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SUMMARY   
 
Predicting how stem cells become patterned and differentiated into target tissues is key for 

optimising human tissue design. Here, we established DEEP-MAP - for deep learning-

enhanced morphological profiling - an approach that integrates single-cell, multi-day, multi-

colour microscopy phenomics with deep learning and allows to robustly map and predict cell 

fate dynamics in real-time without a need for cell state-specific reporters. Using human 

pluripotent stem cells (hPSCs) engineered to co-express the histone H2B and two-colour 

FUCCI cell cycle reporters, we used DEEP-MAP to capture hundreds of morphological- and 

proliferation-associated features for hundreds of thousands of cells and used this information 

to map and predict spatiotemporally single-cell fate dynamics across germ layer cell fates. We 

show that DEEP-MAP predicts fate changes as early or earlier than transcription factor-based 

fate reporters, reveals the timing and existence of intermediate cell fates invisible to fixed-cell 

technologies, and identifies proliferative properties predictive of cell fate transitions. DEEP-

MAP provides a versatile, universal strategy to map tissue evolution and organisation across 

many developmental and tissue engineering contexts.   
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INTRODUCTION  
How to define cellular states and state transitions remains a fundamental question in stem cell 

biology. In recent years, approaches that can quantify properties of stem cells and their 

differentiated derivatives have become broadly recognised for their pivotal roles in predictable 

and robust synthetic tissue design (Brassard and Lutolf, 2019; Del Sol et al., 2017; Prochazka 

et al., 2017). Although RNAseq- and DNA barcoding-based single-cell technologies are used 

extensively for cell state mapping and lineage analysis (Cahan et al., 2014; Kinney et al., 

2019; Rackham et al., 2016; VanHorn and Morris, 2021), these have critical limitations: cells 

are killed and their characteristics are measured only at that point in time. Hence, historical 

cell state information that might be key to fate evolution – e.g. transient cell states that 

disappear before the endpoint observation, dying cells at the time of observation, cell tissue 

context and density prior fate acquisition – is lost. Furthermore, for single-cell technologies 

time is an implicit variable that can only be inferred mathematically. This is important, because 

the true dynamical and temporal variables (individual and collective/reciprocal cell 

movements, the actual duration and longevity of cell states, and how cell heterogeneity 

changes and co-evolves with fate) is lost as well (Villoutreix, 2021). 

 

In contrast, continuous live cell imaging provides a non-interventional interrogation of cell state 

dynamics, including historical information of cell states and cell state transitions, in real-time 

(Chessel and Carazo Salas, 2019). ‘Live’ tracking of cell states has so far relied on using 

fluorescently-tagged transcription factors to reveal cell fate/state (Etzrodt and Schroeder, 

2017; Filipczyk et al., 2015; Strebinger et al., 2019; Wolff et al., 2018), although newer 

strategies using indirect reporters of transcription factor status are emerging (Kim et al., 2021). 

Crucially, each differentiation or other experimental scenario requires the establishment of a 

tailor-made reporter. This limitation becomes prohibitive when aiming to study cell 

differentiation into multiple target fates, as the possible reporters that can be co-expressed 

and imaged ‘live’ simultaneously in cells are relatively few (Kim et al., 2021). Developing 

technologies to quantitatively monitor cell state dynamics in real-time and without the need for 

specialised cell state reporters would overcome these limitations and provide a powerful 

solution to study and predict cell state transitions. 

 

In the past 15 years, high-dimensional, image-based morphological profiling enhanced by 

machine learning has been used successfully by many groups including ours in a variety of 

model systems to systematically identify and characterise genes/gene-network states (Chong 

et al., 2015; Collinet et al., 2010; Fuchs et al., 2010; Graml et al., 2014; Neumann et al., 2010), 

to identify and enhance signalling networks (Bakal et al., 2007; Evans et al., 2013; Horn et al., 

2011), to characterise small molecule treatments (Bray et al., 2017; Bray et al., 2016) and to 
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infer context-dependent gene functions (Sailem et al., 2020). To date, however, machine 

learning-enhanced ‘live’ morphological profiling has not been used to identify and predict cell 

fate transitions in real-time.  

  

Here, we established DEEP-MAP, an approach that combines optimised multi-day, multi-

colour microscopy phenomics with deep neural networks, and allows to harness high-

dimensional morphological profiling information obtained from hundreds of thousands of ‘live’ 

cells, to map and predict cell fate dynamics in real-time. We applied DEEP-MAP to human 

pluripotent stem cells (hPSCs) co-expressing broadly used cell proliferation and cell cycle 

reporters and asked whether phenotypic profiling alongside proliferation information can be 

used to identify cell states and monitor multi-fate dynamics. We show that based only on 

morphological and proliferative features DEEP-MAP can reliably map and spatiotemporally 

predict, at a single-cell level, cells’ fate and fate dynamics during differentiation into the three 

basic germ layer fates, without a need for customised cell state reporters specific to the cell 

fates and lineages being monitored. We show that DEEP-MAP predicts fate changes with high 

temporal sensitivity - comparable to what is currently technically possible using fluorescently-

labelled transcription factor reporters. Moreover, we show that DEEP-MAP can reveal the 

timing of phenotypic transitions associated with cell fate conversions and the existence of cell 

fate intermediates, and be used to identify proliferative properties predictive of cell fate 

transitions.   
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RESULTS  

Establishing a multi-day, multi-colour microscopy phenomics pipeline for dynamical 
phenotyping of hPSCs in real-time and at single-cell resolution.     

To monitor hPSC morphology and proliferation dynamics at single-cell resolution, we 

generated a CRISPR knock-in three-colour hPSC line co-expressing a fluorescently-tagged 

histone H2B reporter, H2B-miRFP670 (Kim et al., 2021; Shcherbakova et al., 2016) (far red 

fluorescence emitting), and the two-colour FUCCI cell cycle reporter (Pauklin and Vallier, 

2013; Sakaue-Sawano et al., 2008) (red/green fluorescence emitting) (Fig. 1A) (see STAR 

Methods for detailed descriptions from here on). When considering choice of reporters, we 

took into account that (1) hPSCs form very compact colonies; therefore fluorescent nuclear 

reporters would give the best shot at unequivocal single-cell identification and morphological 

profiling (2) FUCCI and H2B are robust cell proliferation reporters that together enable 

quantitative monitoring of detailed aspects of cell proliferation, cell cycle progression, mitosis 

and cell death and (3) the H2B signal specifically never disappears from cells, allowing 

uninterrupted cell visualisation. We then set out to establish a multi-colour, time-lapse high-

content microscopy pipeline enabling us to image cells continuously over time, in a way that 

would be compatible with daily media change, high-temporal resolution imaging (to allow 

automated cell detection and tracking) and multi-day imaging, required to observe fate 

transitions occurring on a time scale of days as cells continue to proliferate normally (Fig. 1B).

   

 

Frequent and extended time-lapse imaging is highly phototoxic (Loeffler and Schroeder, 2019; 

Piltti et al., 2018; Schroeder, 2011), particularly for stem cells, prohibiting imaging many 

reporters with high temporal frequency. To overcome this limitation, we developed an 

optimised imaging modality by which we imaged the H2B-miRFP670 signal every 5 minutes 

and the FUCCI signal only every 30 minutes. This scheme allowed us to achieve multi-day 

imaging of healthily proliferating cells for at least 3-5 days or more, limited only by cell 

confluence. In this manner, we captured multi-colour time-lapse images of cell populations 

across multiple image fields over time, and then used a customised image analysis pipeline 

to (A) digitally stitch neighbouring fields into larger images containing multiple hPSC colonies  

(B) detect all cells in all colonies through time (using nuclei as proxies; from here onwards 

cells/nuclei are used interchangeably) (C) where possible, track individual cells through time, 

and (D) detect and track all colonies through time (Fig. 1C). Typically, time series captured in 

this way consisted of 800-1000 images (timesteps), with each imaging field leading to 

>100,000 detected nuclei data points throughout the entire multi-day imaging sequence. After 

data capture, we used a trained multi-class Support Vector Machine (SVM) to classify and 

assign probabilities by machine learning to different types of nuclear events (interphase, 
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metaphase, anaphase, cell death) (Fig. 1D), and then extracted, in addition to the SVM-

derived features (i.e. probability assignments), >550 different morphological, intensity and 

texture features across the multi-channel signals on a single-cell basis (Fig. 1E). Ultimately, 

this analysis yielded >550-dimensional phenoprints for hundreds of thousands of cells for each 

experimental condition analysed, capturing the morphological and spatiotemporal phenotype 

of that condition (Fig. 1F). 

