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Abstract 
Intelligence describes the general cognitive ability level of a person. It is one of the most 
fundamental concepts in psychological science and is crucial for effective adaption of behavior 
to varying environmental demands. Changing external task demands have been shown to 
induce reconfiguration of functional brain networks. However, whether neural reconfiguration 
between different tasks is associated with intelligence has not yet been investigated. We used 
fMRI data from 812 subjects to show that higher scores of general intelligence are related to 
less brain network reconfiguration between resting state and seven different tasks as well as 
to network reconfiguration between tasks. This association holds for all functional brain 
networks except the motor system, and replicates in two independent samples (N = 138, N = 
184). Our findings suggest that the intrinsic network architecture of individuals with higher 
general intelligence scores is closer to the network architecture as required by various 
cognitive demands. Multi-task brain network reconfiguration may, therefore, reflect the neural 
equivalent of the behavioral positive manifold – the essence of the concept of general 
intelligence. Finally, our results support neural efficiency theories of cognitive ability and reveal 
insights into human intelligence as an emergent property from a distributed multi-task brain 
network. 
 
Keywords: brain network reconfiguration, cognitive ability, functional connectivity, 
intelligence, resting-state fMRI, task fMRI 
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Introduction 
Intelligence captures the general cognitive ability level of a person. It is critically involved in 
learning from experiences and a prerequisite for effective adaption to changing environmental 
demands (Sternberg, 1997). People who score high on tests of general intelligence perform 
better in multiple different cognitive tasks – an observation that is called the positive manifold 
of general intelligence (Spearman, 1904). Although scientists started to investigate the 
biological underpinning of intelligence many decades ago, and correlates have been identified 
in brain structure (Gregory et al., 2016), brain function (Neubauer & Fink, 2009), and in intrinsic 
brain connectivity (Basten et al., 2015; Hilger et al., 2017; Jung & Haier, 2007), it remains an 
open question whether there exists an equivalent of the positive manifold of general 
intelligence within the human brain, i.e., a ‘neuro-g’ (Haier, 2017). 
 
Intrinsic brain networks can be assessed in the absence of task demands during the so-called 
resting state (Biswal et al., 1995; Van den Heuvel & Hulshoff Pol, 2010). Their topology has 
been suggested as reflection of information transfer between different brain regions and 
various topological network attributes have been related to differences in cognitive ability 
(Dubois et al., 2018; Hilger et al., 2020). Recently, the focus has broadened to include 
functional brain network interactions measured during active cognition (Braun et al., 2015; 
Cohen & D’Esposito, 2016). Introducing such task demands to the investigation of functional 
connectivity has been shown to amplify relations between phenotypes and their neural basis, 
suggesting task-based connectivity as promising marker of general intelligence (Greene et al., 
2018, 2020).  
 
Brain network reconfiguration, defined as changes in fMRI-derived functional brain connectivity 
in adaption to different cognitive states, has previously been studied by comparing resting- 
with task-state fMRI assessments (Schultz & Cole, 2016). Task-evoked changes in functional 
connectivity seem to be crucial for shifting neural processing (Cole et al., 2021), and a 
pioneering study revealed a significant (negative) association between a global estimate of 
brain network reconfiguration and general intelligence (Schultz & Cole, 2016). However, as 
the exact nature of changes has been shown to depend on the kind of the cognitive task (Braun 
et al., 2015; Cohen & D’Esposito, 2016; Soreq et al., 2021) as well as on the intensity level of 
the cognitive challenge (Hearne et al., 2017; Shine et al., 2016), considering brain network 
reconfiguration as task-general phenomenon may only provide limited insights into underlying 
processes. Mechanistic insights into general intelligence, i.e., into implicated cognitive 
processes and into a potential neural equivalent of the positive manifold, would therefore 
require the investigation of reconfiguration between different cognitive tasks. Such multi-task 
brain network reconfiguration has been demonstrated to capture meaningful variations 
between persons (Salehi et al., 2020) but has not yet been related to general intelligence. 
Furthermore, it has not yet been tested whether the association between brain network 
reconfiguration and general intelligence is driven by specific functional systems or whether it 
represents a whole-brain phenomenon. This would allow for additional insights about 
intelligence-relevant processes and how these processes are implemented on a neural level.   
 
