1 Intraspecific interaction of host plant influences local distribution of specialist

2	herbivores through metabolic alterations in leaves
3	
4	Last revision: July 30, 2021
5	
6	Haruna Ohsaki ^{1*} , Atsuko Miyagi ² , Maki Kawai-Yamada ² , Akira Yamawo ¹ *
7	Author information: ¹ Department of Biological Sciences, Faculty of Agriculture and
8	Life Science, Hirosaki University, 3 Bunkyo-cho, Hirosaki, Aomori 036-8561, Japan;
9	² Graduate School of Science and Engineering, Saitama University, 225 Shimo-Okubo,
10	Sakura-ku, Saitama-city, Saitama 338-8570, Japan
11	
12	*Corresponding authors: Haruna Ohsaki and Akira Yamawo, E-Mail:
13	mric3706hrn@gmail.com, yamawo.aki@gmail.com, Phone: +81 172 39 3822
14	
15	Author contributions: H. O. & A. Y. developed the core idea, designed the
16	experiments, carried out field, cultivation and mesocosm experiments, and analysed
17	data. A. M. & M. KY. analysed the primary metabolites. H. O., A. M., M. K. & A. Y.
18	wrote the article.

19

20 COMPETING INTERESTS

21 The authors declare that they have no competing interests.

23 Abstract

24	1.	Recent studies suggest that changes in leaf traits due to interactions between plants
25		affect the resource utilisation and distribution of herbivores. However, this has not
26		yet been confirmed experimentally. Here, we investigated the effects of phenotypic
27		plasticity in leaf traits of Rumex obtusifolius (host plant) in response to the intra-
28		and interspecific interaction on distribution of two leaf beetles, Gastrophysa
29		atrocyanea (specialist herbivore) and Galerucella grisescens (generalist herbivore).
30	2.	We investigated the local population density of <i>R. obtusifolius</i> plants and the
31		presence of leaf beetles on the plants at five study sites. Leaf chemicals (condensed
32		tannins and total phenolics) were compared between aggregated and solitary R .
33		<i>obtusifolius</i> plants. To clarify the effects of the interaction environment of R .
34		obtusifolius plants on their leaf traits and resource utilisation by leaf beetles, we
35		conducted cultivation and preference experiments. Leaf chemicals (chlorophylls,
36		organic acids, primary metabolites, condensed tannins and total phenolics) and
37		preferences of adult leaf beetles were compared between intraspecific, interspecific
38		plant interaction, or no-interaction treatments. Finally, we evaluated the effects of
39		interaction between R. obtusifolius on leaf beetle distribution in mesocosm
40		experiments.

41	3.	In the field, the presence of the specialist leaf beetle, G. atrocyanea, was positively
42		correlated with the local population density (rosette overlap ratio) of R. obtusifolius
43		plants; however, no correlation was observed in the case of the generalist leaf
44		beetle, G. grisescens. In the cultivation experiment, plants in the intraspecific
45		interaction treatment increased their leaf contents of condensed tannins and total
46		phenolics, and G. atrocyanea consumed more of these leaves than leaves in other
47		treatments. Similar results were observed in the field. In the mesocosm experiment,
48		larger numbers of G. atrocyanea were distributed on R. obtusifolius plants exposed
49		to below-ground intraspecific interaction than on plants not exposed to intraspecific
50		interaction.
51	4.	Our results provide experimental evidence that leaf-trait changes in response to
52		intraspecific interaction between host plants influence specialist herbivore
53		distribution. This highlights the need to integrate plant-plant interactions into our
54		understanding of plant-animal interactions.
55	Ke	wwords: herbivory, host selection, phenotypic plasticity, plant-plant interactions,
56	pla	nt-herbivore interactions, resource concentration hypothesis, Rumex, secondary
57	me	tabolites

58 INTRODUCTION

59	To improve our understanding of plant-animal interactions, numerous ecologists have
60	tried to predict herbivorous insect distribution by using the local population density of
61	host plants. Root (1973) predicted that herbivores would be concentrated on host plants
62	growing in high-density populations or monocultures (resource concentration
63	hypothesis). This prediction has been supported by several studies (e.g., Stephens &
64	Myers, 2012; Nerlekar, 2018). On the other hand, the possibility of an inverse
65	distribution pattern, in which herbivores are concentrated on low-density or solitary host
66	plants (Yamamura, 1999; Otway et al., 2005), has been proposed as the resource
67	dilution hypothesis, and these predictions have also been supported by several studies
68	(e.g., Fagundes et al., 2019; Coutinho et al., 2019). These conflicting patterns have been
69	reported for several herbivore species, and some species have even been found to be
70	unresponsive to resource distribution (Rhainds and English-Loeb, 2003; Tuller et al.,
71	2013). Regardless, the mechanism that produces the uneven distribution of each
72	herbivore species has not been elucidated.
73	Differences in the local population density of host plants are likely to reflect
74	differences in the quality of the host plants, because the local population density of
75	plants is linked to their interaction environments; host plants present at high density are

76	exposed to direct intraspecific interaction. In contrast, host plants present at low density
77	are exposed to direct interspecific interaction or no interaction. Many studies have
78	reported that plant-plant direct interactions influence herbivory (Hambäck &
79	Beckerman, 2003; Muiruri et al., 2019; Yamawo, 2021). For example, plant competition
80	for resources induces plastic changes in the plants' resource allocation; these changes
81	can affect root or shoot growth. The changes in resource allocation can also influence
82	the expression of leaf thickness, leaf mass per area, and primary (essential nutrients) and
83	secondary (potentially plant-protective compounds) metabolites in the leaves (Bartron
84	& Bowers, 2006; Broz et al., 2010; Mraja et al., 2011; Takigahira & Yamawo, 2019;
85	Yamawo, 2021). Therefore, variations in the interaction environment induce changes in
86	expression of the chemical traits of host plant leaves (Barton & Bowers, 2006; Broz et
87	al., 2010; Mraja et al., 2011; Muiruri et al., 2019), so they are likely to influence leaf
88	herbivory and the distribution of herbivores. In fact, several studies have strongly
89	suggested that changes in leaf traits in response to differences in the interaction
90	environment of host plants influence herbivory or herbivore distribution (e.g., Broz et
91	al. 2010; Muiruri et al., 2019; Yamawo, 2021). However, to our knowledge, no
92	experimental evidence has yet been provided for this effect.
93	Specialist herbivores are often attracted by secondary metabolites in their host

94	plants; they adapt to these chemicals because they use them as cues to recognise the
95	host plants (e.g., Wheat et al., 2007; Goodey et al., 2015). Brassicaceae plants produce
96	glucosinolates to prevent herbivory by generalist herbivores; however, Brevicoryne
97	brassicae (cabbage aphid), which specialises in Brassicaceae plants, prefers these
98	glucosinolates (Titayavan & Altieri, 1990). Therefore, a high content of secondary
99	metabolites induced in host plants by intraspecific interaction may attract the plants'
100	specialist herbivores. In contrast, generalist herbivores avoid secondary metabolites
101	(e.g., alkaloids, phenolics and condensed tannins) in the leaves of host plants (e.g.,
102	Schoonhoven et al., 2005; Macel, 2011; Jeschke et al., 2017). Here, we hypothesised
103	that intraspecific interaction increases the content of secondary metabolites in plant
104	leaves, and that this increase would lead to the aggregation of specialist herbivores. In
105	contrast, generalist herbivores may gravitate towards low-density host plants to avoid
106	high contents of secondary metabolites. Therefore, differences in resource quality due to
107	variations in local population density within a plant population could induce either a
108	concentrated or a low-density distribution of herbivores, depending on the resource
109	concentration (Root, 1973) or resource dilution (Otway et al., 2005) hypothesis, when
110	compared with the distribution predicted on the basis of resource quantity alone
111	(Fretwell & Lucas, 1969).

112	Here, we focused on Rumex obtusifolius L. (broad-leaved dock; Polygonaceae)
113	as a host plant, and two leaf beetles, Gastrophysa atrocyanea Motschulsky
114	(Chrysomelidae), which is a specialist herbivore of Rumex plants, and Galerucella
115	grisescens (Joannis) (Chrysomelidae), which is a generalist herbivore of Polygonaceae
116	plants (see details in Supplemental methods). To test our hypothesis, we investigated the
117	relationships between the local population density of <i>R. obtusifolius</i> plants and the
118	herbivores' distributions in the field. Next, to clarify the effect of the interaction
119	environment on leaf traits of <i>R. obtusifolius</i> plants and resource utilisation by the two
120	leaf beetles, we conducted cultivation and preference experiments in adult leaf beetles.
121	Finally, we evaluated the effects of intraspecific interaction of <i>R. obtusifolius</i> plants on
122	the distribution of the leaf beetles by using a mesocosm experiment. On the basis of the
123	results, we discuss the effects of plant-plant interaction on herbivore distributions.
124	
125	
126	MATERIALS AND METHODS
127	Field survey
128	To reveal the relationships between the local population density of Rumex obtusifolius
129	and the distribution of leaf beetles, we conducted field surveys in April and May 2018,

130	at a time when the populations of both leaf beetles are large. Five grasslands were
131	selected as field-survey sites (5 April, Tomino-cho, Hirosaki City, Aomori Prefecture,
132	40°35'N 140°28'E; 13 April, Ozawa, Hirosaki City, Aomori Prefecture, 40°34'N
133	140°27'E; 28 April, Ohara, Hirosaki City, Aomori Prefecture, 40°34'N 140°26'E; 22
134	April, Nagoya City, Aichi Prefecture, 35°09'N 136°58'E; 5 May, Morioka City, Iwate
135	Prefecture, 39°42'N 141°08'E, Figure S1). These sites are all at least 2 km apart. At each
136	site we set up one square quadrat (Tomino-cho and Ohara, 10×10 m; Ozawa, 8×8 m;
137	Iwate, 4×6 m; Nagoya; 4×4 m) including varying local population densities and sizes
138	of <i>R. obtusifolius</i> plants. The maximum size of each quadrat was determined as 100 m^2 ;
139	in the case of small R. obtusifolius populations we adjusted the size of the quadrat
140	downward to include all R. obtusifolius individuals.
141	
142	Survey of local population densities of R. obtusifolius and herbivore distributions on
143	R. obtusifolius
144	In each quadrat, a corner was used as the origin of two axes, x and y, which we used to
145	plot coordinates. From the origin, we described the positions of all <i>R. obtusifolius</i>
146	individuals, except for first-year seedlings that had cotyledons, to a precision of 1 cm by
147	using a ruler. The longest rosette diameters of the described R. obtusifolius plants were