 

Live morphological profiling of hPSCs during pluripotency and early germ layer 
differentiation.     

Next, we used this strategy to dynamically phenotype the evolution of hPSCs, either while 

maintaining pluripotency or when triggered to undergo early directed differentiation. Given that 

hPSCs have the capacity to differentiate into all three basic germ layers, we chose to trigger 

cells to undergo directed differentiation into primitive neural stem cells (NSCs), cardiac 

mesoderm-induced cells, and definitive endoderm, mimicking early ectoderm (EC), mesoderm 

(ME) and endoderm (EN), respectively (Fig. S1; hereafter referred to as EC, ME and EN for 

shorthand). In our conditions, pluripotent hPSCs co-expressing H2B-miRFP670 and FUCCI 

formed colonies that grew exponentially and divided with a typical cell doubling time of 18 

hours, in agreement with an average cell cycle duration of ~15 hours (Pauklin and Vallier, 

2013), with most cells in S/G2/M (FUCCI-green) phases of the cell cycle (Fig. S1A and Movie 

S1). Similarly, hPSCs triggered to initiate EC differentiation initially grew exponentially with a 

typical doubling rate of 18 hours in the first 48 hours, after which they visibly slowed their 

doubling time while gradually increasing the proportion of cells in G1 (FUCCI-red) (Fig. S1B 

and Movie S2), coincident with differentiation onset. By contrast, cells triggered to differentiate 

into ME (Fig. S1C and Movie S3) and EN (Fig. S1D and Movie S4) changed their appearance 

after 24h of imaging, becoming more spread out and altering their nuclear shape and cell cycle 

reporter characteristics, especially in EN triggered cells (Figs. S1C- S1D).   

 

To compare the phenotypic evolution of the four different cell populations quantitatively, we 

sought to map the high-dimensional phenoprints of the four cell populations. We found that 

linear dimensionality reduction by principal component analysis (PCA, (Pearson, 1901) did not 

separate the four populations well. This outcome suggested that population variance in feature 

space was overall comparable and overlapping (Fig. 2A), possibly due to the low signal-to-

noise (SNR) ratio imposed by the low exposure times necessary in our time-lapse imaging to 

keep cells healthy (Weigert et al., 2018). Similarly, when we used non-linear embeddings 

commonly used for single-cell transcriptomics analysis (Kobak and Berens, 2019), t-

distributed stochastic neighbour embedding (tSNE (van der Maaten and Hinton, 2008)) and 

Uniform Manifold Approximation and Projection (UMAP, (McInnes et al., 2018), we found that 
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(with the exception a subset of EN triggered cells) the four cell populations largely overlapped 

in those embedding spaces (Figs. 2B-2C).   

 

Using neural networks to map phenotypic diversity.    

To overcome these methodological limitations, we developed a supervised neural network 

(NN) embedding model that first uses the >550-dimensional feature datasets to learn to predict 

and spatially embed different cell state classes as separate as possible on a plane knowing 

their class labels, and can then be used subsequently to map new data points based on their 

feature phenoprints without knowledge of the class labels (Fig. 2D). We trained the model with 

four input classes: ‘pluripotent’, ‘ectoderm’, ‘mesoderm’ and ‘endoderm’. ‘Pluripotent’ 

consisted of 2,675 early pluripotent datapoints (t=0h-6h, i.e. 0 days, when colonies are small) 

and 23,492 late pluripotent datapoints (t=60h40min-66h40min, i.e. 2.5 days, when colonies 

are visually large and dense). Importantly, the ‘pluripotent’ training class contained both early 

and late pluripotent cell datapoints to eliminate cell density as a potential confounding factor. 

‘Ectoderm’ consisted of 23,659 late EC datapoints (t=77h20min-83h20min i.e. 3.5 days, when 

cells acquire SOX1+, denoting early EC fate (Kim et al., 2021)). ‘Mesoderm’ consisted of 

15,278 late ME datapoints (t=77h20min-83h20min i.e. 3.5 days, when cells have been 

reported to exit the T+ state en route to becoming early cardiac mesoderm fate (Rao et al., 

2016)). ‘Endoderm’ consisted of 1’296 late EN datapoints (t=60h40min-66h40min i.e. 2.5 

days, when cells have been shown to become SOX17+ denoting early EN fate (Ogawa et al., 

2013; Teo et al., 2011)). This approach proved to be pivotal for clearly separating the different 

cell states (Fig. 2E). Crucially, we were able to reproducibly do so across different datasets 

(Fig. S2A-S2I), showing that the NN model is both predictive and robust.   

 

To visualise the dynamic evolution of the different cell populations and exploit the real-time 

nature of our data, we then computed the average coordinates of each cell population at every 

time point for the entire 3.5 days to generate their real-time phenotypic trajectories (Fig. 2F). 

As expected, at early timepoints (0-1 days), all four cell populations were close to each other 

and located around the pluripotent embedding area, corresponding to the fact that they were 

all phenotypically pluripotent (Fig. 2F, bottom half). However, as time progressed, their 

temporal trajectories diverged, coincident with differential cell fate acquisition (Fig. 2F, top 

half). Similarly, by plotting the trajectories of single-cells tracked early in differentiation as 

vectors on the embedding (Fig. 2G), we observed that individual cells’ trajectories started in 

the pluripotent area of the embedding and gradually diverged on the fate map as time 

progressed. Thus, multi-day, high-dimensional, image-based morphological profiling 

enhanced by deep learning allows to robustly map and predict cell fate evolution toward 

multiple, different cell fate outcomes, both at the population and at the single-cell level. We 
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call our approach DEEP-MAP, for deep learning-enhanced morphological profiling.  

 

Proliferative features predictive of cell fate.    

With the DEEP-MAP NN model in place, we asked what features allows discrimination among 

different cell fate classes. Focusing on a small subset of biologically interpretable features, we 

carried out Bayesian network statistics and linear correlation analysis of the features and 

found that several features correlated directly with the cell fate class/label, indicating that they 

may be linked with the phenotypic states associated with the different cell fates (Fig. 3A). We 

then computed mutual information to quantitatively measure the mutual dependency between 

every feature and cell fate, as a way to estimate the importance of each feature to cell fate. 

Overall, we found that cell density and G1 status (as assessed by FUCCI-red signal intensity) 

were the features with the highest importance for predicting the different cell state classes 

(Fig. 3B), with different features displaying different degrees of importance across the different 

cell states. Specifically, cell density, G1 status and cell speed had high importance in both 

pluripotent and EC cells, with cell speed and nuclear area taking on increased importance in 

EC cells relative to pluripotent cells. These data suggest that cell speed and nuclear area are 

features that are discriminant of EC cells with respect to pluripotent cells, and that changes in 

cell migration control and shape/size may accompany pluripotency exit and onset of early 

ectodermal fate (Fig. 3C, top). By contrast, we found in ME cells that G1 status and cell speed 

had lower importance, and that the average distance of cells from the border of colonies 

(another measure of cell density) had a higher importance relative to pluripotent cells. This 

suggests that G1 status, cell speed and cell density discriminate ME cells, and that changes 

in cell cycle progression, migration and adhesion may accompany the onset of early 

mesodermal fate (Fig. 3C, bottom left). Finally, in EN cells we found that G1 status and cell 

speed had higher importance, and the average distance of cells from the border of colonies 

and cell density had a lower importance, relative to pluripotent cells, suggesting that those 

features are discriminant of EN cells and that changes in the control of cell cycle progression, 

migration and cell density are key at the onset of early endodermal fate (Fig. 3C, bottom right). 

Mapping of high importance features on the NN embedding (Fig. 3D) as well as overlaying 

them on image sequences (Fig. S3A-S3D and Movies S5-S6) confirmed visually that those 

features change coincident with fate changes. Hence, DEEP-MAP-derived phenotypic 

profiling information can be used to quantitatively identify, in an unbiased manner, 

morphological and proliferative properties predictive of cell fate transitions and point to 

possible mechanisms that cause or accompany commitment to different cell fates. 