Here, we use fMRI data from a large sample of healthy adults (N = 812) assessed during 
resting state and seven different tasks to test the hypothesis that higher levels of general 
intelligence relate to less brain network reconfiguration. Specifically, we expected this 
association to manifest in reaction to different cognitive demands and on various spatial scales. 
We used a straight-forward operationalization of brain network reconfiguration and 
implemented our analyses on a whole-brain level as well as on the level of seven and 17 
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canonical functional brain networks. The results confirm our hypotheses and suggest that 
functional brain networks of more intelligent people may require less adaption when switching 
between different cognitive states, thus, pointing towards the existence of an advantageous 
intrinsic brain network architecture. Further, we show that although the different cognitive 
states were induced by different demanding tasks, their relative contribution to the observed 
effect was nearly identical, a finding that supports the assumption of a general neural correlate, 
i.e., a neural positive manifold. Finally, the involvement of multiple brain networks suggest 
intelligence as an emergent property of a widely distributed multi-task brain network.  
 
Method  
Participants 
Main analyses were conducted on data from the HCP Young Adult Sample S1200 including 
1200 Subjects of age 22-37 years (656 female, 1089 right-handed, mean age = 28.8 years). 
All study procedures were approved by the Washington University Institutional Review Board, 
and informed consent in accordance with the declaration of Helsinki was obtained from all 
participants (for details see Van Essen et al., 2013). Subjects with a Mini-Mental State 
Examination (MMSE) score ≤ 26 (serious cognitive impairment) or missing cognitive data 
needed for calculating a general intelligence factor were excluded. Cognitive measures of the 
remaining 1186 subjects were used as input for factor analysis to estimate a latent factor of 
general intelligence (see next section). After additional exclusion due to missing fMRI data and 
excessive head motion (see below), the final sample consists of 812 subjects (422 female, 739 
right-handed, 22-37 years, mean age = 28.6 years). 
 
General intelligence g 
To estimate a latent factor of general intelligence (g-factor), bi-factor analysis based on the 
Schmid-Leiman transformation (Schmid & Leiman, 1957) was conducted in accordance to 
Dubois et al. (2018) for 12 cognitive measures (Table S1) of 1186 subjects.  
 
Data acquisition and preprocessing 
We used fMRI data from all four resting-state runs and data acquired during seven tasks (two 
runs each) capturing information from eight different external demands. Resting-state runs 
comprise 14.55 min data (1,200 time points), while task runs vary between 2.27 min (176 time 
points) and 5.02 min (405 time points) lengths. See Van Essen et al. (2013) for details of 
imaging parameters, Smith et al. (2013) for details of the resting-state acquisition, and Barch 
et al. (2013) for additional information about tasks. We used the minimally preprocessed HCP 
fMRI data (Glasser et al., 2013) and implemented further preprocessing comprising a nuisance 
regression strategy with 24 head motion parameters, eight mean signals from white matter 
and cerebrospinal fluid, and four global signals (Parkes et al., 2018). For task data, basis-set 
task regressors (Cole et al., 2019) were used simultaneously with the nuisance regressors to 
remove mean task-evoked activations. Finally, timeseries of neural activation were extracted 
from 200 nodes covering the entire cortex (Schaefer et al., 2018). In-scanner head motion was 
measured by framewise displacement (FD, Jenkinson et al., 2002). As recommended in 
Parkes et al. (2018), subjects were only included if mean FD < .2 mm, proportion of spikes (FD 
> .25 mm) < 20%, and no spikes above 5 mm were observed.  
 
