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Abstract: Gene regulatory networks (GRNs), consisting of transcription factors and their target cis-

regulatory sequences, control neurogenesis and cell fate specification in the developing central nervous 

system, but their organization is poorly characterized.  In this study, we performed integrated single-cell 

RNA- and scATAC-seq analysis in both mouse and human retina to profile dynamic changes in gene 

expression, chromatin accessibility and transcription factor footprinting during retinal neurogenesis.  We 

identified multiple interconnected, evolutionarily-conserved GRNs consisting of cell type-specific 

transcription factors that both activate expression of genes within their own network and often inhibit 

expression of genes in other networks.  These GRNs control state transitions within primary retinal 

progenitors that underlie temporal patterning, regulate the transition from primary to neurogenic progenitors, 

and drive specification of each major retinal cell type.  We confirmed the prediction of this analysis that the 

NFI transcription factors Nfia, Nfib, and Nfix selectively activate expression of genes that promote late-stage 

temporal identity in primary retinal progenitors.  We also used GRNs to identify additional transcription 

factors that promote (Insm1/2) and inhibit (Tbx3, Tcf7l1/2) rod photoreceptor specification in postnatal 

retina.  This study provides an inventory of cis- and trans-acting factors that control retinal development, 

identifies transcription factors that control the temporal identity of retinal progenitors and cell fate 
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specification, and will potentially guide cell-based therapies aimed at replacing retinal neurons lost due to 

disease. 
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Introduction:   
The central nervous system is highly complex, and consists of many functionally and molecularly 

distinct cell types, which are generated in discrete though often overlapping temporal windows (Holguera 

and Desplan, 2018; Oberst et al., 2019; Paridaen and Huttner, 2014).  In both vertebrates and invertebrates, 

temporal patterning is controlled intrinsically, by dynamically regulated expression of transcription factors, 

which in turn regulate the ability of neural progenitors to proliferate and generate specific cell types 

(Cayouette et al., 2003; Doe, 2017; Rossi et al., 2021; Thor, 2017).  Multiple individual transcription factors 

that control temporal patterning in both Drosophila (Bayraktar and Doe, 2013; Erclik et al., 2017; 

Konstantinides et al., 2021) and mammalian (Sagner et al., 2020; Telley et al., 2019) neural progenitors, 

and large-scale gene expression analysis of the developing brain has identified many other dynamically 

expressed transcription factors (Carter et al., 2018; Manno et al.; Tiklová et al., 2019).  However, the highly 

diversity and poor characterization of cell types in much of developing central nervous system (Zeng and 

Sanes, 2017) has greatly hindered progress into our understanding of the genomic targets of these 

transcription factors, the networks into which they are organized, and the mechanisms by which they control 

temporal transitions and regulate neurogenesis.   

In contrast to most brain regions, the retina represents a relatively tractable system for identifying 

broadly applicable molecular mechanisms controlling temporal patterning and neurogenesis in the 

developing central nervous system.  The retina is composed of seven major cell types whose generation 

and molecular properties are well-characterized.  Specifically, retinal ganglion cells, cone photoreceptors, 

horizontal cells and GABAergic amacrine cells are specified during early stages of neurogenesis prior to 

embryonic day (E)18, while non-GABAergic amacrine cells, bipolar cells, Müller glia and most rod 

photoreceptors are specified at later ages (Bassett and Wallace, 2012; Cepko, 2014; Young, 1985a). Much 

effort has been directed towards identifying factors that control retinal cell identity (Malin and Desplan, 2021; 

Sanes and Zipursky, 2010). Some transcription factors have been identified that act as master regulators of 

retinal cell fate specification, such as Otx2, which promotes photoreceptor and bipolar cell fate while 

repressing amacrine cell specification (Ghinia Tegla et al., 2020; Nishida et al., 2003). Several recent large-
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scale single-cell RNA-seq (scRNA-seq) studies have comprehensively profiled gene expression in mouse, 

human, and zebrafish retinas across the full course of neurogenesis (Clark et al., 2019; Cowan et al., 2020; 

Lu et al., 2020; Xu et al., 2020). These and other studies have identified multiple transcription factors (TFs) 

that are selectively expressed in either early or late-stage retinal progenitor cells (RPCs).  Genetic analysis 

has shown that several of these are required for generation of individual retinal cell types (Clark et al., 2019; 

Elliott et al., 2008; Javed et al., 2020; Liu et al., 2020; Mattar et al., 2015).   

Despite these advances, our understanding of the detailed mechanisms by which retinal cell fate 

specification is regulated remains largely unclear.  Gene expression data alone does not directly identify 

regulatory relationships between transcription factors and their target genes.  It is likewise not known how 

transcription factors that are selectively expressed in early or late-stage RPCs regulate temporal identity.  

While RPCs appear to commit to specific cell fates around the time of final exit from mitosis (Cepko, 2014), 

the molecular mechanisms that control this process are also still unknown.  Furthermore, multiple 

transcription factors typically interact to coordinate progenitor cell fate transitions and cell fate specification, 

with feedback loops in which pairs of cell or stage-specific transcription factors regulate each other either 

positively or negatively playing an critical role in controlling developmental transitions (Davidson, 2001; 

Hobert, 2008).   

In particular, the organization of the gene regulatory networks (GRNs) that control retinal 

neurogenesis and cell fate specification currently remains unexplored at the single cell level.  While several 

studies have globally analyzed chromatin accessibility and/or histone modifications in either whole retina 

(Aldiri et al., 2017; Xie et al., 2020) or purified individual developing retinal cell types (Murphy et al., 2019; 

Stein-O’Brien et al., 2019; Zibetti et al., 2019), the extensive heterogeneity of cell types in the developing 

retina limits the usefulness of these datasets.  Despite the wealth of scRNA-seq data now available, we still 

lack a real understanding of how transcription factors interact and dynamically regulate expression of genes 

controlling retinal temporal patterning and cell fate specification.   

In this study, we address this by generating chromatin accessibility profiles of the developing mouse 

retina over the full course of neurogenesis using single-cell ATAC-seq (scATAC-seq).  We identify cis-

regulatory elements and putative transcription factor binding sites from the scATAC-seq datasets, and then 

integrate these results with existing, age-matched scRNA-seq datasets from mouse (Clark et al., 2019), as 

well as newly generated scRNA-seq and scATAC-seq datasets from developing human retina (Thomas et 

al., 2021) to identify evolutionarily-conserved GRNs controlling key developmental transitions and cell fate 

specification.  Within these GRNs, cell type-specific transcription factors activate and maintain expression of 

other transcription factors within the network while often also inhibiting, or more rarely activating, expression 

of transcription factors in other networks.  We identify GRNs specific to neuroepithelial-like cells, early and 
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late-stage primary and neurogenic RPCs, and all major neuronal and glial cell types of the retina.  By 

modelling dynamic regulatory relationships between transcription factors in cell-specific GRNs, we have 

been able to make and validate specific predictions about their function in retinal development.  For 

instance, we demonstrate that the NFI factors Nfia/b/x, which were previously shown to promote 

specification of late-born retinal cell types (Clark et al., 2019), directly activate expression of transcription 

factors selectively expressed in late-stage RPCs and Müller glia.  We also identify previously 

uncharacterized activators (Insm1/2) and inhibitors (Tbx3 and Tcf7l2) of rod photoreceptor specification and 

differentiation.  This resource provides a roadmap for the research community to identify the gene regulatory 

networks that control retinal development. 

 

Results: 
Single-cell ATAC-seq profiling of developing mouse retina  
To comprehensively profile dynamic changes in chromatin accessibility across the full course of 

retinogenesis, we conducted scATAC-seq analysis using the 10x Genomics Chromium platform on 

dissociated cell nuclei from whole mouse retina at 11 timepoints: embryonic (E) day 11, 12, 14, 16, and 18, 

as well as postnatal (P) day 0, 2, 5, 8, 11 and 14 (Figure 1A), profiling a total of 108,975 cells (Figure S1A).  

The distribution of the size and position of accessible DNA sequences relative to annotated transcriptional 

start sites (TSS) were highly consistent among each of these samples (Figure S1B), demonstrating overall 

high quality data. We observed high overall correlations between age-matched scATAC-seq and bulk 

ATAC-seq retinal progenitor (RPC) samples at E11 (r=0.82) and P2 (r=0.94), while lower correlations were 

seen between age-mismatched E11 and P2 samples (Figure S1C) (Zibetti et al., 2019).  ScATAC-seq 

analysis robustly detected peaks seen in bulk ATAC-seq data, and reflected temporal differences in gene 

expression, as shown for the bHLH factor Hes5, which is strongly enriched in late-stage RPCs (Furukawa et 

al., 2000; Hojo et al., 2000) (Figure S1D).    

UMAP analysis was then performed on datasets obtained from each individual time point to identify 

individual cell types, which were annotated based on differential accessibility of a panel of well-

characterized cell type-specific genes (Table ST1).  UMAP analysis of scATAC-seq data showed broad 

similarity to age-matched scRNA-seq data (Figure 1B).  Several features were observed from this analysis.  

First, as previously reported using scRNA-seq analysis (Clark et al., 2019), a clear distinction was seen 

between early-stage neuroepithelial cells (which here we term RPCs stage 1), and both early-stage and 

late-stage primary RPCs (RPCs stage 2 and 3 respectively), with Müller glia (MG) arising directly from late-

stage primary RPCs.  Distinct populations of early and late-stage neurogenic RPCs are also observed, 

which RNA velocity analysis indicates arise from early and late-stage primary RPCs, respectively (Melsted 
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et al., 2021) (Figure 1B,C).   Second, four major trajectories of differentiating neurons are observed: retinal 

ganglion cells (RGCs); amacrine and horizontal cells (AC/HC); rod and cone photoreceptors; and bipolar 

cells (BC), respectively (Figure 1B, Fig. S1). Third, the timing of the appearance of each retinal cell type and 

their relative abundance is also broadly similar between the two data sets (Figure 1D, Table ST1).  

Neuroepithelial cells (RPCs stage 1) dominate the E11 and E12 samples, while RGCs, cones and 

amacrine/horizontal cells are detected by E14.  A rapid transition between early and late-stage primary and 

neurogenic RPCs is seen between E16 and E18, which coincides with a dramatic reduction in the relative 

abundance of RGCs, as previously observed using scRNA-seq analysis (Clark et al., 2019).  Likewise, late-

born bipolar cells and Müller glia are first observed in both datasets at P5 (Figure 1D).   We observe a high 

overall correlation between scATAC-seq and scRNA-seq profiles of individual cell types (Figure S1E). 

A previous study has conducted ATAC-seq and ChIP-seq analysis of chromatin modifications in 

whole mouse retina over the course of development (Aldiri et al., 2017).  We investigated the extent to 

which open chromatin regions (OCRs) that were detected using our scATAC-seq matched genomic 

annotations that were defined by Hidden Markov Modeling (HMM) from age-matched bulk retinal samples 

(Aldiri et al., 2017).  While HMM analysis showed that the great majority of genomic regions were predicted 

to lack regulatory potential at all ages (Aldiri et al., 2017), we found that the majority of OCRs identified in P0 

and P14 retina using aggregated scATAC-seq overlapped with regions identified as active promoters or 

enhancers, as defined using HMM analysis of bulk ChIP-Seq and ATAC-Seq data (Figure S1F).  A 

comparison of OCRs present in specific cell types to age-matched HMM data revealed that the most 

abundant cell types showed the strongest predicted regulatory potential, with OCRs found in primary and 

neurogenic RPCs showing particularly high regulatory potential at P0, as did rod photoreceptor OCRs at 

P14 (Figure S1F).  However, even in rarer cell types -- such as retinal ganglion cells (RGC) at P0 or Muller 

glia (MG) at P14 -- at least one-third of all OCRs were predicted to show regulatory potential.  These broadly 

reflect overall changes in retinal cell composition, and highlight the importance of the finer resolution 

analysis provided by scATAC-seq data.  Genes that are highly specific to different mature retinal cell types -

- such as Aqp4 in MG, Tfap2b in amacrine cells (AC), Opn1sw in cones, Rho in rods and Cabp5 in bipolar 

cells (BC) -- showed expected cell type-specific patterns of chromatin accessibility at P14 (Figure S1G).   

