Wong, 1976, 1980; Di Giulio, 1997a, 2003, 2008b, 2015, 
2018a). On the contrary, physicochemical theories, in general, argue that 
the optimization of physicochemical properties detectable in the 
organization of the genetic code (Tabs. 3, and 4) is an expression of 
interactions between amino acids and codons or anticodons that would 
have promoted his origin (Woese, 1967; Mathew and Luthey-Schulten, 
2008). In other words, our results (Tabs. 1, 2, 3 and 4) are easily explained 
by the coevolution theory of the genetic code (Wong, 1975; Di Giulio, 
2008a, 2016a, 2016b, 2017a, 2017b) because it argues that during the 
origin of the genetic code the biosynthetic relationships between amino 
acids conditioned above all the evolution of its rows (Taylor and Coates, 
1989; Di Giulio, 2001b, 2008a, 2017b, 2018b, 2019), and therefore on the 
columns of the code might be allocated as best as possible amino acids 
with similar physicochemical properties (Wong, 1980; Di Giulio, 2017b, 
2018a, 2019), as indeed it has been observed (Nelsestuen, 1978; 
Wolfenden et al., 1979; Sjostrom and World, 1985; Di Giulio, 1989b, 
2017a, 2018b; Chiusano et al., 2000). On the contrary, the 
physicochemical theories (Sonneborn, 1965; Woese, 1965, 1967; Lacey Jr. 
et al., 1992; Fitch and Upper, 1987; Higgs, 2009) would not be able to 
give an equally satisfactory description of these observations (Di Giulio, 
2016a, 2016b, 2017a, 2017b), also because they would be unable to 
explain why the physicochemical properties of amino acids do not show a 
significant distribution on the rows of the code (Di Giulio, 2016a, 2016b, 
2017a, 2017b), although some significance is observed for the polarity of 
amino acids (P = 0.016 (1548/105); Tab. 2). Furthermore, while the 
coevolution theory would seem to be able to explain the statistical 
significance of the distribution linked both to the biosynthetic relationships 
of amino acids and to their physicochemical properties, the 
physicochemical theories would not have this capacity (Di Giulio, 2017b). 
 The very high optimization of the partition energy of amino acids, in 
particular on the columns of the genetic code (Tabs. 3 and 4), is in 
agreement with the hypothesis of Woese (1965, 1967) that one of the main 
selective pressures that would have structured the genetic code would have 
been the lowering of translational noise. Other forms of reduction of 
ambiguity hypothesized to be present in some stages of the origin of the 
genetic code (Fitch and Upper, 1987; Ardell and Sella, 2001; Barbieri, 
2015), would also be compatible with the very high optimization found 
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(Tabs. 3 and 4). On the other hand, any theory that is not capable of 
predicting a suitable level of optimization would be falsified by the 
evidence reported here. Stereochemical theory (Woese, 1967; Shimizu, 
1982; Szathmáry, 1993; Yarus, 2017) might be one of the theories unable 
to make this prediction. Indeed, the very high optimization would seem 
more the consequence of the lowering of the translation noise through 
natural selection than of interactions, for example, between amino acids 
and anticodons. Precisely, these interactions might not have been able to 
determine such different behavior between the columns and rows of the 
genetic code as regards their level of optimization (Tabs. 3 and 4). In other 
words, if the very high optimization (Tabs. 3 and 4) had really been the 
result of interactions between amino acids and codons or anticodons then 
we should have observed a less marked behavior in favor of column 
optimization and against that of row because it is the first two positions of 
the codons that determine most of the meaning of a certain codon. 
Whereas, in the event that it was only the presence of the second base of 
the codon or anticodon that was important in this stereochemical 
interaction - which hypothetically could have promoted the origin of the 
genetic code (Weber and Lacey, 1978; Lacey Jr. et al., 1992) - then this 
interaction involving a single base might not have ensured the 
correspondence between a determined anticodon (or a codon) and a 
specific amino acid, as is on the contrary maintained by the stereochemical 
theory as its main assumption. Therefore, in this sense, the stereochemical 
theory would not be corroborated by the very high optimization of the 
column found (Tabs. 3 and 4), rather it would be falsified. 
 In general terms, the observations reported here are at least 
compatible with the theory of the four columns of Higgs (2009) because 
the very high optimization that has been achieved on the columns (Tabs. 3 
and 4) would evidently corroborate this theory, as its name suggests. 
Nevertheless, entering specifically, the model of evolution of the genetic 
code analyzed here incorporates the biosynthetic constraints derived from 
the coevolution theory of the genetic code (Facchiano and Di Giulio, 
2018) which are absolutely neither foreseen nor compatible with the 
theory of the four columns. Indeed, this suggests that the organization of 
the genetic code occurred by allocating amino acids with similar 
physicochemical properties along the columns of the genetic code even if 
the driving force during this origin was not the minimization of 
translational error, but positive selection for the increased diversity and 
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functionality of proteins (Higgs, 2009). On the contrary, the coevolution 
theory would be able to explain the very high optimization observed on the 
columns (Tabs. 3 and 4) simply by assuming that while the code was 
originating along its rows (Di Giulio, 2008a, 2017b, 2019), its columns 
were allocated similar amino acids to reduce, for example, the effects of 
translation errors (Wong, 1980; Di Giulio, 2017b, 2018a), i.e. by 
incorporating an important selective pressure envisaged by the 
physicochemical postulates (Woese, 1965, 1967). That is to say, the 
coevolution theory would be highly compatible with the very high 
observed column optimization (Tabs. 3 and 4; Facchiano and Di Giulio, 
2018). This would not be true for the theory of the four columns which (i) 
would not be able to explain an aspect incorporated in the model used 
here, namely the high statistical significance of the distribution of the 
biosynthetic pathways on the lines of the genetic code (Taylor and Coates, 
1989; Di Giulio, 2008a, 2017b, 2018b; Di Giulio and Amato, 2009) simply 
because this theory would suggest nothing regarding the biosynthetic 
pathways of amino acids (Higgs, 2009), even if (ii) it would explain the 
very high column optimization (Tabs. 3 and 4) but not through a lowering 
of the translation noise and ambiguity present in the primitive protocell but 
through a positive selection to increase the diversity and functionality of 
proteins, as claimed by Higgs (2009). To us, however, it seems no less 
reasonable that if the aim had been to promote the diversity and 
functionality of the proteins of the evolving genetic code (Higgs, 2009) - 
i.e. ultimately the structure of proteins - then this would have been more 
easily achieved by lowering the translational noise and ambiguity present 
in the primitive protocell. Furthermore, it is likely that this very high 
optimization reflects a high rate of adaptive evolution which might in 
actual fact have been highest among amino acids that are more similar 
(Bergman and Eyre-Walker, 2019). All this would, however, have allowed 
a better maintenance of the protein structure through the generations, that 
is to say, a better preservation of the enzymatic catalysis over time, and 
would have favored its evolution. In conclusion, the four-column theory 
could have substantially correct aspects but would only take care of the 
aspect related to the selective pressure that would have triggered the origin 
of the genetic code, not being able, in our opinion, to actually explain the 
fundamental mechanism through which amino acids were allocated in the 
genetic code which surely depended on their biosynthetic pathways given 
the presence of the molecular fossils of these pathways (Wong, 1976, 
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1988; Wachtershauser, 1988; Danchin, 1989; de Duve, 1991; Edwards, 
1996; Di Giulio, 1992, 1997b, 2002, 2008a). 
 