Functional connectivity 
Subject-specific weighted functional connectivity matrices (FC) were computed using Fisher 
z-transformed Pearson correlations between time series of neural activation from 200 cortical 
regions. For each state (rest, tasks), FC was first computed for RL and LR phase directions 
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separately and averaged afterwards. Functional connections were then filtered based on their 
correlation with intelligence (p < .1, Finn et al., 2015). Connections inconsistently correlated 
with intelligence across states (positive in one, negative in another or vice versa) were 
excluded. To rule out potential confoundations of the reconfiguration measures, the filtering 
step was cross-validated: The sample was divided into ten subsamples (by ensuring absence 
of family relations and equal distributions of intelligence scores via stratified folds) and 
intelligence-relevant connections were selected in nine subsamples only. This selection of 
connections was then applied to the withheld subsample. Reconfiguration measures were 
calculated on a whole-brain level, as well as within and between pairs of networks based on 
the Yeo 7/17 canonical systems (Yeo et al., 2011). Note that for the analysis on the level of 17 
functional networks, the p-threshold was increased to p < .2 to ensure a sufficient number of 
remaining connections (see Fig. 1 for a schematic illustration of the general workflow, Fig. S1 
for the filtering procedure).  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Fig. 1. Schematic illustration of global analysis workflow. (a) Brain activity was assessed with fMRI 
during eight different cognitive states (resting state and seven tasks). (b) For each state, functional brain 
connectivity matrices (FCs, d) were computed by correlating the time series of 200 nodes with each 
other. For noise reduction, FCs were filtered based on their correlation with intelligence (see Fig. S1 
and Methods for details). Brain network reconfiguration was calculated for all state combinations as 
cosine distances (Δ) between the filtered FCs (e). To assess the relationship between brain network 
reconfiguration and intelligence, reconfiguration values were correlated (Spearman correlations, 
controlled for age, sex, handedness and in-scanner head motion) with a latent g-factor derived from 12 
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cognitive scores using a bi-factor analysis model (c). BOLD, Blood oxygen level dependent (signal); t, 
time; c, cognitive score. 
 
Brain network reconfiguration 
Reconfiguration of functional connectivity was operationalized as cosine distance 
𝑑𝑑𝑐𝑐𝑐𝑐𝑐𝑐 between the filtered FCs of two states:  

𝑑𝑑𝑐𝑐𝑐𝑐𝑐𝑐(𝑎𝑎, 𝑏𝑏) = 1 −
∑ 𝑎𝑎𝑖𝑖𝑏𝑏𝑖𝑖𝑛𝑛
𝑖𝑖=1
‖𝑎𝑎‖‖𝑏𝑏‖

 

with connection weights vectors a and b and total number of connections n. Note, that cosine 
distance captures changes in orientation between two vectors and thus, indexes changes in 
the architecture (structure) of functional connectivity rather than changes in the strengths of 
connections (as captured with, e.g., Manhattan distance, Euclidean distance).  
 
Association between reconfiguration and intelligence 
Relations between reconfigurations and intelligence were assessed with Spearman rank-order 
partial correlations by controlling for age, sex, handedness, and in-scanner head motion (mean 
FD over all scans and mean of percentage of spikes > .25 mm over all scans). For multiple 
comparisons, p-values were FDR corrected (α = .05). Reconfiguration was computed with 
different foci: A) Whole-brain average reconfiguration: The average reconfiguration between 
resting state and all tasks and the average reconfiguration between all pairs of tasks. B) Whole-
brain state combination-specific reconfiguration: Reconfigurations for each pair of rest-task 
and task-task combinations (one resting state and seven tasks), resulting in 28 reconfiguration 
scores. C) Whole-brain state-specific reconfigurations: Reconfiguration averaged over all state 
combinations a specific state was involved in. Note that for task states, only combinations with 
different tasks (no rest) were included. D) Network- and state combination-specific 
reconfiguration: Reconfiguration of all network combinations (within- and between network 
connectivity) for each state combination. These latter reconfiguration measures (case D) were 
further averaged to a) network combination-specific reconfigurations: reconfiguration averaged 
over all state combinations, b) network-specific reconfigurations: reconfiguration averaged 
over all state combinations, and averaged over all network combinations the respective 
network was involved in, c) state-specific reconfigurations on the network level: reconfiguration 
averaged over all state combinations the respective state was involved in, and averaged over 
all network combinations the respective network was involved in. 
 