148	recorded as the plant size. We also recorded the presence or absence of each herbivore
149	species on each R. obtusifolius individual, regardless of the beetles' developmental
150	stages (egg, larva or adult).
151	By using these data, a bubble chart was created by converting the positions of
152	plants into distributions on a map and the rosette sizes into bubble sizes (Figure S2). As
153	an indicator of the local population density of <i>R. obtusifolius</i> , the area of one rosette
154	overlapping with the rosettes of neighbouring individuals was calculated by using image
155	analysis software (Adobe Photoshop Elements 2.0, Adobe Systems, San Jose, CA,
156	USA). The overlap ratio (overlapping area/total rosette area) was used to represent the
157	population density for analytical purposes. Because leaf beetles often retire into the soil
158	around the host plants, making it difficult to evaluate their numbers accurately, we used
159	binomial data (presence or absence) to analyse their distribution. The correlations
160	between the overlap ratio of the rosettes and the presence of Gastrophysa atrocyanea or
161	Galerucella grisescens were examined.
162	Measurement of leaf traits in field plants
163	To reveal the effects of local population density on the secondary chemicals of R .

- 164 *obtusifolius* in the field, we measured the leaf secondary metabolites of *R. obtusifolius*
- plants that grew alone or were aggregated. In April 2018, leaves of *R. obtusifolius* plants

166	were collected from three study sites in Aomori Prefecture, northern Japan (Hirosaki-
167	city: 40° 35'N 140° 28'E, Fujisaki-city: 40° 39' N 140° 29' E, Itayanagi-city: 40° 40' N
168	140°28' E). Each site was at least 10 km apart from the next site. To exclude the effects
169	of reproduction and leaf damage, we selected non-flowering individuals that had no
170	herbivores and no leaf damage. An R. obtusifolius plant was defined as "Solitary" when
171	there were no conspecific individuals within 30 cm from the edge of the widest rosette
172	(N = 15), and <i>R. obtusifolius</i> plants with five or more conspecific individuals within a
173	radius of 1 m from the centre of the plant were defined as "Aggregated" ($N = 25$). The
174	widest rosettes of these plants were about 30 cm in diameter. We selected the youngest,
175	fully expanded leaves. These leaves were analysed for secondary metabolites, namely
176	the contents of total phenolics and condensed tannin, which are well known as major
177	secondary metabolites in the <i>Rumex</i> genus (Feduraev et al., 2019). We measured the leaf
178	contents of total phenolics and condensed tannins in accordance with the methods of
179	Feeny (1970) and Dudt and Shure (1994).
180	Leaf beetle choice experiment using leaf sections from naturally growing plants
181	In April 2018, Solitary and Aggregated R. obtusifolius plants (85 individuals each) with

- 182 rosette diameters of about 30 cm were selected at random in Hirosaki City. We collected
- 183 the youngest fully expanded leaves from the plants. We cut one 2-cm piece from the

184	base of each collected leaf. A wet filter paper (8 cm in diameter) was placed in a
185	covered Petri dish (8.5 cm in diameter), and a piece of leaf from a Solitary plant and a
186	piece of leaf from an Aggregated plant were placed on it with one adult of G .
187	atrocyanea or G. grisescens. The Petri dishes were kept in a growth chamber (25 °C,
188	12L, 12D). After 24 h, the damage to each leaf piece was estimated by image analysis.
189	More details of the methods are given in the Supplementary methods.
190	
191	
192	Cultivation experiments
193	Cultivation design
194	To examine the effects of the interaction environment on leaf traits and leaf beetle
195	preferences, we conducted cultivation experiments. To prepare enough samples to
195 196	
	preferences, we conducted cultivation experiments. To prepare enough samples to
196	preferences, we conducted cultivation experiments. To prepare enough samples to measure leaf traits and leaf beetle preferences, two experiments were conducted.
196 197	preferences, we conducted cultivation experiments. To prepare enough samples to measure leaf traits and leaf beetle preferences, two experiments were conducted. Experiment 1 was conducted in 2017 to estimate the effects of interaction environment
196 197 198	preferences, we conducted cultivation experiments. To prepare enough samples tomeasure leaf traits and leaf beetle preferences, two experiments were conducted.Experiment 1 was conducted in 2017 to estimate the effects of interaction environmenton leaf secondary metabolite contents and plant biomass. Experiment 2 was conducted

202	collected from four individual plants in the field in Hirosaki City. Each individual was
203	separated by at least 2 km. As interspecific competitors, we focused on <i>Plantago</i>
204	asiatica L., Trifolium repens L. and Festuca ovina L. These species are the dominant
205	competitors of <i>R. obtusifolius</i> in Japan (Ohsaki, 2020). A total of 100 seeds of <i>P.</i>
206	asiatica were collected from two individuals in the field in Aomori Prefecture. A total of
207	100 seeds of <i>T. repens</i> were collected from individuals in the field in Saga Prefecture.
208	For F. ovina, commercially available seeds (Kaneko Seeds Co., Gunma, Japan) were
209	used. The seeds were stored in a refrigerator at 4 °C until the experiments began. Seeds
210	from each mother plant were mixed and sown on the surface of wet sand (2 cm deep)
211	during March 2017 for Experiment 1 and during March 2019 for Experiment 2. The
212	containers were kept in a growth chamber (25 °C, 12L, 12D). All plants had developed
213	their first true leaves by the beginning of the experiment.
214	In April 2017 and 2019, to obtain the focal plants, we planted one R .
215	<i>obtusifolius</i> seedling in each pot (10.5 cm diameter \times 9 cm high) containing seed-free
216	garden soil (Mori Sangyo Co., Hokkaido, Japan). These pots were assigned to three
217	interaction treatments: no-interaction treatment as a control (2017, $N = 49$; 2019, $N =$
218	35), intraspecific interaction treatment (2017, $N = 66$; 2019, $N = 66$) and interspecific
219	interaction treatment (2017, $N = 153$; 2019, $N = 98$). In the no-interaction treatment, to

220	provide a volume of soil similar to that used in the interaction treatment for each plant,
221	the pots were divided into halves with a plastic plate to block any below-ground
222	interaction, and one seedling of <i>R. obtusifolius</i> was planted in each half of the pot. In the
223	intraspecific interaction treatment, we planted another <i>R. obtusifolius</i> seedling beside
224	the focal plant as a competitor with no plastic plate. In the interspecific interaction
225	treatment, a seedling of another species (<i>P. asiatica</i> , 2017, $N = 58$; 2019, $N = 35$; <i>T.</i>
226	<i>repens</i> , 2017, <i>N</i> = 41; 2019, <i>N</i> = 30; <i>F. ovina</i> , 2017, <i>N</i> = 54; 2019, <i>N</i> = 33) was planted
227	next to the target R. obtusifolius seedling. In the interaction treatment, the distance
228	between seedlings was about 2 cm. All pots were placed randomly and maintained in
229	the growth chambers (25 $^{\circ}$ C, 12L, 12D) and watered once a day for 30 days.
230	
231	Measurement of leaf traits in cultivated plants
232	Experiment 1
233	After 30 days, we analysed total phenolics and condensed tannins. Plants were
234	harvested and dried at 50 °C for 3 days. The plants were then weighed on an electronic
235	balance to the nearest 0.1 mg. The leaves were used to analyse total phenolics and

condensed tannins by using the methods in field survey.

238 Experiment 2

239	After 30 days, we measured chlorophyll content and five organic acids as plant nutrients
240	(see details in Supplementary methods). The chlorophyll content reflects the plant's
241	nitrogen concentration and has been found to indirectly affect herbivore survival and
242	distribution (Scheirs & De Bruyn, 2004, Sousa-Souto et al., 2018). Also, organic acids
243	in the plant are necessary for the optimal development of phytophagous insects (Offor,
244	2010). Therefore, by measuring these, we examined changes in nutrient condition in
245	response to interactions between plants.

246

247 Leaf beetle choice experiment

248 To reveal whether changes in leaf chemical contents induced in *R. obtusifolius* by

249 interaction influenced the preferences of leaf beetles, we conducted choice experiments

- with the *R. obtusifolius* leaves used in cultivation experiment 2. The combinations of
- 251 leaf pairs were as follows: intraspecific interaction versus interspecific interaction;
- 252 interspecific interaction versus no-interaction treatment; and no-interaction treatment
- 253 versus intraspecific interaction. The experimental design and conditions were similar to
- that described for the choice experiment using field leaves (see Supplementary

255 methods).