The β-sheets and β-strands of proteins, the biosynthetic relationships 
between amino acids and the origin of the organization of the genetic code 
 

One of the main predictions of the theory of coevolution is that some 
of the fundamental themes of the structure of proteins are present in the 
organization of the genetic code because the main selective pressure 
tending to organize the code should have been, in the last analysis, the 
very structure of proteins (Di Giulio, 1996). In this regard, Orgel (1977) 
discussed the importance of β-turns stabilized by β-sheets as plausible 
sites of the early enzymatic activity (see also, Kun et al., 2008). Brack and 
Orgel (1975) suggested that the earliest form of genetic coding might have 
specified polypeptides with a strong tendency to form stable β−sheet 
structures. Moreover, Jurka and Smith (1987) suggested that β−turns 
became objects of selection in the prebiotic environment and affected the 
evolution of the genetic code and the biosynthetic pathways of amino acids 
(see also, Kun et al., 2008). It has also been suggested that β−sheets are 
related to amino acid pairs in a precursor-product biosynthetic relationship 
(Di Giulio, 1996), i.e. that the biosynthetic pathways of amino acids were 
also selected because they reflect β−sheets (Di Giulio, 1996). 
 An observation compatible with these suggestions was reported here. 
In fact, it has been observed that the conformational preference for parallel 
β-strands (Lifson and Sander, 1979) show very high optimization 
percentages (of 95.45% and 96.16% respectively in Tabs. 3 and 4). It is 
therefore possible to hypothesize that even the β−strands might have 
become the object of selection during the origin of the genetic code and 
might have conditioned the choice of biosynthetic relationships between 
amino acids. In other words, the biosynthetic relationships between the 
amino acids were also chosen on the basis of the similarity of their 
conformational preferences for β−strands, as corroborated by their high 
optimization percentages (Tabs. 3 and 4). This would be compatible with 
the observation that β−sheets seem to have conditioned the choice of 
amino acid pairs that are in biosynthetic precursor-product relationship (Di 
Giulio, 1996). Ultimately, the theory of coevolution would be corroborated 
because some of the fundamental themes of the structure of proteins, such 
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as β−sheets and β−strands, would be reflected in the organization of the 
genetic code. 
 
 
The coevolution theory of the genetic code origin, its evolutionary 
contingency and the almost global optimality of the code 
 

The coevolution theory of the genetic code is undoubtedly a theory 
of a nondeterministic nature in the sense that if the evolution of the genetic 
code started all over again, then we could in all probability observe a 
genetic code completely different from the current one, even assuming that 
its origin was once again influenced by the biosynthetic relationships 
between amino acids. This is because the biosynthetic relationships 
between amino acids would not be constrained at all or at least marginally 
and this would obviously depend on the fact that a given biosynthetic 
pathway would evolve along evolutionary paths that are also completely 
different from the chemical point of view of its intermediate and final 
products. Therefore, the coevolution theory would imply (or at least it 
would not exclude) that a new evolution ab initio of the genetic code might 
lead to the encoding of amino acids even completely different from those 
observed today (Wong, 1975; Di Giulio, 2008a). On the contrary, 
stereochemical theory would not admit such a prediction because, being a 
theory of a deterministic nature, it would impose that a new evolution of 
the genetic code could only re-determine the same type of genetic code 
(Crick, 1968), at least in one of its more radical interpretations. This being 
the case, it could be at least curious that the genetic code has reached 
almost an overall optimum, given that this very high optimization would 
seem more typical of a physicochemical process than of a biological 
process such as that of the origin of the genetic code envisaged by the 
coevolution theory (Wong, 1975; Di Giulio, 2008a). In other words, it 
seems surprising that - under the model predicted by the coevolution 
theory - it might nevertheless have been observed that the genetic code is 
close to an overall optimum (Tabs. 3 and 4); this theory, in actual fact, 
would seem to be linked to a high degree of evolutionary contingency 
which at first sight appears incompatible with this level of optimization. A 
possible explanation is that this level of optimization would have been 
achieved by natural selection by exploiting precisely the fundamental 
mechanism of structuring the genetic code contemplated by the 
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coevolution theory, in order to almost optimally allocate amino acids with 
similar physicochemical properties on the columns of the genetic code 
(Wong, 1980; Di Giulio, 2018a). That is to say, natural selection, working 
on the structuring of a genetic code that was evolving through a general 
plan of evolutionary contingency (Blount, 2016) imposed by the 
biosynthetic relationships between amino acids (Wong, 1975; Di Giulio, 
2008a), would have managed, despite this, to bring the code towards this 
almost global optimality (Tabs. 3 and 4) under the very strong selective 
pressure aimed at perpetuating the enzymatic catalysis through the 
preservation of the protein structure. In other words, two elements would 
have played a key role in the origin of the organization of the genetic code: 
one linked to the contingency of the biosynthetic relationships between 
amino acids and the other represented by the need to optimize those 
properties (physicochemical or biological) truly decisive for the 
perpetuation of enzymatic catalysis and for its evolutionary improvement. 
In summary, the evolutionary contingency linked to the way of operating 
typical of the coevolution theory might have led to a genetic code coding 
for amino acids even completely different from those we are used to 
(Stegmann, 2004), but, nevertheless, the level of optimization of the table 
of this new code could inevitably have been very close to what we have 
observed here. 
 
An important implication: error minimization is a property of the genetic 
code that emerged as a result of natural selection and is not instead a 
neutral property, that is, originated as a by-product of another mechanism 
 
 The observations presented here (Tabs. 1, 2, 3 and 4) have a direct 
relevance to understand whether the so-called error minimization 
possessed by the genetic code is a property that emerged as a result of 
natural selection (Di Giulio, 2000b, 2018a; Stoltzfus and Yampolsky , 
2007) or if on the contrary it has not been selected but is an emergent 
property, i.e. neutrally originated, as a consequence of other mechanisms 
that were structuring the genetic code (Massey, 2008, 2016, 2018, 2019; 
Koonin, 2017). Given that a model has been investigated here that 
combines two factors believed to be responsible for the origin of the 
genetic code - that is to say, the biosynthetic relationships between amino 
acids and their physicochemical properties (Di Giulio, 2013) - we are in a 
position to respond to this question at least under these conditions. Indeed, 
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the mechanism on which the coevolution theory is based (Wong, 1975; 
Wachtershauser, 1988; Danchin, 1989; de Duve, 1991; Edwards, 1996; Di 
Giulio, 1997b, 2002, 2004, 2008a) could actually have been the 
mechanism that was structuring the genetic code (Di Giulio, 2018a) and 
therefore - in accordance with the neutral hypothesis (Massey, 2008, 2016, 
2018, 2019) - might have given rise to the minimization of the error as its 
by-product, without direct action of natural selection (Massey, 2008, 
2016). It would seem self-evident that the levels of optimization reached 
by the genetic code with the relative probabilities (Tabs. 3 and 4) might 
not be compatible with a neutral origin because, for example, it would be 
unlikely that a neutral mechanism was able to generate optimization 
percentages close to 100% (Tabs. 3 and 4). In other words, it appears 
statistically very unlikely that a neutral mechanism might have been 
responsible for this very high optimization (Tabs. 3 and 4) because if the 
near-optimality of the genetic code had been a by-product of another 
mechanism, then this would have probably had to produce much lower 
optimization percentages and far from those reported in Tabs. 3 and 4, 
precisely because they were not directly selected. In particular, it is easy to 
prove, whatever the amino acid property considered, that the average value 
of the optimization percentages of the 24,883,200 codes subject to 
biosynthetic constraints is zero (results not shown). Then, under the 
neutral hypothesis, we should have observed an optimization percentage of 
the genetic code not significantly far from that expected, that is, from zero. 
In other words, the biosynthetic pathways structuring, by hypothesis, the 
genetic code might not have determined - as an emergent property - an 
optimization percentage significantly different from the null average value. 
Given that, on the other hand, the percentage of optimization found, for 
example, for the relative partition energies derived by the Bethe 
approximation is of 95.93% (P=1.10x10-4) (Tab. 4), the hypothesis that the 
near-optimality of the genetic code arose entirely neutrally, i.e. without 
any action of natural selection, can be rejected. Thus, at least with 
reference to the model analyzed here, the neutralist hypothesis is unable to 
explain the observed high level of the optimization percentage, which is 
instead expected under the selectionist hypothesis (Di Giulio, 2018a). 
 Finally, with reference to this same property, the comparison 
between row and column optimizations is extremely instructive. Indeed, if 
we restrict the analysis to just the rows (i.e. if we consider the IR index) - 
on which the biosynthetic relationships between amino acids are mostly 
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distributed (Di Giulio, 2008a, 2016b, 2017a, 2018b) - we find an 
optimization of 31.50% (P = 0.074) (Tab. 4). Such a value of the 
optimization percentage might be considered congruous to that expected, 
under the neutralist hypothesis, if we consider that the biosynthetic 
pathways connecting the amino acids are structuring the genetic code as 
maintained by the coevolution theory. However, given that on the columns 
of the genetic code we observed an optimization percentage of 97.77% (P= 
2.0x10-5) (Tab. 4), we must conclude that there was the intervention of 
another force, namely natural selection, precisely because the distribution 
of biosynthetic relationships between amino acids is not very significant 
on the columns (Di Giulio, 2008a, 2016b, 2017a, 2018b). More generally, 
the fact that optimization is mainly linked to the columns of the genetic 
code (Tabs. 1, 2, 3, and 4) would seem incompatible with a neutral 
process, because if this had really been operational then it would not have 
been able to make a so marked distinction between the columns and rows 
of the genetic code as, for example, the one reported in Tabs. 3 and 4 (see 
also Di Giulio, 2016b, 2017a, 2018b). 
  In conclusion, the neutral hypothesis of the origin of error 
minimization (Massey, 2008, 2016, 2018, 2019; Koonin, 2017) should 
have been falsified under the hypothesis that the genetic code was 
structured using the mechanism envisaged by the coevolution theory. 
 Koonin (2017) also argues that error minimization, despite being a 
key property of the genetic code, "likely evolved as a by-product of code 
expansion rather than by direct selection for code robustness" because "the 
coevolution model, although producing some level of error minimization, 
was substantially inferior to the other scenarios "(Koonin, 2017). Koonin 
(2017) seems to intend that the coevolution theory is not satisfactory 
because in the simulation models of Massey (2008, 2016) it fails to 
provide levels of error minimization comparable to those of other 
scenarios used in these simulations. Now, the fact that the coevolution 
theory fails to provide certain levels of error minimization (Massey, 2008, 
2016; Di Giulio, 2018a) would not mean that this theory might be 
inconsistent - as Koonin (2017) would seem to understand - but that the 
neutral hypothesis of error minimization can instead be (Di Giulio, 2018a). 
Indeed, the results reported here would seem to prove just that, because 
such high optimization percentages and probabilities so far from random 
(Tabs. 3 and 4) - obtained under the model of coevolution theory - would 
be able to show how the genetic code is positioned - in the set of amino 
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acid permutation codes subject to biosynthetic constraints (Facchiano and 
Di Giulio, 2018) - in extreme optimization regions (Fig. 1) such that they 
cannot be reached through a simple emergent and therefore neutral 
process, but only through a mechanism guided by natural selection. 
 In conclusion, we must believe that the extraordinary property of 
error minimization possessed by the genetic code did not emerge as a 
consequence of a simple neutral process - as claimed by Massey (2008, 
2016, 2018, 2019) and Koonin (2017) - but is instead a clear manifestation 
of the strength of natural selection (Di Giulio, 2018a). 
 