External replication  
For testing the robustness of our findings against varying measures of intelligence, varying 
cognitive demands induced by different tasks, and sample dependence, all analyses were 
repeated in two independent data sets (PIOP1, PIOP2) from The Amsterdam Open MRI 
Collection (AOMIC, Snoek et al., 2021). All study procedures were approved by the faculty’s 
ethical committee before data collection started (PIOP1 EC number: 2015-EXT-4366, PIOP2 
EC number: 2017-EXT-7568) and informed consent in accordance with the declaration of 
Helsinki was obtained from all participants (for more details see Snoek et al., 2021). PIOP1 
includes fMRI data of 216 subjects collected from six cognitive states (resting state, five tasks), 
while PIOP2 contains fMRI data of 226 subjects from four states (resting state, three tasks). 
The Raven’s Advanced Progressive Matrices Test (36 item version - set II, Raven et al., 1998) 
was used in both samples for measuring intelligence. After excluding subjects with missing 
descriptive and behavioral data and after applying motion exclusion criteria (see above), 138 
subjects (PIOP1) and 184 subjects (PIOP2) remained for analyses. The fMRI data was 
downloaded in the minimal preprocessed form, using an alternative preprocessing pipeline 
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(fMRIprep v1.4.1, Esteban et al., 2019). Further preprocessing to extract nuisance regressed 
time series followed the same steps as specified above. As the PIOP samples are relatively 
small compared to the main sample and brain-behavior relationships are less reliable in small 
samples (Assem et al., 2020; Marek et al., 2020), no p-threshold was used for the selection of 
functional connections here. Instead, and to increase the robustness of this analyses, a filter 
mask was computed from the larger main sample (containing connections correlating only 
either positively or negatively with intelligence p < .01 in at least one of the filtered FCs of 
intersecting state combinations) and only connections located in these main sample filter mask 
and correlating with intelligence in the same direction in the replication samples were used in 
analyses.  
 
Results 
Intelligence 
General intelligence was operationalized as latent g-factor from 12 cognitive measures (Table 
S1) computed with bi-factor analysis (Dubois et al., 2018) using data from 1186 subjects of the 
Human Connectome Project (Van Essen et al., 2013). As per model fit criteria of Hu & Bentler 
(1999), the 4-bi-factor model fits the data well (CFI = 0.979, RMSEA = 0.0395, SRMR = 
0.0213). The statistical model and the g-factor distribution in contrast to the PMAT-score (brief 
assessment of intelligence provided by the HCP) is shown in Fig. S2. 
 
Less brain network reconfiguration is associated with higher intelligence 
Brain network reconfiguration was operationalized as cosine distance between filtered 
functional connectivity matrices (FCs) of two out of eight different cognitive states (see 
Methods, Fig. 1 for a schematic illustration of the analyses workflow, Fig. S1 for details about 
the FC filtering procedure). Averaged across all rest-task and task-task state combinations, 
less brain network reconfiguration was associated with higher intelligence scores (rest-task: 
rho = -.23, p < .001; task-task: rho = -.23, p < .001; Fig. 2a). This effect also holds when using 
stricter thresholds for the cross-validated filtering approach, e.g., p < .01 (Table S2) or when 
using alternative mathematical operationalizations of reconfiguration (Pearson correlation 
between Fisher z-transformed FCs: rest-task: rho = .23, p < .001, task-task: rho = .23, p < .001; 
Manhattan distance between bi-partitioned FCs: rho = -.19, p < .001, task-task: rho = -.24, 
p < .001). 
 