 

Analysis of dynamic chromatin accessibility and transcription factor activity during mouse 
retinal development. 

We next systematically analyzed scATAC-seq data to identify cell type-specific cis-regulatory 

elements (Figure 2A, Table ST2).  Patterns of chromatin accessibility of well-characterized cell type-specific 

genes generally correlate with their mRNA expression (Figure S2A), although some transcription factors 
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specifically expressed in neurogenic RPCs such as Atoh7 and Olig2 also showed high levels of accessibility 

in early-born neurons, including RGCs, cones, and AC/HC.  All cell types showed many specific peaks of 

chromatin accessibility, with MG (12,757 peaks) and RGC (8,576 peaks) showing the largest number, and 

early neurogenic RPCs showing the smallest number of peaks (1,497).  Next, we defined the gene 

expression that is associated with these cell type-specific accessibility regions. For each cell type-specific 

accessible peak, we calculated the peak-gene correlation and selected their positive correlated gene 

expression. In total, we identified 11,203 corresponding genes for all cell types (Figure 2B, Table ST2). 

These include Nrl and Nr2e3 in rods, Mlc1 and Aqp4 in Müller glia, and Sfrp2 and Foxp1 in stage 1+2 

RPCs.  Gene Ontology (GO) analysis reveals that genes associated with progenitor-specific differentially 

accessible regions (DARs) are often involved in cell cycle regulation; genes associated with rod and cone-

specific DARs are involved in phototransduction and visual cycle; and genes associated with neurogenic 

RPC-specific DARs are involved in regulation of development (Figure 2C, Table ST2).   

We then analyzed the activity of transcription factors that could potentially interact with the DARs. 

We measured the gain or loss of global chromatin accessibility in DARs containing individual TF motifs by 

using chromVAR software (Figure 2D, Table ST2) (Schep et al., 2017).  Many transcription factors showed 

some degree of cell type-specificity, with the number of cell type-specific motifs ranging from 641 in Müller 

glia to 41 in bipolar cells (Table ST2).  We further validated chromVAR scores by using footprinting analysis 

for known transcription factor markers that are selectively expressed in specific retinal cell types. These 

include Tfap2a motifs associated with AC/HC-specific footprints; Pou4f2 motifs associated with RGC-

specific footprints; Otx2 motifs that are associated with photoreceptor-specific footprints; and Nfix motifs 

associated with Müller glia-specific footprints (Figure 2E, S2B).   Integrated scRNA-seq and scATAC-seq 

analysis can thus reliably identify targets of known cell type-specific TFs in mice. 

 

Comparison of mouse and human scATAC-seq data reveals evolutionary-conserved 
regulatory elements and motif activities 

To identify evolutionarily conserved regulatory elements and transcription factors controlling retinal 

neurogenesis and cell fate specification, we compared our mouse datasets to scATAC-seq and scRNA-seq 

data obtained from six developmental time points from human retina, ranging from 7.5 to 19 gestational 

weeks (Thomas et al., 2021).  As in the mouse, UMAP analysis identifies each of the major cell types of the 

developing retina (Figure S3A,B, Table ST3), and closely resembles an aggregate UMAP plot previously 

reported for a more extensive scRNA-seq analysis of human retinal development (Lu et al., 2020)(Figure 

S3C).  We next identified evolutionarily-conserved cell type-specific regulatory elements for all major retinal 

cell types.  We find that 3-15% of these elements are conserved between mouse and human, with RGCs 
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the highest, and cones and Müller glia the lowest (Figure 3A).  This may in part reflect oversampling of early 

timepoints in the human data, as these samples are highly enriched for RGCs and have relatively few Müller 

glia (Table ST3, ST4).  The low level of conservation of cone-specific elements, however, likely reflects the 

fact that cones are the most transcriptionally divergent between mice and humans (Lu et al., 2020).  Overall, 

8.3% of mouse peaks and 6.4% of human peaks are evolutionarily-conserved (Figure 3B, Table ST3, ST5).  

No clear enrichment is observed in evolutionarily-conserved peaks relative to all peaks in either species, 

with the exception of evolutionarily-conserved human peaks showing greater enrichment for transcriptional 

start sites (TSS) (4.9% vs. 2.1%, p-value<2.2e-16).  

To analyze conservation of trans-acting factors regulating cell type-specific gene expression, we 

compared cell type-specific active motifs in mouse and human cell types using chromVAR (Schep et al., 

2017).  As expected, we observed a much higher percentage of conserved active motifs of cell type-specific 

regulatory elements, with numbers of conserved cell type-specific motifs ranging from 122/161 in cones to 

50/641 in Müller glia.  Cell type-specific active motifs include well-characterized developmental regulators 

such as Sox9, Neurod1, Pou4f2, Tfap2a and Crx (Figure 3C, Table ST3, ST5).  Similar developmental 

patterns of transcription factor footprinting are observed for many of these TFs, as illustrated by Neurod1 in 

late neurogenic RPCs and Sox9 in stage 3 RPCs and Müller glia (Figure 3D, Table ST3).  Using the same 

analytic approach that was applied to mouse retina, we can also reliably identify targets of known cell type-

specific TFs in developing human retina. 

 

Gene regulatory networks controlling temporal patterning of retinal progenitors 
Since the generation of all retinal cell types is ultimately controlled by the dynamic temporal 

patterning of primary RPCs over the course of neurogenesis (Cepko, 2014; Zechner et al., 2020), we next 

set out to identify gene regulatory networks (GRNs) that potentially control this process.  To identify key 

TFs, we first reconstructed GRNs by integrating scRNA-seq and scATAC-seq data using a modified form of 

the IReNA analysis pipeline (Hoang et al., 2020) (Figure S4A,B).   We then extracted predicted regulatory 

relationships among stage-specific TFs, identifying positive feedback loops of co-expressed TFs used to 

maintain stage-specific identity, and negative feedback loops used to ensure mutually exclusive expression 

of TFs specific to different stages.  We further filtered these results based on the strength of the predicted 

regulatory relationships, and whether the expression pattern of individual TFs was conserved between 

mouse and human retina (Figure 4A; S4A).   

 We focused on four major cell states, including stage 1-3 RPCs and Müller glia, to investigate GRNs 

controlling temporal patterning of neurogenesis. We first performed pseudotime analysis for both scATAC-

seq and scRNA-seq data from primary progenitors and Müller glia, similar to our previous analyses (Hoang 
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et al., 2020; Lu et al., 2020) (Figure 4B). Our scRNA-seq and scATAC-seq data suggests that a large 

fraction of primary RPCs progressively transition between stages 1, 2 and 3, before eventually becoming 

Müller glia (Figure 4C).  Pseudotime analysis of scRNA-seq identified differentially expressed genes (DEGs) 

during each of these stages, with Foxp1 and Sfrp2 enriched in stage 1 RPCs, Fgf15 and Pou3f1 in stage 2, 

Ascl1 in stage 3, and Nfia/b/x and Hes5 in Müller glia (Figure 4D), broadly matching previously reported 

results (Clark et al., 2019).  ScATAC-seq data was then used to identify correlated accessible regions 

(CARs), which are associated with these DEGs (Figure 4D, Table ST5).  CARs include the accessible peaks 

near transcription start sites (TSS) and distal accessible peaks (regions < 100kb from the TSS) that are 

either positively or negatively correlated with the DEGs (Table ST5; Figure S4B).  Dynamic regulation of 

both positive and negative correlated distal elements can be clearly seen in the case of Hes1, which is most 

highly expressed in S3 RPCs and Müller glia (Figure 4E).  At the Hes1 locus, one distal and two proximal 

positively correlated distal elements show increased accessibility across pseudotime, while three negatively 

correlated elements show decreased accessibility.  Accessibility at the TSS, however, does not change 

(Figure 4E). 

We next infer patterns of TF binding by integrating TF expression patterns identified using scRNA-

seq with footprinting in CARs identified by scATAC-seq (Figure S4B).  This allowed us to identify TF-TF 

regulatory relationships among each of the four cell states (Figure 4F, Table ST6).  Many state-specific TFs 

were connected in positive feedback loops that may maintain expression of state-specific TFs, while also 

repressing TFs specific to other cell states.  Each cell state possessed a self-activating GRN, with the stage 

1 and 3 RPCs and Müller glia-specific networks predicted to be strong and the stage 2 RPC network 

relatively weak.  GRNs specific to stage 1 and 2 RPCs showed both positive and negative regulatory 

relationships, with positive regulatory relationships slightly dominating.  A similar situation was observed 

with stage 3 RPCs and Müller glia, although positive regulatory relationships were relatively stronger.  

Strong negative regulatory relationships were observed between stage 1/2 RPCs and stage 3 RPCs/Müller 

glia, respectively (Figure 4F).   

                             
Nfia/b/x promote late-stage RPC temporal identity 
We next predicted the top TFs that play an essential role in controlling RPC/Müller glia temporal 

identity by integrating the diverse information, including gene regulatory relationships, gene expression 

specificity and evolutionary conservation of gene expression patterns (Table ST6).  Notably, NFI family 

members were among the top TFs predicted to activate expression of TFs specific to stage 3 RPCs and 

Müller glia (Figure 4G).  Previous genetic data suggests that NFI factors Nfia, Nfib and Nfix play a central 

role in both controlling temporal identity in retinal progenitors and formation of late-born retinal cell types 
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(Clark et al., 2019).  However, it is not known whether Nfia/b/x are necessary to initiate or maintain 

activation of genes in the late-stage RPCs. Likewise, while NFIA/B/X overexpression in late-stage RPCs 

promotes cell cycle exit and generation of late-born cell types (Clark et al., 2019), it has not yet been 

determined whether their misexpression in early-stage RPCs is sufficient to confer a late-stage temporal 

identity, and to allow activation of genes specific to late-stage RPCs.  To address these questions, we used 

ex vivo electroporation to overexpress human homologues of NFIA/B/X in E14 retina and profiled changes 

in gene expression and chromatin accessibility in primary RPCs at E16 and P0 using scRNA-seq and 

scATAC-seq, while performing similar analysis in P2 and P14 Nfia/b/x cKO retina (Figure 5A, S5A).   

ScATAC-seq analysis demonstrates that NFIA/B/X overexpression induces a widespread increase in 

chromatin accessibility associated with sequences containing the consensus NFI motif, as has been 

reported in non-neuronal cells (Denny et al., 2016), while loss of function of Nfia/b/x leads to a loss of 

accessibility at these sites (Figure 5B).  Relative to retinas electroporated with a control GFP plasmid, E16 

retinas overexpressing NFIA/B/X show a reduced fraction of RGCs and an increased fraction of primary 

RPCs by both scRNA-seq and scATAC-seq (Figure 5C).  At P0, scRNA-seq analysis and 

immunohistochemistry show that NFIA/B/X-overexpressing retinas have an increased fraction of primary 

RPCs and photoreceptors, and a reduced fraction of RGCs, as compared with the control (Figure 5C,D). 

ScATAC-seq analysis of P2 Nfia/b/x cKO retinas shows an increased fraction of RPCs, along with a 

reduction in rod photoreceptors and AC/HC neurons (Figure 5C).  In P14 Nfia/b/x cKO retina, substantially 

more RPCs are detected, while bipolar neurons are virtually absent (Figure 5C).   