  

 

Proliferative state predicts single-cell fate dynamics, transition timing and fate 
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intermediates.  

Next, we sought to exploit the predictive capacity of DEEP-MAP to observe single-cell fate 

dynamics in real-time. To this end, we used the NN cell fate class predictions to visually 

augment image sequences by displaying on the images the predominant (highest probability) 

predicted class for each single-cell through time. As expected, we observed that the 

overwhelming majority of pluripotent, EC, ME and EN triggered cells were predicted initially to 

be pluripotent (Fig. 4A-4D, left most image panels and Movies S7-S10), and that as time 

proceeded pluripotent cells maintained that predicted fate even as colonies grew larger and 

denser (Fig. 4A). By contrast, after the trigger, EC cells began losing the pluripotent phenotype 

~1 day later and began acquiring ectoderm phenotype by 2.5 days (Fig. 4B). Importantly, both 

of these timepoints are earlier than those at which pluripotency exit (e.g. OCT4 and NANOG 

loss, ~2-3 days (Li et al., 2011)) and ectodermal fate onset (e.g. Nestin and PAX6 gain (Li et 

al., 2011) and SOX1 gain (Kim et al., 2021), ~3-5 days) have been detected by quantitatively 

monitoring transcription factor levels. Hence, by using solely indirect proliferative readouts, 

DEEP-MAP is capable of detecting cell fate changes in ‘live’ cells earlier than what is currently 

technically possible. We were surprised to see that within only a few hours of receiving the 

differentiation trigger, ME and EN cells began losing the pluripotent phenotype (Fig. 4C-4D). 

ME cells began to acquire the mesoderm phenotype within 1 day of receiving the 

differentiation trigger and increasingly acquired that predicted fate for multiple days (Fig. 4C). 

By contrast, EN cells acquired the endoderm phenotype 2.5 days after trigger (Fig. 4D). Both 

of these differentiation onset timings are as early and possibly earlier than those at which early 

mesoderm (e.g. T gain, ~1-2 days; (Rao et al., 2016)) and early endoderm (e.g. FOXA2 and 

SOX17 gain, ~3 days; (Ogawa et al., 2013; Teo et al., 2011)) fate onset have been reported 

to occur. Taken together, these data indicate that DEEP-MAP can detect ‘live’ and dynamical 

cell fate-associated phenotypic changes earlier than previously possible, with unprecedented 

sensitivity and predictive power.   

 

To gain further insights into the dynamics of lineage differentiation, we used the DEEP-MAP 

NN embedding to map real-time phenotypic trajectories of different EC colonies, by computing 

the average coordinates of each cell colony at every point in time through the 3.5 days of 

imaging (Fig. 4E). While most EC colonies’ trajectories began in the pluripotency domain and 

later evolved toward the ectoderm domain, they appeared to do so heterogeneously. By 

computing the predominant (highest probability) cell fate assignment for each separate colony 

as a function of time, we confirmed that colonies differed in the time of departure from 

pluripotency as well as in the time of acquisition of the majority ectodermal phenotype (Fig. 

4F). By contrast, we found that EN colonies’ trajectories proceeded much more 

homogeneously through the DEEP-MAP fate map, suggestive of a much more tightly 
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controlled response of cells and colonies to differentiation triggers (Fig. 4G). Strikingly, all EN 

trajectories appeared to go through the mesoderm domain en route to acquisition of the 

endoderm phenotype, suggesting that acquisition of an early mesoderm-like state could be an 

intermediate in acquiring endodermal fate. This was evident when we looked at the colonies’ 

predominant cell fate assignment as a function of time, which showed that EN-triggered 

colonies departed pluripotency early and almost synchronously, then acquired and maintained 

a predicted mesodermal phenotype for 1-1.5 days, and subsequently acquired an endodermal 

phenotype 40 hours later (Fig. 4H). Altogether, our findings demonstrate that, by integrating 

high-dimensional, image-based morphological profiling with deep learning, DEEP-MAP can 

predict cell fate dynamics ‘live’ in real-time with high temporal sensitivity across multiple fates. 

Hence, this technology can be leveraged to reveal differences in cell fate dynamics between 

lineages, cells and colonies and can reveal the history, timing, and existence of cell fate 

intermediates, which can be elusive to fixed-cell technologies. 

 

DISCUSSION  

We have established DEEP-MAP, a deep learning-enhanced morphological profiling 

approach, which enables ‘live’ large-scale microscopy imaging and phenotyping of hPSC 

populations at single-cell level and predicts cell fate dynamics and transitions in real-time over 

several days. We generated by CRISPR knock-in hPSC lines stably co-expressing ‘live’ cell 

proliferation reporters and then established multicolour time-lapse imaging compatible with 

long-term cell viability and health, and compatible with proliferation and differentiation under 

the microscope. Our pipeline integrates image processing, machine learning and statistical 

analysis workflows to enable time-resolved, high-dimensional phenotyping of 100’000s of 

single-cells, as well as deep learning methods allowing robust visualisation, mapping, 

phenotypic clustering and prediction of cell fate dynamics toward multiple fate outcomes. We 

show that based on two very general and commonly used cell proliferation reporters - FUCCI 

and fluorescent H2B – DEEP-MAP yields rich, deep and continuous information about 

morphological and proliferative state that can predict and reveal cell fate dynamics ‘live’ in 

real-time and at single-cell level without a need for customised cell state reporters specific to 

the fates and lineages being monitored. The fact that the reporters used here are universally 

present and visible across developmental and cell differentiation contexts makes our approach 

highly versatile and broadly applicable.   

 

Our choice to use nuclear-localised fluorescent reporters for morphological profiling was not 

fortuitous: hPSC colonies are very compact and therefore we used nuclear reporters to be 

able to unequivocally detect and, where possible, track cells through time. However, DEEP-
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MAP could be adapted to use other ‘live’ Cell Painting-type (Bray et al., 2016) morphological 

reporters, both genetically encoded and membrane permeable (e.g. fluorogenic probes 

(Mishra et al., 2019)), and applied to other cell types of choice. Similarly, DEEP-MAP could 

form the basis of methodologies to carry out label-free cell fate mapping and prediction 

(Christiansen et al., 2018; Ounkomol et al., 2018), by applying it to cells that are spatially 

sparse and can be unequivocally identified without the need for fluorescent reporters (Al-

Zaben et al., 2019) or by using label-free imaging optical modalities (Kallepitis et al., 2017; 

Marrison et al., 2013).   

 

Previous efforts have used deep learning to detect and predict cell states ‘live’ before. For 

instance, convolutional neural networks (CNNs) can detect morphological differences 

between unlabelled pluripotent and early epiblast-like differentiating cell patches of mouse 

embryonic stem cells just 20 minutes after onset of differentiation (Waisman et al., 2019). 

Similarly, CNNs and recurrent neural networks (RNNs) can predict lineage choices of 

individual, disaggregated primary mouse hematopoietic stem and progenitor cells (HSPCs) 

up to three generations before molecular marker annotation, based on their morphological 

and displacement characteristics (Buggenthin et al., 2017). By combining morphological 

profiling applied to simple nuclear-localised cell proliferation readouts with supervised neural 

networks, DEEP-MAP goes significantly further. Our method captures the evolving dynamics 

of cell fate transitions over several days across entire colonies of highly compact human stem 

cells, demonstrating the suitability of our approach to large-scale, tissue-level fate dynamics’ 

prediction with single-cell resolution.   

 

Using DEEP-MAP we found that, upon receiving a differentiation trigger, hPSCs initiate 

pluripotency exit between 8 and 24 hours. This is as early and possibly earlier than previously 

detected using ‘live’ fluorescently-labelled transcription factor reporters in hPSCs (Kim et al., 

2021; Wolff et al., 2018). Furthermore we found that early endoderm-triggered colony 

trajectories appear to transiently go through a predicted mesoderm phenotype, suggesting 

that acquisition of an early mesoderm-like fate could be an intermediate in acquiring 

endodermal fate. This is in agreement with previous observations in mouse embryonic stem 

cells (Kubo et al., 2004; Mahmood and Aldahmash, 2015; Tada et al., 2005), and suggests 

that our approach can reveal the existence of cell fate intermediates that would be invisible 

without real-time phenomics information.  