Higher intelligence is related to less reconfiguration across different cognitive demands 
Significant associations between higher intelligence and less brain network reconfiguration 
were observed for all rest-task and task-task state combinations (Fig. 2b). The correlations 
between reconfiguration and intelligence ranged from rho = -.10 (p = .006) for reconfiguration 
between resting state and social recognition task to rho = -.23 (p < .001) for reconfiguration 
between working memory and motor task. Again, similar associations were observed when 
using alternative reconfiguration metrics (Fig. S3). For evaluating the total influence of each 
individual state, reconfiguration values were averaged across all rest-task combinations (for 
resting state) and separately over all task-task combinations a respective task was involved in 
(for each task state). The total influence of the language task was significantly stronger 
(p < .05) than the influence of the social recognition task, the relational processing, and the 
emotion processing task, while all other states did not differ significantly in their total influence 
on the observed effect (Fig. 2c and Fig. S4).  
 
The relation between reconfiguration and intelligence depends on different functional 
brain systems rather than on specific cognitive demands 
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By parcellating the brain into seven functional networks (Yeo et al., 2011), and by considering 
all possible network and state combinations, we observed that the variance of the effect 
between different state combinations was significantly smaller than the variance of the effect 
between different network combinations (Wilcoxon rank sum test, W = 441, p < .001, Fig. 2d, 
Fig. S5). This suggests prior importance of the differentiation between different brain systems 
rather than between different external demands. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Fig. 2. Less brain network reconfiguration is associated with higher intelligence. (a) Scatterplots 
illustrating the association (partial Spearman correlation, rho) between a latent g-factor of intelligence 
(derived from 12 cognitive tasks, x-axis) and the standardized residuals resulting from linear regression 
of age, sex, handedness, and in-scanner head motion on the variable of interest, that is brain network 
reconfiguration. Brain network reconfiguration was operationalized as cosine distance between 
functional connectivity matrices averaged over all possible rest-task combinations (y-axis, left panel), 
and all possible task-task combinations (y-axis, right panel) respectively. Note that only in this subfigure 
data of one subject was excluded due to visualization purposes. (b) Association between intelligence 
and brain network reconfiguration for all possible state combinations (FDR-corrected p-values, α = .05, 
all correlations are significant). The strengths of correlations are depicted in different colors (see color 
bar). (c) Associations between intelligence and a total measure of state-specific reconfiguration. i.e., 
reconfiguration values were averaged over all state combinations the respective state was involved in 
(FDR-corrected p-values, α = .05, all correlations are significant). Note that for task states, only 
combinations with different tasks (no rest) were included. Significant differences in correlation values 
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(p < .05, marked with an asterisk) were only observed for the comparisons between the language task 
(LAN) and the social cognition, the relational processing, and the emotion processing task (SOC, REL, 
EMO) respectively. (d) Associations between intelligence and brain network- and state combination-
specific reconfiguration values. Brain networks were derived from the Yeo atlas (Yeo et al., 2011, seven 
network partition used here) and network combinations refer to all within and between network 
connectivity combinations (columns). The strengths of correlations are depicted in different colors (see 
color bar). Note that NaN (not a number) values exist if in a specific network-state combination no single 
brain connection passes the filtering procedure (see Fig. S1 and Methods). For details about the 
assignment of the correlation values to the specific state and network combinations, see Fig. S5. Std. 
res., standardized residuals; FDR, false discovery rate; RES, resting state; WM, working memory task; 
GAM, gambling task; MOT, motor task; LAN, language processing task; SOC, social cognition task; 
REL, relational processing task; EMO, emotion processing task. 
 