To determine whether gain or loss of function of Nfia/b/x altered expression of genes and patterns of 

chromatin accessibility specific to any of the three different RPC states or Müller glia, we performed 

gene/peak set enrichment analysis (GSEA, PSEA).  We observed that overexpression of NFIA/B/X led to an 

upregulation of Müller glia-enriched genes in primary RPCs by E16 (Figure 5E, S5B, Table ST8). By P0, this 

effect was more pronounced, with upregulation of stage 3 RPC-enriched genes also seen.  Furthermore, 

stage 1 RPC-enriched genes were strongly down-regulated relative to GFP controls (Figure 5E, S5B). The 

opposite pattern was observed in Nfia/b/x cKO retina, with stage 3 RPC and Müller glia-enriched genes 

downregulated and stage 2 RPC-enriched genes upregulated at P2. By P14, downregulation of Müller glia-

enriched genes and upregulation of stage 1 and stage 2 RPC-enriched genes were more prominent (Figure 

5E, S5B).  Changes in patterns of chromatin accessibility closely matched those of gene expression, with 

NFIA/B/X overexpression inducing RPCs to adopt a state resembling Müller glia, and loss of function 

inducing a state that resembles stage 1 and 2 RPCs (Figure 5F, S5C).  Motif analysis indicated that 

NFIA/B/X motifs were highly enriched in DARs that were upregulated following NFIA/B/X overexpression 
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and downregulated in Nfia/b/x cKO retina (Figure S5C). These data demonstrate that NFI factors directly 

regulate temporal patterning in RPCs.   

To identify genes that are directly regulated by NFIA/B/X, we performed ChIP-seq analysis on P2 

wild-type retina using antibodies that recognize all three NFI factors (Table ST9).  We identified 13,680 

NFIA/B/X ChiP-seq peaks (Figure S5D), the majority of which (83.9%) are located in open chromatin (Figure 

S5E). These peaks are primarily distributed in intergenic and intronic regions. Compared to all accessible 

regions, NFI factor binding sites are enriched in accessible regions associated with genes specific to stage 3 

RPCs (Figure S5E). We then asked whether the DARs identified following gain and loss of function of 

Nfia/b/x were direct targets for NFIA/B/X factors. By comparing NFIA/B/X ChIP-seq peaks with these DARs, 

we found that in E16 NFIA/B/X-overexpressing primary RPCs, 61% (425/702) of DARs specific to stage 3 

RPCs and/or Müller glia were directly bound by NFIA/B/X, but only 4/22 of DARs specific to stage 1 and/or 2 

RPCs were directly bound (Figure 5G). In P2 Nfia/b/x cKO retina, we observed that 51% (869/1689) of 

DARs specific to stage 3 RPCs and/or Müller glia overlapped with NFIA/B/X ChIP-seq peaks, in contrast to 

only 13% (48/371) DARs specific to stage 1 and/or 2 RPCs. Similar pattern was also observed in P14 

Nfia/b/xcKO retina (Figure 5G).  This result suggests that DARs specific to stage 3 RPCs and/or Müller glia 

could be directly and selectively regulated by the binding of NFIA/B/X at these regions.  The direct 

regulatory effect of NFI factors was confirmed by the comparison of DEGs and NFIA/B/X ChIP-seq peaks 

(Figure S5F). In summary, our analysis suggests that NFI factors alter the chromatin accessible regions 

specific to late progenitor-specific genes by direct binding to these regions, and in turn activates expression 

of stage 3 RPCs and/or Müller glia genes and repress the expression of early progenitor-specific genes. 

This underlies the mechanism by which NFI factors control temporal identity in retinal progenitors and 

formation of late-born retinal cell types. 

 
Gene regulatory networks controlling specification of retinal neurons 
We applied the same approach to identify GRNs controlling neurogenesis and the specification of 

individual types of neurons.  To do this, we generated three combined datasets, corresponding to early, 

intermediate and late stages of retinal neurogenesis, identifying both DEGs and CARs that are selectively 

active as cells adopt different identities (Table ST10).  The early dataset consists of E14 and E16 time 

points, which included all early-stage neurogenic progenitors, as well as differentiating retinal ganglion cells, 

cone photoreceptors, and early-born amacrine and horizontal cells (Figure 6A).  The intermediate dataset 

consists of E18, P0 and P2 time points, which included late-stage neurogenic progenitors, as well as 

differentiating rod photoreceptors and late-born amacrine cells (Figure S6A). The late dataset consists of P5 

(which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprintthis version posted August 2, 2021. ; https://doi.org/10.1101/2021.07.31.454200doi: bioRxiv preprint 

https://doi.org/10.1101/2021.07.31.454200


 

 

 
11 

and P8 time points, and included late-stage neurogenic progenitors, and differentiating rod and bipolar cells 

(Figure S6E).   

 Pseudotime analysis of the early dataset revealed four major developmental trajectories.  

Specifically, these were the transition from stage 2 primary RPCs to early neurogenic RPCs; and the 

transitions from early neurogenic RPCs to retinal ganglion cells, to amacrine and horizontal cells, and to 

cone photoreceptors (Figure 6B).  To determine the GRNs controlling these transitions, we identified both 

DEGs and CARs for each developmental trajectory (Figure 6C), and inferred putative regulatory 

relationships among cell specific TFs (Figure 6D,E), as we had previously done for primary RPCs and 

Müller glia.  A similar analysis was performed for intermediate (Figure S6B-D) and late (Figure S6F-H) 

stages of neurogenesis.  This identified many TFs that were predicted to selectively activate or repress 

genes specific to individual cell types (Table ST11,12). 

We observe many similarities between the predicted GRNs controlling neuronal cell fate 

specification and networks controlling state changes in primary RPCs (Fig. 4F).  Cell type identity is 

maintained by strong positive regulatory relationships among cell type-specific TFs (Figure 6E-G; Table 

ST11).  Regulatory relationships among different cell types often contain both positive and negative 

components.  GRNs specific to primary RPCs and all neuronal subtypes are connected by many, almost 

exclusively negative regulatory relationships, while GRNs specific to most neuronal cell types are generally 

connected by fewer negative regulatory relationships, with positive regulatory relationships predominantly 

connecting GRNs of some transcriptionally similar cell types, such as RGC and AC/HC.  The regulatory 

relationship between neurogenic and primary RPCs is more dynamic and complex.  It is weakly positive at 

early stages of neurogenesis, weakly negative during intermediate stages, and strongly positive at late 

stages.  This shift may reflect the fact that a rapid increase in the relative fraction of neurogenic RPCs 

relative to primary RPCs occurs during late neurogenesis (Clark et al., 2019).  The regulatory relationship 

between neurogenic RPCs and neuronal networks is likewise dynamic.  During early stages of 

neurogenesis, neurogenic RPC networks strongly inhibit RGC networks, weakly inhibit horizontal/early-born 

amacrine networks, and weakly activate cone networks (Figure 6E).  At intermediate stages, they weakly 

inhibit late-born amacrine networks and weakly inhibit rod networks (Figure 6F).  At late stages, they 

strongly inhibit rod networks but activate bipolar networks (Figure 6G).  Notably, these regulations roughly 

correspond to the order in which these neuronal subtypes are generated during retinal development, with 

retinal ganglion cells formed first and bipolar cells last (Cepko et al., 1996) 

 
Identification of transcription factors controlling neurogenesis and cell fate specification in 

postnatal retina 

(which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprintthis version posted August 2, 2021. ; https://doi.org/10.1101/2021.07.31.454200doi: bioRxiv preprint 

https://doi.org/10.1101/2021.07.31.454200


 

 

 
12 

Our GRN analysis predicts that many TFs act as either positive or negative regulators of 

neurogenesis and/or specification of individual neuronal subtypes. Many of these predicted regulatory 

relationships have been previously validated using genetic analysis (Fig. S7A, Table ST12). Considering 

TFs with the highest number of predicted regulatory relationships that are active in E18-P2 retina, for 

instance, we find that Otx2, Crx, Prdm1, Rax, Rorb, Nrl, and Nr2e3 are all predicted to activate expression 

of rod-specific genes (Akhmedov et al., 2000; Brzezinski et al., 2010; Furukawa et al., 1997; Irie et al., 2015; 

Jia et al., 2009; Mears et al., 2001; Nishida et al., 2003); Pax6, Tfap2a, and Tfap2b are predicted to repress 

photoreceptor specification (Jin et al., 2015; Remez et al., 2017); and Zfp36l1/2, Nfia, Hes1/5, Sox2/8/9, and 

Lhx2 are predicted to both promote RPC maintenance and inhibit rod differentiation (Bosze et al., 2020; 

Clark et al., 2019; Marquardt et al., 2001; de Melo et al., 2016; Muto et al., 2009; Roy et al., 2013; Taranova 

et al., 2006; Wall et al., 2009; Wu et al., 2020).  Knockdown of Nfib, predicted to be one of the top activators 

of rod-specific genes, has also been recently shown to reduce rod-specific gene expression in human 

organoid cultures (Xie et al., 2020). Given the success in predicting the function of these TFs, we conducted 

gain- and loss of function analysis for several previously uncharacterized candidate TFs on retinal explants 

via electroporation and analyzed the resulting phenotypes using scRNA-seq and immunohistochemistry to 

determine whether other TFs with high numbers of regulatory relationships showed predicted phenotypes 

(Fig. 7A).  We analyzed five different TFs: Insm1, Insm2, Tcf7l1,Tcf7l2 and Tbx3.  Insm1 and Insm2 are 

predicted to activate genes specific to neurogenic progenitors and rod photoreceptors.  In contrast,Tcf7l1/2 

are predicted to inhibit neurogenesis and promote a stage 3 primary RPC/Müller glia identity. Lastly, Tbx3 is 

predicted to inhibit rod specification while promoting amacrine formation (Figure S7A-C).  

Overexpression of either Insm1 or Insm2 at P0 leads to a dramatic reduction in the relative fraction 

of primary RPC/Müller glia cells and an increase in the fraction of amacrine cells and cone photoreceptors at 

P5, as measured by scRNA-Seq analysis of FACS-isolated, GFP-positive electroporated cells (Figure 7B).  

Insm2 overexpression also leads to a modest increase in the fraction of rods.  Immunohistochemical 

analysis of P11 retinas shows that Insm1 or Insm2 overexpression significantly increases the fraction of 

GFP+ cells in the photoreceptor layer, and leads to a corresponding decrease in the Müller glia fraction (Fig. 

7C,D).  Both Insm1 and Insm2 strongly activate expression of rod-specific genes in all other cell types 

(Figure 7E).  Insm1 and Insm2  both accelerate the normal developmental increase in the expression of rod-

specific genes in rod precursors, such as Gngt1, Sag and Rho (Figure 7F).  In contrast, somatic CRISPR-

mediated loss of function of Insm1/2 leads to a reduction in the total number of rods, and increase in the 

fraction of primary and neurogenic RPCs, as well as a reduction in the expression of rod-specific genes in 

rod precursors, notably including Nrl (Figure 7B,E; Table ST13), although no statistically significant changes 

in cell composition were observed following loss of function of Insm1/2 at P11 (data not shown). While 
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insm1a has been reported to be required for rod differentiation in zebrafish (Forbes-Osborne et al., 2013), 

our data demonstrates that Insm1/2 act to promote retinal neurogenesis, rod photoreceptor specification 

and rod-specific gene expression. 

Tcf7l1/2 are highly expressed in RPC/Müller glia and predicted to inhibit rod specification while 

maintaining RPC identity (Figure S7A,B).  ScRNA-seq analysis of P5 GFP-positive cells overexpressing 

TCF7L1/2 revealed a substantial increase in the fraction of stage 3 RPC/Müller glia cells, with a 

corresponding reduction in the fraction of rods (Fig. 7B).   Immunohistochemical analysis of P11 retinas 

overexpressing TCF7L1/2 leads to a reduction in relative fraction of rod photoreceptors and bipolar cells, 

and a corresponding increase in the fraction of Müller glia (Fig. 7C,D).  In rod precursors, Tcf7l1/2 strongly 

inhibits expression of both rod-specific genes such as Gngt1 and Pdc, as well as transcription factors that 

promote rod specification such as Prdm1 (Fig. 7E,F; Table ST14).   

 Finally, Tbx3 overexpression reveals a reduction in the relative fraction of rod photoreceptors at P5, 

along with a corresponding increase in the fraction of not only amacrine cells, but also all other inner retinal 

cell types, including stage 3 RPC/Müller glia and bipolar cells (Figure 7B).  Immunohistochemical analysis of 

retinas overexpressing Tbx3 revealed that these changes in cell composition are maintained at P11 (Fig. 