 
Conclusions  
 

We believe that the results reported here (Tabs. 1, 2, 3 and 4) make 
the following conclusions very plausible: (i) that partition energy is really 
the amino acid property that can provide us with the key to understanding 
the origin of organization of the genetic code; (ii) that the polarity of the 
amino acids was not instead taken into account during this origin; (iii) that 
the allocations of amino acids within the blocks of synonymous codons of 
the respective biosynthetic families were such as to make the genetic code 
close to a global optimum; (iv) that the near-optimality of the genetic code 
has emerged, at least for the model analyzed here, by the action of natural 
selection; and (v) that the conformational preference for parallel β-strands, 
conditioning the choice of biosynthetic relationships between amino acids, 
played a not secondary role in the organization of the genetic code. 
Finally, we are convinced that all the observations reported here are highly 
compatible with the coevolution theory of the origin of the genetic code 
(Wong, 1975; Di Giulio, 2008a, 2016a, 2016b, 2017a, 2017b) which we 
therefore believe to be a highly corroborated theory (Wong, 2007; Di 
Giulio, 2009), and that, on the contrary, the physicochemical theories are 
not (Sonneborn, 1965; Woese, 1965, 1967; Lacey Jr. et al., 1992; Fitch 
and Upper, 1987; Higgs, 2009) if taken only in themselves. 
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Legends of Figures 
 
Figure 1 Histogram for the Moran’s I values obtained from all the 
24,883,200 possible permutations of the genetic code generated by amino 
acid restricted permutations subject to the biosynthetic constraints and 
referring to relative partition energies derived by the Bethe approximation 
(Miyazawa-Jernigan, 1999). The three vertical lines indicate the mean 
value (Imean = 0.00497), the maximum (Imax = 0.38190) and the value of 
Moran’s I associated with the genetic code (Icode = 0.36853). Therefore, the 
optimization percentage (see text) reached by the genetic code is 96.45% 
(see Tab. 3). Note that here the spatial weight matrix for the calculation of 
Moran's I is not row-standardized. 
 
Figure 2 Comparison between the natural genetic code (a) and the table of 
the code (b) that maximizes the Moran's I index of spatial autocorrelation 
in the restricted permutations set. The permutation of amino acids among 
synonymous codon blocks that changes (a) into (b) can be expressed as the 
product of three disjoint cycles: (Arg Gln) ◦ (Glu Pro) ◦ (Asp Thr Lys). In 
each block of synonymous codons, in addition to the coded amino acid, 
the corresponding value of the relative partition energies derived from the 
Bethe approximation (Miyazawa-Jernigan, 1999) is also reported.  
 
Legends of Tables 
 
Table 1 The 20 most significantly auto-correlated amino acid properties 
from the AAindex database (Kawashima and Kanehisa, 2000). Results of 
Moran’s I Monte Carlo tests. Each simulation generates a large number of 
permutations (over all synonymous codons blocks) of the values observed 
in the genetic code for a given amino acid property and recalculates 
Moran's I for each sample. The pseudo p-value of the test is reported, 
multiplied by the number of simulations +1, for each spatial weighting 
scheme. In other words, the numbers indicate how many permutation 
codes were found in the simulation that have the corresponding Moran’s I 
equal to or greater than the genetic code (also included in the count). The 
numbers enclosed in parentheses refer to the rank among the 50 analyzed 
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properties. All spatial weight matrices here are not row-standardized. The 
italic writing emphasizes that the property was added for comparison to 
the AAindex database. 
 
Table 2 The 20 most significantly auto-correlated amino acid properties 
from the AAindex database (Kawashima and Kanehisa, 2000). Results of 
Monte Carlo tests of Moran’s I computed using row-standardized spatial 
weight matrices. Each simulation generates a large number of 
permutations (over all synonymous codons blocks) of the values observed 
in the genetic code for a given amino acid property and recalculates 
Moran's I for each sample. The pseudo p-value of the test is reported, 
multiplied by the number of simulations +1, for each spatial weighting 
scheme. In other words, the numbers indicate how many permutation 
codes were found in the simulation that have the corresponding Moran’s I 
equal to or greater than the genetic code (also included in the count). The 
numbers enclosed in parentheses refer to the rank among the 50 analyzed 
properties. The italic writing emphasizes that the property was added for 
comparison to the AAindex database. 
 
Table 3 The 20 properties with the highest optimization percentages from 
the AAindex database (Kawashima and Kanehisa, 2000). Optimality of the 
standard genetic code in the coevolution theory framework. For each 
global index of spatial autocorrelation, two different optimality measures 
of the genetic code are reported in the restricted set of permutation codes 
subject to biosynthetic constraints. The first, Opt, represents the 
optimization percentage (see Materials and methods) and the second, Nsg, 
indicates the number of codes that have the relative index value strictly 
greater than that of the genetic code. The listed properties have the highest 
optimization percentages, in relation to index I, among all those of the 
database. All spatial weight matrices here are not row-standardized. The 
italic writing emphasizes that the property was added for comparison to 
the AAindex database. 
 
Table 4 The 20 properties with the highest optimization percentages from 
the AAindex database (Kawashima and Kanehisa, 2000). Optimality of the 
standard genetic code in the coevolution theory framework. For each 
global index of spatial autocorrelation, two different optimality measures 
of the genetic code are reported in the restricted set of permutation codes 
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subject to biosynthetic constraints. The first, Opt, represents the 
optimization percentage (see Materials and methods) and the second, Nsg, 
indicates the number of codes that have the relative index value strictly 
greater than that of the genetic code. The listed properties have the highest 
optimization percentages, in relation to index I, among all those of the 
database. All spatial weight matrices here are row-standardized. The italic 
writing emphasizes that the property was added for comparison to the 
AAindex database. 
 
 
 
References  

 

Ageno, M., 1981. Struttura e origine del codice genetico. Programmi di 
biofisica 2, Boringhieri. Chapter 8, pp. 38-64. 

Alff-Steinberger, C., 1969. The genetic code and error transmission. Proc 
Natl Acad Sci USA. 64, 584–591. 