Higher intelligence is related to less reconfiguration across different spatial scales 
Next, we analyzed the relative contribution of seven and 17 functional brain networks to the 
observed effect. Overall, higher intelligence scores were associated with less reconfiguration 
of within and between network connectivity in multiple brain networks. Dorsal and ventral 
attention systems, the control network, the default mode network, and limbic areas showed 
consistent negative associations, while in the visual and somatomotor networks the effect was 
weaker and the pattern more heterogeneous (Fig. 3a). To derive a more global measure of 
total network-specific reconfiguration, we then aggregated reconfiguration scores across all 
network-combinations a respective network was involved in. Higher intelligence was 
significantly associated with less connectivity reconfiguration in respect to all networks, except 
the motor system (Fig. 3b). Similar relations were observed within and between 17 functional 
brain networks (Fig. 3c,d).  
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Fig. 3. Brain network-specific associations between general intelligence and brain network 
reconfiguration. Partial spearman correlation (rho) between intelligence (g-factor derived from 12 
cognitive tasks) and brain network-specific reconfiguration values (averaged cosine distance between 
functional connectivity matrices of eight different cognitive states) for seven and 17 separate functional 
brain networks (Yeo et al., 2011). Network-specific correlations were projected onto the surface of the 
brain. The strengths of correlations are depicted in different colors (see color bar). All correlations were 
controlled for influences of age, sex, handedness, and in-scanner head motion. All significant 
correlations (FDR-corrected p-values, α = .05) are marked with asterisks. Note that NaN (not a number) 
values exist if in a specific network combination no single brain connection passes the filtering procedure 
(see Fig. S1 and Methods). (a) Associations between intelligence and brain network combination-
specific reconfiguration scores for seven functional brain networks. (b) Associations between 
intelligence and reconfiguration scores for seven functional brain networks (averaged across all within- 
and between network combinations a respective network is involved in). (c) Associations between 
intelligence and brain network combination-specific reconfiguration scores for 17 functional brain 
networks. (d) Associations between intelligence and reconfiguration scores for 17 functional brain 
networks (averaged across all within- and between network combinations a respective network is 
involved in). FDR, false discovery rate; VIS, visual network; SMN, somatomotor network; DAN, dorsal 
attention network; VAN, salience/ventral attention network; LIM, limbic network; CON, control network; 
DMN, default mode network; TEMP, temporal parietal network. 
 
Network-specific reconfigurations in response to varying external demands 
Finally, we investigated network-specific contributions on the association between intelligence 
and brain network reconfiguration for each cognitive state. To this end, network-specific 
reconfiguration scores were aggregated across all rest-task combinations (for resting state) or 
task-task combinations a respective task was involved in (for each task state). As illustrated in 
Fig. 4, network-specific associations between reconfiguration and intelligence were relatively 
stable across all cognitive states. Again, similar relations were observed at the level of 17 
functional brain networks (Fig. S6). 
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Fig. 4. Associations between intelligence and brain network reconfiguration for each cognitive state. 
The strengths of partial Spearman correlations (rho) between intelligence (g-factor derived from 12 
cognitive tasks) and brain network reconfiguration (cosine distance between functional connectivity 
matrices of different states) are illustrated in different colors (see color bar). All associations were 
controlled for influences of age, sex, handedness, and in-scanner head motion. Seven functional brain 
networks were derived from the Yeo atlas (Yeo et al., 2011). For calculating state-specific associations, 
cosine distances were averaged over all state combinations a respective state was involved in (for task 
states, only combinations with different tasks were included), and averaged over all network 
combinations (within- and between network connectivity) the respective network was involved in. 
 
External replication: Generalization to different measures of intelligence and different 
cognitive demands 
To evaluate the robustness of our findings against different measures of intelligence and 
against varying cognitive demands induced by different tasks, all analyses were repeated in 
two independent samples (The Amsterdam Open MRI Collection AOMIC, Snoek et al., 2021, 
PIOP1: N = 138, PIOP2: N = 184, see Methods). In line with our main analyses, less brain 
network reconfiguration was associated with higher intelligence. This effect holds for rest-task 
and task-task reconfiguration (PIOP1 rest-task: rho = -.32, p < .001, task-task: rho = -.26, 
p = .003; PIOP2 rest-task: rho = -.23, p = .002, task-task: rho = -.26, p < .001, Table S2) and 
became visible across most state combinations (Fig. S4). In PIOP1, nine out of 15 rest-task 
and task-task combinations showed a significant negative association (range: -.12 ≤ rho ≤ -.35, 
.001 < p ≤ .18), while in PIOP2, five out of six rest-task and task-task combinations showed 
the respective effect (range: -.13 ≤ rho ≤ -.30, .001 < p ≤ .09). Aggregating across all state 
combinations in which a respective state was involved in demonstrated that only in the PIOP2 
sample the total influence of the stop signal task was significantly stronger (p < .05) than the 
total influence of the emotional matching task. All other states did not differ significantly in their 
total influence on the observed effect (Fig. S4). Finally, results from network-specific analysis 
were also similar to the results from the main sample (Fig. S7, S8). In sum, the results of the 
replication analyses support the robustness of our findings and suggest that the association 
between higher intelligence scores and less brain network reconfiguration generalizes to 
different cohorts, imaging acquisition parameters, operationalizations of intelligence, and to 
different cognitive demands.  
 
