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Abstract 

Human immunodeficiency virus (HIV) drug resistance is a global healthcare issue. The emergence of drug resistance demands 

treatment adaptation. Computational methods predicting the drug resistance profile from genomic data of HIV isolates are 

advantageous for monitoring drug resistance in patients. Yet, the currently existing computational methods for drug resistance 

prediction are either not suitable for complex mutational patterns in emerging HIV strains or lack interpretability of prediction 

results which is of paramount importance in clinical practice. Hence, to overcome these limitations, new approaches for the HIV 

drug resistance prediction combining high accuracy and interpretability are required. In this work, a new methodology for the 

analysis of protein sequence data based on the application of generative topographic mapping was developed and applied for HIV 

drug resistance profiling. It allowed achieving high accuracy of resistance predictions and intuitive interpretation of prediction 

results. The developed approach was successfully applied for the prediction of HIV resistance towards protease, reverse-

transcriptase and integrase inhibitors and in-depth analysis of HIV resistance-inducing mutation patterns. Hence, it can serve as an 

efficient and interpretable tool to suggest optimal treatment regimens. 

Keywords: HIV-1, drug resistance, amino acid sequence space, computational prediction, Generative Topographic Mapping, multi-

task learning.

Introduction  

The global epidemic of human immunodeficiency virus (HIV) 

infection and acquired immunodeficiency syndrome (AIDS) is 

one of the major public health issues, affecting more than 38 

million people worldwide (UNAIDS, 2020). The primary 

causative agent of HIV infection is the Human immunodeficiency 

virus 1 belonging to the Lentivirus genus, Retrovidae family 

(Knipe & Howley, 2013). The virus induces a progressive 

weakening of the immune system and if untreated, leads to a rise 

of opportunistic infections and, subsequently, death. The 

development of a preventive vaccine remains a challenge, and, for 

now, the treatment of the HIV/AIDS is based on the usage of 

antiretroviral therapy (ART) (Ananworanich, 2015; Pavlakis & 

Felber, 2018). Since its introduction, ART has a significantly 

extended life expectancy and improved the quality of life of 

people diagnosed with HIV infection (Knipe & Howley, 2013). 

Currently recommended ART consists in the treatment by a 

combination of inhibitors of HIV enzymes including reverse 

transcriptase (RT), integrase (IN), and protease (PR) (WHO, 

2018). Despite being highly effective in many cases, ART failure 

can occur for some individuals due to the emergence of resistance 

against one or more inhibitors (Iyidogan & Anderson, 2014). 

Drug resistance testing is therefore essential for the selection of 

an optimal ART regimen (Günthard et al., 2018). The drug 

resistance can be assessed by either phenotypic or genotypic 

assays. Phenotypic assays provide information about the 

inhibitory activity of drugs against a particular virus variant in in 

vitro cell-based experiments. Although these assays provide 

information essential for establishing genotype-phenotype 

correlations, they are labor- and time-consuming, which restricts 

their use in routine clinical diagnostics. The genotyping assays, 

on the other hand, are based on genome sequencing, which is 

accessible, fast, and inexpensive, but requires an accurate 

interpretation system allowing one to predict the resistance profile 

for the particular virus variant. Due to the rapidity and availability 

of sequencing, a large amount of sequence data was accumulated 

in public repositories, and interpretation systems based on various 

computational methods for predicting drug resistance were 

developed to assist in clinical diagnostics.  

One of the largest and commonly used public HIV drug-resistance 

databases is the Stanford HIV drug resistance database (HIVDB) 

(Rhee et al., 2003). It comprises more than 400 thousand 

sequences of HIV-1 proteins and over 60 thousand drug resistance 

profiles for RT, PR, and IN proteins. Numerous algorithms were 

suggested for the interpretation of mutational patterns present in 

these data and the prediction of the mutations’ influence on drug 

resistance (Vercauteren & Vandamme, 2006). These algorithms 

can be broadly classified into rule-based and machine learning 
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(ML)-based. The rule-based approaches comprise a set of pre-

defined rules according to which the variant is defined as resistant 

or susceptible. They are typically derived from published data on 

mutations associated with drug resistance and correlations 

between treatment regimen and virological response data 

(Vercauteren & Vandamme, 2006). Although, rule-based 

methods are still widely used due to their interpretability, they 

require a continuous update of the existing rules and are not very 

accurate when complex mutational patterns are present in 

sequences (Singh, 2017). Alternatively, ML algorithms can be 

used to overcome the aforementioned problems of rule-based 

approaches. Various ML algorithms were applied for HIV drug 

resistance profiling, including linear regression (Rhee et al., 2006; 