257	Mesocosm experiments
258	To determine the effects of the interaction environment of <i>R. obtusifolius</i> on the
259	distribution of G. atrocyanea, we conducted a mesocosm experiment in November 2019
260	and July 2020. In November 2019, we estimated the effects of intraspecific interaction
261	of <i>R. obtusifolius</i> plants on the distribution of leaf beetles by using plants of the same
262	patch size in a "one-to-one-pot experiment" (Figure 1). In July 2020, we conducted a
263	"one-to-three-pot experiment" to clarify the effects of intraspecific interaction of R .
264	obtusifolius on the distribution of leaf beetles by adding the effects of patch size (i.e.,
265	resource amount) of the host plants.
266	We used two types of pot, namely interaction-treatment pots and no-
267	interaction-treatment pots. In both types of treatment pot, two seedlings of R .
268	obtusifolius were planted. The no-interaction-treatment pot was divided in half by a
269	plastic plate to block below-ground interaction between R. obtusifolius plants. The
270	interaction-treatment pot allowed below-ground interaction between R. obtusifolius
271	plants, because this type of pot had no plastic plate (see Supplementary methods).
272	One-to-one-pot experiment
273	We prepared 20 containers (911 mm \times 602 mm \times 207 mm). In each container, an

274	interaction-treatment pot and a no-interaction-treatment pot were placed 30 cm away
275	from the edge of the pot. The containers were surrounded by soil to a depth of 15 cm to
276	allow the beetles free access to the pods, as they would have in the field (Figure 1 a, b).
277	For data analysis, each container was allocated an ID. Five G. atrocyanea females were
278	released on the soil in the centre of each container, the top of which was then covered
279	with 1-mm-mesh white cloth. The containers were placed in a greenhouse (15 $^{\circ}$ C), and
280	the numbers of beetles on the plants were counted after 24 h.
281	One-to-three-pot experiment
282	In this experiment, we set up two types of conditions, namely "quantity conditions" (25
283	containers) and "quantity + quality conditions" (24 containers). For the quantity
284	conditions, we set up patches of two sizes by using four no-interaction-treatment pots.
285	We placed three pots together to represent large patches and one pot by itself to
286	represent small patches (Figure 1c). For the quantity + quality conditions, we set up
287	patches of two sizes by using one no-interaction-treatment pot and three interaction-
288	treatment pots; the three interaction-treatment pots represented large patches and the
289	single no-interaction-treatment pot represented small patches. In all containers, pots
290	were set up as in the one-to-one-pot experiment and under the same controlled
291	conditions. For the quantity conditions 125 beetles were used, and 120 beetles were

used for the quantity + quality conditions.

294	Statistical analysis
295	All statistical analyses were performed by using R v.3.6.1 software (R Development
296	Core Team, 2019). All data met the statistical assumptions of normality and
297	homoscedasticity according to the Kolmogorov-Smirnov test and F-test, and statistical
298	analyses were performed appropriately depending on the data set structure. All tests
299	were two tailed. The significance level was set at 0.05.
300	
301	Field survey data analysis
302	Survey of herbivore distribution on R. obtusifolius
303	We analysed the effects of the local population density of <i>R. obtusifolius</i> on the
304	distribution of leaf beetles by using generalised linear mixed models (GLMMs) with a
305	binomial distribution and logit function, followed by the Chi-square test. The models
306	included presence or absence of leaf beetles as fixed terms and overlap ratio of R .

- 307 *obtusifolius* rosettes for each plant, species of leaf beetles, and their interaction as
- 308 explanatory variables. When the relationship between overlap ratio of rosette area and
- 309 presence or absence of leaf beetles differed between leaf beetle species, the relationship

310	between these was analysed for each beetle species. Site ID was included as a random
311	effect in these models. False discovery rate (FDR) correction for multiple comparisons
312	was then applied.
313	Measurement of leaf traits in field plants
314	Leaf chemical traits (content of condensed tannin or total phenolics) were compared
315	between Solitary and Aggregate plants by using GLMMs with Gaussian distribution and
316	an identity link, followed by an F-test; the models included leaf chemical traits as fixed
317	terms and plant density (Solitary or Aggregated) as an explanatory variable. Site ID was
318	included as a random effect in the models. FDR correction for multiple comparisons
319	was then applied.
320	
321	Leaf beetle choice experiment using leaf sections from naturally growing plants
322	Consumed areas of leaves were compared between local R. obtusifolius population
323	densities for each leaf beetle species. We used GLMMs with Gaussian distribution and
324	an identity link, followed by an F-test; the models included area consumed by leaf
325	beetles as a fixed term and plant density (Solitary or Aggregated) as an explanatory
326	variable. Petri dish ID was included as a random effect in the models. FDR correction
327	for multiple comparisons was then applied.

328

329 Cultivation experiments data analysis

330 Measurement of leaf traits in cultivated plants

331	We used Gamma distributions for the dry weights of plants, Gaussian distributions for
332	the chlorophyll content of leaves, and Poisson distributions for the leaf contents of
333	condensed tannin and total phenolics. We compared plant dry weights and leaf traits
334	(condensed tannin, total phenolics and chlorophyll content) between the cultivation
335	treatments by using GLMMs. Gamma or Poisson distributions with a log link followed
336	by a Chi-square test were applied, and Gaussian distributions with an identifying link
337	followed by an F-test were applied. These models included each plant trait as fixed
338	terms and interaction treatment (no-, intraspecific or interspecific interaction treatment)
339	as an explanatory variable. Parent plant ID was included as a random effect in the
340	models. When there was an interaction effect between each plant trait and interaction
341	treatment, we conducted multiple comparisons by FDR correction.
342	Organic acids were analysed by using a principal component analysis (PCA)
343	based on the correlation matrix of variables. Scores on the first (PC1) and second (PC2)
344	axes of the PCA were compared between interaction treatments by using GLMMs with
345	a Gaussian distribution and an identity link, followed by an F-test. The models included

346	PC1 o	or PC2	2 as fixed	l terms.	interaction	treatment	(no-	intras	pecific c	or inters	pecific
0.0							(,	p • • • • • • •		

- 347 interaction treatment) as an explanatory variable and parent plant ID as a random effect.
- 348 When there was an interaction between PC1 or PC2 and interaction treatments, we
- 349 conducted multiple comparison by using FDR correction.

350 Leaf beetle choice experiment

- 351 The leaf area consumed by the leaf beetles was compared between interaction
- 352 treatments (no-, intraspecific or interspecific interaction). Data sets for female beetles
- were analysed by using GLMMs with a Gamma distribution and a log link, followed by
- a Chi-square test, and data sets of male beetles were analysed by using the Wilcoxon
- signed-rank test because the data sets contained some 0 values. The analysis was
- 356 conducted for each species of leaf beetle and for each sex of each species. FDR
- 357 correction for multiple comparisons was then applied to each data set.

358

359 Mesocosm experiments data analysis

360 One-to-one-pot experiment

361 The numbers of leaf beetles per patch were compared between cultivation treatments by

- 362 using GLMMs with Gaussian distributions and an identity link, followed by an F-test;
- 363 the models included number of leaf beetles on the patch as a fixed term and interaction

364	treatment	(interaction	or no-	interaction)	as an e	explanatory	variable.	Container	ID	was
-----	-----------	--------------	--------	--------------	---------	-------------	-----------	-----------	----	-----

included as a random effect in the models.

366 **One-to-three-pot experiment**

- 367 Number of leaf beetles per patch or number of leaf beetles per pot (representing leaf
- 368 beetle density) was compared between patch sizes (quantity) and cultivation conditions
- 369 (quality) by using GLMMs with Poisson distributions and a log-link, followed by a Chi-
- 370 square test; the models included number of leaf beetles per patch or per pot as fixed
- terms and patch size (small or large), cultivation conditions (quantity or quantity +
- 372 quality condition) and their interaction as an explanatory variable. Container ID was
- 373 included as a random effect in these models. When there was an interaction between
- 374 patch size and cultivation conditions, we conducted multiple comparisons by FDR
- 375 correction.
- 376
- 377

378 **RESULTS**

379 Field survey

380 More than 60 *R. obtusifolius* individuals were growing within each quadrat; the major 381 herbivores were *G. atrocyanea* and *G. grisescens* (Table 1). The relationship between

382	the overlap ratio of <i>R. obtusifolius</i> rosettes and the presence of leaf beetles differed
383	among leaf beetle species ($x^2 = 81.032$, $df = 2$, $P < 0.001$). There was a significant
384	positive correlation between the overlap ratio of <i>R. obtusifolius</i> rosettes and the
385	presence of <i>G. atrocyanea</i> (estimate coefficient = 0.786, $x^2 = 12.764$, $df = 1$, $P < 0.001$).
386	In contrast, the presence of G. grisescens was not significantly correlated with the
387	overlap ratio of <i>R</i> . <i>obtusifolius</i> rosettes (estimate coefficient = -0.456 , $x^2 = 2.451$, $df = 1$,
388	P = 0.117).
389	Contents of total phenolics and condensed tannin tended to be higher in
390	Aggregated plants than in Solitary plants, but this relationship did not reach statistical
391	significance (total phenolics, $F = 3.910$, $P = 0.096$, Figure 2a; condensed tannin, F
392	=4.882, $P = 0.067$, Figure 2b). Females of <i>G. atrocyanea</i> consumed significantly more
393	leaf tissue from Aggregated plants than from Solitary plants ($F = 7.837$, $P = 0.037$,
394	Figure 3a). In contrast, for males of <i>G. atrocyanea</i> ($F = 1.779$, $P = 0.323$, Figure 3b)
395	and for both sexes of G. grisescens (female, $F = 1.421$, $P = 0.323$, Figure 3c; male, $F =$
396	0.494, $P = 0.490$, Figure 3d), there were no differences in the area of feeding damage
397	between Aggregated and Solitary leaves.
398	

400 Cultivation experiments

401	The biomass and chlorophyll content of <i>R</i> . <i>obtusifolius</i> did not differ among interaction
402	treatments (biomass: $x^2 = 7.081$, $df = 4$, $P = 0.132$, Figure 4a; chlorophyll: $F = 1.444$, P
403	= 0.239, Figure 4b). The contents of total phenolics of R . <i>obtusifolius</i> differed
404	significantly among treatments; they were higher in the order of intraspecific, no-, and
405	interspecific interaction treatment (Figure 4c). Plants subjected to the intraspecific
406	interaction treatment had a significantly higher content of condensed tannins than those
407	undergoing the no- or interspecific interaction treatments (Figure 4d).
408	We found that PC1 and PC2 explained 61.0% and 20.7%, respectively, of the
409	total variance of the organic acid composition data. The PC1 value did not differ among
410	interaction treatments ($F = 2.068$, $P = 0.154$, Figure S3a). Plants subjected to the no-
411	interaction treatment had significantly lower PC2 values than those undergoing the
412	intraspecific or interspecific interaction treatments (Figure S3b).
413	Females of G. atrocyanea consumed significantly more leaf tissue from the
414	intraspecific interaction treatment plants than from the no-interaction plants ($x^2 = 5.470$,
415	$df = 1$, $P = 0.029$, Figure 5a) and from the interspecific interaction plants ($x^2 = 6.064$, df
416	= 1, P = 0.029, Figure 5b). There was no significant difference between the no
417	interaction and interspecific interaction treatments in terms of the area of leaf eaten by

424	Mesocosm experiments
423	
422	versus interspecific interaction, $z = 0$, $P = 0.097$, Figure 5f).
421	interaction versus intraspecific interaction, $z = 2.139$, $P = 1$, Figure 5e; no-interaction
420	(no-interaction versus intraspecific interaction, $z = 0.329$, $P = 1$, Figure 5d; interspecific
419	atrocyanea, there were no differences between treatments in the area of leaf consumed
418	females of G. atrocyanea ($x^2 = 1.832$, $df = 1$, $P = 0.176$, Figure 5c). For males of G.