Robustness control analyses 
Although the adopted procedure for filtering out noise-contaminated functional brain 
connections was thoroughly cross validated (see Methods), to rule out the possibility that 
results are biased by this step, all whole-brain analyses were repeated by a) considering all 
possible functional brain connections (no filter) and b) implementing a filter based on the pure 
overlap and ignoring the sign of the association between connectivity and intelligence (different 
filter). The same association between higher intelligence and less brain network 
reconfiguration were observed in both cases (no filter: rest-task: rho = -.12, p < .001; task-task: 
rho = -.12, p < .001; different filter: rest-task: rho = -.21, p < .001; task-task: rho = -.21, 
p < .001). Without filtering, state-specific effects were overall smaller with not all state 
combinations reaching the significance threshold, while state-specific results based on the 
different filtering procedure were nearly identical (see Table S2, Fig. S9). Together, these 
analyses suggest that our filtering procedure successfully reduced noise and, most 
importantly, demonstrate that the observed association between higher intelligence and less 
brain network reconfiguration does not represent a spurious result of the filter.  
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Discussion 
We showed that general intelligence is associated with less brain network reconfiguration 
expressed by higher similarity between functional brain connectivity linked to various cognitive 
states. In line with our initial hypothesis, this effect was not only observed for reconfiguration 
between rest and task but also for reconfiguration between different tasks each associated 
with a specific cognitive demand. Multiple control analyses and replication in two independent 
samples demonstrate the robustness of our findings and suggest generalizability of this effect 
to different measures of intelligence and to additional cognitive demands. Finally, multiple 
functional brain systems contributed to this effect suggesting that intelligence is an emergent 
whole-brain phenomenon. 
 
Our finding that less reconfiguration of functional brain connectivity is related to higher 
intelligence suggests that more intelligent people may have an intrinsic brain network 
architecture that is better suited to fulfil many cognitive demands. In this regard, intrinsic brain 
connectivity, as assessed during rest, can be understood as baseline or inherent architecture 
that undergoes task-specific adaptations to optimally support upcoming external demands 
(Cole et al., 2021). The observation that higher intelligence is not only associated with less 
reconfiguration between rest and task but also with less reconfiguration between different tasks 
implies that the intelligence-associated advantage in network adaption primarily refers to task-
general (in contrast to task-specific) adaptions, which have been shown to build the major 
proportion of functional connectivity adaptions when external demands are induced (Cole et 
al., 2014). An intrinsic network architecture which is closer to such a general task-supporting 
functional brain network structure may allow more intelligent people to switch faster and more 
efficiently (in terms of energy consumption) between rest and task as well as between different 
tasks associated with varying cognitive demands. Less required network adaption could thus 
potentially contribute to lower reaction times (Jensen, 2006) or smaller latencies of event-
related brain potentials in reactions to upcoming task stimuli (Schubert & Frischkorn, 2020), 
both of which have been associated with higher intelligence. Our findings add therefore 
empirical support to the Neural Efficiency Hypothesis of intelligence that globally suggests that 
more intelligent people make use of their brain in a more efficient way (Neubauer & Fink, 2009).  
 