Yu et al., 2014), support vector machines (Khalid & Sezerman, 

2018; Masso & Vaisman, 2013; Rhee et al., 2006), decision trees 

(Beerenwinkel et al., 2002; Rhee et al., 2006), random forest 

(Shen et al., 2016; Tarasova et al., 2018), artificial neural 

networks (Pasomsub et al., 2010; Rhee et al., 2006; Sheik 

Amamuddy et al., 2017; Steiner et al., 2020; Wang & Larder, 

2003), and Bayesian approaches (Tarasova et al., 2017). They 

allowed achieving better accuracy of drug resistance predictions 

as compared to rule-based methods. 

Despite the high accuracy of resistance predictions, most ML 

algorithms lack intuitive interpretability inherent to rule-based 

methods. The ideal algorithm would need to combine high 

predictive accuracy and intuitive interpretation of the results of 

the predictions. One way to get an interpretable machine learning 

system is to combine the visualization of data with predictions that 

would be consistent with the results of the visualization. To 

represent the sequence data, dimensionality reduction methods 

can be used. In such approaches, biological sequences are 

encoded as objects in a multidimensional space and then projected 

to 2D or 3D spaces. In recent years, several algorithms 

dimensionality reduction such as: principal components analysis 

(PCA) (Hotelling, 1933), self-organizing maps (SOMs) 

(Kohonen, 1982), generative topographic mapping (GTM) 

(Bishop et al., 1998), etc. were applied for sequence space 

analysis. The resulting maps obtained after applying 

aforementioned dimensionality reduction methods can be 

“colored” by any property of the items it hosts (e.g. the map 

hosting PR sequences can be coloured by associated drug 

resistance profiles). Hence, the “property landscapes” are 

produced – the local “color” representing the mean of 

experimental properties of the items residing in the given point or 

zone of a map. Depending on the specific hypotheses and the 

pertinence/information-richness of the “training set” of items used 

to create such landscapes, these can be used as predictive tools – 

by assuming that the unknown property of a new item can be read 

from the “color” of the landscape zone in which it resides. 

Regarding HIV, SOM and kernel PCA were applied for visual 

analysis of the HIV mutant sequences’ space (Drǎghici & Potter, 

2003; Ramon et al., 2019). 

Among other dimensionality reduction techniques, GTM seems 

to be particularly useful, as it has a rather unique ability to be both 

a visualization tool and a multi-task quantitative predictive model. 

GTM was extensively studied for chemical space analysis and 

showed superior visualization ability and prediction accuracy in 

tasks related to quantitative structure-property relationships 

modelling as compared to other dimensionality reduction 

algorithms (Gaspar et al., 2016). 

Herein, the GTM method was used for building interpretable 

maps of HIV sequence space and predicting HIV drug resistance 

profiles. The accuracy of GTM-based resistance predictions was 

comparable with the ones of other state-of-the-art ML algorithms: 

random forest (RF), support vector machines (SVM), and gradient 

boosting (GB). In addition, we combined the analysis of sequence 

space maps with algorithms allowing to identify characteristic 

mutations of sequences clustering in the same parts of the map in 

order to visualize mutation patterns leading to the resistance. 

Thus, in this work, an interactive tool for sequence space 

exploration was developed and applied to the HIV drug resistance 

analysis. The developed approach enables one to work with high-

dimensional genomic and proteomic data, all along by ensuring 

the rapid building of interpretable models. It does not only 

overcome the interpretability problem inherent to ML methods 

but also provides a general methodology applicable for various 

tasks related to phenotypes prediction. Hence, we believe that this 

approach will be useful in numerous tasks related to the analysis 

and exploration of sequence space and modelling of quantitative 

genotype-phenotype relationships (QGPR). 