In the one-to-one-pot experiment, a significantly greater number of G. atrocyanea were 425 distributed on the R. obtusifolius plants in the interaction treatment than in the no-426 interaction treatment (F = 5.556, P = 0.030, Figure 6a). In the one-to-three-pot 427 experiment, the effect of patch size on the distribution of G. atrocyanea differed 428 significantly with the cultivation conditions ($x^2 = 6.540$, df = 2, P = 0.038, Figure 6b). 429 Under both types of cultivation condition, large patches had significantly more beetles 430 than small patches (quantity conditions, $x^2 = 18.301$, df = 1, P < 0.001; quantity + quality 431 conditions, $x^2 = 55.474$, df = 1, P < 0.001, Figure 6b). This trend was more pronounced 432 under quantity + quality conditions. Moreover, the effect of patch size on the number of 433 434 G. atrocyanea per pot (i.e., the leaf beetle density) differed significantly between cultivation conditions (interaction treatment \times patch size; z = -2.067, P = 0.039, Figure 435

436	6c). Although the densities of leaf beetles in small and large patches were similar under
437	quantity conditions ($z = -0.308$, $P = 0.758$), under quantity + quality conditions the
438	large patches had a greater density of leaf beetles than small patches ($z = 2.118$, $P =$
439	0.034; Figure 6c).
440	
441	DISCUSSION
442	We found here that intraspecific interaction induced changes in the leaf metabolite
443	contents of Rumex obtusifolius and affected resource utilisation by the specialist leaf
444	beetle, G. atrocyanea, but not by the generalist leaf beetle, G. grisescens. In addition,
445	we showed experimentally that this type of resource utilisation affected the distribution
446	of G. atrocyanea. These results support our hypothesis, providing experimental
447	evidence that differences in the local population density of the host plant led to plastic
448	changes in leaf metabolite contents, affecting the resource utilisation and distribution
449	patterns of specialist herbivores.
450	Variations in leaf traits

451 In the field, Aggregated *R. obtusifolius* plants tended to have higher contents of total

- 452 phenolics and condensed tannin than Solitary plants (Figure 2). This result suggests that
- 453 aggregation of *R. obtusifolius* plants induced changes in leaf chemical traits. In fact, in

454	the cultivation experiments, the contents of total phenolics and condensed tannin in the
455	leaves of R. obtusifolius were significantly higher under intraspecific interaction
456	conditions than under interspecific interaction or no-interaction conditions (Figure 4c,
457	d). Increased contents of secondary metabolites in the presence of a conspecific
458	neighbour have been reported in several plant species, and it has been suggested that
459	metabolic alterations in leaves in response to intraspecific interaction are common in
460	plants (Barton & Bowers, 2006; Ormeño et al., 2007; Broz et al., 2010, but see Kigathi
461	et al., 2013). In many plant species intraspecific competition is more intense than
462	interspecific competition (Adler et al., 2018), and such intraspecific competition causes
463	limitation of soil nutrients and water (Craine & Dybzinski, 2013; Takigahira &
464	Yamawo, 2019). It is well known that limitation of soil nutrients and water for plants
465	induces the accumulation of secondary metabolites in the leaves (reviewed in Akula &
466	Ravishankar, 2011). Thus, aggregation of R. obtusifolius plants may increase the leaf
467	contents of secondary metabolites, such as total phenolics and condensed tannin,
468	through soil resource competition.
469	Another possible hypothesis is that Aggregated plants invest more in defence
470	than do Solitary plants through recognition of con-specific neighbours, because
471	aggregated plants often consumed by specialist leaf beetles. Leaf-trait alteration based

472	on neighbour recognition has also been reported in several plant species (Yamawo &
473	Mukai 2020; Yamawo, 2015, 2021). Neighbour recognition can therefore be a cause of
474	leaf-trait alteration in R. obtusifolius plants. However, the history of interaction between
475	specialist leaf beetles and R. obtusifolius plants is weak, because R. obtusifolius is an
476	exotic species in Japan. To understand the adaptive importance of leaf-trait alteration in
477	R. obtusifolius plants, we would need to perform an additional study in a region to
478	which <i>R. obtusifolius</i> is native.
479	The contents of primary metabolites are strongly affected by light conditions
480	(Kitazaki et al., 2018). For example, experiments with lettuce, Lactuca sativa, have
481	shown that the pattern of accumulation of primary metabolites, such as sugars and
482	amino acids, is affected by light quality, intensity and exposure time (Kitazaki et al.,
483	2018). In fact, our cultivation experiment found differences in the content of primary
484	metabolites between no-interaction and interaction treatments (Figure S3b). Changes in
485	the contents of primary metabolites in leaves may depends on presence of neighbour
486	plants, regardless of the identity of neighbour.
487	Preferences and distribution of leaf beetles

The local *R. obtusifolius* population density affected the amounts of leaf consumed by
the specialist leaf beetle, *G. atrocyanea*. In the experiment using leaves from the field,

490	females of G. atrocyanea preferred to consume the leaves of aggregated R. obtusifolius
491	plants than of Solitary plants, despite similar quantities of leaves being provided for the
492	beetles (Figure 3a). In the experiment using the leaves of cultivated plants, females of
493	G. atrocyanea also preferred the leaves of R. obtusifolius plants exposed to intraspecific
494	interaction over those of plants exposed to no interaction (Figure 5a). These preference
495	pattern are consistent with the increases in the leaf contents of secondary metabolites
496	(total phenolics and condensed tannins) (Figures 2 and 4c, d) but not with the variations
497	in primary metabolites (Figures S3). Therefore, we concluded that females of G .
498	atrocyanea selected leaves on the basis of increases induced in the leaf secondary
499	metabolite content by the host plant's interactive environment. G. atrocyanea beetles are
500	specialist herbivores of Rumex plants (Suzuki, 1985). Many herbivore specialists use
501	host-specific secondary metabolites for host searching or detecting (Schoonhoven et al.,
502	2005; Ômura, 2018). This type of host searching may reflect the feeding preferences of
503	G. atrocyanea. Females of G. atrocyanea lay eggs on the plants on which they feed, and
504	the hatched larvae feed on the same plants. The larvae of G. atrocyanea require large
505	amounts of food, and plants are often completely consumed (Suzuki, 1985). For this
506	reason, the selection of aggregated plant leaves by G. atrocyanea females during the
507	reproductive season is linked to the securing of food resources for the next generation.

508	This may be associated with niche specialisation in coevolution among host plants and
509	specialist herbivores (Schoonhoven et al. 2005; Abrahamson, 2008). In contrast, no
510	preference was observed among males of G. atrocyanea, possibly because males use
511	fewer resources than females with egg masses.
512	Do the preferences of leaf beetles affect the beetles' distribution? Our
513	mesocosm experiment provided robust evidence that changes in leaf traits based on
514	intraspecific interaction can affect the distribution of the specialist leaf beetles, G .
515	atrocyanea (Figure 6). When the plant patch sizes were similar, approximately 1.7 times
516	more leaf beetles were distributed in the interaction treatment patch than in the no-
517	interaction treatment patch (Figure 6a). Effects of interaction between host plants were
518	also found in the one-to-three-pot experiment. Greater numbers of leaf beetles were
519	distributed on the large patches than on the small patches, and this trend was more
520	pronounced under quantity + quality conditions than under quantity conditions (Figure
521	6b). This finding is consistent with the distribution of <i>G. atrocyanea</i> in the field
522	(Suzuki, 1985).
523	Moreover, in the conditions under which both the patch size and the
524	competitive environment (and thereby leaf traits) differed, the leaf beetle density was
525	significantly higher on large patches than on small ones, but it did not differ in

526	conditions under which only the patch size differed (Figure 6c). Root (1973) predicted
527	that "Herbivores are more densely distributed as the patch size of the feeding site
528	increases (resource concentration hypothesis)." According to this prediction, the
529	response of G. atrocyanea to differences in leaf traits leads to the concentration of
530	beetles relative to the food resource. In other words, in this system, our results strongly
531	suggested that differences in metabolic alterations in leaves through intraspecific
532	interactions in plants induced the concentrated distribution of herbivores on resources.
533	In contrast, numbers of the generalist leaf beetle, G. grisescens, were not
534	correlated with the local population density of <i>R. obtusifolius</i> in the field, and these
535	beetles did not select the leaves of R. obtusifolius on the basis of the interaction
536	environment. These results did not support our hypothesis that generalist herbivores
537	accumulate on low-density host plants to avoid high levels of secondary metabolites.
538	Generalist herbivores respond to a variety of chemicals besides those measured as leaf
539	traits in this study (Schoonhoven et al., 2005; War et al., 2012). Perhaps other leaf traits,
540	which could not be measured here, may have been involved in the preferences of G .
541	grisescens and varied according to the interaction environment, thus masking the
542	avoidance effect of secondary metabolites on the generalist leaf beetles. Another
543	possible reason why the findings did not support our hypothesis is the effects of