Anselin, L., 1988. Spatial Econometrics: Methods and Models. Dordrecht 
Kluwer. 

Ardell, D.H., Sella, G., 2002. No accident: genetic codes freeze in error-
correcting patterns of the standard genetic code. Phil. Trans. R. Soc. Lond. 
B. 357, 1625–1642. 

Barbieri, M., 2015. Evolution of the Genetic Code: The Ribosome-
Oriented Model. Biological Theory 10, 301-310. 
 
Bergman, J., Eyre-Walker, A., 2019. Does adaptive protein evolution 
proceed by large or small steps at the amino acid level? Mol. Biol. Evol. 
36, 990-998. 
 
  Bivand, R., Wong, D.W.S., 2018. Comparing implementations of global 
and local indicators of spatial association. TEST 27, 716–748. 
 

.CC-BY-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted August 2, 2021. ; https://doi.org/10.1101/2021.08.01.454621doi: bioRxiv preprint 

https://doi.org/10.1101/2021.08.01.454621
http://creativecommons.org/licenses/by-nd/4.0/


 34

Błaz�ej, P., Wne�trzak, M., Mackiewicz, D., Mackiewicz, P., 2018. 
Optimization of the standard genetic code according to three codon 
positions using an evolutionary algorithm. PLoS One. 13:e0201715. 
 
Błaz�ej, P., Wnetrzak, M., Mackiewicz, D., Gagat, P., Mackiewicz, P., 
2019. Many alternative and theoretical genetic codes are more robust to 
amino acid replacements than the standard genetic code. J. Theor. Biol. 
464, 21-32. 
 
Błaz�ej, P., Wne�trzak, M., Mackiewicz, P., 2016. The role of crossover 
operator in evolutionary-based approach to the problem of genetic code 
optimization. Biosystems 150, 61-72. 
 
Blount ZD. 2016. A case study in evolutionary contingency. Stud Hist 
Philos Biol Biomed Sci. 58, 82-92. 
 
Brack, A., Orgel, L.E., 1975. β structures of alternating polypeptides and 
their possible prebiotic significance. Nature 256, 383-387. 
 
Butler, T., Goldenfeld, N., Mathew, D., Luthey-Schulten, Z., 2009. 
Extreme genetic code optimality from a molecular dynamics calculation of 
amino acid polar requirement. Physical Review E. 79(6):060901. 
 
Charif, D., Lobry, J.R., 2007. SeqinR 1.0-2: A Contributed Package to the 
R Project for Statistical Computing Devoted to Biological Sequences 
Retrieval and Analysis. In: Bastolla U., Porto M., Roman H.E., 
Vendruscolo M. (eds) Structural Approaches to Sequence Evolution. 
Biological and Medical Physics, Biomedical Engineering. Springer, 
Berlin, Heidelberg. 
 
Chiusano, M.L., Alvarez-Valin, F., Di Giulio, M., D'Onofrio, G., 
Ammirato, G., Colonna, G., Bernardi, G., 2000. Second codon positions of 
genes and the secondary structures of proteins. Relationships and 
implications for the origin of the genetic code. Gene 261, 63-69. 
 
Cliff, A.D., Ord, J.K., 1973. Spatial autocorrelation. Pion, London.  

Cliff, A.D., Ord, J.K., Haggett, P., Versey, G.R., 1981. Spatial diffusion: 
an historical geography of epidemics in an island community (Vol. 14). 

.CC-BY-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted August 2, 2021. ; https://doi.org/10.1101/2021.08.01.454621doi: bioRxiv preprint 

https://doi.org/10.1101/2021.08.01.454621
http://creativecommons.org/licenses/by-nd/4.0/


 35

CUP Archive. 

Crick, F.H.C., 1968. The origin of the genetic code. J. Mol. Biol. 38,367-
379. 

Danchin, A., 1989. Homeotopic transformation and the origin of 
translation. Prog. Biophys. Mol. Biol. 54, 81–86. 
 
de Duve, C., 1991. Blueprint for a Cell: The Nature and Origin of Life. 
Neil Patterson Publishers pp. 175–181. 
 
Dillon, L.S., 1973. The origins of the genetic code. Bot. Rev. 39, 301-345. 
 
Di Giulio, M., 1989a. The extension reached by the minimization of the 
polarity distances during the evolution of the genetic code. J. Mol. Evol. 
29, 288–293. 
 
Di Giulio, M., 1989b. Some aspects of the organization and evolution of 
the genetic code. J. Mol. Evol. 29,191–201. 
 
Di Giulio, M., 1991. On the relationships between the genetic code 
coevolution hypothesis and the physicochemical hypothesis. Z. 
Naturforsch. C. 46, 305-312. 
 
Di Giulio M. 1992. On the origin of the genetic code. Trends Ecol Evol. 
7:176-178. 
 
Di Giulio, M., 1994. On the origin of protein synthesis: a speculative 
model based on hairpin RNA structures. J. Theor. Biol. 171, 303–308. 
 
Di Giulio, M., 1995. The phylogeny of tRNAs seems to confirm the 
predictions of the coevolution theory of the origin of the genetic code. 
Orig. Life Evol. Biosph. 25, 549–564. 
 
Di Giulio, M., 1996. The β-sheets of proteins, the biosynthetic 
relationships between amino acids, and the origin of the genetic code. 
Orig. Life Evol. Biosph. 26, 589–609. 
 

.CC-BY-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted August 2, 2021. ; https://doi.org/10.1101/2021.08.01.454621doi: bioRxiv preprint 

https://doi.org/10.1101/2021.08.01.454621
http://creativecommons.org/licenses/by-nd/4.0/


 36

Di Giulio, M., 1997a. On the RNA World: evidence in Favor of an Early 
Ribonucleopeptide World. J. Mol. Evol. 45, 571–578. 
 
Di Giulio, M., 1997b. On the origin of the genetic code. J. Theor. Biol. 
187, 573–581.  
 
Di Giulio, M., 2000a. The late stage of genetic code structuring took place 
at a high temperature. Gene 261, 189–195. 
 
Di Giulio, M., 2000b. Genetic code origin and the strength of natural 
selection. J. Theor. Biol. 205, 659-661. 
 
Di Giulio, M., 2001a. The origin of the genetic code cannot be studied 
using measurements based on the PAM matrix because this matrix reflects 
the code itself, making any such analyses tautologous. J. Theor. Biol. 208, 
141-144. 
 
Di Giulio, M., 2001b. A blind empiricism against the coevolution theory 
of the genetic code. J. Mol. Evol. 53, 724-732. 
 
Di Giulio, M., 2002. Genetic code origin: are the pathways of type Glu-
tRNAGln->Gln-tRNAGln molecular fossils or not? J. Mol. Evol. 55, 616–
622.  
 
Di Giulio, M., 2003. The early phases of genetic code origin: conjectures 
on the evolution of coded catalysis. Orig. Life Evol. Biosph. 33, 479–489. 
 
Di Giulio, M., 2004. The coevolution theory of the origin of the genetic 
code. Physics Life Rev. 1, 128-137. 
 
Di Giulio, M., 2005a. The origin of the genetic code: theories and their 
relationships, a review. Biosystems 80, 175-184. 
 
Di Giulio, M., 2005b. A comparison of proteins from Pyrococcus furiosus 
and Pyrococcus abyssi: barophily in the physicochemical properties of 
amino acids and in the genetic code. Gene 346, 1-6. 
 

.CC-BY-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted August 2, 2021. ; https://doi.org/10.1101/2021.08.01.454621doi: bioRxiv preprint 

https://doi.org/10.1101/2021.08.01.454621
http://creativecommons.org/licenses/by-nd/4.0/


 37

Di Giulio, M., 2005c. The ocean abysses witnessed the origin of the 
genetic code. Gene 346, 7-12. 
 
Di Giulio, M., 2007. Why the genetic code originated. Implications for the 
origin of protein synthesis. The codes of life: the rules of macroevolution, 
pp. 59–67. 
 
Di Giulio, M., 2008a. An extension of the coevolution theory of the origin 
of the genetic code. Biol. Direct. 3:37. 
 
Di Giulio, M., 2008b. Why the genetic code originated. Implications for 
the origin of protein synthesis, The Codes of Life: The Rules of 
Macroevolution. Springer Dordrecht pp. 59–67. 
 