Methods 

Data acquisition and pre-processing 

The HIV protein sequence data with associated resistance profiles 

accumulated in large databases provide the basis for 

computational drug resistance predictions. The resistance is 

expressed by fold ratio (FR) value: 

𝐹𝑅(𝐷) =  
𝐼𝐶50(𝐷)𝑚𝑢𝑡𝑎𝑛𝑡

𝐼𝐶50(𝐷)𝑟𝑒𝑓
 (1) 

𝐼𝐶50(𝐷)𝑚𝑢𝑡𝑎𝑛𝑡 − drug concentration at which the replication of 

the mutant virus strain is inhibited by 50%, 𝐼𝐶50(𝐷)𝑟𝑒𝑓 − drug 

concentration at which the replication of highly susceptible 

reference virus strain is inhibited by 50%.  

The above ratio is specific for each anti-HIV drug D, and these 

drugs were each targeted at a specific HIV protein. The challenge 

of this work is to predict 𝐹𝑅(𝐷) as a function of the mutations 

affecting the viral protein against which D was designed for (its 

primary target). In principle, mutations affecting other viral 

proteins might potentially indirectly impact on the effectiveness 

of the drug D, but the analysis of such effects, if ever observed, is 

beyond the purpose of the current paper. Specific models will thus 

be built for various drugs binding HIV reverse transcriptase, 

integrase, and protease sequences. Associated fold ratio values 

from high quality filtered HIVDB genotype-phenotype dataset 

were used for modelling quantitative genotype-resistance 

relationships, where “genotype” in this context designs the 

(mutant) protein sequences, the various “phenotypes” being 

𝐹𝑅(𝐷) for each drug binding to the target. Overall, 1707, 659, and 

1958 mutant HIV RT, IN, and PR sequences respectively with 

corresponding FR values measured for six RT, two IN, or eight 

PR inhibitors were extracted from the HIVDB genotype-
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phenotype dataset. Each mutant protein sequence in the database 

was represented as a set of amino acid substitutions in certain 

positions in regard to the reference sequences. These mutant 

protein sequences were then completed by original non-mutated 

amino acid residues from the consensus sequence to form viral 

protein chains. The number of amino acid residues was 99 per 

HIV PR monomer, 288 for the HIV IN, and 240 for the HIV RT. 

Although the p66 subunit of HIV RT comprises 560 amino acid 

residues, the filtered data on mutations and associated resistance 

profiles was available only for the first 240 amino acid residues 

of the RT p66 domain and, hence, only this data was used for 

modelling. Since the first three N-terminal amino acids were not 

systematically reported for all protease sequences, they were 

ignored altogether. Some of the sequences contained non-

standard symbols, such as the “.” symbol denoting unknown 

amino acid, “X” symbol denoting a mixture of four and more 

amino acids, symbols denoting the presence of two or more amino 

acids at the same position (“mixtures of amino acids”, e.g., “A/S” 

for alanine-serine mixture), etc. The amino acid mixtures arise 

due to the noise in the experimental data or the coexistence of 

several HIV variants in a single patient’s virus sample. The 

presence of these amino acid mixture symbols indicates 

ambiguities in sequence data and can confound QGPR modelling 

(Ramon et al., 2019). Several approaches were suggested for the 

processing of such sequences. In a majority of approaches the 

sequences with symbols denoting insertions and deletions, 

unknown amino acids, and mixtures of four and more amino acids 

(“X” symbol) were deleted (Masso & Vaisman, 2013; Ramon et 

al., 2019; Yu et al., 2014). By contrast, the strategies for 

processing the sequences with amino acid mixtures were diverse. 