  

In addition, our analysis also resolved visible differences in the real-time cell fate dynamics 

within and between early EC and EN lineages. This suggests that DEEP-MAP could become 
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a general framework to quantify the heterogeneity, noise and speed of different cell fate 

transitions. Accordingly, DEEP-MAP could help identify the origins of variability in synthetic 

tissue generation, as well as give insights into how to engineer tissues predictably and robustly 

(Brassard and Lutolf, 2019; Prochazka et al., 2017).   

 

In sum, DEEP-MAP provides a framework to quantitatively investigate the dynamics of cell 

fate decisions at single-cell level within tissues in real-time and at scale. By enabling the 

generation of spatiotemporal, predictive maps of tissue formation, this approach can help to 

measure, benchmark and, ultimately, predict and control complex tissue design. 

  

Limitations of Study   

 

In this study we used differentiation triggers known to result in high cell fate conversion rates. 

This allowed us to assume at the endpoint that all cells acquired pseudo-homogeneously the 

intended fates. This assumption simplified the deep learning strategy, as it enabled us to use 

a common neural network architecture to both learn to spatially map cells as well predict cell 

fate dynamics. Such a strategy - where we constrain the network to simultaneously learn cell 

fate prediction while generating a spatial map - could be limiting when investigating more 

complex tissues or heterogenous cell populations, where differentiation may be less efficient 

or specific and might lead to generation of a variety of differentiation products (including cells 

of unknown fate).  In that case using separate network architectures to learn mapping and 

visualisation could significantly help increase the cell fate predictive power required by the 

biology. In addition, combination of the approach described here with spatially resolved 

transcriptomics approaches (Marx, 2021) might also become possible in the future, providing 

a way to obtain a more detailed landscape of the resulting cell types generated, as well as 

quantitative, deep readouts on the transcriptional status of cells. Such a combined approach 

could lead to the generation of ‘time machine’-type models of cell fate dynamics with 

increasingly precise, diverse, temporally-resolved and sensitive predictive power.  
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STAR METHODS 
  
Construction of plasmids for CRISPR/Cas9 mediated knock-in 
Each pair of sgRNAs to target Rosa26 locus cloned into All-In-One (AIO) CRISPR/Cas9 

nickase plasmids (#74119, Addgene). Sequence of sgRNA 1 and sgRNA 2 is 5’-

GTCGAGTCGCTTCTCGATTA-3’ and 5’-GGCGATGACGAGATCACGCG-3, respectively. 

For donor constructs of H2B-miRFP670 and FUCCI, the fragments of 5’ and 3’ homology arms 

of ROSA26 locus were subcloned into H2B-670 (modified from pmiRFP670-N1, #79987, 

Addgene) and FUCCI (kind gift from Ludovic Vallier’s lab, U. of Cambridge). All of the cloning 

procedures were performed using In-fusion HD Cloning kit (639650, Takara) for seamless 

DNA cloning. 
 
Generation of FUCCI/H2B-miRFP670 reporter hESCs lines 

To establish hESCs that contain FUCCI (Sakaue-Sawano et al., 2008) and H2B (Kim et al., 

2021; Shcherbakova et al., 2016) reporters, reporter constructs were introduced to one of the 

genomic safe harbour regions, ROSA26 locus by using CRISPR/Cas9 nickase to minimise 

insertional mutagenesis. Cells were transfected with both AIO CRISPR/Cas9 nickase and 

donor vectors with ROSA26 homology arms using lipofectamine stem transfection reagent 

(STEM00008, Thermo Fisher Scientific) according to the manufacturer’s protocol. Briefly, 1 

μg of each plasmid, total 2 μg was diluted into 7.5 μl of reagent in the 200 μl of Opti-MEM I 

medium (31985062, Thermo Fisher Scientific) and incubated for 10 min at RT. Transfected 

cells were sorted on a BD Influx and collected into 1.5 ml microcentrifuge tubes containing 

500 ul of Knock-out serum replacement (10828028, Thermo Fisher Scientific). hESCs were 

maintained under essential 8 (A1517001, Thermo Fisher Scientific) medium on Geltrex 

(A1413301, Thermo Fisher Scientific)-coated plates and changed the medium every day.  
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Differentiation of hESCs into multiple lineages 

To differentiate into neuroecto lineages, hESCs were applied to PSC neural induction medium 

(A1647801, Thermo Fisher Scientific) according to the manufacturer’s instruction. Briefly, cells 

were grown in the induction medium (Neurobasal medium containing 50x PSC supplement) 

for 5 days of time-lapse experiment and the medium changed every other day. To differentiate 

into mesodermal lineage, hESCs were applied to PSC cardiomyocyte differentiation kit 

(A2921201, Thermo Fisher Scientific) according to the manufacturer’s instruction. Briefly, cells 

were grown in cardiomyocyte differentiation medium A for the first 2 days then it was changed 

into cardiomyocyte differentiation medium B for 3 days. Medium changed every other day. To 

differentiate into definitive endodermal lineages, cells were applied PSC definitive endodermal 

induction kit (A3062601, Thermo Fisher Scientific) according to the manufacturer’s instruction. 

Briefly, cells were grown in PSC definitive endoderm induction medium A for 1 day, then 

changed to definitive endoderm induction medium B till the end of experiment.  

  

Time-lapse imaging 

Established FUCCI/H2B hESC lines were plated onto Geltrex-coated CellCarrier-96 Ultra 

Microplates (6055302, Perkin Elmer) a day before imaging. Differentiation trigger was applied 

by gently changing to the differentiation medium before imaging. Cells were imaged using a 

Yokogawa CV7000 high throughput confocal microscope (Wako). FUCCI signal was captured 

every 30 min using both 488 and 561 nm at 150 and 350 ms of exposure time and H2B-

miRFP670 signal was captured using 640 nm at 500 ms of exposure time every 5 min, 

respectively. Time-lapse imaging was performed for 5 days.   

 
LEVER Processing 
The open source LEVER software package (Cohen, 2014; Wait et al., 2014; Winter et al., 

2016) (https://leverjs.net) is utilised to segment and track cells from hPSC time-lapse image 

sequences. The H2B channel TIFF files generated from the microscopy experiments are 

imported into the LEVER file format, and an ensemble-based segmentation algorithm and a 

cell tracking algorithm are then applied to the image sequences. The segmentation algorithm 

separates foreground and background regions through combining an adaptive intensity 

thresholding with a Laplacian of Gaussian filter. The only parameter to the algorithm is the 

minimum cell radius, here set at 2.5μm. Following the segmentation, cells are tracked and 

mitotic events identified as described previously (Winter et al., 2015).   

 

Feature Extraction 
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Feature extraction is carried out using a custom script MATLAB (MathWorks). The 

segmentation results generated by LEVER are read into MATLAB and correlated with the 

original TIFF images generated by the microscopy experiment across the H2B and FUCCI 

channels. The script then advances frame by frame, using the segmentation results as a 

registration method to record features from the original images. Feature extraction only occurs 

at timepoints where all 3 channels are present. Images undergo local background subtraction 

using a 50x50 pixel sized rolling average filter in order to correct for spatial variations in 

microscopy illumination.   

 

Colonies of cells are identified using the DBScan algorithm (Sander et al., 1998) and tracked 

through time using shared cell identities between time frames. The script iterates through each 

colony and then through each cell belonging to that colony in order to extract a suite of 

numerical features. Features extracted include: fluorescence distribution features, texture 

features such as the Haralick Features (Haralick et al., 1973), Hu’s Invariant Moments 

(Flusser, 2000; Marchant, 2021; Ming-Kuei, 1962), Zernike moments (Saki et al., 2013; 

Tahmasbi et al., 2011), Gray Level Run Length Matrices (Galloway, 1975; Wei, 2021), Gray 

Level Size Zone Matrices (Thibault et al., 2013), Neighborhood Grey Tone Difference Matrices 

(Amadasun and King, 1989; Vallières et al., 2015), shape descriptors, colony based features 

such as distance from the colony centroid and border, and cell density features. Haralick 

features are calculated by cropping each segmented cell and calculating the texture features 

of the cropped image. The Haralick features calculated for the H2B channel are used to predict 

the cell (i.e. nuclear or chromatin) state of a cropped cell using a trained Support Vector 

Machine (Allwein et al., 2000). The Support Vector Machine assigns the most likely class to 

each segmented cell from 5 different classes: ‘interphase’, chromatin is decondensed and 

occupies a mostly round nucleus, implying that the cell is in G1, S or G2 phases of the cell 

cycle; ‘metaphase’, condensed chromatin with chromosomes aligned on a metaphase plaate; 

‘anaphase’, two nearby masses of condensed chromatin corresponding to the cell having 

undergone the metaphase to anaphase transition; ; ‘apoptosis’, nuclear debris, i.e. fragments 

of apparently condensed chromatin typical of cell death; and ‘mis-segmented’, the H2B signal 

segmentation is poor and corresponds possibly to more than one cell’s nucleus (Note: this 

latter class is not shown in Figure 1 or mentioned in Figure 1 legend for simplicity). The SVM 

was trained manually with 500 cells in each class and has a prediction accuracy on the training 

set of >90% across all classes. Dynamical features such as cell speed, and cell size change 

are calculated by referencing the previous frame where a cell is detected and calculating the 

difference in features between the two timepoints. 