Di Giulio, M., 2009. A comparison among the models proposed to explain 
the origin of the tRNA molecule: a synthesis. J. Mol. Evol. 69, 1–9. 
 
Di Giulio, M., 2013. The origin of the genetic code: matter of metabolism 
or physicochemical determinism? J. Mol. Evol. 77, 131-133. 
 
Di Giulio, M., 2015. A model for the origin of the first mRNAs. J. Mol. 
Evol. 81, 10–17.  
 
Di Giulio, M., 2016a. An autotrophic origin for the coded amino acids is 
concordant with the coevolution theory of the genetic code. J. Mol. Evol. 
83, 93-96. 
 
Di Giulio, M., 2016b. The lack of foundation in the mechanism on which 
are based the physicochemical theories for the origin of the genetic code is 
counterposed to the credible and natural mechanism suggested by the 
coevolution theory. J. Theor. Biol. 399, 134-140. 
 
Di Giulio, M., 2017a. The aminoacyl-tRNA synthetases had only a 
marginal role in the origin of the organization of the genetic code: 
Evidence in favor of the coevolution theory. J. Theor. Biol. 432, 14-24. 
 

.CC-BY-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted August 2, 2021. ; https://doi.org/10.1101/2021.08.01.454621doi: bioRxiv preprint 

https://doi.org/10.1101/2021.08.01.454621
http://creativecommons.org/licenses/by-nd/4.0/


 38

Di Giulio, M., 2017b. Some pungent arguments against the 
physicochemical theories of the origin of the genetic code and 
corroborating the coevolution theory. J. Theor. Biol. 414, 1-4. 
 
Di Giulio, M., 2018a. A non-neutral origin for error minimization in the 
origin of the genetic code. J. Mol. Evol. 86, 593-597. 
 
Di Giulio, M., 2018b. A discriminative test among the different theories 
proposed to explain the origin of the genetic code: The coevolution theory 
finds additional support. Biosystems 169, 1-4. 
 
Di Giulio, M., 2019. The key role of the elongation factors in the origin of 
the organization of the genetic code. Biosystems 181, 20-26. 
 
 
Di Giulio, M., Amato, U., 2009. The close relationship between the 
biosynthetic families of amino acids and the organisation of the genetic 
code. Gene 435, 9–12. 
 
Di Giulio, M., Capobianco, M.R., Medugno, M., 1994. On the 
optimization of the physicochemcial distances between amino acids in the 
evolution of the genetic code. J. Theor. Biol. 186, 43–51. 
 
Di Giulio, M., Medugno, M., 1998. The historical factor: the biosynthetic 
relationships between amino acids and their physicochemical properties in 
the origin of the genetic code. J. Mol. Evol. 46, 615–621. 
 
Di Giulio, M., Medugno, M., 1999. Physicochemical optimization in the 
genetic code origin as the number of codified amino acids increases. J. 
Mol. Evol. 49, 1–10. 
 
Di Giulio, M., Medugno, M., 2001. The level and landscape of 
optimization in the origin of the genetic code. J Mol Evol. 52, 372–382. 
 
Dufton, M.J., 1997. Genetic code synonym quotas and amino acid 
complexity: cutting the cost of proteins? J. Theor. Biol. 187, 165–173. 
 

.CC-BY-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted August 2, 2021. ; https://doi.org/10.1101/2021.08.01.454621doi: bioRxiv preprint 

https://doi.org/10.1101/2021.08.01.454621
http://creativecommons.org/licenses/by-nd/4.0/


 39

Edwards, M.R., 1996. Metabolite channeling in the origin of life. J. Theor. 
Biol. 179, 313–322. 
 
Facchiano, A., Di Giulio, M., 2018. The genetic code is not an optimal 
code in a model taking into account both the biosynthetic relationships 
between amino acids and their physicochemical properties. J. Theor. Biol. 
459, 45-51. 
 
Fitch, W., Upper, K., 1987. The phylogeny of tRNA sequences provides 
evidence for ambiguity reduction in the origin of the genetic code. Cold 
Spring Harbor Symp. Quant. Biol. 52, 759–767. 
 
Freeland, S.J., Hurst, L.D., 1998. The genetic code is one in a million. J. 
Mol. Evol. 47, 238–248. 
 
Freeland, S.J., Knight, R.D., Landweber, L.F., Hurst, L.D., 2000. Early 
fixation of an optimal genetic code. Mol. Biol. Evol. 17, 511–518. 
 
Gilis, D., Massar, S., Cerf, N.J., Rooman, M., 2001. Optimality of the 
genetic code with respect to protein stability and amino-acid frequencies. 
Genome Biol. 2, 41–49. 
 
Guy, H.R., 1985. Amino acid side-chain partition energies and distribution 
of residues in soluble proteins. Biophys. J. 47, 61-70. 
 
Hasegawa, M., Miyata, T., 1980. On the antisymmetry of the amino 
acid code table. Orig. Life 10, 265–270. 
 
Higgs, P.G., 2009. A four-column theory for the origin of the genetic code: 
tracing the evolutionary pathways that gave rise to an optimized code. 
Biol. Direct. 4:16. 
 
Haig, D., Hurst, L.D., 1991. A quantitative measure of error minimization 
in the genetic code. J. Mol. Evol. 33, 412–417. 
 
Ikehara, K., Omori, Y., Arai, R., Hirose, A., 2002. A novel theory on the 
origin of the genetic code: a GNC-SNS hypothesis. J. Mol. Evol. 54, 530-
538. 

.CC-BY-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted August 2, 2021. ; https://doi.org/10.1101/2021.08.01.454621doi: bioRxiv preprint 

https://doi.org/10.1101/2021.08.01.454621
http://creativecommons.org/licenses/by-nd/4.0/


 40

 
Kawashima, S., Kanehisa, M., 2000. AAindex: amino acid index database. 
Nucleic Acids Res. 28:374. 
 
Kirson, M.W., 2017. Introductory Algebra for Physicists. Chapter 4: 
https://webhome.weizmann.ac.il/home/fnkirson/Alg13/4.Groups of 
permutations.pdf). 
 
Klipcan, L., Safro M., 2004. Amino acid biogenesis, evolution of the 
genetic code and aminoacyl-tRNA synthetases. J. Theor. Biol. 228, 389-
396. 
 
Koonin, E., 2017. Frozen accident pushing 50: stereochemistry, expansion, 
and chance in the evolution of the genetic code. Life 7(2):22.  

Koonin, E.V., Novozhilov, A.S., 2009. Origin and evolution of the genetic 
code: the universal enigma. IUBMB Life 61, 99-111. 
 
Koonin, E.V., Novozhilov, A.S., 2017. Origin and evolution of the 
universal genetic code. Annual Rev. Genet. 51, 45-62. 
 
Kyte, J., Doolittle, R.F., 1982. A simple method for displaying the 
hydropathic character of a protein. J. Mol. Biol. 157, 105-132. 
 
Kun, Á., Pongor, S., Jordán, F., Szathmáry, E., 2008. Catalytic propensity 
of amino acids and the origins of the genetic code and proteins. In The 
Codes of Life (pp. 39-58). Springer, Dordrecht. 
 
Kun, Á., Radványi, Á., 2018. The evolution of the genetic code: Impasses 
and challenges. Biosystems 164, 217-225. 
 
Jungck, J.R., 1978. The genetic code as a periodic table. J. Mol. 
Evol. 11, 211-224. 
 
Jurka, J., Smith, T.F., 1987. β-Turn-driven early evolution: The genetic 
code and biosynthesis pathways. J. Mol. Evol. 25, 15-19. 
 

.CC-BY-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted August 2, 2021. ; https://doi.org/10.1101/2021.08.01.454621doi: bioRxiv preprint 

https://doi.org/10.1101/2021.08.01.454621
http://creativecommons.org/licenses/by-nd/4.0/


 41

Lacey, Jr. J.C., Wickramasinghe, N.S.M.D., Cook, G.W., 1992. 
Experimental studies on the origin of the genetic code and the process of 
protein synthesis: a review update. Orig. Life Evol. Biosph. 22, 243–275. 
 
Leelananda, S.P., Feng, X.P., Gniewek, P., Kloczkowski, A., Jernigan, R. 
L., “Statistical contact potentials in protein coarse-grained modeling: from 
pair to multi-body potentials”, in Multiscale Approaches to Protein 
Modeling, Springer: Berlin 2011, pp. 127-157. 
 