Tarasova et al. (Tarasova et al., 2018) addressed this problem by 

verifying the frequency of occurrence of amino acids from 

mixtures in the set of corresponding positions in the examined 

enzymes of other drug-resistant HIV-1 variants and keeping the 

most frequent one. Masso et al. (Masso & Vaisman, 2013) deleted 

all the sequences with the mixtures of amino acids. In contrast to 

the latter approach, the technique leading to the expansion of the 

dataset via combinatorial enumeration of all possible variants of 

the sequences containing mixtures was also used (Sheik 

Amamuddy et al., 2017; Shen et al., 2016; Yu et al., 2014). Ramon 

et al. (Ramon et al., 2019) suggested applying various kernels for 

handling amino acid mixtures, hence maintaining the authenticity 

of the data and reducing the chance of incorrect mutation patterns 

being introduced. 

Taking into account the aforementioned information, all 

sequences containing symbols, which did not denote 20 standard 

amino acids were removed from the dataset. HIV IN sequences 

containing amino acid mixtures located in major drug resistance 

mutation positions − positions that, according to current 

knowledge (Rhee et al., 2003), are associated with significant 

changes in drug resistance (DRM positions), were removed. HIV 

PR and RT sequences of high quality filtered HIVDB genotype-

phenotype dataset did not contain any mixtures in DRM positions. 

Amino acid mixture symbols not located in major drug resistance 

mutation positions were replaced by the symbol of the first amino 

acid from the mixture symbol (i.e., a mixture such as “A/S” was 

replaced by the “A” symbol). Moreover, only sequences 

corresponding to the most studied HIV subtype B were kept, to 

increase the prediction performance for this subtype. Finally, 

1581 sequences with known FR for PR inhibitors, 510 sequences 

with available FR for IN inhibitors, and 1389 sequences with 

known FR for RT inhibitors were prepared. Classes “resistant” 

and “susceptible” were assigned to each of these sequences with 

respect to every drug based on the corresponding FR values and 

clinical thresholds extracted from HIVDB (Table S1, 

Supplementary Data). The GTM-based cartography includes as a 

first step the unsupervised construction of a map spanning the 

relevant space of possible protein sequences as defined by a pool 

of representative items (the “frame set”) (Lin et al., 2020). The 

latter do not need to be annotated by FR – therefore, the frame set 

was expanded to include also observed mutant sequences for 

which FR values were not yet reported for the studied drugs. 

Separate frame sets for RT, IN, and PR sequences were composed 

from the corresponding labelled sequences and unlabelled 

sequences from Genotype-Treatment dataset from HIVDB. In 

such a way, the individual frame sets consisted of 6591 sequences 

for IN, and  5000 sequences for PR and RT. The enrichment of 

the dataset with the randomly selected unlabelled sequences was 

performed to ensure more uniform coverage of the mutant HIV 

proteins sequence space. Since additional unlabelled sequences 

are genetically different from the labelled ones, the enriched 

dataset better delineates the sequence space of HIV mutants.The 

workflow used for the data pre-processing is shown in Figure S2, 

Supplementary Data. 

Descriptors 

A prerequisite for applying most machine learning algorithms is 

encoding amino acid sequences into numeric vectors (Zamani & 

Kremer, 2011). Herein, various types of encoding schemes were 

used: k-mers (subsequences of amino acids of length k), one-hot 

encoded vectors derived from BLOSUM,  and HIVb amino 

acid substitution matrices. Reduced amino acid alphabets, 

combining amino acids by their physico-chemical properties, and 

allowing to simplify protein complexity (Zheng et al., 2019) were 

also applied. In addition to that, descriptors transformed with 

Principal Component Analysis (PCA) and kernel PCA were 

generated. The scheme of the process used for sequence 

descriptors generation is shown in Figure S3. Presentation of the 

descriptors used in this work is given in Text S3, Supplementary 

Data. 