544	resource competition among herbivores. In some cases, resource competition among
545	herbivores influences herbivore distribution (e.g., Suzuki 1986; Schoonhoven et al.,
546	2005; Godinho et al., 2020). A previous study pointed out that G. grisescens is
547	vulnerable to resource competition from G. atrocyanea (Suzuki, 1986). It may therefore
548	prioritise the avoidance of competitors over plant availability when deciding where to
549	feed (Suzuki, 1985). Several studies, as well as the resource dilution hypothesis
550	proposed by Otway et al. (2005), have pointed out that herbivore density per plant may
551	be higher when the host density is low (e.g. Yamamura, 1999). Our results suggest that
552	these phenomena may be caused not only by differences in the local population density
553	of the host plants but also indirectly by interactions with other herbivorous insects. To
554	determine whether these results are general or specific to certain herbivores, several
555	species, including generalists, may need to be tested.
556	
557	
558	CONCLUSIONS
559	Our findings provide experimental evidence that intraspecific interaction between host
560	plants affects specialist herbivore distribution. Many researchers have worked to
561	unravel the relationship between the distribution of herbivores and the local population

562 density of host plants. Some herbivores have shown a positive response to resource

563	abundance, as in the resource concentration hypothesis proposed by Root (1973),			
564	whereas others, as in the resource dilution hypothesis proposed by Otway et al. (2005),			
565	have shown a negative response. These studies have focused on the amount of food			
566	available and have assumed that leaf traits are always constant. Our results indicate that			
567	herbivore responses to resource quantity and quality may interact with each other as			
568	factors governing herbivore distribution. Therefore, herbivore responses to the local			
569	population density of host plants can be understood from a plant-plant interaction			
570	perspective, highlighting the need to integrate plant-plant interactions into our			
571	understanding of plant-animal interactions in nature.			
572				
573	ACKNOWLEDGEMENTS			
574	This work was supported by JSPS Grants-in-Aid for Scientists (grant no. 18K19353 and			
575	19H03295 to AY) from the Japan Society for the Promotion of Science and a Sasakawa			
576	Scientific Research Grant (Study Number: 2019 - 5023).			
577				
578	REFERENCES			
579	Abrahamson, W. G. (2008). Specialization, speciation, and radiation: the evolutionary			
580	biology of herbivorous insects. Univ of California Press, Berkeley, CA.			

581	Adler, P. B., Smull, D., Beard, K. H., Choi, R. T., Furniss, T., Kulmatiski, A., Meiners, J.
582	M., Tredennick. A. T., & Veblen, K. E. (2018). Competition and coexistence
583	in plant communities: intraspecific competition is stronger than interspecific
584	competition. Ecology letters, 21, 1319-1329. https://doi.org/10.1111/ele.13098
585	Akula, R., & Ravishankar, G. A. (2011). Influence of abiotic stress signals on secondary
586	metabolites in plants. Plant Signaling & Behavior, 6, 1720-1731.
587	https://doi.org/10.4161/psb.6.11.17613
588	Barton, K. E., & Bowers, M. D. (2006). Neighbor species differentially alter resistance
589	phenotypes in Plantago. Oecologia, 150, 442-452.
590	https://doi.org/10.1007/s00442-006-0531-z
591	Broz, A. K., Broeckling, C. D., De-la-Peña, C., Lewis, M. R., Greene, E., Callaway, R.
592	M., Sumner, L. W., & Vivanco. J. M. (2010). Plant neighbor identity
593	influences plant biochemistry and physiology related to defense. BMC Plant
594	Biology, 10, 1-14. https://doi.org/10.1186/1471-2229-10-115
595	Coutinho, R. D., Cuevas-Reyes, P., Fernandes, G. W., & Fagundes, M. (2019).
596	Community structure of gall-inducing insects associated with a tropical shrub:
597	regional, local and individual patterns. Tropical Ecology, 60, 74-82.
598	https://doi.org/10.1007/s42965-019-00010-7

599	Craine, J. M.,	& Dybzinski, I	R. (2013).	Mechanisms of	plant competitio	n for nutrients
-----	----------------	----------------	------------	---------------	------------------	-----------------

- water and light. *Functional Ecology*, 27, 833-840.
- 601 https://doi.org/10.1111/1365-2435.12081
- 602 Dudt, J. F., & Shure, D. J. (1994). The influence of light and nutrients on foliar
- 603 phenolics and insect herbivory. *Ecology*, 75, 86-98.
- 604 https://doi.org/10.2307/1939385
- 605 Fagundes, M., Barbosa, E. M., Oliveira, J. B., Brito, B. G., Freitas, K. T., Freitas, K. F.,

& Reis-Junior, R. (2019). Galling inducing Insects associated with a tropical

607 shrub: the role of resource concentration and species interactions. *Ecología*

608 Austral, 29, 012-019. https://doi.org/10.25260/EA.19.29.1.0.751

- 609 Feduraev, P., Chupakhina, G., Maslennikov, P., Tacenko, N., & Skrypnik, L. (2019).
- 610 Variation in phenolic compounds content and antioxidant activity of different
- 611 plant organs from *Rumex crispus* L. and *Rumex obtusifolius* L. at different
- 612 growth stages. Antioxidants, 8, 237. https://doi.org/10.3390/antiox8070237
- 613 Feeny, P. (1970). Seasonal changes in oak leaf tannins and nutrients as a cause of spring
- feeding by winter moth caterpillars. *Ecology*, *51*, 565-581.
- 615 https://doi.org/10.2307/1934037

616 Fretwell, D. S., & Lucas, H. L. J. (1969). On territorial behavior and other factors

617	influencing habitat distribution in birds. Acta Biotheoretica, 19, 16–36.
618	https://doi.org/10.1007/BF01601
619	Godinho, D. P., Janssen, A., Li, D., Cruz, C., & Magalhães, S. (2020). The distribution
620	of herbivores between leaves matches their performance only in the absence
621	of competitors. Ecology and Evolution, 10, 8405-8415.
622	https://doi.org/10.1002/ece3.6547
623	Goodey, N. A., Florance, H. V., Smirnoff, N., & Hodgson, D. J. (2015). Aphids pick
624	their poison: selective sequestration of plant chemicals affects host plant use
625	in a specialist herbivore. Journal of Chemical Ecology, 41, 956-964.
626	https://doi.org/10.1007/s10886-015-0634-2
627	Hambäck, P. A., & Beckerman, A. P. (2003). Herbivory and plant resource competition:
628	a review of two interacting interactions. Oikos, 101, 26-37.
629	https://doi.org/10.1034/j.1600-0706.2003.12568.x
630	Jeschke, V., Kearney, E. E., Schramm, K., Kunert, G., Shekhov, A., Gershenzon, J., &
631	Vassão, D. G. (2017). How glucosinolates affect generalist lepidopteran
632	larvae: growth, development and glucosinolate metabolism. Frontiers in Plant
633	Science, 8, 1995. https://doi.org/10.3389/fpls.2017.01995
634	Kigathi, R. N., Weisser, W. W., Veit, D., Gershenzon, J., & Unsicker, S. B. (2013).

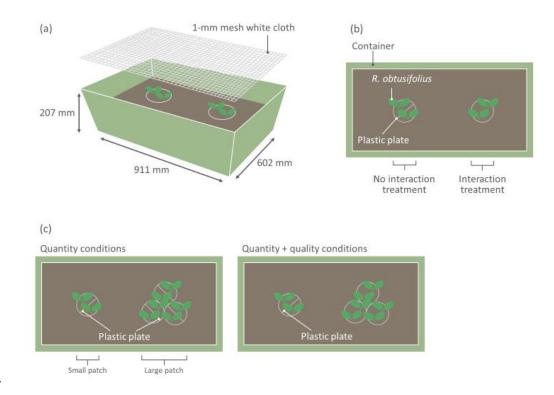
635	Plants suppress their emission of volatiles when growing with conspecifics.
636	Journal of Chemical Ecology, 39, 537-545. https://doi.org/10.1007/s10886-
637	013-0275-2
638	Kitazaki, K., Fukushima, A., Nakabayashi, R., Okazaki, Y., Kobayashi, M., Mori, T.,
639	Nishizawa, T., Reyes-Chin-Wo, S., Michelmore, R. W., Shoji, K., & Kusano,
640	M. (2018). Metabolic reprogramming in leaf lettuce grown under different
641	light quality and intensity conditions using narrow-band LEDs. Scientific
642	Reports, 8, 1-12. https://doi.org/10.1038/s41598-018-25686-0
643	Macel, M. (2011). Attract and deter: a dual role for pyrrolizidine alkaloids in plant-
644	insect interactions. Phytochemistry Reviews, 10, 75-82.
645	https://doi.org/10.1007/s11101-010-9181-1
646	Makuchi, T., & Sakai, H. (1984). Seedling survival and flowering of Rumex
647	obtusifolius L. in various habitats. Weed Research, 29, 123-130.
648	https://doi.org/10.3719/weed.29.123
649	Mraja, A., Unsicker, S. B., Reichelt, M., Gershenzon, J., & Roscher, C. (2011). Plant
650	community diversity influences allocation to direct chemical defence in
651	Plantago lanceolata. PLoS One, 6, e28055.
652	https://doi.org/10.1371/journal.pone.0028055