Massey, S.E., 2008. A neutral origin for error minimization in the genetic 
code. J. Mol. Evol. 67, 510-516. 
 
Massey, S.E., 2016. The neutral emergence of error minimized genetic 
codes superior to the standard genetic code. J. Theor. Biol. 
408, 237–242. 
 
Massey, S.E., 2018. How to ‘find’an error minimized genetic code: neutral 
emergence as an alternative to direct Darwinian selection for evolutionary 
optimization. Natural Computing. 1-10. 
 
Massey, S.E., 2019. Genetic code error minimization as a non-adaptive but 
beneficial trait. J. Mol. Evol. 87, 4-6. 
 
Mathew, D.C., Luthey-Schulten, Z., 2008. On the physical basis of the 
amino acid polar requirement. J. Mol. Evol. 66, 519–528. 
 
Miyazawa, S., Jernigan, R.L., 1985. Estimation of effective interresidue 
contact energies from protein crystal structures—quasi-chemical 
approximation. Macromolecules. 18, 534–552. 

Miyazawa. S., Jernigan, R.L., 1996. Residue-residue potentials with a 
favorable contact pair term and an unfavorable high packing density term, 
for simulation and threading. J. Mol. Biol. 256, 623–644. 

Miyazawa, S., Jernigan, R.L., 1999. Self‐consistent estimation of 
inter‐residue protein contact energies based on an equilibrium mixture 
approximation of residues. Proteins: Structure, Function, Genetics 34, 49-
68. 
 

.CC-BY-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted August 2, 2021. ; https://doi.org/10.1101/2021.08.01.454621doi: bioRxiv preprint 

https://doi.org/10.1101/2021.08.01.454621
http://creativecommons.org/licenses/by-nd/4.0/


 42

Moran, P.A.P., 1948. The interpretation of statistical maps. J. Royal 
Statistical Soc. Series B. 37, 243-251. 
 
Moran, P.A.P., 1950. Notes on Continuous Stochastic Phenomena. 
Biometrika 37, 17–23.    
 
Nelsestuen, G.L., 1978. Amino acid-directed nucleic acid synthesis. A 
possible mechanism in the origin of life. J. Mol. Evol. 11, 109–120. 
 
Orgel, L.E., 1977. in: Bradbury, E.M., Javaherian, K., (eds.), 'The 
Organization and Expression of the Eukaryotic Genome: Proceedings of 
the International Symposium', 3-6 May 1976, Teheran. Academic Press, 
London, pp. 499-504. 
 
R Core Team., 2020. R: A language and environment for statistical 
computing. R Foundation for Statistical Computing, Vienna, Austria. 
 
Shimizu, M., 1982. Molecular basis for the genetic code. J. Mol. Evol. 18, 
297-303. 
 
Sonneborn, T.M., 1965. Degeneracy of the genetic code: extent, nature, 
and genetic implications. In: Bryson, V., Vogel, H.J. (Eds.), Evolving 
Genes and Proteins. Academic Press, New York, NY, USA. 
 
Sjostrom, M., Wold, S.A., 1985. A multivariate study of the relationship 
between the genetic code and the physico-chemical properties of amino 
acids. J. Mol. Evol. 22, 272–277. 
 
Stegmann, U.E., 2004. The arbitrariness of the genetic code. Biology 
Philos. 19, 205-222. 
 
Stoltzfus, A., Yampolsky, L.Y., 2007. Amino acid exchangeability and the 
adaptive code hypothesis. J. Mol. Evol. 65, 456-462. 
 
Szathmáry, E., 1993. Coding coenzyme handles: a hypothesis for the 
origin of the genetic code. Proc. Natl. Acad. Sci. USA 90, 9916-9920. 
 

.CC-BY-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted August 2, 2021. ; https://doi.org/10.1101/2021.08.01.454621doi: bioRxiv preprint 

https://doi.org/10.1101/2021.08.01.454621
http://creativecommons.org/licenses/by-nd/4.0/


 43

Taylor, F.J.R., Coates, D., 1989. The code within the codons. BioSystems 
22, 177–187.  
 
Vetsigian, K., Woese, C.R., Goldenfeld, N., 2006. Collective evolution 
and the genetic code. Proc. Nat. Acad. Sci. USA 103, 10696-10701. 
 
Wachtershauser, G., 1988. Before enzymes and templates: theory of 
surface metabolism. Microbiol. Rev. 52, 452–484. 
 
Warnes, G.R., Bolker, B., Lumley, T., 2020. gtools: Various R 
Programming Tools. R package version 3.8.2. 
 
Weber, A.L., Lacey, J.C. Jr., 1978. Genetic code correlations: amino acids 
and their anticodon nucleotides. J. Mol. Evol. 11, 199-210. 
 
Wnętrzak, M., Błażej, P., Mackiewicz, D., Mackiewicz, P., 2018. The 
optimality of the standard genetic code assessed by an eight-objective 
evolutionary algorithm. BMC Evol. Biol. 18(1):192. 
 
Woese, C.R., 1965. On the origin of the genetic code. Proc. Natl. Acad. 
Sci. USA 54, 1546–1552. 
 
Woese, C.R., 1967. The Genetic Code. Harper & Row, New York. 
 
Woese, C.R., Dugre, D.H., Saxinger, W.C., Dugre, S.A., 1966. The 
molecular basis for the genetic code. Proc. Natl. Acad. Sci. USA 55, 966–
974. 
 
Wolfenden, R.V., Cullis, P.M., Southgate, C.C.F., 1979. Water, protein 
folding, and the genetic code. Science 206, 575–577. 
 
Wong, J.T., 1975. A co-evolution theory of the genetic code. Proc. Natl. 
Acad. Sci. USA 72, 1909–1912. 
 
Wong, J.T., 1976. The evolution of a universal genetic code. Proc. Natl. 
Acad. Sci. USA 73, 2336–2340. 
 

.CC-BY-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted August 2, 2021. ; https://doi.org/10.1101/2021.08.01.454621doi: bioRxiv preprint 

https://doi.org/10.1101/2021.08.01.454621
http://creativecommons.org/licenses/by-nd/4.0/


 44

Wong, J.T., 1988. Evolution of the genetic code. Microbiol. Sci. 5, 174-
182. 
 
Wong, J.T., 1980. Role of minimization of chemical distances between 
amino acids in the evolution of the genetic code. Proc. Natl. Acad. Sci. 
USA 77, 1083–1086.  
 
Wong, J.T., 1991. Origin of Genetically Encoded Protein Synthesis: a 
Model Based On Selection for RNA Peptidation. Orig. Life Evol. Biosph. 
21, 165–176. 
 
Wong, J.T., 2005. Coevolution theory of the genetic code at age 
thirty. BioEssays. 27, 416-425. 
 
Wong, J.T., 2007. Question 6: coevolution theory of the genetic code: a 
proven theory. Origins Life Evol. Biosph. 37, 403-408. 
 
Wong, J.T., Xue, H., 2002. Self-perfecting evolution of heteropolymer 
building blocks and sequences as the basis of life In: Fundamentals of 
Life, Editions Scientifiques et Medicales Elsevier SAS. 
 
Yarus, M., 2017. The Genetic Code and RNA-Amino Acid Affinities. Life 
(Basel) 7(2). 