7C). Tbx3 overexpression also leads to a reduction in expression of Neurod1 in neurogenic progenitors, a 

transcription factor that promotes rod differentiation (Akagi et al., 2004) (Fig. 7E,F; Table ST14). These 

results, which are summarized in Figure 7G, validate our putative GRNs, and demonstrate that multiplexed 

scRNA-seq analysis can be scaled to analyze the function of major transcriptional regulators of retinal 

development. 

 
 Discussion: 
This study provides a comprehensive picture of the cellular-level landscape of dynamic chromatin 

accessibility over the full course of retinal development, and provides both a map of candidate cis-regulatory 

elements and of transcription factor binding patterns.  By integrating scRNA-seq data with scATAC-seq 

data, we reconstructed transcriptional regulatory networks that control all aspects of retinal development, 

including the transition between different stages of primary retinal progenitors, the transition from primary to 

neurogenic progenitors, and the acquisition of terminal cellular identity.  We observe similarities between the 

retinal and other systems in both the general mechanisms and in the specific genes that control this 

process.   For instance, much like in Drosophila, transcription factors that control these transitions act to 

both promote expression of genes specific to individual cell states while inhibiting expression of genes 

specific to earlier, later or alternative states (Doe, 2017; Rossi et al., 2021).  Furthermore, several individual 
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genes -- including Nfia, Nfib, and Pou2f2 -- are confirmed or predicted to control temporal patterning in both 

retina and spinal cord, (Sagner et al., 2020).  

Our work fills an important gap in our understanding of how temporal patterning is controlled.  While 

several recent studies have used scATAC-seq to identify active transcription factor motifs in specific cell 

types of the developing brain (Domcke et al., 2020; Kim et al.; Sarropoulos et al., 2021), only one recent 

study has systematically integrated this data to identify GRNs controlling neurogenesis and specification of 

major neuronal and glial cell types (Di Bella et al., 2021).  Moreover, while previous studies have used 

ATAC-seq, ChIP-seq, and HiC analysis to profile changes in both chromatin accessibility and conformation, 

as well as histone modifications over the course of retinal development, the information in these datasets 

has been limited by the analysis of highly heterogeneous cell populations (Aldiri et al., 2017; Norrie et al., 

2019; Xie et al., 2020).  Our scATAC-seq data allow us to visualize developmentally dynamic changes in 

chromatin accessibility in each major retinal cell type. Furthermore, direct comparison of stage-matched 

mouse and human datasets demonstrates substantial conservations of cell type-specific patterns for both 

gene expression and chromatin accessibility, and allows efficient identification of both evolutionary-

conserved and species-specific components of GRNs that control retinal neurogenesis and cell fate 

specification. 

Neurogenic RPCs selectively express neurogenic bHLH factors such as Atoh7, Ascl1, Olig2 and 

Neurog2 (Brown et al., 1998; Brzezinski et al., 2011; Hafler et al., 2012; Hufnagel et al., 2010; Ma and 

Wang, 2012).  Genetic lineage analysis shows that they have a limited ability to proliferate and will undergo 

either asymmetric or terminal neurogenic divisions.  In addition, expression of many transcription factors that 

are master regulators of retinal cell identity -- such as Otx2, Onecut1 and Onecut2, and Foxn4 -- are first 

detected in neurogenic RPCs (Emerson et al., 2013; Liu et al., 2020; Muranishi et al., 2011; Wang et al., 

2014).  Taken together, this suggests that retinal neuronal identity is specified during the neurogenic RPC 

stage, and that identifying gene regulatory networks controlling the transition from primary to neurogenic 

RPCs, and from neurogenic RPCs to postmitotic neurons, will help to understand retinal cell fate 

specification. 

Integrated scRNA-seq and scATAC-seq analysis reveals the highly redundant and complex patterns 

of gene regulatory relationships that maintain each of the cellular states, and ensures that developmental 

processes remain consistent and robust in the face of a variety of environmental perturbations.  This may 

explain the observation that genetic disruption of individual cis-regulatory elements typically results in only 

developmental phenotypes that are either modest, or only alter expression of a subset of the cell type-

specific transcription factors regulated by these genes (Chan et al., 2020; Ghiasvand et al., 2011). We 

observe that GRNs controlling retinal development are highly parallel, redundant, and complex.  Cell states 
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are maintained by networks of TFs that activate expression of TFs within cell type-specific GRNs, but often 

also repress expression of TFs in GRNs specific to other cell states, potentially mediating rapid and 

irreversible transitions between different stable transcription states.  Regulatory relationships among 

individual cell type-specific GRNs are temporally dynamic, often containing a mixture of positive and 

negative feedback loops, and accurately reflect observed developmental changes in the timing of retinal 

neurogenesis.  For instance, while GRNs of primary RPCs show only weakly positive or negative regulation 

of GRNs specific to neurogenic RPCs between E14 and P2, they strongly activate neurogenic RPC-specific 

GRNs at P5 and P8, corresponding to the increase in the relative fraction of terminal neurogenic divisions at 

these ages (Cepko, 2014), as well as the increased fraction of neurogenic RPCs relative to primary RPCs at 

this age (Clark et al., 2019).  Likewise, neurogenic RPC-specific GRNs most strongly activate expression of 

TFs in GRNs specific to the neuronal subtypes that are generated latest at each stage: cones at E14-E16, 

rods at E18-P2, and bipolar cells at P5-P8 (Young, 1985b).  Identifying the precise mechanisms that control 

these dynamic changes in the organization of cell type-specific GRNs awaits more detailed functional 

analysis. 

  Transitions between cell states are driven by changes in both gene expression and chromatin 

accessibility.  In some cases, TFs act to alter chromatin accessibility at regulatory sites associated with 

stage-specific genes prior to initiation of changes in gene expression (Ma et al., 2020).  This is clearly seen 

with Nfia/b/x, which are enriched in late-stage RPCs and Müller glia.  Nfia/b/x overexpression triggers 

increased accessibility at regulatory sites associated with genes expressed in late-stage RPCs and Müller 

glia, while loss of function of Nfia/b/x produces the opposite effect.  This leads to activation of expression of 

these genes and, indirectly, to repression of genes specific to early-stage RPCs, ultimately inhibiting 

generation of early-born cell types such as RGCs and promoting rod photoreceptor specification.  This 

establishes NFI factors as bona fide regulators of temporal patterning in RPCs, and identifies the 

mechanism by which they regulate changes in retinal progenitor competence.   

Notably, Nfib is also predicted to be a major component of the GRN controlling rod photoreceptor 

differentiation (Fig. S7A), and directly targets multiple genes known to promote rod specification, including 

Otx2, Prdm1, Mef2d, and Caszl1 (Andzelm et al., 2015; Brzezinski et al., 2010; Mattar et al., 2015; Nishida 

et al., 2003)  While the loss of function of Nfib leads to a reduced number of rod photoreceptors in P2 retina 

(Fig. 5C), and a reduction in the expression of rod-specific genes (Xie et al., 2020), a substantially increased 

proportion of rod photoreceptors is seen at P14 relative to controls (Fig. 5C)(Clark et al., 2019).  This implies 

that, while Nfib may activate genes that promote rod differentiation, it is ultimately dispensable for rod 

specification.    
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The network analysis conducted here identifies TFs that show high degrees of connectivity, and are 

hence likely to play more important roles in controlling development.  We have tested the function of a 

subset of TFs predicted to either positively or negatively regulate retinal neurogenesis and rod 

photoreceptor differentiation in early postnatal retina, using overexpression or CRISPR-based loss of 

function analysis in combination with scRNA-Seq analysis and immunohistochemistry.  This confirmed our 

prediction that Insm1 and Insm2 promote postnatal retinal neurogenesis and rod photoreceptor 

differentiation, while Tcf7l1/2 instead promotes RPC maintenance and Müller glia specification.  This 

analysis also highlighted some of the limitations of our model.  While we predicted that Tbx3 overexpression 

would promote amacrine and Müller glia specification at the expense of rod photoreceptors, we 

unexpectedly observed that it also promoted specification of bipolar cells.  This may reflect the indirect 

actions of Tbx3 target genes, as is observed for NFI factors in retinal progenitors (Fig. 5), or could 

potentially reflect activation of Tbx2 target genes, since Tbx2 is predicted to strongly promote expression of 

bipolar-specific genes (Table ST12).  Likewise, while overexpression of Insm1 and Insm2 promote rod 

differentiation, loss of function of Insm1/2 delays but ultimately does not disrupt rod specification (Fig. 7C), 

which in turn may reflect the extensive functional redundancy seen among individual TFs in these densely 

interconnected cell type-specific GRNs.  This functional redundancy may complicate the prediction of the 

developmental phenotype of gain or loss of function of any individual TF, as may interactions with cofactors 

or post-translational modifications to TFs.  The collection of additional functional data of this sort will help 

refine the GRN models used here, and improve their predictive accuracy.      

The data generated in this study serves as a broadly useful resource for the community for further 

functional characterization of GRNs controlling retinal neurogenesis and cell fate specification, and may 

help facilitate and improve strategies for reprogramming of endogenous Müller glia and/or directed 

differentiation of ES/iPS cells to replace neurons lost due to blinding diseases (Javed and Cayouette, 2017; 

Lahne et al., 2020; Miltner and La Torre, 2019).  Sequential expression of TFs that promote formation of 

early or late-stage neurogenic RPCs, followed by TFs that drive specification of rods, cones or retinal 

ganglion cells could provide a robust approach to generate these neurons for therapeutic purposes. 

 

Data availability:  All mouse and human scRNA-seq and scATAC-seq data can be accessed at 

GEO accession number GSE181251.  Interactive displays of all scRNA-seq and scATAC-seq data can be 

accessed through the St Jude Cloud Visualization Community. 
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Figure legends: 
Figure 1: Overview of the study. 
(A)  Schematic summary of the study. ScATAC-seq of the mouse whole retinas was performed at 11 

different time points. Cell types and cell-type specific accessible chromatin regions were identified through 

dimensional reduction and clustering analysis. By integrating age-matched single-cell RNA-seq data with 

our datasets, we reconstructed gene regulatory networks (GRN) using the IReNA v2 analytic pipeline, and 

identified candidate regulators controlling temporal patterning and cell fate specification during the retinal 

development.  

(B)  Combined UMAP projection of all mouse retinal cells profiled using scATAC-seq (top) and 

scRNA-seq datasets (bottom). Each point (cell) is colored by cell type (left) and age (right).  

(C)  Examples of the expression and chromatin accessibility for selected cell type-specific genes.  

(D)  The relative abundance of retinal cell types is similar between age-matched scATAC-seq (left 

panel) and scRNA-seq (right panel). Bar plots showing the fraction of cells (y-axis) at each time point of 

each cell type (x-axis). RPCs, retinal progenitor cells, MG, Müller glia; AC/HC, amacrine/horizontal cells; 

BC, bipolar cells; RGC, retinal ganglion cells; NG, neurogenic progenitor cells. 

  

Figure 2: Single-cell regulatory landscape of mouse retinal development. 
(A)  Heatmap of cell-type-specific peaks. The numbers of cell type-specific peaks are indicated on 

the left. Cell types are shown at the bottom.   

(B) Heatmaps of the expression level of positively correlated genes. Cell types are shown at the 

bottom of the plot.  
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(C)  Representative genes along with GO enrichment for each cluster. The X-axis indicates the -

log10(P-value) of the GO term. 

(D)  Heatmap of the chromVAR z-score for cell-type-specific motifs. The number of motifs in each 

cell type are indicated on the left. Cell types are indicated at the bottom.  Representative motif logos are 

shown on the right. 

(E)  Examples of TF footprint profiles for Tfap2a, Pou4f2, Otx2 and Nfix in the indicated scATAC-seq 

clusters. Tn5 insertion tracks are shown below. RPCs, retinal progenitor cells, MG, Müller glia; AC/HC, 

amacrine/horizontal cells; BC, bipolar cells; RGC, retinal ganglion cells; NG, neurogenic progenitor cells 

  

Figure 3: Conserved single-cell regulatory landscape in mouse and human retinal 
development. (A)  Heatmap of evolutionarily conserved cell type-specific peaks. The numbers of peaks are 

indicated on the left. Cell types are shown at the bottom. Representative conserved and positively 

correlated genes are shown on the right. 