Generative Topographic Mapping 

Generative Topographic Mapping (GTM) is a non-linear 
dimensionality reduction method that was introduced by C. 
Bishop et al. (Bishop et al., 1998). The GTM method is based on 
the injection of a flexible hypersurface (the “manifold”) into the 
high-dimensional data space formed by the given data points. In 
the current work, each data point corresponds to an HIV protein 
sequence encoded by a numerical vector of a fixed length (Figure 
S3). The manifold is the center of a normal distribution modeling 
the data distribution; the algorithm optimizes the shape of the 
manifold and the width of the normal distribution to maximize the 
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likelihood of the dataset. Once the manifold is fitted, the data 
points are projected onto it. Finally, a 2D map represents the 
unbent manifold with sequences projected onto it. Note, that GTM 
considers each sequence not only as a single point but also as a 
probability distribution in its latent space (i.e., a probability to find 
the given sequence residing in the given node of the map). This 
allows one to create a cumulative landscape obtained by 
overlapping the probability distributions of all the training items 
(Kireeva et al., 2012). The latter can then be “colored” by 
associating to each node of the map the mean property/activity 
class of sequences residing in it, hereby generating fuzzy 
classification or continuous property landscapes. These 
landscapes can be used as predictive models at the same time 
providing data visualization. The GTM algorithm applied to 
amino acid sequences space is shown in Figure 1. 
GTM has four hyperparameters: map resolution, number of 
hidden Radial Basis Functions (RBF), regularization coefficient, 
and width of an RBF. Along with descriptors type, the best GTM 
hyperparameters values for the given modelling task must be 
found. For this purpose, Genetic Algorithm (GA) is applied. 

Genetic algorithm 

The GA is a stochastic evolutionary optimization algorithm 
adapted for parameter optimization problems. In our study, the 
GA was used as a method for selecting the optimal descriptors and 
hyperparameters of the GTM (Horvath et al., 2014). To build the 
GTM manifold, a set of 5000 HIV protein sequences (frame set; 
see the description above) is used. The selection of appropriate 
descriptors and the GTM hyperparameters was carried out 
according to the evaluation of the model’s predictive 
performance. The latter was estimated by an averaged balanced 
accuracy (average proportion of sequences predicted correctly for 
each class: susceptible and resistant) for each drug in a 5-folds 
cross-validation procedure: 

𝐵𝐴 =
1

5
∑

1

2
(

𝑇𝑃𝑓

𝑇𝑃𝑓+𝐹𝑁𝑓
+

𝑇𝑁𝑓

𝑇𝑁𝑓+𝐹𝑃𝑓
)5

𝑓=1  (2), 

TPf is the number of truly resistant sequences predicted as 
resistant in the fold f, 
TNf is the number of truly susceptible sequences predicted as 
susceptible in the fold f,  
FNf is the number of truly resistant sequences predicted as 
susceptible in the fold f, 
FPf is the number of truly susceptible sequences predicted as 
resistant in the fold f.  
The best maps are thus the ones which are able to host, on their 
one manifold, a maximum of highly predictive 
resistant/susceptible binary classification landscapes 
(corresponding to the different drugs associated to that protein). 
Using a common manifold to model drug resistance of various 
drugs based on a same manifold not only enhances the 
interpretation (by providing a common reference system to 
navigate the sequence space) but also presents the inherent 
benefits of multi-task learning (Lin et al., 2019). However, 
different protein targets require distinct dedicated maps, each 
covering a given sequence space (of IN, PR and RT, respectively).  

 Comparison to other machine learning methods 

The GTM’s drug resistance predictive ability was compared with 

other state-of-the-art machine-learning algorithms implemented 

in the sci-kit learn library (v. 0.23.1) (Pedregosa et al., 2011). The 

following hyperparameters were tuned during optimization (grid 

search): 

• RF (Breiman, 2001): number of trees (100, 300, 500, 1000), 

number of features (all features, squared root of the number 

of features, log2 of number of features), out-of-bag sampling 

(with and without), max depth of trees (full tree, 5, 10, 30), 

class weight (none, balanced, balanced_subsample); 

• SVM (Boser et al., 1992): regularization coefficient (0.1, 

1, 10, 100, 1000), kernel coefficient (1, 0.1, 0.01, 0.001, 

0.0001), kernel (‘rbf’, ‘linear’, ‘poly’, ‘sigmoid’);  
• GB (Friedman, 2001): number of trees (100, 300, 500, 

1000), number of features (all features, squared root of the 

Figure 1. Key steps of the GTM algorithm applied to amino acid sequence space. Each amino acid sequence is encoded by a numerical vector (1) defining its 
position in the N-dimensional descriptor space (2). The flexible manifold is fitted in a way to approach the data points followed by projection of the data points onto the 

manifold (3). A 2D map results from the unbending of the manifold. Each projected datapoint is characterized by a probability to be located in the nodes of a rectangular 

grid superposed with the manifold. (4) Each node is then associated (“coloured”) with a weighted average of resistance values of residing sequences. Ensemble of the 

coloured nodes forms the resistance landscape (5). 
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number of features, log2 of number of features), learning 

rate (0.0001, 0.001, 0.01, 0.1, 1.0), subsampling (0.5, 0.7, 

1.0) max depth of trees (full tree, 5, 10, 30). 