 
 
 
 

.CC-BY-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted August 2, 2021. ; https://doi.org/10.1101/2021.08.01.454621doi: bioRxiv preprint 

https://doi.org/10.1101/2021.08.01.454621
http://creativecommons.org/licenses/by-nd/4.0/


.CC-BY-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted August 2, 2021. ; https://doi.org/10.1101/2021.08.01.454621doi: bioRxiv preprint 

https://doi.org/10.1101/2021.08.01.454621
http://creativecommons.org/licenses/by-nd/4.0/


.CC-BY-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted August 2, 2021. ; https://doi.org/10.1101/2021.08.01.454621doi: bioRxiv preprint 

https://doi.org/10.1101/2021.08.01.454621
http://creativecommons.org/licenses/by-nd/4.0/


Number	of	simulations	+	1	 1x107	 1x107	 1x107	 1x105	 1x105	
Global	spatial	autocorrelation	indices	(related	to	different	spatial	weighting	schemes)	 I	 IC	 I1	 I2	 IR	

Effective	mean	energy	(Miyazawa-Jernigan,	1996)	 137	 (1)	 185	 (3)	 4670	 (6)	 92101	 (37)	 14134	 (19)	
Relative	partition	energies	derived	by	the	Bethe	approximation	(Miyazawa-Jernigan,	1999)	 147	 (2)	 151	 (1)	 4463	 (4)	 92486	 (39)	 14368	 (20)	
Optimized	relative	partition	energies	-	method	A	(Miyazawa-Jernigan,	1999)	 156	 (3)	 153	 (2)	 4474,5	 (5)	 92372	 (38)	 14716	 (21)	
Effective	partition	energy	(Miyazawa-Jernigan,	1985)	 949	 (4)	 1370	 (16)	 21129	 (23)	 82927	 (23)	 12022	 (15)	
Modified	Kyte-Doolittle	hydrophobicity	scale	(Juretic	et	al.,	1998)	 983	 (5)	 948	 (6)	 7133	 (11)	 84312	 (24)	 19833	 (30)	
Hydropathy	index	(Kyte-Doolittle,	1982)	 1019	 (6)	 824	 (5)	 6923	 (10)	 87558	 (29)	 20554	 (32)	
PRILS	index	(Cornette	et	al.,	1987)	 1263	 (7)	 679	 (4)	 4304	 (3)	 93331	 (41)	 26575	 (37)	
AA	composition	of	MEM	of	multi-spanning	proteins	(Nakashima-Nishikawa,	1992)	 1523	 (8)	 1235	 (13)	 4771	 (7)	 94956	 (44)	 39592	 (47)	
PRIFT	index	(Cornette	et	al.,	1987)	 1869	 (9)	 1020	 (8)	 5302	 (8)	 90328	 (30)	 27549	 (40)	
Accessibility	reduction	ratio	(Ponnuswamy	et	al.,	1980)	 2213	 (10)	 1219	 (12)	 3528	 (1)	 96855	 (45)	 44346	 (48)	
Updated	Polar	Requirements	(Mathew	and	Luthey-Schulten,	2008)	 2373	 (11)	 8324	 (40)	 191337,5	 (47)	 51338	 (4)	 3185	 (2)	
Partition	coefficient	(Pliska	et	al.,	1981)	 2376	 (12)	 1272	 (15)	 19968	 (21)	 92864	 (40)	 17019	 (26)	
TOTLS	index	(Cornette	et	al.,	1987)	 2404	 (13)	 1205	 (11)	 9945	 (16)	 90667	 (31)	 22702	 (35)	
Conformational	preference	for	parallel	beta-strands	(Lifson-Sander,	1979)	 2417	 (14)	 2119	 (19)	 7638	 (12)	 91151	 (33)	 38760	 (46)	
Optimal	matching	hydrophobicity	(Sweet-Eisenberg,	1983)	 2624	 (15)	 7134	 (38)	 71930	 (38)	 58283	 (7)	 7149	 (6)	
TOTFT	index	(Cornette	et	al.,	1987)	 2668	 (16)	 1083	 (9)	 9127	 (15)	 92081	 (36)	 24238	 (36)	
SWEIG	index	(Cornette	et	al.,	1987)	 2678	 (17)	 7984	 (39)	 75444	 (39)	 56881	 (5)	 7342	 (7)	
Proportion	of	residues	95%	buried	(Chothia,	1976)	 3130	 (18)	 6725	 (37)	 37200	 (30)	 59233	 (9)	 12677	 (16)	
HPLC	parameter	(Parker	et	al.,	1986)	 3543	 (19)	 3466	 (25)	 29880	 (24)	 82917	 (22)	 15128	 (23)	
Interactivity	scale	obtained	from	the	contact	matrix	(Bastolla	et	al.,	2005)	 3970	 (20)	 1244	 (14)	 8857	 (14)	 97081	 (46)	 30348	 (42)	
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Number	of	simulations	+	1	 1x107	 1x107	 1x107	 1x105	 1x105	
Global	spatial	autocorrelation	indices	(related	to	different	spatial	weighting	schemes)	 I	 IC	 I1	 I2	 IR	

Optimized	relative	partition	energies	-	method	A	(Miyazawa-Jernigan,	1999)	 31	 (1)	 257	 (3)	 2182	 (8)	 75545	 (27)	 8011	 (23)	
Effective	mean	energy	(Miyazawa-Jernigan,	1996)	 41	 (2)	 269	 (4)	 2290	 (9)	 75559	 (28)	 7710	 (21)	
Relative	partition	energies	derived	by	the	Bethe	approximation	(Miyazawa-Jernigan,	1999)	 50	 (3)	 208	 (1)	 2122	 (7)	 75806	 (29)	 7735	 (22)	
Updated	Polar	Requirements	(Mathew	and	Luthey-Schulten,	2008)	 62	 (4)	 692	 (11)	 46711	 (40)	 46363	 (9)	 1548	 (1)	
Modified	Kyte-Doolittle	hydrophobicity	scale	(Juretic	et	al.,	1998)	 166	 (5)	 255	 (2)	 747	 (2)	 84085	 (37)	 14045	 (35)	
Hydropathy	index	(Kyte-Doolittle,	1982)	 248	 (6)	 271	 (5)	 573	 (1)	 90582	 (42)	 16029	 (40)	
Effective	partition	energy	(Miyazawa-Jernigan,	1985)	 250	 (7)	 761	 (12)	 8505	 (22)	 78624	 (31)	 6971	 (18)	
Polarity	(Grantham,	1974)	 335	 (8)	 2299	 (24)	 47139	 (41)	 56949	 (13)	 2744	 (5)	
Average	side	chain	orientation	angle	(Meirovitch	et	al.,	1980)	 342	 (9)	 621	 (9)	 2773	 (11)	 73558	 (26)	 8065	 (24)	
Optimized	relative	partition	energies	-	method	D	(Miyazawa-Jernigan,	1999)	 432	 (10)	 3374	 (30)	 25148	 (30)	 50313	 (12)	 4078	 (10)	
PRILS	index	(Cornette	et	al.,	1987)	 563	 (11)	 559	 (8)	 1483	 (4)	 85795	 (39)	 17663	 (43)	
PRIFT	index	(Cornette	et	al.,	1987)	 576	 (12)	 689	 (10)	 1250	 (3)	 79303	 (32)	 17015	 (41)	
Polar	requirement	(Woese,	1973)	 689	 (13)	 3198	 (28)	 119226	 (46)	 57110	 (14)	 1918	 (3)	
Optimized	relative	partition	energies	-	method	B	(Miyazawa-Jernigan,	1999)	 797	 (14)	 2935	 (27)	 19468	 (26)	 57674	 (15)	 6145	 (16)	
Original	Polar	Requirements(Woese	et	al.,	1966)	 842	 (15)	 5542	 (39)	 170948	 (48)	 48914	 (11)	 1613	 (2)	
Optimal	matching	hydrophobicity	(Sweet-Eisenberg,	1983)	 1052	 (16)	 8888	 (44)	 59732	 (42)	 40601	 (7)	 3927	 (9)	
Proportion	of	residues	95%	buried	(Chothia,	1976)	 1116	 (17)	 2456	 (25)	 6185	 (17)	 70825	 (24)	 12322	 (32)	
Hydropathy	scale	based	on	self-information	values	in	the	two-state	model	(9%	accessibility)	(Naderi-
Manesh	et	al.,	2001)	 1161	 (18)	 7493	 (43)	 26857	 (32)	 42870	 (8)	 4297	 (11)	

SWEIG	index	(Cornette	et	al.,	1987)	 1184	 (19)	 9743	 (45)	 65911	 (43)	 39250	 (6)	 3875	 (8)	
Direction	of	hydrophobic	moment	(Eisenberg-McLachlan,	1986)	 1197	 (20)	 302	 (6)	 3489	 (13)	 99227	 (50)	 15923	 (38)	
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Global	spatial	autocorrelation	indices			
(related	to	different	spatial	weighting	schemes)	 I	 IC	 I1	 I2	 IR	

Optimality	measures	 Opt	 Nsg	 Opt	 Nsg	 Opt	 Nsg	 Opt	 Nsg	 Opt	 Nsg	
Relative	partition	energies	derived	by	the	Bethe	approximation	(Miyazawa-
Jernigan,	1999)	 96,45	 4429	 97,74	 1055	 92,31	 10272	 -29,98	 23271528	 14,66	 4868524	