 

.CC-BY 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is 

The copyright holder for this preprintthis version posted August 1, 2021. ; https://doi.org/10.1101/2021.07.31.454574doi: bioRxiv preprint 

https://doi.org/10.1101/2021.07.31.454574
http://creativecommons.org/licenses/by/4.0/


 

Extracted features are stored in an SQLite database for downstream processing.   

 

Feature Pre-processing 
Dynamical features are not present in a significant proportion of data points as cell tracking 

does not occur at 100% efficiency. As a result, the stored database contains NaN values for 

certain features, which the downstream Neural Network deals with poorly. To prevent failure 

in the Neural Network, features that commonly contain NaN values such as cell speed and 

cell size change are filtered out, as well as any rare individual data points that have NaN 

values due to failures in calculating other features. Other features such as cell XY coordinates, 

the colony identity, and parameters used to calculate shape features that are deemed 

unnecessary for cell fate prediction are also removed. This filtering step filters the number of 

available features for the neural network (NN; see later for NN implementation) to train on, 

from the 603 originally recorded features to 564 features used for actual training and 

embedding. The filtered data points are assigned labels according to which experimental 

condition the datapoint is derived from, in order to facilitate downstream training of the NN. 

 

Neural Network Embeddings 
After feature pre-processing, datasets are fed into the NN embedding pipeline (see later), 

generating an XY coordinate for each datapoint that is recorded along with the cell ID, frame, 

label, and classification probabilities of belonging to each differentiation class. Neural network 

embeddings are plotted using MATLAB using the scatter function, with the data points being 

coloured according to the recorded dataset label. Real time cell population trajectories are 

plotted by calculating the mean XY coordinates at each timepoint for a given experimental 

condition. The mean XY coordinates are then averaged using a rolling window of 2.5 hours to 

reduce the effect of random noise and fluctuations in the dataset. The averaged population 

trajectory is plotted over the embedded datapoints with markers indicating the starting and 

ending time point. Vectorial single cell trajectories are calculated by identifying the 20 longest 

sequential tracks of cells generated by the LEVER tracking algorithm for each experimental 

condition. For these 20 tracks, an arrow is plotted from the start to the endpoint of that cell’s 

tracked trajectory. Proliferative feature distributions are displayed on the embedding plot by 

changing the method of colouring individual embedded data points to a chosen extracted 

feature. Features chosen to be plotted are pulled from the extracted feature database and 

correlated with the XY embedding coordinates using the stored cell ID and frame information. 

The features are standardised using the Z-score method and the selected feature is used to 

individually colour the scatter points.   

 

Visualising changes in proliferative features and cell fate 
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Pseudocolor images displaying the proliferative features for each cell are generated using the 

stored segmented cell boundaries generated by the LEVER segmentation package. The cell 

segments generated by LEVER are correlated with the extracted feature data points for an 

individual time point. The cell segments are displayed in a MATLAB figure, coloured using a 

selected proliferative feature, and then saved to generate sequential images of proliferative 

features changing through time. Changes in cell fate are visualised using the classification 

probabilities generated by the NN embedding, with the original microscopy images of the H2B 

channel and the segments generated by LEVER. The microscopy image is displayed in 

MATLAB, and the segments generated by LEVER are plotted and overlayed over the 

microscopy image. The colour of the segmentation outline is determined by the cell fate class 

with the highest classification probability as calculated by the NN classifier. The resulting 

image is written into a TIFF file and sequential frames are concatenated to the TIFF file to 

generate an image stack that displays the cell fate transitions of the experimental population 

through time.   

 

Cell Fate Probability Tracks 
Cell fate probability tracks for individual colonies are plotted using the classification 

probabilities assigned to each data point in that colony by the NN embedding. To compare the 

level of differentiation each colony has undergone, the classification probabilities of the non-

pluripotent states are summed together to represent the degree of differentiation. The 

classification probabilities of all data points at a given frame within a colony is averaged 

together and the mean probability is plotted over time. The differentiated probability plot is 

coloured according to which differentiated state has the highest classification accuracy at that 

given frame. A rolling average window of 2.5 hours is applied to the classification probabilities 

in order to minimise the amount of noise in the trajectories. 

 

Embedding and prediction by Deep Neural Network 

Overview of the idea 

Given the poorly separable embedding obtained by the unsupervised machine learning (ML) 

algorithms namely PCA (Abdi and Williams, 2010), t-SNE (van der Maaten and Hinton, 2008) 

and UMAP (McInnes et al., 2018), we devised a supervised deep learning approach capable 

of extracting an embedding and performing predictions. The advantage is two-fold, the DL 

model's powerful representation boosted by the guiding label information brought by the 

supervised learning approach.  

Although our framework is pipeline-based involving multiple stages with engineering-based 

feature extraction, the DL embedding model refines the extracted features by learning 

informative/discriminative representations. Its multi-layers progressively reduce the features’ 
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dimensionality with each layer as it learns higher-levels of feature abstraction and finally 

outputs a two dimensional representation at the last layer. This final representation serves as 

our 2D visualisable embedding of the input features.  

Unlike unsupervised DL embedding extraction methods (David and James, 1987; Vincent et 

al., 2008) that use reconstruction loss for training, our loss exploits the available label providing 

sharper training guidance. That is, our learning approach is fully supervised with labels used 

to project the embedding of different classes in different separable clusters/regions. This is 

done by replacing the standard hyper-plane classification layer by a clustering classification 

one. That is, a cluster is assigned to each class and the input’s class is predicted with 

probability proportional to its distance from the clusters’ centre. This alters the loss function to 

penalise clusters close to each other and embeddings not falling in its assigned cluster (more 

details further below).    

 

Detailed Pipeline  

Fig. 2D shows the DL-based embedding pipeline, which can be divided into three stages. First, 

the raw input image data are segmented and tracked using LEVER (see LEVER Processing 

section) to produce cell patches, which are further processed to extract morphological, 

fluorescence intensity and texture features at single-cell resolution (see Feature Extraction 

section). We then established a multi-layer DL NN to learn an informative/discriminative 

representation from the features. Although DL can be used to learn features from raw data in 

a fully automated way without experts’ involvement, in our case, we used DL to refine the 

features by further reducing the dimensionality and noise before generating a 2D embedding 

at its last layer.  

As stated above, training this embedding pipeline was done in a supervised way where labels 

were used to establish the objective function of the optimisation problem. To enforce 

separable embedding outputs in cloud shape, we replaced the classification layer normally 

attached to the NN by a clustering one. Nevertheless, our embedding-clustering network can 

still provide predictions as well as an embedding representation. In the following, we provide 

details of our NN architecture including both the embedding and the clustering components. 