Evaluation of the model performance was made using 5-fold 

cross-validation (the same as in the case of GTM). 

Analysis of resistance determining mutation patterns 

The combination of mutations in certain amino acid positions 

(mutation pattern) defines the position of the sequence on the 

map. Hence, one can extract sequences residing in the particular 

node or a group of nodes (a zone) and determine which particular 

mutation pattern is prevalent in these sequences. This analysis can 

be performed using the algorithms for the identification of 

specificity determining positions. In this work, the SDPred 

algorithm v.2 (Kalinina et al., 2009) was used. This algorithm is 

based on the calculation of the position-wise mutual information 

in two or more groups of aligned sequences. It allows identifying 

positions in which the amino acid distribution is significantly 

different between groups of sequences. The algorithm was applied 

in combination with the GTM: sequences residing in the specific 

node or zone of the GTM were considered as the target group and 

all other sequences projected onto the map in other nodes were 

considered as another group.  

The graphical representation of aligned amino acid sequences (i.e. 

sequence logo) was performed with Logomaker python library 

(Tareen & Kinney, 2019). The sequence logo representation is 

composed from stacks of symbols that reflect the presence of 

particular amino acids in a specified position in a group of aligned 

sequences. The height of the amino acid symbols within the 

specified stack (position in a sequence) represents the frequency 

of occurrence of a certain amino acid in a group of aligned 

sequences.  

Results and Discussion 

Cartography of HIV proteins sequence space and drug 

resistance profiling 

The GTMs for PR, RT, and IN inhibitors represent frameworks 

for visualization of mutant HIV enzymes sequence space and for 

prediction of their resistance to drugs according to HIVDB 

thresholds (Figure 2). The maps reflect the density distribution of 

mutant enzymes that are encoded by different encoding schemes. 

The color of the maps indicates the mean resistance profile of the 

sequences residing in a given node of the map. The level of 

transparency reflects the number of the sequences located in the 

map. The maps with the highest prediction performance were 

constructed based on three types of descriptors: 4-mers for PR, 

one-hot encoded vectors for IN, and PCA-transformed 1-3-mers 

for RT.  

The map for nelfinavir HIV PR inhibitor shows a clear separation 

between resistant and susceptible PR sequences located on the 

map (Figure 2A). The comparison of this map to the one for 

tipranavir reveals common regions that are colored differently, i.e. 

the same zones on the map are colored in red for nelfinavir, 

whereas being blue for tipranavir. This highlights the broader 

spectrum of mutant HIV variants that are susceptible to treatment 

with tipranavir. Tipranavir is a non-peptidomimetic drug and 

possesses a different binding profile from other peptidomimetic 

PR inhibitors. The high potency of tipranavir against even multi-

drug resistant HIV PR arises due to a different kind of hydrogen 

bond patterns that it forms with the residues from the flap region 

of the PR. Overall, stronger binders such as tipranavir and 

darunavir are more difficult to be discouraged by mutations.  

The resistance landscapes for the nucleoside RT inhibitors were, 

in general, similar (Figure 2B). In contrast, whereas certain zones 

on landscapes for nucleoside RT inhibitors are red, the same zones 

Figure 2. Resistance landscapes for two protease inhibitors (A), two nucleoside reverse transcriptase inhibitors (B), two non-nucleoside reverse transcriptase 
inhibitors (C), and two integrase inhibitors (D). Each node is coloured by a weighted average of drug resistance profiles of the residing sequences. Red zones are 

occupied by the resistant sequences, while the blue zones contain susceptible sequences. All colours in between correspond to mixed zones containing both of them. 