Effective	mean	energy	(Miyazawa-Jernigan,	1996)	 96,30	 4555	 97,65	 1122	 91,96	 10652	 -30,08	 23294944	 14,95	 4781120	
Optimized	relative	partition	energies	-	method	A	(Miyazawa-Jernigan,	1999)	 96,18	 4774	 97,61	 1165	 92,09	 10388	 -29,92	 23293216	 14,35	 4957528	
Effective	partition	energy	(Miyazawa-Jernigan,	1985)	 95,94	 12754	 97,10	 3459	 90,18	 26836	 -28,11	 22726704	 23,98	 2853940	
Conformational	preference	for	parallel	beta-strands	(Lifson-Sander,	1979)	 95,45	 13672	 85,47	 92526	 87,79	 103084	 -19,55	 17582976	 9,12	 9174808	
HPLC	parameter	(Parker	et	al.,	1986)	 92,71	 2324	 93,47	 2264	 83,33	 23060	 -21,40	 22354712	 15,76	 3944324	
Buriability	(Zhou-Zhou,	2004)	 92,26	 8586	 94,33	 4120	 83,93	 29604	 -24,57	 21376424	 18,70	 4368108	
van	der	Waals	parameter	R0	(Levitt,	1976)	 92,22	 9216	 73,81	 95040	 72,50	 319968	 13,97	 6402240	 37,83	 2063232	
Interactivity	scale	obtained	by	maximizing	the	mean	of	correlation	coefficient	
over	single-domain	globular	proteins	(Bastolla	et	al.,	2005)	 92,13	 6032	 92,77	 5307	 87,72	 17752	 -23,25	 21302856	 9,12	 7510632	

Accessibility	reduction	ratio	(Ponnuswamy	et	al.,	1980)	 91,78	 24944	 91,21	 37682	 92,22	 15772	 -21,88	 22819376	 2,71	 9420104	
Hydropathy	index	(Kyte-Doolittle,	1982)	 89,27	 23260	 91,73	 10644	 89,39	 13840	 -29,60	 23595216	 8,89	 7378624	
PRILS	index	(Cornette	et	al.,	1987)	 89,02	 38149	 91,39	 21751	 86,97	 39712	 -22,52	 22270760	 4,83	 8198012	
Average	surrounding	hydrophobicity	(Manavalan-Ponnuswamy,	1978)	 88,99	 45243	 92,64	 13996	 90,10	 15708	 -32,66	 24308824	 -2,12	 11796676	
Partition	coefficient	(Pliska	et	al.,	1981)	 88,72	 15609	 91,31	 5959	 80,70	 64864	 -21,55	 22859192	 17,93	 3083900	
The	stability	scale	from	the	knowledge-based	atom-atom	potential	(Zhou-Zhou,	
2004)	 88,12	 14757	 86,38	 7958	 80,00	 47212	 -13,90	 16850368	 25,19	 4463524	

TOTLS	index	(Cornette	et	al.,	1987)	 87,55	 45031	 90,38	 22059	 86,10	 44840	 -21,99	 22607776	 8,52	 6911906	
Modified	Kyte-Doolittle	hydrophobicity	scale	(Juretic	et	al.,	1998)	 87,49	 30532	 89,82	 18578	 91,35	 27872	 -27,69	 22955832	 8,04	 7978956	
PRIFT	index	(Cornette	et	al.,	1987)	 87,33	 24215	 93,47	 7791	 91,17	 5424	 -24,24	 23311728	 -0,16	 10847386	
Average	gain	ratio	in	surrounding	hydrophobicity	(Ponnuswamy	et	al.,	1980)	 87,27	 38770	 85,30	 44262	 76,86	 119120	 -19,54	 20484840	 17,42	 3914864	
AA	composition	of	MEM	of	multi-spanning	proteins	(Nakashima-Nishikawa,	
1992)	 87,08	 60266	 89,87	 56417	 91,92	 91088	 -27,23	 20384792	 1,39	 11341172	
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Global	spatial	autocorrelation	indices	
(related	to	different	spatial	row-standardized	weighting	schemes)		 I	 IC	 I1	 I2	 IR	

Optimality	measures	 Opt	 Nsg	 Opt	 Nsg	 Opt	 Nsg	 Opt	 Nsg	 Opt	 Nsg	
Conformational	preference	for	parallel	beta-strands	(Lifson-Sander,	1979)	 96,16	 12466	 88,92	 84706	 86,67	 183044	 -22,39	 19203776	 18,46	 5551144	
Relative	partition	energies	derived	by	the	Bethe	approximation	(Miyazawa-Jernigan,	
1999)	 95,93	 2740	 97,77	 505	 93,18	 6156	 -23,03	 21162128	 31,50	 1844060	

Effective	mean	energy	(Miyazawa-Jernigan,	1996)	 95,79	 2727	 97,71	 523	 92,97	 6448	 -23,25	 21183384	 32,01	 1804060	
Optimized	relative	partition	energies	-	method	A	(Miyazawa-Jernigan,	1999)	 95,78	 2800	 97,66	 549	 92,98	 6288	 -23,07	 21173416	 31,07	 1886024	
Buriability	(Zhou-Zhou,	2004)	 92,64	 3232	 94,11	 2488	 73,09	 89144	 -11,80	 16787312	 45,72	 868924	
Interactivity	scale	obtained	by	maximizing	the	mean	of	correlation	coefficient	over	
single-domain	globular	proteins	(Bastolla	et	al.,	2005)	 92,53	 4820	 92,78	 4106	 74,73	 70832	 -9,42	 16214376	 31,19	 1824056	

Effective	partition	energy	(Miyazawa-Jernigan,	1985)	 92,48	 9132	 95,71	 2831	 89,50	 22952	 -28,33	 21768312	 43,01	 932600	
HPLC	parameter	(Parker	et	al.,	1986)	 91,89	 5058	 94,83	 798	 84,01	 18512	 -16,94	 19212280	 26,77	 2165220	
PRILS	index	(Cornette	et	al.,	1987)	 91,39	 7900	 92,22	 11530	 89,72	 9364	 -22,26	 21169208	 14,94	 4783316	
Polarity	(Grantham,	1974)	 90,21	 4180	 92,31	 2366	 77,72	 60768	 -26,79	 22064000	 36,37	 1341884	
Hydropathy	index	(Kyte-Doolittle,	1982)	 89,92	 22172	 91,76	 14196	 89,28	 17396	 -32,05	 24202720	 14,34	 5565168	
Surface	composition	of	amino	acids	in	extracellular	proteins	of	mesophiles	(percent)	
(Fukuchi-Nishikawa,	2001)	 89,82	 4330	 92,16	 11515	 51,94	 474528	 1,43	 11799184	 49,46	 464724	

Optimized	relative	partition	energies	-	method	B	(Miyazawa-Jernigan,	1999)	 89,43	 4451	 90,49	 3520	 80,20	 25872	 -20,11	 20469000	 27,67	 2051100	
Optimized	relative	partition	energies	-	method	C	(Miyazawa-Jernigan,	1999)	 89,35	 3433	 92,22	 1508	 79,69	 22840	 -20,32	 20088272	 32,39	 1693868	
Modified	Kyte-Doolittle	hydrophobicity	scale	(Juretic	et	al.,	1998)	 88,76	 27850	 88,84	 24128	 86,83	 32888	 -28,13	 23122312	 15,26	 5435068	
van	der	Waals	parameter	R0	(Levitt,	1976)	 88,48	 28800	 68,58	 142848	 62,51	 408672	 16,05	 6689088	 44,75	 1356480	
Average	surrounding	hydrophobicity	(Manavalan-Ponnuswamy,	1978)	 88,47	 56666	 91,11	 17802	 86,55	 84188	 -32,24	 24044296	 9,14	 7332424	
Interactivity	scale	obtained	from	the	contact	matrix	(Bastolla	et	al.,	2005)	 88,40	 18155	 94,44	 6311	 85,05	 60686	 -20,87	 21132904	 9,42	 6744660	
Updated	Polar	Requirements	(Mathew	and	Luthey-Schulten,	2008)	 88,38	 1054	 91,82	 2484	 69,64	 157632	 -5,68	 14479536	 70,39	 68192	
AA	composition	of	MEM	of	multi-spanning	proteins	(Nakashima-Nishikawa,	1992)	 88,25	 37920	 92,24	 26450	 91,23	 37684	 -30,48	 22652968	 5,03	 9304112	
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