 

Network architecture 

Our embedding network consists of 5 fully connected layers (the number of layers was chosen 

based on optimal performance), each followed by a ReLu non-linear function. The first layer 

reduces the input dimensions to hidden_dim dimensions that are then progressively reduced 

by 2 and finally to 2D at the last layer. Thus, the outputs of layers 2,3,4, and 5 are 

hidden_dim/2, hidden_dim/4, hidden_dim /8 and 2 respectively. These multi-layers of non-

linear transformations represent multi-levels of automatic feature extractions, where the input 
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features at each layer are further refined so as to end up with an optimal features’ output for 

the purpose of embedding representation expressed in the objective function. Denote 𝒆 ∈ 𝑅2 

the embedding of input 𝒙 ∈ 𝑅𝑛  where 𝑛 is the number of input features.  We express the 

embedding network transformation by  𝜙𝒘 governed by the network layers weight 𝒘. The 

embedding 𝒆 = 	𝜙𝒘(𝒙)	are then fed to the clustering network serving two purposes, prediction 

and to build the learning objective function. To force the embedding of a given class to fall in 

an isolated cloud, the clustering layer assigns a cluster centre to each class and expresses a 

probability distribution for each embedding over the classes, which is proportional to the 

distance from the classes’ centres. Denote 𝒐" ∈ 𝑅# the centre of the cluster corresponding to 

class 𝑖, thus, the prediction 𝑦 ∈ {1,… , 𝐶} of embedding 𝒆 is distributed according to a 

categorical distribution governed by parameters 𝒑 = (𝑝1, … 𝑝𝐶) where 𝐶 is the number of 

classes and 𝑝" ∝ 1 − ||𝑐𝑖 	− 𝑒|| such that ∑ 𝑝"&
"'( = 1. To meet this probability condition (𝑝𝑖 ≥

0	∀𝑖 ∈ {1,… , 𝐶}	𝑎𝑛𝑑	∑ 𝑝"&
"'( = 1), we utilise a Softmax non-linear function on the distance 

vector from the embedding to all centres (||𝒐1 − 𝒆||, . . . ||𝒐𝐶 	− 𝒆||)	, 𝑝(𝑦|𝒆; 𝒐(, . .𝒐& 	) =

9 )*+	(−||𝒐1−𝒆||
∑ )*+./0|𝒐!/𝒆|02"
!#$

, … , )*+	(/||𝒐"/𝒆||
∑ )*+./0|𝒐!/𝒆|02"
!#$

: 𝐼6	where 𝐼6 ∈ {0,1}& is a vector with all dimensions set to 

zeros except that at position 𝑦 is set to one. Although norm 2 function penalisation of the 

embedding quadratically diminishes as it gets closer to its corresponding centre, an even more 

relaxed penalisation around the centre similar to that of SVM hyperplane soft separation would 

result in more aesthetically satisfying embedding. This relaxation can be achieved by adding 

a nonlinear function -tanhshrink (≡ −𝑡𝑎𝑛ℎ𝑠(𝑥) = tanh(𝑥) − 𝑥) before the softmax function, 

thus the parameters of the categorical probability distribution over classes become, 

𝑝(𝑦|𝒆; 𝒐(, . . 𝒐& , 𝑣	) = K
)*+7−𝑡𝑎𝑛ℎ𝑠.𝑣0|𝒐1−𝒆|028	

∑ )*+7/9:;<=.>0|𝒐!/𝒆|028"
!#$

, … ,
)*+7/9:;<=.>0|𝒐"/𝒆|028	

∑ )*+7/9:;<=.>0|𝒐!/𝒆|028"
!#$

L 𝐼6 where parameters 

𝑣 controls the  relaxation  margin.  Given the probability distribution of a given embedding over 

the classes, we can now either sample the prediction 	𝑦M	~	𝐶𝑎𝑡(𝒑>,{A!}$",C𝒘(𝒙))  or take an 

argmax over the classes probabilities 𝑦M = 𝑎𝑟𝑔𝑚𝑎𝑥(𝑝(, … 𝑝&), where 𝒑>,{A!}$",C𝒘(𝒙) =

(𝑝(, … 𝑝&)=	K
)*+7/9:;<=.>0|𝒐$/C𝒘(𝒙)|028	

∑ )*+7/9:;<=.>0|𝒐!/C𝒘(𝒙)|028"
!#$

, … ,
)*+7/9:;<=.>0|𝒐"/C𝒘(𝒙)|028	

∑ )*+7/9:;<=.>0|𝒐!/C𝒘(𝒙)|028"
!#$

L. 

 
Training method 

So far, we have focused on the inference/feed-forward part of the model assuming the 

embedding parameters 𝒘 and the clustering ones 𝒐, 𝑣 fixed. Next, we present the learning 

part (third stage in Fig 2D) of the method. As stated above, our approach is supervised, that 

is the ground truth (labels) are presented during learning. Thus, considering the model 
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parameters as variables, we can use cross entropy as a loss function between the ground 

truth and the prediction outputs. Cross entropy loss is useful for training classification 

problems when the predicted output is governed by a multinomial/categorical distribution: 

𝑙𝑜𝑠𝑠(𝑞, 𝑝) = −𝐸F[𝑙𝑜𝑔(𝑝)] = −𝑖 ∑ 𝑞(𝑦 = 𝑖)log	(𝑝(𝑦 = 𝑖))&
"'(    where 𝑞 is the true probability. 

Since, our ground truth is deterministic, we can write the loss as −∑ log	(𝑝"&
"'( ) ∗ 1{𝑦 = 𝑖}. 

Having defined the objective function, the learning is achieved by solving this optimisation 

problem with respect to embedding and clustering parameters. We used the Adam optimiser 

(Kingma and Ba, 2014) with weight decay regularisation. 

 

Datasets and Implementation 

We split our dataset into three portions, 80 % for training, 15 % for validation and 5 % for 

testing. The validation is used for parameter tuning. We performed a grid search over different 

learning rates, weight decays, number of network layers, hidden dimensions and batch size. 

The parameters that gave the best results on the validation set were taken, namely, 0.0001 

learning rate, 0.0001 weight decays, 512 hidden dimension, 64 batch size and 5 total fully 

connected layers. Our embedding-prediction code is implemented in Python 3.8 and using 

Pytorch 1.6. We trained on RTX  2080TI GPU on 53,120 (80 % of 66,400 total datapoints) 

datapoints consisting of four classes 20,933 Pluri, 18,927 Ecto, 1,036 Endo and 2,222 Meso. 

The quantitative prediction results on the testing set as well as on data from an independent 

biological experiment are shown below:  

Datasets precision recall   f1-

score 

# of points Accuracy  

Testing set from training 

experiment. 

Pluri 

Ecto 

Endo 

Meso        

 

0.85 

0.88 

0.85 

0.86 

 

0.89 

0.71 

0.83 

0.87 

 

0.87 

0.79 

0.84 

0.86 

 

10403 

1749 

9382 

8465 

0.85 

Dataset form new experiment  

Pluri 

Ecto 

Endo 

Meso        

 

0.72 

0.85 

0.69 

0.48 

 

0.90 

0.31 

0.75 

0.67 

 

0.80  

0.46 

0.71 

0.56 

 

206945 

158067 

198148 

80491 

0.68 
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Correlation and features importance by Bayesian statistics 
Given the black-box nature of NN outputs, we sought to recall biological interpretability for our 

prediction/embedding pipeline. Supported by the pipeline’s hybrid approach involving both 

manual feature extraction and DL feature learning components, we employed Bayesian 

statistics to provide declarative representation of how the input extracted features interact with 

each other. For this analysis, we only selected biologically interpretable features.  

The methodology is divided into two main steps. Firstly, we learn a Bayesian network (i.e, 

Directed Acyclic Graph (DAG) representation) (Koller and Friedman, 2009) consisting of 

nodes representing the biologically interpretable features as random variables and edges 

expressing the conditional  independency among these features. Doing so makes it 

computationally feasible to perform/approximate inference across the variables. Secondly, we 

use the trained network to perform inference, allowing us to compute linear correlations 

(Benesty et al., 2009)  among the variables as well as the mutual information with the different 

fates. 

The step of learning the Bayesian network is divided into two tasks. First, we learn the 

Bayesian network structure from the data using Hill-Climb Search (Koller and Friedman, 

2009). The learned network structure expresses the conditional independency among 

features, but it does not encompass the optimal numerical parameters needed to compute the 

joint distributions and perform inference. To learn the network parameters, we maximize the 

expected log likelihood (Koller and Friedman, 2009) of the joint distribution defined by the 

learned network structure over the data with respect to its parameters.  