(B)  Pie chart depicts the percentage of total and conserved peaks from mouse (top) and human 

(bottom).  TSS, transcriptional start site; TES, transactional end site. 

(C)  Heatmap of the chromVAR z-score of the conserved cell-type-specific motifs from mouse (left) 

and human (right). The number of motifs are indicated on the left. Cluster identities are indicated at the 

bottom. Representative motif logos are shown on the right. 

(D)  TF footprint profile of Neurod1 and Sox9 from selected mouse and human retinal cell types. 

RPCs, retinal progenitor cells, MG, Müller glia; AC/HC, amacrine/horizontal cells; BC, bipolar cells; RGC, 

retinal ganglion cells; NG, neurogenic progenitor cells 

  

Figure 4: Model of gene regulatory networks controlling temporal patterning of retinal 
progenitors. 

(A)  Schematic of the analytic pipeline used to identify TFs controlling retinal development. The role 

of feedback loops (double-positive and double-negative) in controlling transitions between cell states and 

during the retinal cell fate specification is shown in the Waddington epigenetic landscape model. 

(B)  UMAPs of retinal progenitors from scRNA-seq (left) and scATAC-seq (right). Cells are colored 

by pseudotime and cell type. 

(C)  A model for the transitions of primary retinal progenitors and Müller glia during E11-P8. 

(D)  Heatmaps show the expression of cell type-specific DEGs (left) and their correlated accessible 

regions (CARs, right) across pseudotime. The left bar indicates the cell types (RPCs S1-S3, MG) and the 

classes of CARs (TSS, positively correlated and negatively correlated). 
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(E)  Genome track visualization of the Hes1 locus. Each track represents the aggregated scATAC-

seq signals across the RPC-MG trajectory. Inferred links of Hes1-associated CARs (correlated accessible 

regions) are shown on the top. Expression level of Hes1 measured by scRNA-Seq across the RPC-MG 

trajectory is shown on the right.  

(F)  Full network diagram showing TF pairs linked by reciprocal positive or negative regulatory 

relationships during the RPC-MG transition (left). Each node represents an individual cell type-specific TF.  

Each edge represents a statistically significant feedback relation between TF pairs. Simplified intermodular 

regulatory networks of retinal progenitors are shown on the right. Colored nodes represent specific cell 

types. Connections indicate statistically significant regulations among modules. 

(G)  The top 10 TFs predicted to activate expression of genes specific to stage 3 RPCs, as inferred 

from IReNA v2 analysis (left). Bar plots show the expression levels of these TFs in mouse and human stage 

3 RPCs progenitors (right). 

  

Figure 5: Nfia/b/x promote late-stage temporal identity in retinal progenitors. 
(A)  Overview of experimental design to characterize the function of Nfia/b/x  in retinal progenitor 

cells.  

(B)  Boxplots showing the changes in the Nfia/b/x motif enrichment in retinal progenitors following 

overexpression or knockout of Nfia/b/x. Bars are colored by genotype. 

(C)  Bar plots showing the fraction of each retinal cell type by ages and genotypes (Top: scRNA-seq 

datasets. Bottom: scATAC-seq datasets) 

(D)  Immunostaining showing fewer RGCs and more photoreceptors at P0 following NFIA/B/X 

overexpression at E14 retinal explants. The fractions of RGCs and photoreceptors are shown on the right. 

Scale bars = 20 μm. 

(E)  Dot plot showing the gene set enrichment results for DEGs enriched in early and late-stage 

RPCs/MG following overexpression or knockout of Nfia/b/x. 

(F)  Dot plot showing the peak set enrichment results for DARs enriched in early and late-stage 

RPCs/MG following overexpression or knockout of Nfia/b/x. 

(G)  Venn diagrams showing the overlap between direct Nfia/b/x binding regions identified using 

ChIP-Seq and cell-type-specific DARs. The p-value on the top of each Venn diagram indicates the 

significance of their overlap using the hypergeometric test. 

(H)  Summary of Nfia/b/x action during the transition from early to late-stage RPCs. 
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Figure 6: Model of gene regulatory networks controlling specification of retinal neuronal cell 
types. 

(A)  A diagram showing the development of early-born retina cell types (left). UMAPs of scRNA-seq 

and scATAC-seq data from E14-E16 retina (right). Color indicates cell type. 
(B)  UMAPs showing the trajectories constructed from scRNA-seq and scATAC-seq at E14-E16. 

Color indicates pseudotime state. 

(C)  Heatmaps showing the expression of cell-type-specific DEGs (left) and the accessibility of their 

corresponding CARs (right) along differentiation trajectories. The top bars are colored by pseudotime state 

for each trajectory. The left bar indicates cell type and the classes of CARs.  

(D)  Networks showing feedback relationships among TF pairs at E14-E16. Each node represents an 

individual cell type-specific TF. Each edge represents a positive or negative feedback regulatory relationship 

between TF pairs. 

(E-G) Simplified intermodular gene regulatory networks of RPCs and neurons at different stages (E: 

early-stage, F: intermediate-stage, G: late-stage). Colored nodes represent cell types. Connections indicate 

statistically significant regulatory relationships among GRNs specific to each cell type. 

 

Figure 7: Identification of transcription factors controlling cell fate specification in postnatal 
retina. 

(A)  A schematic diagram for gain-and loss-of-function analysis of candidate TFs in postnatal mouse 

retina explants. 

(B)  Bar plots showing the fraction of each cell type at P5 as measured by scRNA-Seq analysis of 

FACS-isolated GFP-positive cells for each treatment condition. 

(C,D)  Immunohistochemistry and quantification of Müller glia (SOX9 positive) and photoreceptors 

(GFP-positive in the ONL layer) in P11 retina explants in control and overexpression of INSM1, INSM2, 

TCF7L1/2 and TBX3. Arrow heads indicate SOX9/GFP double positive cells. Error bars indicate standard 

deviation. **P < 0.05, ***P < 0.001. ONL, outer nuclear layer; INL, inner nuclear layer; OS, outer segment. 

(E)  Gene set enrichment analysis of the DEGs from each cell type in each experiment. GSEA was 

performed with the cell-type-specific gene sets obtained from the combined scRNA-seq datasets (E11-P8). 

Only significant enrichment results (p < 0.05) are shown in the dot plot. Each dot was colored by NES and 

sized by -log(p-value). The x-axis indicates the cell type where DEGs are calculated. The y-axis indicates 

the specific gene sets used in the analysis. 

(F)  Examples of GSEA results from (E). Heatmaps show the DEGs used in the GSEA analysis, with 

DEGs ranked by log2 fold change, as shown in the middle panel. The right annotation shows the distribution 
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of significantly enriched gene sets among the DEGs.  Representative cell-type-specific genes are also 

labeled. 

(G)  Summary of observed phenotypes.  RPCs, retinal progenitor cells, MG, Müller glia; AC/HC, 

amacrine/horizontal cells; BC, bipolar cells; RGC, retinal ganglion cells; NG, neurogenic progenitor cells.       

 

Supplemental figure legends:  
 
Supplemental Figure 1: Quality control of scATAC-seq data. 
(A)  The number of fragments per cell. Bars (cells) are colored by sample and ordered along the x-

axis according to fragment number (high to low). The numbers of cells for each time point that passed QC 

are indicated on the top. 

(B)  Fragment size distribution (left) and transcriptional start site enrichment profiles (right) of single-

cell ATAC-seq. Lines are colored by sample.  

(C)  Comparison between aggregated scATAC-seq of primary RPCs and bulk ATAC-seq of Chx10-

GFP+ retinal progenitors at E11 and P2 (Stein-O’Brien et al., 2019).  

(D)  Chromatin accessibility plot for the Hes5 gene locus, showing the similarity between scATAC-

seq data and bulk ATAC-seq data. The samples and data types are indicated on the left. 

(E)  Heatmap showing the Pearson correlations between gene expression and gene accessibility for 

each retinal cell type. Cell type identities are indicated on the top (scRNA-seq) and right (scATAC-seq) of 

the heatmap. 

(F)  The percentages of HMM regions in the cell-type-specific accessible regions at P0 (left) and P14 

(right). Bars are colored by 11 different HMM states (Aldiri et al., 2017). 

(G)  Examples of HMM tracks and cell type-specific aggregate scATAC-seq signal for five 

marker gene locus in P14: Aqp4, Tfap2b, Opn1sw, Rho, and Capb5. 

 
Supplemental Figure 2: Examples of cell-type-specific regulatory elements and motifs. 
(A)  Aggregated accessibility profiles of representative cell-type-specific regulatory elements. Each 

track shows the aggregated scATAC-seq profile from each cell type. The nearest and positively correlated 

gene of each region is labeled at the top of the plot. The coordinates of these regions are shown at the 

bottom. 

(B)  UMAP projection of the scATAC-seq profile shows the activity of the representative cell-type-

specific motifs. Cells are colored by chromVAR z-score. The motif ID is indicated at the top of each plot. 
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Supplemental Figure 3: UMAP projection of human retinal scATAC-seq and scRNA-seq data. 
(A)  UMAP projection and clustering results of human retinal scATAC-seq from gestational day 53-

132. 

(B)  UMAP projection and clustering results of human retinal scRNA-seq from gestational day 53-

132. 

(C)  UMAP projection and clustering results of human retinal and retinal organoid scRNA-seq from 

culture day 24-postnatal day 8 (Lu et al., 2020). 

 

Supplemental Figure 4: Analytic flowchart for IReNA v2. 

(A)  Workflow of Integrated Regulatory Network Analysis (IReNA v2) integrating scRNA-seq and 

scATACseq data to reconstruct the gene regulatory network (see Methods for detailed description). ArchR, 

MACS2, TOBIAS and motifmatchr software packages were used in IReNA v2.  

(B)  Schematic diagram of the integrating method used in IReNA v2 to identify positive and negative 

transcriptional regulators controlling progenitor state transitions and cell fate specification (see Methods). 

 

Supplemental Figure 5: Nfia/b/x promote late-stage RPCs temporal identity. 
(A)  UMAPs and clustering results of scRNA-seq data and scRNA-seq data. Shading indicates cell 

type.  

(B)  Heatmaps of DEGs in primary RPCs/MG . Each row represents a DEG, and each column 

represents a cell (left). The DEGs are ordered by their log2 fold change (treatment/control) as shown in the 

middle panel. The distributions of cell-type-specific genes among DEGs were shown on the right panel. 

(C)   Heatmaps of CARs in primary RPCs/MG. Each row represents a DAR, and each column 

represents a different condition (left). The DARs are ordered by their log2 fold change (treatment/control) as 

shown in the middle panel. The distributions of cell-type-specific peaks among DARs were shown on the 

right panel. The top5 enriched motifs are listed on the right. 

(D)  Heatmaps showing Nfia/b/x ChIP-seq signal at P2. Around 13,680 peaks were identified. 

(E)  Comparison of Nfia/b/x binding regions with gene annotation and accessible regions in P2. 

(F)  Bar plot showing that Nfia/b/x binding regions are strongly enriched in stage 3 RPC-specific 

accessible regions. 

(G)  Venn diagrams showing the overlaps between predicted Nfia/b/x regulated genes and cell-type-

specific DEGs. The p-value on the top of each Venn diagram indicates the significance of their overlap as 

determined by the hypergeometric test. 
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Supplemental Figure 6: Gene regulatory networks controlling specification of retinal neurons. 
(A,E)  Models of retinal cell states during intermediate (A) and late stages of retinal neurogenesis 

(E). UMAPs of scRNA-seq and scATAC-seq data from E18-P2 retina (A) and P5-P8 retina (E). Shading 

indicates cell type. 

(B,F)  UMAPs showing differentiation trajectories inferred from scRNA-seq and scATAC-seq at 

intermediate (B: E18-P2) and late stages (F: P5-P8) of retinal neurogenesis. Shading indicates pseudotime 

status. 

(C,G)  Heatmaps showing the expression of cell type-specific DEGs (left) and the accessibility of 

their corresponding CARs (right) along these differentiation trajectories. The top bars are colored by 

pseudotime state for each trajectory.The left bar indicates cell types and the classes of CARs .  