653	Muiruri, E. W., Barantal, S., Iason, G. R., Salminen, J. P., Perez - Fernandez, E., &
654	Koricheva, J. (2019). Forest diversity effects on insect herbivores: do leaf
655	traits matter?. New Phytologist, 221, 2250-2260.
656	https://doi.org/10.1111/nph.15558
657	Nerlekar, A. N. (2018). Seasonally dependent relationship between insect herbivores
658	and host plant density in Jatropha nana, a tropical perennial herb. Biology
659	Open 7, 1-7. https://doi.org/10.1242/bio.035071
660	Offor, E. (2010). The nutritional requirements of phytophagous insects: why do insects
661	feed on plants? Available at SSRN, 1535274.
662	Ohsaki, H., Mukai, H., & Yamowo, A. (2020). Biochemical recognition in seeds:
663	Germination of <i>Rumex obtusifolius</i> is promoted by leaves of facilitative adult
664	conspecifics. Plant Species Biology, 35, 233-242.
665	https://doi.org/10.1111/1442-1984.12275
666	Ômura, H. (2018). Plant secondary metabolites in host selection of butterfly. Chemical
667	Ecology of Insects (ed. by J. Tabata), pp. 3-27. CRC Press, Boca Raton,
668	Florida.
669	Ormeño, E., Bousquet-Mélou, A., Mévy, J. P., Greff, S., Robles, C., Bonin, G., &
670	Fernandez, C. (2007). Effect of intraspecific competition and substrate type

671	on terpene emissions from some Mediterranean plant species. Journal of
672	Chemical Ecology, 33, 277-286. https://doi.org/10.1007/s10886-006-9219-4
673	Otway, S. J., Hector, A., & Lawton, J. H. (2005). Resource dilution effects on specialist
674	insect herbivores in a grassland biodiversity experiment. Journal of Animal
675	Ecology, 74, 234-240. https://doi.org/10.1111/j.1365-2656.2005.00913.x
676	R Development Core Team. (2019). R: A language and environment for statistical
677	computing. Vienna, Austria: R Foundation for Statistical Computing.
678	Rhainds, M., & English - Loeb, G. (2003). Testing the resource concentration
679	hypothesis with tarnished plant bug on strawberry: density of hosts and patch
680	size influence the interaction between abundance of nymphs and incidence of
681	damage. Ecological Entomology, 28, 348-358. https://doi.org/10.1046/j.1365-
682	2311.2003.00508.x
683	Root, R. B. (1973). Organization of a plant - arthropod association in simple and
684	diverse habitats: the fauna of collards (Brassica oleracea). Ecological
685	Monographs, 43, 95-124. https://doi.org/10.2307/1942161
686	Scheirs, J., & De Bruyn, L. (2004). Excess of nutrients results in plant stress and
687	decreased grass miner performance. Entomologia experimentalis et applicata,
688	113, 109-116. https://doi.org/10.1111/j.0013-8703.2004.00215.x

Scherber, C., Eisenhauer, N., Weisser, W.W., Schmid, B., Voigt, W., Fischer, M. et al.

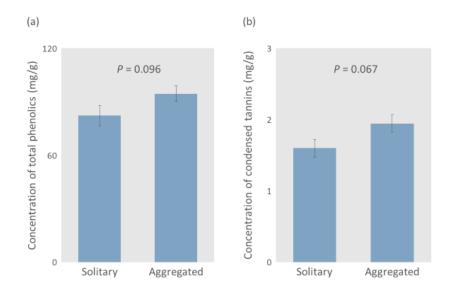
690	(2010). Bottom-up effects of plant diversity on multitrophic interactions in a
691	biodiversity experiment. Nature, 468, 553-556.
692	https://doi.org/10.1038/nature09492
693	Schoonhoven, L.M., van Loon, J.J.A. & Dicke, M. (2005). Insect-Plant Biology, 2nd
694	edn. Oxford University Press, Oxford.
695	Sousa-Souto, L., Bocchiglieri, A., Dias, D. D. M., Ferreira, A. S., & José Filho, P. D. L.
696	(2018). Changes in leaf chlorophyll content associated with flowering and its
697	role in the diversity of phytophagous insects in a tree species from a semiarid
698	Caatinga. PeerJ, 6, e5059. https://doi.org/10.7717/peerj.5059
699	Stephens, A. E., & Myers, J. H. (2012). Resource concentration by insects and
700	implications for plant populations. Journal of Ecology, 100, 923-931.
701	https://doi.org/10.1111/j.1365-2656.2005.00913.x
702	Suzuki, N. (1985). Resource utilization of three chrysomelid beetles feeding on Rumex
703	plants with diverse vegetational background. Japanese Journal of Ecology,
704	35, 225-234. https://doi.org/10.18960/seitai.35.2_225
705	Suzuki, N. (1986). Interspecific competition and coexistence of the two chrysomelids,
706	Gastrophysa atrocyanea Motschulsky and Galerucella vittaticollis Baly


707	(Coleoptera: Chrysomelidae), under limited food resource conditions.
708	Ecological Research, 1, 259-268. https://doi.org/10.1007/BF02348683
709	Takigahira, H., & Yamawo, A. (2019). Competitive responses based on kin-
710	discrimination underlie variations in leaf functional traits in Japanese beech
711	(Fagus crenata) seedlings. Evolutionary Ecology, 33, 521-531.
712	https://doi.org/10.1007/s10682-019-09990-3
713	Titayavan, M., & Altieri, M. A. (1990). Synomone-mediated interactions between the
714	parasitoid Diaeretiella rapae and Brevicoryne brassicae under field
715	conditions. Entomophaga, 35, 499-507. https://doi.org/10.1007/BF02375084
716	Tuller, J., Queiroz, A. C. M., Luz, G. R., & Silva, J. O. (2013). Gall-forming insect
717	attack patterns: a test of the Plant Vigor and the Resource Concentration
718	Hypotheses. Biotemas, 26, 45-51. https://doi.org/10.5007/2175-
719	7925.2013v26n1p45
720	War, A. R., Paulraj, M. G., Ahmad, T., Buhroo, A. A., Hussain, B., Ignacimuthu, S., &
721	Sharma, H. C. (2012). Mechanisms of plant defense against insect herbivores.
722	Plant Signaling & Behavior, 7, 1306-1320. https://doi.org/10.4161/psb.21663
723	Wheat, C. W., Vogel, H., Wittstock, U., Braby, M. F., Underwood, D., & Mitchell-Olds,
724	T. (2007). The genetic basis of a plant-insect coevolutionary key innovation.

725	Proceedings of the National Academy of Sciences, 104, 20427-20431.
726	https://doi.org/10.1073/pnas.0706229104
727	Yamamura, K. (1999). Relation between plant density and arthropod density in cabbage
728	fields. Population Ecology, 41, 177-182.
729	https://doi.org/10.1007/s101440050020
730	Yamawo A. (2015) Relatedness of neighboring plants alters the expression of indirect
731	defense traits in an extrafloral nectary-bearing plant. Evolutionary Biology,
732	42, 12-19. https://doi.org/10.1007/s11692-014-9295-2
733	Yamawo A. (2021). Intraspecific competition favors ant-plant protective mutualism.
734	Plant Species Biology. https://doi.org/10.1111/1442-1984.12331
735	Yamawo, A., & Mukai, H. (2020). Outcome of interspecific competition depends on
736	genotype of conspecific neighbours. Oecologia, 193, 415-423.
737	https://doi.org/10.1007/s00442-020-04694-w
738	

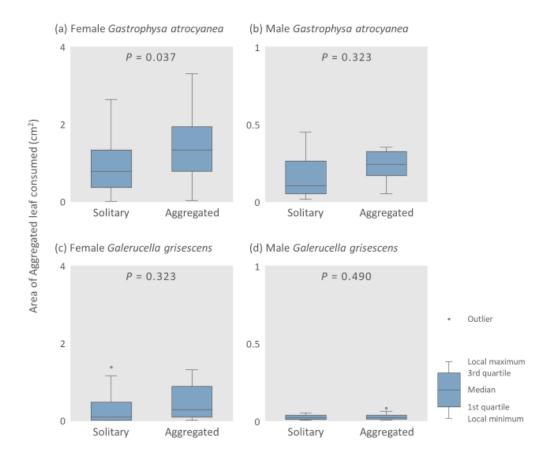
739 Table 1 Herbivores of *Rumex obtusifolius* and numbers and proportions of infested plants.

Taxon	Tomino-cho ($N = 213$)		Ozawa ($N = 441$)		Ohara ($N = 112$)		Iwate ($N = 195$)		Nagoya ($N = 62$)	
	No.	(%)	No.	(%)	No.	(%)	No.	(%)	No.	(%)
Gastrophysa atrocyanea Motschulsky (Chrysomelidae: Coleoptera)	14	6.57	195	44.22	84	75.00	49	25.13	44	22.56
Galerucella grisescens Joannis (Chrysomelidae: Coleoptera)	29	13.62	54	12.24	109	97.32	50	25.64		
Bothrogonia ferruginea Fabricius (Tettigellidae: Hemiptera)	1	0.47			1	0.89				
Mantura clavareaui Heikertinger (Chrysomelidae: Coleoptera)	1	0.47					1	0.51		
<i>Aphis rumicis</i> Linnaeus (Aphididae: Hemiptera)							15	7.69		
Dermaptera (Insecta)					1	0.89				
Helicoidea (Pulmonata)							60	30.77		
Lepidoptera (Insecta)							4	2.05		
Unknown	1	0.47								


743 FIGURES

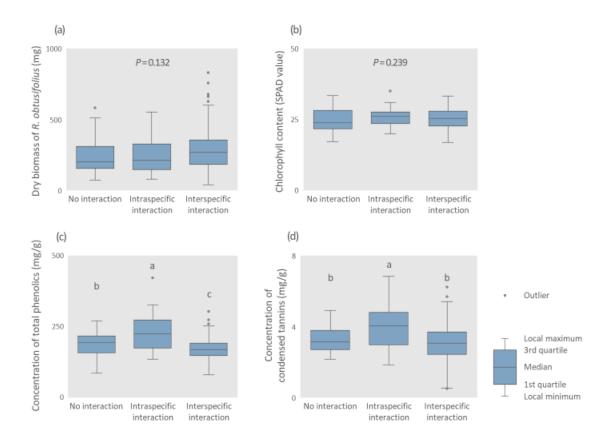
744

Figure 1


(a) Experimental setup in mesocosm experiment. In all containers, the area around the 746 747 pots was filled with soil to a depth of 15 cm to allow the beetles free access to the plants, as in the field. (b) In the one-to-one-pot experiment, the interaction and no-748 interaction treatment pots were placed 30 cm away from each other in the container. (c) 749 In the one-to-three-pot experiment, two sets of conditions were set up, namely "quantity 750 conditions" and "quantity + quality conditions." Under quantity conditions, two patch 751 sizes were created by using four no-interaction pots. Under quantity + quality 752 conditions, two patch sizes were created by using one no-interaction pot and three 753 interaction pots. The distance between the large and small patches was 30 cm in each 754 755 container.