Having learned the network structure and parameters, we are ready to infer needed 

information about the features’ correlations as well as their importance to the cell fate.  Fig 2A 

shows linear correlation among all interpretable features plus the cell fate. To compute this 

correlation, we first convert the Bayesian network to a Markov network using moralization 

(Koller and Friedman, 2009), and we then compute the covariance matrix using the marginal 

distribution induced by the network and take the values of connected variables. Linear 

correlation shows how features interact; however, they do not express the features importance 

to the cell fate. We used mutual information as a metric to measure the mutual dependency 

between every feature and the cell fate. The lower the mutual importance, the more 

independent the feature is from the cell fate, implying that less information is conveyed by the 

feature to the cell fate. That is, it expresses the feature’s importance to the cell fate. Computing 

the mutual information between two variables entails knowing the joint and marginal 

distribution of these variables. We used Belief Propagation method to compute these 

distributions. Fig. 2B presents this feature importance measure for all the biologically 
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interpretable features. In this figure, we do not set the cell fate variable and measure the 

importance to cell fate in general. In Fig. 2C, we set the cell fate variable as evidence and 

provide the feature importance to each of the four cell fate classes. 

The Bayesian analysis code is implemented in Python.3.8 using the pgmpy 0.1 package. We 

adopt discrete Bayesian Network whose structure and parameters are learned using 391,725 

discretised datapoints. Discretisation was performed using sklearn pre-processing package.  
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FIGURE LEGENDS     

 

Figure 1. Establishing a multiday high-content microscopy pipeline to quantitively 
profile ‘live’ hPSC dynamics in real-time and at single-cell resolution. A. We used 

CRISPR knock-in to generate a three-colour, multi-reporter cell line co-expressing FUCCI and 

fluorescently-tagged H2B, enabling comprehensive monitoring of hPSCs morphology and 

proliferation during pluripotency and early differentiation. Scalebars: 100 μm. B. Multi-colour 

confocal imaging over up to five days was achieved by differential time-lapse sampling of 

fluorescence channels (fluorescently-tagged H2B every 5 min, FUCCI every 30 min), allowing 

us to capture both short-time information needed for cell detection and tracking as well as 

longer-time proliferative changes observed during fate transitions while keeping cells healthy 

under the microscope. Scalebar: 200 μm. C, D and E. Images from neighbouring fields, 

digitally stitched into larger images containing multiple hPSC colonies, were used to 

computationally detect and track colonies over time (C, right), where possible, detect and track 

cells over time (C, left), classify cells into interphase, metaphase, anaphase or dead cells by 

machine learning (D), and extract >550 different morphological, intensity and texture features 

across the multi-channel signals on a single-cell basis (E). F. This pipeline allowed us to obtain 

high-dimensional morphological and proliferation phenoprints for hundreds of thousands of 

cell datapoints for each experimental condition analysed. 
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Figure 2. Mapping and clustering cell fate dynamics by deep learning. A, B and C. 

Mapping high-dimensional phenoprints of the four cell populations analysed (hPSC, EC, ME 

and EN) by PCA (A), tSNE (B), and UMAP (C) did not yield good clustering or population 

separation, likely due to the low SNR of the time-lapse imaging derived data. D. Flowchart 

outlining the design of a neural network architecture for predicting and generating a spatial 

mapping (embedding) of low SNR morphological profiling data. E. Neural networks allow clear 

mapping and separation of cell populations based on their morphological and proliferative 

phenoprints. F. Mapping the dynamic evolution and phenotypic diversity of the four cell 

populations in real-time. Solid lines: population trajectories; magenta/red/blue/green: 

hPSC/EN/EC/ME cell populations, correspondingly. Real-time trajectories are shown as solid 

lines overlaid on the neural network embedding in E (made partly transparent for visualisation 

purposes). G. Vectorial trajectories of single-cells tracked early in differentiation along the 

different lineages. Arrows: Vectorial trajectories; magenta/red/blue/green: hPSC/EN/EC/ME 

cell populations, correspondingly. Single-cell trajectories are shown as solid arrows overlaid 

on the neural network embedding in E (made partly transparent for visualisation purposes). 
 

  

.CC-BY 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is 

The copyright holder for this preprintthis version posted August 1, 2021. ; https://doi.org/10.1101/2021.07.31.454574doi: bioRxiv preprint 

https://doi.org/10.1101/2021.07.31.454574
http://creativecommons.org/licenses/by/4.0/


.CC-BY 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is 

The copyright holder for this preprintthis version posted August 1, 2021. ; https://doi.org/10.1101/2021.07.31.454574doi: bioRxiv preprint 

https://doi.org/10.1101/2021.07.31.454574
http://creativecommons.org/licenses/by/4.0/


 

Figure 3. Identifying proliferative features predictive of different cell fates. A, Correlation 

coefficients and linkages between pairs of biologically interpretable features (solid line: 

positive correlation, dotted line: negative correlation) and with respect to cell fate label. As can 

be seen in the diagram, most features have direct correlations with the cell fate class/label. B 

and C, Mutual information analysis between biologically interpretable features and cell fate as 

a way to measure the importance of each feature in capturing the phenotypic state, for all 

classes together (B) versus each of the four cell states analysed separately (hPSC, EC, ME 

and EN; C). Cell density and G1 status (as assessed by FUCCI-red signal intensity) are the 

features with the highest importance for predicting the different cell state classes overall (B), 

with different features displaying high importance for different cell states. D, Mapping of 

biologically interpretable feature values on the neural network embedding, confirming that 

features predicted in C as being important for specific fate changes can be seen to also 

change accordingly on the embedding, demonstrating that dynamical morphological profiling 

can be used to quantitatively identify morphological and proliferative properties predictive of 

the different cell fate transitions. 
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Figure 4. Morphological and proliferative state predicts cell fate dynamics and 
transitions in real-time. Image galleries of FUCCI and H2B-miRFP670 co-expressing cells 

imaged continually by optimised, multi-day time-lapse microscopy for 5 days as they either 

maintain pluripotency (A) or after receiving trigger for ectoderm (B), mesoderm (C) or 

endoderm (D) differentiation at day 0.  FUCCI signal is not shown, only H2B signal is shown 

faintly in the images. Images are visually augmented by showing overlaid on the original 

images the predominant (highest probability) fate predicted by the DEEP-MAP neural network 

through time at single-cell level for each cell detected. Images are shown from the first 80 

hours of time-lapse. Magenta/blue/green/red: predicted hPSC/EC/ME/EN fate, 

correspondingly (colour code shown as image inset). hPSCs are robustly predicted correctly 

as hPSCs through time regardless of changes in colony size and density (A), while EC, ME 

and EN gradually lose predicted hPSC status after just ~1 day of differentiation trigger, and 

evolve differently toward different fates (B, C and D). E, Real-time phenotypic trajectories of 

different EC colonies (solid black lines corresponds to different colonies) showing most 

colonies’ trajectories beginning in the pluripotency domain (bottom centre of the plot) and 

evolving toward the EC domain (middle right of the plot) through time, with colonies showing 

visible heterogeneity in their trajectories. F, Plots showing the temporal evolution of the 

predicted cell fate assignment for three different EC colonies as a function of time. Magenta 

curves show the predicted probability of a colony having hPSC fate, as a function of time; 

blue/green/red curves show the predicted probability of the colony having EC/ME/EN fate 

respectively, with the colour displayed corresponding to the predominant (highest probability) 

fate only. As can be seen from the plots, EC colonies differ in their time of departure from 

pluripotency (dotted lines) as well as in the time of acquisition of the target EC (blue) 

phenotype, indicative of heterogeneity in the way the colonies acquire the target fate. G, Real-

time phenotypic trajectories of different EN colonies showing most colonies’ trajectories 

beginning in the pluripotency domain and evolving toward the EN domain (middle right of the 

plot) through time, with colonies showing low heterogeneity in their trajectories. H, Plots 

showing the temporal evolution of the predicted cell fate assignment for three different EN 

colonies as a function of time. Colour codes as before. As can be seen from the plots, EN 

colonies departed from pluripotency with similar timing (dotted lines) and also acquired the 

target EN (red) phenotype with similar timing (dashed lines), suggesting a possibly tighter 

controlled response of cells and colonies to the EN differentiation triggers. In G and H, EN 

colony trajectories appear to take an intermediate ME phenotype (green) before acquiring 

their final EN phenotype, suggesting that an early ME-like state might be a fate intermediate 

during EN differentiation. Scalebars: 50 μm. 
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SUPPLEMENTAL INFORMATION  
 
 
 
 
 
 
Supplemental Video Captions 1–10  
 
 
 
Supplemental Figures and Figure Legends 1–3  
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SUPPLEMENTAL VIDEO CAPTIONS  
 
Supplemental Video 1 
3.5 day time-lapse video sequence of a hPSC cell line co-expressing FUCCI and H2B-

miRFP670, generated by CRISPR knock-in. FUCCI and H2B-miRFP670 co-expressing 

hPSCs are cultured in pluripotency maintaining conditions. To minimize phototoxicity to cells, 

an optimised imaging modality was used where H2B-miRFP670 signal was captured every 5 

minutes – to enable continued cell/colony detection and tracking - and FUCCI signal every 30 

minutes.  