(D,H)  Networks showing feedback relationships among TF pairs selectively expressed in primary 

and neurogenic RPCs, as well as postmitotic neurons (left). Each node represents an individual TF.  Each 

edge represents a positive or negative feedback regulatory relationship between TF pairs. 

 

Supplemental Figure 7: Identification of transcription factors controlling neurogenesis in 
postnatal retina. 

(A)  Candidate TFs predicted to control rod specification inferred from E18-P2 GRNs, rank ordered by the 

number of cell type-specific TFs and non-TF genes predicted to be directly regulated by each TF.  Gene names 
outlined in red indicate regulatory relationships previously validated using genetic analysis. 

(B)  Candidate TFs predicted to maintain RPC cell status inferred from the E18-P2 GRNs. 

(C)  UMAP plots showing Insm1/2, Tbx3, and Tcf7l1/2 expression at E18-P2 in mouse retina (left). 

UMAPs showing INSM1/2, TBX3, and TCF7L1/2 expression at gestational week 14-20 in the human retina 

(right). 

(D)  UMAP plots of scRNA-seq data from following gain and loss of function analysis of candidate 

TFs. 
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Supplemental Tables: 
Table ST1: Number of cells of each type identified at each developmental age using scATAC-Seq in 

mouse retina. 

Table ST2: Cell-type specific cis-regulatory elements and transcription factor motifs identified in 

developing mouse retina. 

Table ST3: Number of cells of each type identified at each developmental age using scATAC-Seq in 

human retina. 
Table ST4: Cell-type specific cis-regulatory elements and transcription factor motifs identified in 

developing human retina. 
Table ST5: Evolutionarily conserved cell-type specific cis-regulatory elements and transcription 

factor motifs identified in developing retina. 
Table ST6: Differentially expressed genes (DEGs) and correlated differentially-accessible chromatin 

regions (CARs) in stage 1-3 RPCs and Müller glia. 

Table ST7: Regulatory relationships among transcription factors that comprise cell type-specific 

gene regulatory networks in stage 1-3 RPCs and Müller glia. 

Table ST8: Differentially expressed genes (DEGs) and differentially-accessible chromatin regions 

(DARs) seen in RPCs and Müller glia following overexpression or knockdown of Nfia/b/x.  
Table ST9: Location of Nfia/b/x ChIP-Seq peaks in P2 retina. 

Table ST10: Differentially expressed genes (DEGs) and correlated differentially-accessible 

chromatin regions (CARs) in neurogenic RPCs and subtypes of developing retinal neurons. 
Table ST11: Regulatory relationships among transcription factors that comprise cell type-specific 

gene regulatory networks in neurogenic RPCs and subtypes of developing retinal neurons. 
Table ST12: List of transcription factors that are predicted to activate and/or repress expression of 

genes specific to neurogenic RPCs and subtypes of developing retinal neurons. 

Table ST13: Differentially expressed genes (DEGs) observed following overexpression or 

knockdown of Insm1/2, listed by cell type. 
Table ST14: Differentially expressed genes (DEGs) observed following overexpression or 

knockdown of Tcf7l1/2 or Tbx3, listed by cell type. 
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Methods: 
Animals and retinal cell dissociation 
CD1 mice were purchased from Charles River Laboratories.  All experimental procedures were pre-

approved by the Institutional Animal Care and Use Committee (IACUC) of the Johns Hopkins University 

School of Medicine. Mouse embryos or pups at different timepoints of retinal development (E11, E12, E14, 

E16, E18, P0, P2, P5, P8, P11 and P14) were used for this study. Chx10-Cre-EGFP;Nfiafl/fl;Nfibfl/fl;Nfixfl/fl 

mice were generated as described previously (Clark et al., 2019). Mice were euthanized, and eyes were 

removed and incubated in ice-cold PBS. Retinas were dissected, and cells were dissociated using Papain 

Dissociation System as described previously (Hoang et al., 2020). Each sample contains a minimum of 4 

retinas from 4 animals, regardless of sex. Dissociated cells were resuspended in ice-cold PBS containing 

0.04% bovine serum albumin (BSA). Cell count and viability were assessed by Trypan blue staining. 

Ex vivo retinal electroporation and fluorescence-activated cell sorting (FACS) 
Retinas from CD1 mouse embryos at day 14 (E14) and postnatal day 0 (P0) were used for ex vivo 

electroporation as described previously (de Melo and Blackshaw, 2011).  For overexpression studies, 

pCAGIG was used as a control, while pCAGIG-based plasmids encoding full-length ORFs were used for 

overexpression (see Table). For analysis of NFIA/B/X and TCF7L1/2 function, equal molar amounts of each 

plasmid were combined prior to electroporation.  

For somatic Crispr-mediated gene knockout, the CBh promoter of  Cas9-P2A-GFP plasmid 

(Addgene #48138) was replaced by pCAG promoter (pCAGIG, Addgene #11159) to allow for more robust 

Cas9-P2A-GFP expression in retinal explants. Dual gRNAs targeting two different exon regions were cloned 

into a single Cas9 plasmid using PrecisionX™ Multiplex gRNA Cloning Kit with U6 and H1 promoters. 

gRNAs were designed using CHOPCHOP tool (https://chopchop.cbu.uib.no/). For combined Insm1/2 

knockout, equal molar amounts  of each gRNA-Cas9 plasmid were mixed prior to electroporation. Retinal 

cells were dissociated from explants for fluorescence-activated cell sorting (FACS) as described previously 

(Hoang et al., 2020). GFP+ cells were collected in ice-cold PBS with 10% heat-inactivated fetal bovine 

serum (FBS). To determine Crispr-mediated knockout efficiency, genomic DNA was extracted from GFP+ 

cells from Insm1/2 knockout  and empty Cas9 control, and subjected for PCR and digestion using GeneArt™ 

Genomic Cleavage Detection Kit. 

 

Immunohistochemistry 
 Explants used for immunohistochemical analyses were cultured to P0 or P11 equivalent (6 or 11 

days in vitro), fixed in 4% paraformaldehyde in PBS, and processed through sucrose gradients before 

mounting in OCT compound, cryosectioning (15 µm sections), and immunohistochemical analyses. Stained 
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slides of retinal explant sections were imaged using a Zeiss LSM 800 confocal microscope. For each 

immunostaining condition, 2-3 single-plane confocal images per retinal explant were counted, with counts 

aggregated across individual explants. Individual data points shown in Figures 5D and 7C represent cell 

counts obtained from individual explants. 

 
Single Cell RNA-seq library construction and sequencing 
ScRNA-seq analysis was performed on dissociated retinal cells using 10x Genomics. Briefly, 

dissociated retinal cells (~10,000 cells per sample) were loaded into a 10x Genomics Chromium Single Cell 

system using Chromium Single Cell 3’ Reagents Kits v3.1 (10X Genomics, Pleasanton, CA). scRNA 

libraries were generated by following the manufacturer’s instructions. Libraries were pooled and sequenced 

on Illumina NextSeq 500 or NovaSeq 6000. Sequencing reads were processed through the Cell Ranger 3.1 

pipeline (10x Genomics) using default parameters.  

 
Single Cell ATAC-seq library construction and sequencing 

ScATAC-seq was performed using the 10x Genomic single cell ATAC reagent v1.1 kit following the 

manufacturer’s instruction. Briefly, dissociated cells were centrifuged at 300xg for 5 min at 4oC. Cell pellet 

was resuspended in 100 μl of Lysis buffer, mixed 10x by pipetting and incubated on ice for 3 min. Wash 

buffer (1 ml) was added to the lysed cells, and cell nuclei were centrifuged at 500xg for 5 min at 40C. Nuclei 

pellet was re-suspended in 250 μl of 1x Nuclei buffer. Cell nuclei were then counted using Trypan blue. Re-

suspended cell nuclei (10-15k) were used for transposition and loaded into the 10x Genomics Chromium 

Single Cell system. Libraries were amplified with 10 PCR cycles and were sequenced on Illumina NextSeq 

or NovaSeq with ~200 million reads per library. Sequencing data was processed through the Cell Ranger 

ATAC 1.1.0 pipeline (10x Genomics) using default parameters. 

 

ChIP-seq 
Freshly dissected P2 retinas were homogenized and cross-linked for 10 minutes using 1% 

formaldehyde (ThermoFisher Scientific Cat# 28906) on a tube rotator at room temperature. Glycine was 

added to a final concentration of 0.125 M to quench the cross-linking reaction and washed three times with 

ice-cold PBS with cOmplete protease inhibitors (Millipore Sigma Cat# 11836170001). The cells were then 

prepared for sonication using the truChIP chromatin shearing kit (Covaris Cat# 520154). Briefly, cells were 

lysed at 4C on a tube rotator for 10 minutes using the 1X lysis buffer B. Intact nuclei were then collected by 

centrifugation at 1700xg for 5 minutes and washed with 1X wash buffer C before being resuspended in 1ml 

of 1X shearing buffer D3. Nuclei were then transferred to 1mL milliTUBE with AFA fiber (Covaris Cat# 
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520130) and sonicated using the E220 focused-ultrasonicator (Covaris Cat# 500239). Chromatin 

immunoprecipitation was then performed on the sheared DNA using the iDeal ChIP-seq kit for transcription 

factors (Diagenode Cat# C01010170). One percent of chromatin was kept aside to be used as an input 

control. Antibodies against targets used for chromatin immunoprecipitation are NFI (NFIA, NFIB, NFIX), and 

IgG. Briefly, equal volume of sheared chromatin was incubated overnight with 3 μg of antibody in iC1b 

buffer with protease inhibitors and BSA and washed DiaMag Protein A-coated magnetic beads (Diagenode 

Cat# C03010020-220) on a tube rotator at 4°C overnight. The magnetic beads were then washed 

sequentially with wash buffers iW1, iW2, iW3 and iW4. DNA was then de-crosslinked and eluted for 4 hours 

at 65C before being purified using IPure beads (Diagenode Cat# C03010014). The purified DNA was then 

subjected to sequencing library preparation or qPCR analysis. Libraries were prepared from 5ng of DNA 

using the Ovation Ultralow System V2 (Tecan Genomics Cat# 0344NB-32) and sequenced on the Illumina 

NextSeq500.  

    

Single-cell ATAC-seq analysis 
Preprocessing 

The Cell Ranger (Zheng et al., 2017) ATAC pipeline was used to process the raw sequencing data 

for mapping, de-duplication and identification of Tn5 cut sites. We first convert BCL files to fastq format 

with the function ‘cellranger-atac mkfastq’. Then, we mapped the fastq files to the mm10 genome 

(refdata-cellranger-atac-GRCh38-1.2.0) with the function ‘cellranger-atac count’.   This function 

outputs the aligned, barcoded, and Tn5 insertion corrected fragment files,  which were used for all 

downstream analysis. 

  

Filtering cells by TSS enrichment, unique fragments, nucleosome banding and doublet score 

 The ArchR package(Granja et al., 2020) was used to process the fragment files.  We calculated the 

TSS enrichment, unique fragments and nucleosome banding for each cell with the function 

‘createArrowFiles’’. Then we kept the high-quality cells with the following criteria: 1) The number of unique 

nuclear fragments > 1000.  2) TSS enrichment score > 10.  3) nucleosome banding score < 4. We next 

identified potential doublets with the function ‘addDoubletScores’, and removed doublets using 

‘filterDoublets’’ with the following parameters: cutEnrich = 2, cutScore = -Inf, and filterRatio =2. Finally, we 

filtered the fragment files according to the cells we retained. These cleaned fragment files were used for all 

downstream analysis.  

   

Generating union peaks 
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Union peaks were generated for all the samples as described by Satpathy, et al. (Satpathy et al., 

2019). We first constructed 2.5kb tiled windows across the mm10 genome and computed a cell-by-window 

sparse matrix by counting Tn5 insertion (from cleaned fragment files) overlaps for each cell. Next, we 

binarized the cell-by-window matrix and created a Seurat object for each sample with the Signac (Stuart et 

al., 2020) package. Then we performed dimension reduction and clustering analysis using the functions  

‘RunTFIDF’, ‘RunSVD’, ‘FindNeighbors’ and ‘FindClusters’ with 2-50 dimensions and 0.3 resolution.  Next, 

we call peaks for each identified cluster in each sample using MACS2 (Zhang et al., 2008) software with the 

following parameters: ‘-shift -75 --extsize 150 --nomodel --callsummits --nolambda --keep-dup all -q 0.05’. 