758 Contents of (a) total phenolics and (b) condensed tannin in Solitary (N = 15) and

- Aggregated (N = 25) plants. Bars represent SE. *P*-values are for the results of GLMM
- 760 analysis.


761

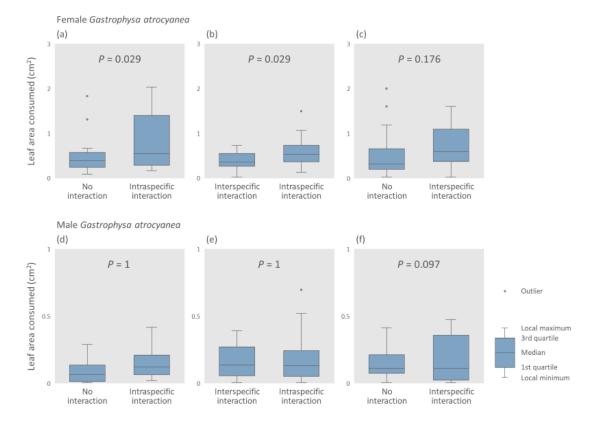
762 Figure 3

763 Areas of leaf consumed by (a) female and (b) male *Gastrophysa atrocyanea* and (c)

female and (d) male *Galerucella grisescens* in the choice experiment using leaves from

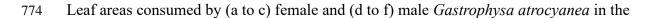
the field. *P*-values are for the results of GLMM analysis.

766

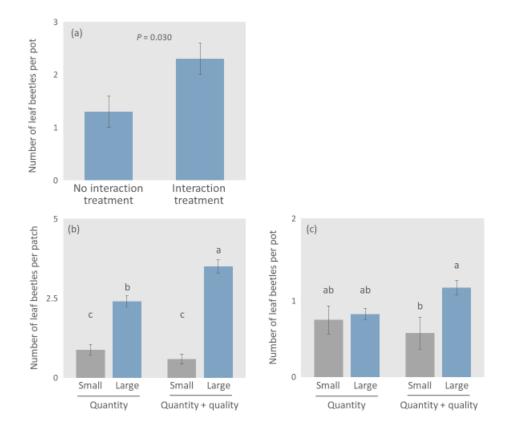

767 Figure 4

768 Dry biomass and leaf traits of *Rumex obtusifolius* in the cultivation experiment. (a) Dry

biomass of whole plant, (b) chlorophyll content, (c) content of total phenolics and (d)


content of condensed tannins in leaves. Different letters denote significant differences

```
771 (GLMM, P < 0.05).
```



Figure 5

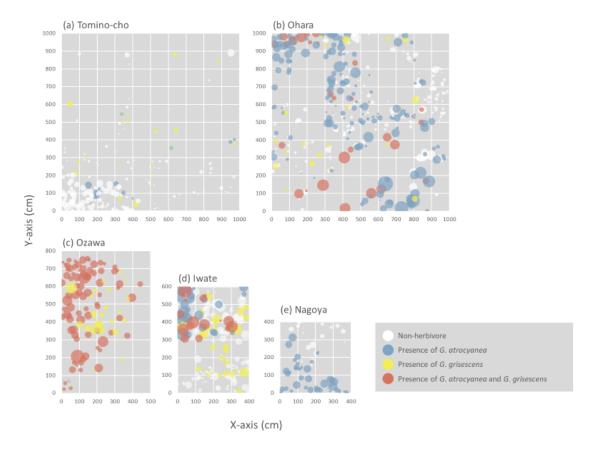
choice experiment using cultivated plant leaves. The combinations of leaf pairs of

treatments were as follows: (a, d) no interaction versus intraspecific interaction; (b, e)

- 777 interspecific interaction versus intraspecific interaction; (c, f) no interaction versus
- 778 interspecific interaction.

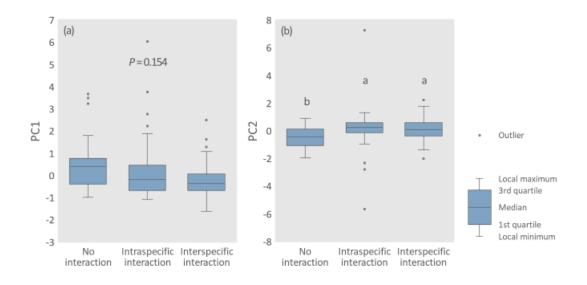
Figure 6

- 781 Numbers of leaf beetles in the mesocosm experiment. (a) Number of leaf beetles per pot
- in each treatment (no interaction or interaction treatment) in the one-to-one-pot
- experiment. (b) Number of leaf beetles per patch and (c) number of leaf beetles per pot
- in each patch (small and large patches) under each set of conditions (quantity and
- quantity + quality conditions) in the one-to-three-pot experiment. Bars represent SE.
- Different letters indicate significant differences (GLMM, P < 0.05).

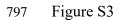


787

788 Figure S1


789 Geographic locations of the five study sites used in the field survey in Japan. These sites

790 were at least 2 km apart.



792 Figure S2

- 793 Distributions of *Rumex obtusifolius*, the specialist leaf beetle *Gastrophysa atrocyanea*
- and the generalist leaf beetle *Galerucella grisescens* at the five study sites. Bubble size
- in the graphs represents the rosette size of each *R. obtusifolius* plant.

Boxplots of principal component values. (a) PC1 and (b) PC2 for organic acids in the cultivation experiment. Different letters indicate significant differences (GLMM, P <0.05).

801 SUPPLEMENTARY METHODS

802

803 Study species

Rumex obtusifolius is a perennial herb native to Europe. In the early 1900s, *R*.

805 obtusifolius plants were brought to Japan as contaminants of grasses imported from

806 Europe (Makuchi & Sakai, 1984), and they invaded all regions of Japan except

807 Okinawa. This species grows in wet grassland in Japan. The plants often aggregate with

808 conspecific individuals, and they form patches of various sizes within the population

809 (Van Evert et al., 2011) because their seed germination is promoted by the presence of

the leaves of conspecifics via water-soluble-chemical exposure (Ohsaki et al., 2020).

811 The species contains condensed tannins and phenolics as secondary metabolites in the

812 leaves (Feduraev et al., 2019).

813 *Rumex obtusifolius* leaves are consumed mainly by two leaf beetles (Table 1), Gastrophysa atrocyane and Galerucella grisescen. Gastrophysa atrocyanea is a 814 univoltine species and specialist herbivore of Rumex plants. It occurs on Rumex plant 815 species from spring (March) to mid-summer (July) in Japan (Suzuki, 1985). Galerucella 816 grisescens is a multivoltine species and a generalist herbivore of plants of the 817 818 Polygonaceae family. It occurs on *Rumex* species from spring (March) to early winter (December) in Japan (Suzuki, 1985). Previous studies have shown that larger patches of 819 Rumex plants are associated with G. atrocyanea and smaller patches with G. grisescens 820 821 (Suzuki, 1985). This is related to differences in resource utilisation by the two species 822 and to competition advantage: G. atrocyanea requires greater amounts of food resources than G. grisescens, and G. grisescens, which is less competitive, avoids competition 823 824 with G. atrocyanea (Suzuki, 1985).

825

Field survey 826

827 Total phenolics and condensed tannins analysis

- We dried focal plants at 50 °C in an oven over 3 days. Dried leaf tissues were powdered 828
- in a mill. Total phenolics were extracted from 20 mg of leaf powder in 10 mL of 50% 829
- methanol for 1 h in an ultrasound bath at 40 °C. The content of total phenolics (mg/g) 830
- 831 was measured by using the Folin–Ciocalteu method (Julkunen-Tiitto, 1985). Condensed
- 832 tannins were extracted from 50 mg of dry leaves and were quantified by radial diffusion
- 833 assay with tannic acid as a standard (Hagerman, 1987).
- 834

839

835 Leaf beetle choice experiment using leaf sections from naturally growing plants

In April 2018, Solitary and Aggregated Rumex obtusifolius plants (85 individuals each) 836

with rosette diameters of about 30 cm were selected at random in Hirosaki City. We 837 838 collected the youngest fully expanded leaves from the plants. These leaves had no damage. We cut one 2-cm piece from the base of each collected leaf. A wet filter paper

840 (8 cm in diameter) was placed in a covered Petri dish (8.5 cm in diameter), and a piece

of leaf from a Solitary plant and a piece of leaf from an Aggregated plant were placed 841

842 on it. Adults of G. atrocyanea (36 females and 14 males) and G. grisescens (22 females

843 and 13 males) were also collected from the field in Hirosaki City. One beetle was placed

in the centre of the Petri dish, which was then kept in a growth chamber for 24 h at 844

25 °C, with a 12L 12D cycle. Each leaf piece was scanned by using an image scanner, 845

846 and the consumed area of the leaf was measured by using ImageJ bundled with 64-bit

Java 1.8.0 172 image analysis software (Abràmoff et al., 2004). This experimental 847

design is generally adopted for choice experiments with herbivores (e.g., Blüthgen, 848

849 2007; Sato et al., 2014; Shirahama et al., 2017; Lackner et al., 2019).