The observation that all tasks seem to contribute to the observed effect with almost equal 
strength, further supports the assumption that task-general adaptation has a greater 
importance for intelligence-associated processing advantages than task-specific adaptation. 
The overlap of network architectures as required by different cognitive demands can thus be 
interpreted as reflection of the positive manifold of general intelligence on the neural level 
(Kovacs & Conway, 2016; Spearman, 1904). In that, our study reinforces one of the oldest 
theories of human intelligence (g-factor, Spearman, 1904) and provides at least a preliminary 
answer to the question about the existence of a ‘neuro-g‘ (Haier, 2017).  
 
We further analyzed the impact of variations between different functional brain systems on the 
observed effect and showed that the relation between reconfiguration and intelligence 
depends more on variations between different brain networks than on variations between 
different tasks. Specifically, reconfiguration in all brain systems except in the somatomotor 
network was significantly related to intelligence. The here proposed neural positive manifold 
(the overlap of network architectures as required by different demands) may thus include most 
but not all functional brain systems and may support a wide variety of different cognitive 
demands. However, although our replication supports the generalizability to additional 
cognitive states, the selection of tasks was limited in the current study, and it therefore requires 
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further investigation to test whether this effect is universal for a broader range of cognitive 
demands.  
 
Overall, the involvement of multiple functional brain systems supports neurocognitive models 
(P-FIT, MD, see also Barbey, 2018) and meta-analytic findings (Basten et al., 2015) that reveal 
individual differences in intelligence to be not only associated with variations in structural or 
functional characteristics of a single brain region, but rather more to properties of a distributed 
network with major implications of neural systems associated with attentional control (Hilger et 
al., 2017, 2020), executive functioning (Unsworth et al., 2009), and the default-mode of brain 
function (Basten et al., 2013). Although limbic brain systems have long been neglected by 
most of intelligence research, recent evidence supports these brain regions implication also in 
cognition (Catani et al., 2013) and our study can further contribute to this accumulating 
evidence. 
 
Several limitations need to be mentioned. First, although we applied in-sample cross-validation 
strategies to increase the generalizability of the functional connectivity filter, we cannot 
completely rule out any remaining influences of sample-specific characteristics on the 
connection selection procedure. This could impact functional connectivity results especially as 
we observed that filters became instable in smaller samples (replication samples). To address 
this issue, we conducted a conservative approach and applied the filter mask of the main 
sample (HCP) to both replication samples which weakens the overall effect but increases its 
robustness. Future studies may take sample size into strong consideration and draw specific 
attention to construct robust and across-sample generalized functional connection selection 
strategies. Second, the sample of our study was restricted to subjects between 22-37 years of 
age; thus, future studies should address the question whether results generalize to a broader 
age range. Third, although our replication analysis shows generalizability of our finding to a 
different intelligence test and different cognitive demands, future studies may contribute to 
further broaden the picture to more diverse tasks as well as tasks that are more directly 
associated with the intelligence test assessment (Soreq et al., 2021) including multiple levels 
of difficulty (Hearne et al., 2017; Sripada et al., 2020). Such investigations would be valuable 
for gaining more comprehensive insights into the role different cognitive processes may play 
within the relationship between brain network reconfiguration and general intelligence. Lastly, 
the analyses reported here might also be adapted to time-resolved connectivity and the 
analyses of momentary switches between cognitive states (Greene et al., 2020; Shine et al., 
2019).  
 
In sum, our study reveals that greater efficiency in the reconfiguration of functional brain 
networks in response to various external demands is associated with an increased capacity 
for cognition and intellectual performance. In general, superior performance may profit from 
fast and efficient neural processing. The here observed association between general 
intelligence and less task-induced brain network reconfiguration that holds across a broad 
variety of different cognitive demands may reflect that the intrinsic brain network architecture 
of more intelligent people is per se closer to a network configuration as required by various 
external demands. We conclude that such a network architecture constitutes an optimal 
foundation for fast and efficient cognitive processing that ultimately contributes to intelligent 
behavior. Finally, the involvement of multiple brain systems suggests intelligence as an 
emergent whole-brain phenomenon. Taken together, our study reveals multi-task brain 
network reconfiguration as promising marker to further understand the mechanisms underlying 
human cognition.    
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