We further extended the peak summits on both sides to a final width of 500 bp, and filtered these fixed-width 

peaks if they overlapped with mm10 v2 blacklist regions. (https://github.com/Boyle-

Lab/Blacklist/blob/master/lists/mm10blacklist.v2.bed.gz). Finally, we kept the top 100,000 fixed-width peaks 

for each cluster in each sample according to their -log10(q-value) and then merged them to the final union 

peak sets using the ‘reduce’ function from the GenomicRanges (Lawrence et al., 2013) package.   

  

LSI clustering, visualization, and identification of cell types  
For each sample, the cell-by-peak matrix was generated by the union peak sets, and was binarized 

and inputted to the Signac pipeline. Then we performed dimension reduction,  clustering and UMAPs 

analysis under the standard Signac workflow.  

To annotate the cell types for each cluster, we used existing mouse and human scRNA-seq datasets 

(Clark et al., 2019; Thomas et al., 2021) to interpret our scATAC-seq cell types using the CCA (canonical 

correlation analysis) integration method in the Seurat package. Firstly, we downloaded the mouse scRNA-

seq data (“https://github.com/gofflab/developing_mouse_retina_scRNASeq”) and converted them to Seurat 

objects. Secondly, for each scATAC-seq sample, we calculate the ‘gene activity’ profile for each cell with the 

function ‘CreateGeneActivityMatrix’. Finally, for each age-matched sample pair from scATAC-seq and 

scRNA-seq datasets, we identify anchors between them with the function ‘transfer.anchors.', and we used 

the 'TransferData’ to obtain the cell type prediction results for each cell. We further filtered out cells with a 

prediction score < 0.5 and annotated each cluster according to their predicted cell types. 

Integration of E11-P14 single-cell ATAC-seq datasets 
To Integrate and visualize all the cells from the scATAC-seq data (E11 to P14), we used the 

following 3 steps: 
1) Filtering cell types. To better focus on the epigenetic difference during the retinal development, we 

removed the cells  which are not annotated as retinal cells in each time point before integration. We kept the 
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following cell types: RPCs, Neurogenic ,RGC, AC/HC, Cone, Rod, BC and MG.  The total cell-by-peak matrix is 
filtered according to the retinal cells and used in the downstream analysis. 

2) Selecting variable peaks. To remove the potential batch effect, we selected the variable peaks 

separately in each sample. Because scATAC-seq data is very sparse, we aim to aggregate similar cells to 

create a more dense cell-by-peaks matrix to facilitate variable peaks calling. First, based on the UMAP 

embedding, we used the kNN approach to find the 100 nearest cells for each individual cell. Then we 

aggregate raw counts for each cell by its corresponding 100 nearest cells to create a new cell-by-peaks 

aggregate matrix. We then identified the variable peaks based on the new matrix using Seurat pipelines: 

‘NormalizeData’ and ‘'FindVariableFeatures’ (selection.method = "mvp"). Finally, we combined all the 

variable peaks from each sample into a master variable feature set, which was used in the downstream 

dimension reduction and clustering procedure. 

3) LSI clustering and visualization. Firstly, we binarized the filtered cell-by-peak matrix from Step1 

and performed the TF-IDF normalization. Then we used the master variable feature set from Step 2 to 

perform the dimension reduction with ‘RunSVD.’  Next, we used the 2nd-20th dimensions to identify clusters 

with a resolution of 1, and calculated the UMAP coordinates for visualization. Finally, we plotted the 3D 

UMAP of all retinal cells with the plotly graphing library in Python.  

  

 

  

ChromVAR and footprint analysis 
We used the chromVAR (Schep et al., 2017) R package to infer global TF activity in each cell. 

Firstly, we fed the total raw cell-by-peak matrix into chromVAR and to correct for GC bias with the mm10 

reference genome. Next, we generated a TF z-score matrix with the mouse TF Motif database 

(TransFac2018) using the function ‘computeDeviations’. The z-score for each cell was used to generate the 

heatmap and visualization using previously calculated UMAP coordinates.  

To analyze and plot TF footprints in different retinal cell types, we used the same methods described 

in Corces et al. (Corces et al., 2018).  First, we predicted the TF binding sites with the TF PWM matrix and 

the identified accessibility region using the function ‘matchmotifs’  in motifmatchr R package. Second, we 

generated 3 tables: 1) Table1: An aggregated observed 6-bp hexamer table in ± 250bp region relative to all 

the motif centers. 2) Table2: An aggregated expected 6-bp hexamer table from the mm10 genome. 3) 

Table3: An observed Tn5 insertion signal table around the ± 250bp relative to the motif centers.  Next, we 

obtain the O/E 6-bp hexamer table by dividing the two hexamer tables (Table5 = Table1/Table2). Then we 
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normalized the signal using the O/E 6-bp hexamer table (Table4/ Table5) to get the final Tn5 bias-corrected 

signal.  

  

Single-cell RNA-seq analysis 
Preprocessing 

We processed raw scRNA-seq data with the Cell Ranger software for formatting reads, 

demultiplexing samples, genomic alignment, and generating the cell-by-gene count matrix. The ‘cellranger 

mkfastq’ function was used to convert BCL files to fastq files. The ‘cellranger count’ function was used to 

process fastq files for each sample with the mm10 mouse reference index provided by 10x Genomics. The 

cell-by-gene count matrix is the final output from the Cell Ranger pipeline. We used the cell-by-gene count 

matrix for all downstream analysis.  

We applied the Seurat (Stuart et al., 2019) package to create Seurat objects for each sample with 

the cell-by-gene count matrix and the function ‘CreateSeuratObject’ (min.cells = 3, min.features = 200). After 

visual checking the violin plot of the total counts for each cell, we filtered out cells with nCount_RNA < 800 

or nCount_RNA > 8000. We further filtered out the cells with a mitochondrial fraction > 8%. Next, we used 

Scrublet (Wolock et al., 2019) to identify multiplet artifacts, and removed potential doublet cells from each 

sample using default parameters.  Non-neuroretinal cell types, such as microglia and astrocytes, were also 

removed.  

Trajectory inference and pseudotime analysis 
We applied Slingshot (Street et al., 2018) software to infer trajectories based on the UMAP 

coordinates. We only kept the cells involved in the developmental process we plan to investigate. Then we 

ran Slingshot with the UMAP coordinates matrix and set ‘RPCS1’ cluster (Figure4) and ‘RPC’ cluster 

(Figure6,FigureS6) as the root cells to calculate the trajectory with the function “getLineages” and 

“getCurves”. Then, we applied the “slingPseudotime '' function to calculate pseudotime state for each cell. 

Finally, we calculated the bin-by-gene matrix or bin-by-peak matrix by averaging expression levels or 

accessibility levels of all the cells in each bin. 

 

Identification of cell-type specific peaks and motif activities 
We calculated the cell-type specific peaks across all the retina cells for mouse and human 

scATACseq respectively. The function ‘getMarkerFeatures’ in ArchR package were used to identify the 

marker peaks for each cell type with the following parameters:  normBy=’nFrags’, 

bias=c(“TSSEnrichment”,"log10(nFrags)") and testMethod = "wilcoxon". We then further filtered the results 

to get the final specific peak sets with the function “getMarkers”: cutOff = "FDR <= 0.01 & Log2FC >= 1.5". 
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The cell-type-specific motifs were identified based on the chromVAR results. Firstly, we identify the 

significant enriched motif for each cell type. The chromVAR deviation matrix was converted to a Seurat 

object. Then the cell type information were added to the Seurat object and the enriched motif for each cell 

type was measured by the function “FindAllMarkers” with following parameters: only.pos = TRUE, test.use = 

'LR', and p value < 0.01. Secondly, we further filtered the significant motifs according to their average Z-

score and their ranks among the retina cell types. We only kept the motifs for each cell type if they 1) 

average chromVAR Z-score > 1, and  2) their average chromVAR Z-score are the highest or the second 

highest among all the cell types. 

 

Identification of conserved peaks between mouse and human 
We compared cell-type specific peaks between mouse (mm10) and human (hg38) by the rtracklayer  

package in R. we converted mouse peak region from mm10 assembly to hg38 assembly with the function 

‘liftOver’. Then we identified the overlapped peak pairs between mouse converted peaks and human peaks 

with the function ‘findOverlaps’. We also calculated the overlapped ratio for each pair as: Overlapped ratio = 

width(Mouse converted peak) / width(Overlapped region). Finally, we identified the pairs of peaks as 

conserved peak pairs if their overlapped ratio > 0.5.  

  

Gene/peaks set enrichment analysis 
We performed Gene/peak set enrichment analysis using the fgsea package in R using default 

parameters (Korotkevich et al., 2021). The significant DEGs and DARs were ranked based on their log2 fold 

change (treatment / control). The retina cell-type-specific gene sets and peak sets we used in the GSEA / 

PSEA were generated from all the retinal cells as mentioned before. 

 

Constructing gene regulatory networks by integrating scRNA-seq and scATAC-seq data  
To infer cell-type-specific GRNs from scRNA-seq and scATAC-seq data, we modified IReNA pipeline 

to IReNA v2, which contains the following main modules: 

1. Selecting candidate genes 

The DEGs were used as candidate genes for GRNs construction. For each developmental process 

we aim to investigate, we identified the enriched genes for each cell type using the function ‘FindMarkers’ in 

Seurat. In constructing the GRNs of progenitors transition, the following parameters of ‘FindMarkers’ were 

used: min.pct = 0.05, logfc.threshold = 0.20, only.pos = TRUE, p-adjust < 0.01. In constructing GRNs 

regulating neurogenesis, the following parameters of ‘FindMarkers’ were used: min.pct = 0.1, logfc.threshold 

= 0.25, only.pos = TRUE and p-adjust < 0.01. 
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2.  Identifying significant peak-to-gene links 

We used the ArchR package to identify the significant peak-to-gene links. First, we integrated the 

age-matched scRNA-seq and scATAC-seq datasets for each time point using unconstrained Integration 

method with the function ‘addGeneIntegrationMatrix’. Then, using the function ‘addPeak2GeneLinks’, we 

calculated the correlation between accessibility peak intensity and gene expression. Finally, we identified 

the significant peak-to-gene links with the following cutoff: abs(correlation) > 0.2 and fdr < 1e-6. 

  

3.  Identifying the potential cis-regulatory elements for each candidate gene 

We identified potential cis-regulatory elements for each candidate gene based on their location and 

the peak-to-gene links from Step2. We first classified all peaks into three categories according to their 

genomic location related to their potential target genes: 1) Promoter. 2) Gene body. 3) Intergenic. For the 

peaks in the promoter region,we treated all of them as correlated differentially-accessible chromatin regions 

(CARs) of their target genes. For the peaks in the gene body region, we defined them as CARs if they met 

the following criteria: 1) the distance between the peak and the TSS of its target gene is < 100kb. 2) the 

links between the peak and its target gene is significant.  For the peaks in the intergenic region, we first find 

their target genes and construct the peak-gene pairs if the target genes’ TSS are located within the 

upstream 100kb or downstream 100 kb of the intergenic peaks. Then we keep the peak-gene pairs if their 

peak-to-gene links are significant in step2. These peaks were identified as CARs of their gene pairs. 

 

4.  Predicting cell-type specific TFs binding in cis-regulatory elements 

With the cis-regulatory elements identified in Step 3, we next predicted the TF binding in these 

elements for each cell type with the PWMs extracted from TRANSFAC database. Firstly, we searching the 

motifs in all the cis-regulatory elements with the function ‘matchMotifs (p.cutoff = 5e-05)’ from the 

motifmatchr package. Then we filtered these motif regions according to their footprint score and their 

corresponding TF’s expression for each cell type. 