The transparency reflects how many sequences resided in the particular node. 
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for non-nucleoside RT inhibitors appear in blue. Therefore, non-

nucleoside reverse transcriptase inhibitors (e.g. efavirenz, 

nevirapine) can be effective for HIV variants with mutant RT 

sequences residing in the bottom right corner of the resistance 

landscape (Figure 2C). Thus, a simultaneous analysis of maps for 

nucleoside and non-nucleoside inhibitors could provide an insight 

to optimal drug combinations for ART regimens.  

Integrase inhibitors are usually employed in combination with PR 

and RT inhibitors in treatment-experienced individuals. The 

integrase landscapes for the inhibitors considered in this work 

(raltegravir and elvitegravir) are very similar (Figure 2D). Indeed, 

raltegravir and elvitegravir possess comparable antiviral activity 

profiles and the presence of the cross-resistance between these 

drugs is common (Shimura & Kodama, 2009).  

Comparison to other machine learning methods 

Various state-of-the-art machine learning (ML) methods were 

compared with GTM in terms of prediction accuracies. The GTM-

based models allowed achieving high prediction performance in 

cross-validation (see Figure S4 and Table S2 in Supplementary 

Data) comparable to the one of other machine learning methods. 

In more detail, in case of multi-task GTM, the balanced accuracy 

values ranged from 0.82-0.94 for PR inhibitors (the highest 

average prediction accuracy among all proteins) to 0.65-0.80 for 

non-nucleoside RT inhibitors (the lowest average prediction 

accuracy among all proteins). It should be noted that the GTM 

was run in a multi-task mode (the same model applies to all 

inhibitors of a particular viral protein), whereas other approaches 

were used in a single-task mode, i.e. models were trained for each 

drug separately. The advantage of the multi-task GTM lies in a 

versatility of the created maps. The GTM model (map) for a given 

protein is trained to be able to predict simultaneously the 

resistance against several inhibitors. Therefore, related resistance 

landscapes built on this map can be used for comparative analysis 

of resistance profiles of protein mutants to different drugs. Thus, 

the GTM implicitly enables an intuitive exploration of the 

resistance profiles and corresponding complex mutation patterns 

via resistance and mutation landscapes. 

HIV mutation patterns 

The maps can be used for the exploration of HIV mutation 

patterns and their influence on drug resistance. Since the presence 

of certain types of mutations defines the resistance profile of the 

HIV variants, the exploration of the relationship between 

resistance landscapes and the distribution of sequences with 

specific mutation patterns on the maps (mutation landscapes) can 

be used to associate mutation patterns with resistance (Figure 2, 

Figure 3). In this context, the maps can be used either to visualize 

the distribution of sequences containing the specific mutation 

pattern (mutation landscape) and compare it with the resistance 

landscapes or select a specific part of the map and determine 

which mutations lead to the resistance profile indicated on the 

map. 