- 850
- 851

852 Cultivation experiments

853

Leaf beetle choice experiment

To reveal whether changes in leaf chemical contents induced by interaction in *R*.

obtusifolius influenced the preferences of leaf beetles, we conducted choice experiments

with the *R. obtusifolius* leaves used in the cultivation experiment. The experimental

857 design was similar to that described for the choice experiment using field leaves. Leaf

pairs were cut into 1.5-cm pieces taken from the leaf base and placed on a Petri dish.

The combinations of leaf pairs were as follows: no-interaction treatment versus

860 intraspecific interaction; interspecific interaction versus intraspecific interaction; and

861 no-interaction versus interspecific treatment. In the interspecific interaction treatment,

treatments using three different species of plants (*P. asiatica, T. repens* and *F. ovina*)

863 were used equally. In this experiment, we used only *G. atrocyanea*, because in the

864 choice experiment using field leaves only *G. atrocyanea* had expressed a significant

preference for group leaves (see Results). Male (N = 65) and female (N = 69) beetles

866 were collected from Hirosaki City and assigned to the three different interaction

treatments (intraspecific interaction versus interspecific interaction, 25 males and 25

females; interspecific interaction versus no interaction, 15 males and 19 females; no

869 interaction versus intraspecific interaction, 25 males and 25 females). Experimental

870 conditions were the same as those in the choice experiment using field leaves.

871

872 Measurement of leaf traits in cultivated plants

873 Chlorophyll content. First, a non-destructive chlorophyll meter (SPAD -502 Plus; 874 Konica Minolta, Tokyo, Japan) was used to measure the chlorophyll content in the most 875 recently fully expanded leaves of each cultivated *R. obtusifolius* on the final day of cultivation. A chlorophyll meter is one of the most commonly used diagnostic tools for 876 877 rapid and non-destructive estimation of chlorophyll content in leaves; the resulting SPAD values are positively correlated with chlorophyll content (Shibaeva et al., 2020). 878 879 Each leaf was measured twice—in the central part on both sides of the main vein—and 880 the average value was determined. Next, one longitudinal half of each leaf was used to measure primary metabolites. The other halves of the leaves were used in the leaf beetle 881 882 choice experiment. 883 Organic acids analysis Organic acids were extracted according to the method of Miyagi et al. (2010). The leaf 884

halves were frozen with liquid nitrogen and stored in a freezer at -80 °C until 885 886 measurement. Organic acids were extracted according to the method of Miyagi et al. (2010). Frozen leaves (about 50 mg) were milled, and 50% methanol containing 50 mM 887 888 PIPES (1,4-piperazineethanesulfonate) as an internal standard were added. After initial centrifugation (22,000g, 5 min, 4 °C), the supernatant was transferred to a 3-kDa cut-off 889 filter (Millipore, Billerica, MA, USA) and recentrifuged (14,000g, 30 min, 4 °C). Five 890 891 primary metabolites—oxalate, isocitrate, citrate, glycolate and threonate—were selected for analysis. These metabolites had been found in *R. obtusifolius* in our preliminary 892 survey. The resulting filtrate was quantified by capillary electrophoresis triple 893 894 quadrupole mass spectrometry (CE-QQQ-MS, CE; 7100, MS; 6420 Triple Quad LC/MS, Agilent Technologies, Santa Clara, CA, USA) with multi-reaction monitoring 895 mode according to the method of Miyagi et al. (2019). Because of the small leaf size, 896

897	plants for which we did not have enough samples for analysis were excluded from the
898	analysis, and the final number of plants analysed for organic acids was slightly smaller
899	than the original collection (no interaction, $N = 35$; intraspecific interaction, $N = 63$;
900	interspecific interaction, $N = 97$).
901	
902	
903	Mesocosm experiment
904	Preparation of plants and insects
905	In August 2018, seeds of R. obtusifolius were collected from three individuals in
906	Hirosaki City. Individuals were separated by at least 2 km. In October 2019 and June
907	2020, seeds were germinated in the same way as described in the cultivation experiment
908	and used for the mesocosm experiments. Two weeks later, we planted two R .
909	<i>obtusifolius</i> seedlings in each pot (10.5 cm diameter \times 9 cm high) containing seed-free
910	garden soil (Mori Sangyo Co., Ltd, Japan). As a no-interaction treatment, pots were
911	divided in half by a plastic plate to block below-ground interaction of the plants in each
912	experiment (2019, $N = 35$; 2020, $N = 84$), because changes in leaf chemical content in
913	response to conspecific neighbours depend on direct interaction below the ground
914	(Ohsaki, 2020). The other pots were assigned to the interaction treatment, which
915	consisted of two <i>R</i> . <i>obtusifolius</i> seedlings with no plastic plate (2019, $N = 35$; 2020, $N =$
916	74). All pots were watered once a day and maintained at 25 °C, 12L 12D for 30 days in
917	growth chambers. Gastrophysa atrocyanea were collected from the field and kept in the
918	laboratory until required for the experiment.
919	

921 References For Supplementary Methods

- Abràmoff, M. D., Magalhães, P. J., & Ram, S. J. (2004). Image processing with ImageJ. *Biophotonics international*, *11*, 36-42.
- Blüthgen, N., & Metzner, A. (2007). Contrasting leaf age preferences of specialist and

generalist stick insects (Phasmida). *Oikos, 116*, 1853-1862.

926 https://doi.org/10.1111/j.0030-1299.2007.16037.x

- 927 Feduraev, P., Chupakhina, G., Maslennikov, P., Tacenko, N., & Skrypnik, L. (2019).
- 928 Variation in phenolic compounds content and antioxidant activity of different
- plant organs from *Rumex crispus* L. and *Rumex obtusifolius* L. at different

growth stages. *Antioxidants*, *8*, 237. https://doi.org/10.3390/antiox8070237

Hagerman, A. E. (1987). Radial diffusion method for determining tannin in plant

extracts. *Journal of Chemical Ecology*, *13*, 437-449.

933 https://doi.org/10.1007/BF01880091

Julkunen-Tiitto, R. (1985). Phenolic constituents in the leaves of northern willows:

- methods for the analysis of certain phenolics. *Journal of Agricultural and Food Chemistry*, 33, 213-217. https://doi.org/10.1021/jf00062a013
- 937 Lackner, S., Lackus, N. D., Paetz, C., Köllner, T. G., & Unsicker, S. B. (2019).
- Aboveground phytochemical responses to belowground herbivory in poplar
- 939 trees and the consequence for leaf herbivore preference. *Plant, Cell* &

940 Environment, 42, 3293-3307. https://doi.org/10.1111/pce.13628

- 941 Makuchi, T., & Sakai, H. (1984). Seedling survival and flowering of *Rumex obtusifolius*
- L. in various habitats. *Weed Research*, 29, 123–130.
- 943 https://doi.org/10.3719/weed.29.123
- 944 Miyagi, A., Noguchi, K., Tokida, T., Usui, Y., Nakamura, H., Sakai, H., Hasegawa, T., &

945	Kawai-Yamada, M. (2019). Oxalate contents in leaves of two rice cultivars
946	grown at a free-air CO2 enrichment (FACE) site. Plant Production Science,
947	22, 407-411. https://doi.org/10.1080/1343943X.2019.1598272
948	Miyagi, A., Takahashi, H., Takahara, K., Hirabayashi, T., Nishimura, Y., Tezuka, T.,
949	Kawai-Yamada, M., & Uchimiya, H. (2010). Principal component and
950	hierarchical clustering analysis of metabolites in destructive weeds;
951	polygonaceous plants. Metabolomics, 6, 146-155.
952	https://doi.org/10.1007/s11306-009-0186-y
953	Ohsaki H. (2020). Effects of plant-plant interactions on resource usage of herbivores.
954	MS thesis, Hirosaki University, Hirosaki (in Japanese)
955	Sato, Y., Kawagoe, T., Sawada, Y., Hirai, M. Y., & Kudoh, H. (2014). Frequency-
956	dependent herbivory by a leaf beetle, Phaedon brassicae, on hairy and
957	glabrous plants of Arabidopsis halleri subsp. gemmifera. Evolutionary
958	Ecology, 28, 545-559. https://doi.org/10.1007/s10682-013-9686-3
959	Shibaeva, T. G., Mamaev, A. V., & Sherudilo, E. G. (2020). Evaluation of a SPAD-502
960	Plus Chlorophyll Meter to Estimate Chlorophyll Content in Leaves with
961	Interveinal Chlorosis. Russian Journal of Plant Physiology, 67, 690-696.
962	https://doi.org/10.1134/S1021443720040160
963	Shirahama, S., Yamawo, A., & Tokuda, M. (2017). Dimorphism in trichome production
964	of Persicaria lapathifolia var. lapathifolia and Its multiple effects on a leaf
965	beetle. Arthropod-Plant Interactions, 11, 683-690.
966	https://doi.org/10.1007/s11829-017-9520-x
967	Suzuki, N. (1985). Resource utilization of three chrysomelid beetles feeding on Rumex
968	plants with diverse vegetational background. Japanese Journal of Ecology,

969 35, 225-234. https://doi.org/10.18960/seitai.35.2_225

- 970 Van Evert, F. K., Samsom, J., Polder, G., Vijn, M., Dooren, H. J. V., Lamaker, A., van
- 971 der Heijden, G. W., Kempenaar, C., van der Zalm, T., & Lotz, L. A. P. (2011).
- 972 A robot to detect and control broad-leaved dock (Rumex obtusifolius L.) in
- 973 grassland. Journal of Field Robotics, 28, 264-277.
- 974 https://doi.org/10.1002/rob.20377