To calculate the footprint score for each motif region in each cell type, we re-grouped the insertion 

fragments based on their origin of cell type and converted these cell-type-specific fragments into bam files 

using a custom script. Then we fed the bam files to TOBIAS software and obtained the bias-corrected Tn5 

signal (log2(obs/exp)) with the default parameters except: ATACorrect --read_shift 0 0. Next, we calculated 

footprint scores including  NC, NL and NR for each motif's binding region. NC indicated the average bias-

corrected Tn5 signal in the center of the motif. NL and NR indicated the average bias-corrected Tn5 signal 
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in the left and right flanking regions of the motif, respectively. The flanking region is triple the size of the 

center region. We kept the motifs with the following criteria: NC < -0.1 and NL > 0.1 and NR > 0.1. 

We further removed the motifs binding region for each cell type if the expression level of their 

corresponding TFs are not enriched in that cell type (from Step1).  

 

5. Calculating gene-gene correlation 

We calculated the expression correlations between all the expressed genes at the single-cell level. 

First, we extracted the cell-by-matrix from Seurat objects and filtered out the non-expressed genes in the 

matrix (rowSums < 10). Then we applied the MAGIC software to impute missing values and recover the 

gene interactions using the cell-by-gene matrix. The output matrix from MAGIC was used to calculate gene-

gene correlation using the function ‘cor’ in R.  To identify the significant gene-gene correlations, we ranked 

all the gene-gene correlations (~1X10e8). The top 2.5% correlations were treated as significant positive 

correlations (p < 0.025) and the bottom 2.5% correlations were treated as significant negative correlations  

(p < 0.025).  

 

6. Constructing gene regulatory networks 

By integrating data from Step1-Step5, We constructed cell-type specific GRNs with the following 

procedure:  

We first obtained the peak-target links from Step 3, and cell-type specific TF-peak links from Step 4.  

We then merged these 2 types of links to the cell-type specific TF-peak-target relationships. Next, we 

classified these TF-peak-target relationships into activation or repression relationships based on the sign of 

the expression correlation between TF and target from Step 5. The significant positive/negative correlated 

TF-targets were selected as the active/repressive regulations respectively.  

Finally, we removed all the duplicated TF-target regulatory relationships for each cell type and 

merged them to the final GRNs which were used for the downstream analysis. 

  

7. Identifying and visualizing feedback TF pairs  

With the GRNs constructed in the previous steps, we searched for TF pairs connected by either 

positive or negative feedback regulatory relationships. The TF pairs that activated each other were identified 

as ‘double positive’ pairs and the TF pairs repressed each other were identified as ‘double negative’ pairs. 

We visualized these feedback TFs pairs using Cytoscape software.  

  

Constructing inter-cell type regulatory networks 
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We used a previously described approach (Hoang et al., 2020) to calculate the significance of 

regulatory relationships between cell types with the constructed GRNs. For each cell type, we first selected  

their highly enriched genes with the cutoff: q <0.01 and logFC > 0.5. Then we calculated the number of 

active and repressive regulations between these highly enriched genes for each cell type from the GRNs 

and calculated p-value with the hypergeometric test. We set p-value < 0.01 as a cutoff to determine the 

significant regulations. 

  

ChIP-seq data analysis 
After removing adaptors with Trimmomatic (Bolger et al., 2014), we mapped the cleaned fastq files 

to mm10 genome using bowtie2 (Langmead and Salzberg, 2012).  We next filtered low quality reads with 

SAMtools (Li et al., 2009)(MAPQ < 10), and removed PCR duplicates using Picard tools 

(http://broadinstitute.github.io/picard/) . For NFI ChIP-seq data, we used IgG and Input samples as control, 

and used MACS2 (Zhang et al., 2008) to call peaks with the default parameters except: -q 0.01. Finally, we 

identified 13,680 NFI binding peaks and used them in the downstream analysis. 

 

 Integration analysis of single-cell RNA-seq or single-cell ATAC-seq datasets between control 
and treatment samples  

We applied the Harmony (Korsunsky et al., 2019) package to integrate the scATAC-seq data from 

different genotypes at the same age (control vs NFIA/B/X overexpression, or control vs Nfia/b/x knockout). 

Briefly, we first merged the cell-by-peak matrix from the same age, then inputted the cell-by-peak matrix into 

the Signac analysis pipeline. We normalized and obtained a low-dimensional representation of the cell-by-

peak matrix using the functions ‘FindTopFeatures’, ‘RunTFIDF’ and ‘RunSVD’. Next, we integrated all the 

cells from different genotypes (Ctrl vs NFI Overexpress or Ctrl vs NFI TKO) using the ‘RunHarmony’ 

function with the options: dim.use = 2:50, group.by.vars = ‘genotypes’, reduction = 'lsi' and project.dim = 

FALSE. Finally, we used the harmony dimensions to identify clusters, and calculated UMAP coordinates for 

visualization. 

  

Inferring Nfia/b/x targets in progenitors  
We predicted NFI target genes by integrating the information obtained from scRNA-seq, scATAC-

seq and ChIP-seq analysis using the following steps: 

 

1.Identify DEGs resulting from NFIA/B/X overexpression and Nfia/b/x conditional knockout. 
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 We performed the differential gene expression analy sis between control RPC/MG cells and Nfia/b/x 

TKO or NFIA/B/X overexpressing RPC/MG cells using the function ‘FindMarkers’ with the options: min.pct = 

0.1, logfc.threshold = 0.25. Then we selected the DEGs with adjusted p-value < 0.01. 

 

2. Identify differential peaks following NFIA/B/X overexpression or Nfia/b/x conditional knockout. 

To explore which ATAC regions are changed following NFIA/B/X overexpression or Nfia/b/x 

conditional knockout, we applied the MAnorm (Shao et al., 2012) algorithm to perform the differential peak 

analysis between control and NFIA/B/X overexpression or Nfia/b/x conditional knockout. First, we selected 

cells in the ‘RPC’ and ‘MG’ cluster and then separated these cells according to their genotypes (control, 

NFIA/B/X overexpression or Nfia/b/x conditional knockout). Next, we aggregated the cells in the same 

condition by summing their count signals for each peak, and created a new condition-by-peak count matrix, 

and fed this into the MAnorm pipeline. We performed the MAnorm test and identified the differential peaks 

using the cutoff: LOG_P > 5, abs (M_value_rescaled) > 0.5 and A_value_scaled > 4. 

 

3.     Predict NFIA/B/X binding sites in RPC 

With the same method in the GRN construction, we first identify Peaks-Target links according to 

peak location and “peak-to-gene links” (identified in RPC-MG developmental process), these cis-regulatory 

elements including TSS peaks, correlated gene body peaks and intergenic peaks. We further filtered these 

PeaksTarget links with the following criteria: 1) Peaks should overlap with NFI ChIP-seq peaks. 2) Gene 

body peaks and intergenic peaks should be differentially accessible following NFIA/B/X overexpression or 

Nfia/b/x conditional knockout. 3) Target gene should be differential following NFIA/B/X overexpression or 

Nfia/b/x conditional knockout.  

   

GO term analysis 
To understand what biological functions are enriched in the gene set we are interested, we applied 

Gorilla (Eden et al., 2009) algorithm to calculate the enriched Gene Ontology terms for our gene sets with 

the default parameters (P-value threshold = 0.001, ontology = ‘Process’).  

KEY RESOURCES TABLE 

  

REAGENT or RESOURCE SOURCE  
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Antibodies 

D Vendor Dilution 

Rabbit anti-GFP A-6455, ThermoFisher 1:400 

Chicken anti-GFP A10262, ThermoFisher 1:400 

Mouse anti-TFAP2A 3B5, DSHB 1:200 

Goat anti-OTX2 AF1979, R&D systems 1:200 

Rabbit anti-SOX9 AB5535, MiliporeSigma 1:200 

Rabbit anti-RBPMS 15187-1-AP, Proteintech 1:200 

Mouse anti-CRX H00001406-M02, Abnova 1:200 

Anti-NFIA HPA006111-100UL 

Sigma-Aldrich 

1µg 

Anti-NFIB 39091, Active Motif 1µg 

Anti-NFIX SAB1401263-100UG, 

Sigma-Aldrich 

1µg 

Mouse IgG C15400001-15, Diagenode 1µg 

Rabbit IgG C15410206, Diagenode 1µg 

Full-length ORFs 
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ORFs Clone ID   Vendor 

NFIA IOH12791 ThermoFisher 

NFIB IOH3202 ThermoFisher 

NFIX BC117115  

INSM1 GC-F0042 Genecopoeia 

INSM2 GC-Z3358 Genecopoeia 

TBX3 IOH12474 ThermoFisher 

TCFL1 GW-C0075 Genecopoeia 

TCFL2 IOH21979 ThermoFisher 

Biological samples     

Human retinal samples     

Retinal organoid samples     

Chemicals, peptides, and recombinant proteins 

N/A     

   

Critical commercial assays 

10x scRNAseq 3’ v3.1 1000268  10X Genomics  

10x scATACseq v1.1 1000175   10X Genomics 
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PrecisionX™ Multiplex gRNA Cloning Kit  CAS9-GRNA-KIT System Biosciences 

GeneArt™ Genomic Cleavage Detection Kit  A24372  ThermoFisher  

truChIP chromatin shearing kit  520154 Covaris 

iDeal ChIP-seq kit for transcription factors C01010170 Diagenode 

Deposited data 

All scRNA-seq and scATAC-seq data GSE181251 
 

 GEO 

Experimental models: Organisms/strains 

Mouse line Source  

CD-1 Charles River Laboratories   

Tg(Chx10-EGFP/Cre/-ALPP)2Clc Dr. Connie Cepko 

(Rowan and Cepko, 2004) 

MGI:3838985 

Nfialox/lox;Nfib lox/lox;Nfixfl lox/lox Dr. Richard Gronostajski  

(Clark et al., 2019) 

 

Oligonucleotides 

gRNA Sequence 

Insm1 gRNA1 AGTCCACGCCCGTGTCCTAC 

Insm1 gRNA2  CGCTCCCGCCGAGCTCAAGA  

Insm2 gRNA1 GGTGACCACGTCCCCGGTGC 

Insm2 gRNA2 AGACTGGGGCACCCTTACCG 
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Software and algorithms 

Software Source Version 

Cell Ranger 10X Genomics  4.0.0 and 6.0.1  

Cell Ranger ATAC 10X Genomics 1.2.0 

Seurat  https://github.com/satijalab/seurat   

Signac https://github.com/timoast/signac/  

ArchR https://github.com/GreenleafLab/ArchR    

Slingshot https://github.com/kstreet13/slingshot  

motifmatchr https://github.com/GreenleafLab/motifmatchr  

TOBIAS https://github.com/loosolab/TOBIAS  

Harmony  https://github.com/immunogenomics/harmony   

MAGIC https://github.com/KrishnaswamyLab/MAGIC  

chromVAR https://github.com/GreenleafLab/chromVAR  

MAnorm https://github.com/shao-lab/MAnorm    

Trimmomatic https://github.com/usadellab/Trimmomatic 0.38 

bowtie2 https://github.com/BenLangmead/bowtie2 2.3.4.1 

SAMtools https://github.com/samtools/samtools 1.9 
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Picard https://github.com/broadinstitute/picard 2.18.2 

MACS2 https://github.com/macs3-project/MACS   2.1.1.20160309 

pheatmap https://github.com/raivokolde/pheatmap    

Fgsea https://github.com/ctlab/fgsea    

Sinto https://github.com/timoast/sinto    

rtracklayer  

https://bioconductor.org/packages/release/bioc/html/rtra

cklayer.html 

  

CHOPCHOP https://chopchop.cbu.uib.no/  

R https://www.r-project.org/    

R Studio https://www.rstudio.com/  

GraphPad Prism GraphPad Software    

ImageJ/Fiji https://imagej.net/software/fiji/    

Adobe Photoshop Adobe Inc.  

Adobe Illustrator Adobe Inc.  

Cytoscape Cytoscape Consortium  

BioRender  https://biorender.com/   

TargetScanHuman www.targetscan.org/vert_72/ Release 7.2, March 2018 
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