At first, the mutation patterns leading to drug resistance for HIV 

PR, IN, and RT found in the literature (Rhee et al., 2003), 

(Ceccherini-Silberstein et al., 2007) were analyzed (Figure 2). For 

example, the key resistance-associated mutation occurring in PR 

− V32I was investigated (Figure 3). The HIV isolates with this 

mutation can show a high resistance against all the drugs, 

including highly potent darunavir and tipranavir (Figure 2 and 

Figure S5), which can be seen while comparing resistance and 

mutational landscapes. This is a case of the pan-resistance toward 

PR inhibitors. All of the PR variants residing in the top right 

corner of the resistance landscapes are highly mutated. The 

majority of sequences that contain the V32I mutation also contain 

other mutations inducing resistance to PR inhibitors. It was 

experimentally proven that the V32I influences the ability of other 

mutations to induce resistance against PR inhibitors (Aoki et al., 

2018). This effect of the V32I mutation on drug resistance is 

indeed reflected on the resistance landscapes for all PR inhibitors 

by the presence of the upper right densely populated red cluster 

consisting of highly mutated PR sequences containing the V32I 

mutation among others (Figure 2A, Figure S5). Similarly to the 

analysis of mutations in protease, both well-known (e.g. G140S, 

E148H) and emerging resistance-inducing mutation patterns 

(L228H) in IN and RT, respectively, can also be analyzed (Figure 

3). For instance, comparison of the mutation landscapes with the 

resistance ones (Figures 2-3, Figure S5) shows that these mutation 

patterns are abundant among mutant proteins conferring 

resistance.  
To identify the residue positions, which are “specific” to the 
sequences from a particular node or a group of nodes on the map, 
the SDPred (Kalinina et al., 2009) algorithm was applied (see 
Methods section). This algorithm, originally developed for 
prediction of residues responsible for a particular functional 
specificity of a protein, was repurposed for analysis of 
predominant mutations that distinguish groups of sequences. 

Figure 3. Mutation landscapes for HIV PR (A), IN (B), RT (C) built for 5000 sequences from the frame set. Red zones are predominantly occupied by the sequences 
with specified mutations, while the blue zones mostly contain sequences without specified mutation pattern. All colors in between correspond to mixed zones containing 

both sequences with and without specified mutation pattern in different proportions. 
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Given the sequences from the selected zone of the GTM, the 

algorithm was used to predict the set of amino acid alignment 
positions that are different between the sequences residing in this 
zone and all other sequences. For example, the sequences located 
in a zone populated by HIV variants resistant to nelfinavir and 
susceptible to darunavir were compared to all other sequences 
(Figure 4). Then, the corresponding specificity determining 
mutations were established (Table S3). Two mutations with the 
highest relative frequency of occurrence in the selected zone were 
established: D30N and N88D (Figure 4A). They are thus the 
major mutations that differ the sequences from this particular zone 
and all other sequences residing in the remaining regions of the 
map. These mutations are indeed associated with strong resistance 
to nelfinavir according to the literature data (Rhee et al., 2003). 
Namely, the sequences with the D30N mutation pattern confer 
strong resistance to nelfinavir, whereas being susceptible to 
darunavir (Figure 4A). This mutation commonly occurs in 
combination with 88D inducing cross-resistance to atazanavir and 
saquinavir. Another mutation L10F is known to induce resistance 
to both first- and second-generation drugs, namely indinavir, 
nelfinavir, darunavir, fosamprenavir, and lopinavir, respectively. 
When the mutations D30N, N88D, L10F occur in a sequence 
simultaneously (Figure 4B), the resistance profile shifts toward 
high resistance region for indinavir, lopinavir, saquinavir, 
fosamprenavir, and atazanavir in comparison to sequences with 
only D30N, N88D mutation pattern present. Hence, the presence 
of L10F mutation is important for resistance development. This 
example illustrates the applicability of the maps for in-depth 
analysis of mutation pattern-resistance relationships. 

Conclusion 

To sum up, in this work, a novel cartography-based methodology 
for protein sequence space exploration and phenotype profiling 
was suggested. The methodology is based on the non-linear 
dimensionality reduction method GTM, which allows one to 
transform complex sequence data and associated phenotypic 

properties into interpretable two-dimensional maps. While the 

accuracy of GTM-based drug resistance predictions was 
comparable with the ones of other state-of-the-art machine 
learning algorithms, it additionally allows the illustrative analysis 
of resistance profiles and complex mutation patterns via the 
resistance and mutation landscapes. The usage of mutation pattern 
landscapes allows in-depth analysis of complex mutation patterns 
and leverages the intuitive understanding of their influence on 
resistance. Hence, this work introduces the first-in-class tool for 
HIV sequence space exploration and drug resistance analysis 
combining high predictive accuracy inherent to ML algorithms 
and interpretability specific to rule-based methods. The 
introduced methodology is universal and can be applied to other 
QGPR modelling tasks. Moreover, the GTM can be especially 
effective for the analysis of big data, since the initial GTM 
building only requires a limited number of representative samples. 
Then, the landscapes (QGPR models) can be rapidly built for any 
amount of available phenotypic data. Since the genomic and 
proteomic data is rapidly accumulating, the application of the 
GTM-based methodology for sequences space analysis has the 
potential to find a wide application as an accurate and 
interpretable machine-learning framework for personalized 
medicine. 
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