 

Supplemental Video 2  
3.5 day time-lapse video sequence of FUCCI and H2B-miRFP670 co-expressing hPSCs, 

trigggered to undergo ectoderm (EC) differentiation at time 0. H2B-miRFP670 signal was 

captured every 5 minutes and FUCCI signal every 30 minutes.  

 

Supplemental Video 3 
3.5 day time-lapse video sequence of FUCCI and H2B-miRFP670 co-expressing hPSCs, 

trigggered to undergo mesoderm (ME)  differentiation at time 0. H2B-miRFP670 signal was 

captured every 5 minutes and FUCCI signal every 30 minutes.  

 

Supplemental Video 4 
3.5 day time-lapse video sequence of FUCCI and H2B-miRFP670 co-expressing hPSCs, 

trigggered to undergo endoderm (EN) differentiation at time 0. H2B-miRFP670 signal was 

captured every 5 minutes and FUCCI signal every 30 minutes.  

 

Supplemental Video 5  
3.5 day time-lapse video sequence of hPSCs triggered to undergo ectoderm (EC) 

diffferentiation at time 0, corresponding to the same EC cells and colonies shown in Figure 

S1. Images are fake coloured to display the feature value levels for cell density - a feature 

shown in Figure 3 to have high importance in distinguishing different cell fates  - through time 

at single-cell level for each cell detected. Note that EC cells show high density through time. 

 

Supplemental Video 6 
3.5 day time-lapse video sequence of hPSCs triggered to undergo endoderm (EN) 

diffferentiation at time 0, corresponding to the same EN cells and colonies shown in Figure 

S1. Images are fake coloured to display the feature value levels for cell density - a feature 

shown in Figure 3 to have high importance in distinguishing different cell fates  - through time 
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at single-cell level for each cell detected. Note that in EN cells cell density changes 

dramatically through time. 

 

Supplemental Video 7 
Visually augmented 3.5 day time-lapse video sequence of hPSCs cultured in pluripotency 

maintaining conditions, displaying predicted single-cell fate in real-time. The sequence 

corresponds to the the same pluripotent cells and colonies shown in Figure S1 and Video S1. 

The cells’ FUCCI signal is not shown, only H2B signal is shown faintly in the images, which 

instead show overlaid on the original image sequences the predominant (highest probability) 

fate predicted by the DEEP-MAP neural network through time at single-cell level for each cell 

detected. Magenta/blue/green/red: predicted hPSC/EC/ME/EN fate, correspondingly (colour 

code shown as image inset).  hPSCs are robustly predicted correctly as hPSCs through time 

regardless of changes in colony size and density.   

 

Supplemental Video 8 
Visually augmented 3.5 day time-lapse video sequence of ectodermal-triggered hPSCs, 

displaying predicted single-cell fate in real-time. The sequence corresponds to the the same 

ectodermal (EC) triggered cells and colonies shown in Figure S1 and Video S2. The cells’ 

FUCCI signal is not shown, only H2B signal is shown faintly in the images, which instead show 

overlaid on the original image sequences the predominant (highest probability) fate predicted 

by the DEEP-MAP neural network through time at single-cell level for each cell detected. 

Magenta/blue/green/red: predicted hPSC/EC/ME/EN fate, correspondingly (colour code 

shown as image inset). EC triggered cells lose predicted hPSC status after just ~1 day 

following differentiation trigger and evolve gradually toward the EC fate.   

 

Supplemental Video 9  
Visually augmented 3.5 day time-lapse video sequence of mesodermal-triggered hPSCs, 

displaying predicted single-cell fate in real-time. The sequence corresponds to the the same 

mesodermal (ME) triggered cells and colonies shown in Figure S1 and Video S3. The cells’ 

FUCCI signal is not shown, only H2B signal is shown faintly in the images, which instead show 

overlaid on the original image sequences the predominant (highest probability) fate predicted 

by the DEEP-MAP neural network through time at single-cell level for each cell detected. 

Magenta/blue/green/red: predicted hPSC/EC/ME/EN fate, correspondingly (colour code 

shown as image inset).  ME triggered cells lose predicted hPSC status after just ~1 day 

following differentiation trigger and evolve gradually toward the ME fate.   

 

Supplemental Video 10 
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Visually augmented 3.5 day time-lapse video sequence of endodermal-triggered hPSCs, 

displaying predicted single-cell fate in real-time. The sequence corresponds to the the same 

endodermal (EN) triggered cells and colonies shown in Figure S1 and Video S4. The cells’ 

FUCCI signal is not shown, only H2B signal is shown faintly in the images, which instead show 

overlaid on the original image sequences the predominant (highest probability) fate predicted 

by the DEEP-MAP neural network through time at single-cell level for each cell detected. 

Magenta/blue/green/red: predicted hPSC/EC/ME/EN fate, correspondingly (colour code 

shown as image inset).  EN triggered cells lose predicted hPSC status after just ~1 day 

following differentiation trigger and evolve gradually toward the EN fate apparently transiting 

through an intermediate ME fate.   
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Supplemental Figure 1.  Changes in hPSC proliferation, morphology and cell cycle 
status during early differentiation. Image galleries of cells co-expressing FUCCI and the 

live chromatin reporter H2B-miRFP670 imaged continually by optimised, multi-day time-lapse 

microscopy for 5 days as they either maintain pluripotency (A) or after receiving trigger for 

ectoderm (B), mesoderm (C) or endoderm (D) differentiation at day 0. Dotted boxes in the top 

rows indicate areas magnified below. Images shown only from the first 80 hours of time-lapse. 

Scalebars: 100 μm. Note changes in the cells’ appearance after 24h of imaging among the 

different conditions, particularly ME and EN triggered cells that visibly become more spread 

out and alter their nuclear shape and cell cycle reporter characteristics.   
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Supplemental Figure 2. Neural networks allow reproducible mapping of cell fate dynamics 

toward multiple fate outcomes. A, D and G, Morphological phenoprints from three independent 

biological experiments showing neural networks reproducibly allow to clearly map and 

separate cell populations based on their proliferative phenoprints. All three mappings use the 

same neural network embedding model, which was trained with a subsample of data from (A). 

B, E and H, Maps showing the dynamical evolution and phenotypic diversity of the different 

cell fate populations in real-time, across the three independent experiments. Solid lines: 

population trajectories; magenta/red/blue/green: hPSC/EN/EC/ME cell populations, 

correspondingly. Real-time trajectories are shown as solid lines overlaid on the neural network 

embedding in E (made partly transparent for visualisation purposes). C, F and I, Vectorial 

trajectories of single-cells tracked early in differentiation along the different lineages, for the 

three independent experiments. Arrows: Vectorial trajectories; magenta/red/blue/green: 

hPSC/EN/EC/ME cell populations, correspondingly. Single-cell trajectories are shown as solid 

arrows overlaid on the neural network embeddings in A, D and G correspondingly, which are 

made partly transparent for visualisation purposes.    
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Supplemental Figure 3. Visualising morphological and proliferative feature changes 
linked to cell fate changes. Image galleries of FUCCI and H2B-miRFP670 co-expressing 

cells imaged continually by optimised, multi-day time-lapse microscopy for 5 days after 

receiving trigger for ectoderm (A, C) or endoderm (B, D) differentiation at day 0. Image gallery 

corresponds to the same cells and colonies shown in Figure S1. Images shown only from the 

first 80 hours of time-lapse. FUCCI and H2B signals are not shown, instead images are fake 

coloured to display the feature value levels for cell density (A, B) or cell death probability (C, 
D)  - two features shown in Figure 3 to have high importance in distinguishing different cell 

fates  - through time at single-cell level for each cell detected. Note that EC cells show high 

density throughout (A), while in EN cells density changes dramatically (B). By contrast cell 

death probability increases in both EC (C) and EN (D) cells through time.  Scalebars: 50 μm. 
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