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Abstract 

Ca2+-dependent cell processes such as neurotransmitter or endocrine vesicle fusion are inherently 

stochastic due to large fluctuations in Ca2+ channel gating, Ca2+ diffusion and Ca2+ binding to buffers and 

target sensors. However, prior studies revealed closer-than-expected agreement between deterministic 

and stochastic simulations of Ca2+ diffusion, buffering and sensing, as long as Ca2+ channel gating is not 

Ca2+-dependent. To understand this result more fully, we present a comparative study complementing prior 

work, focusing on Ca2+ dynamics downstream of Ca2+ channel gating. Specifically, we compare 

deterministic (mean-field / mass-action) and stochastic simulations of vesicle exocytosis latency, quantified 

by the probability density of the first-passage time (FPT) to the Ca2+-bound state of a vesicle fusion sensor, 

following a brief Ca2+ current pulse. We show that under physiological constraints, the discrepancy between 

FPT densities obtained using the two approaches remains small even if as few as ⁓50 Ca2+ ions enter per 

single channel-vesicle release unit. Using a reduced two-compartment model for ease of analysis, we 

illustrate how this close agreement arises from the smallness of correlations between fluctuations of the 

reactant molecule numbers, despite the large magnitude of the fluctuation amplitudes. This holds if all 

relevant reactions are heteroreaction between molecules of different species, as is the case for the 

bimolecular Ca2+ binding to buffers and downstream sensor targets. In this case diffusion and buffering 

effectively decorrelate the state of the Ca2+ sensor from local Ca2+ fluctuations. Thus, fluctuations in the 

Ca2+ sensor’s state underlying the FPT distribution are only weakly affected by the fluctuations in the local 

Ca2+ concentration around its average, deterministically computable value. 

Statement of Significance 

Many fundamental Ca2+-dependent cell processes are triggered by local Ca2+ elevations involving only a 

few hundred Ca2+ ions. Therefore, one expects large Ca2+ concentration fluctuations, which are ignored by 

deterministic reaction-diffusion modeling approaches. However, more accurate stochastic approaches 

require tracking trajectories of individual Ca2+ ions and its binding targets, which is very computationally 

expensive. This study reveals conditions under which Ca2+-dependent processes like secretory vesicle 

fusion can be modeled using efficient deterministic approaches, without sacrificing significant accuracy. We 

find that deterministic methods can accurately predict the delay to the fusion of a neurotransmitter-

containing vesicle, as long as the number of Ca2+ ions is above about 50. We reveal factors that explain 

the limited impact of stochastic fluctuations in this case. 

Keywords:  reaction-diffusion equations, calcium nanodomain, vesicle exocytosis, calcium buffer, 

calcium signaling, neurotransmitter release, stochastic fluctuations. 
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I. INTRODUCTION 

Many fundamental cell processes such as myocyte contraction and synaptic and endocrine secretory 

vesicle fusion are controlled by highly localized Ca2+ signals resulting from the opening of  transmembrane 

Ca2+ channels [1-5]. Imaging local Ca2+ concentration required for the study of these processes is a great 

challenge due to physical limitations on the spatial and temporal resolution of optical imaging, and 

necessarily perturb the Ca2+ signals being measured. Therefore, Ca2+ modeling continues to play a crucial 

role in the study of a variety of Ca2+-dependent cell mechanisms. The main decision facing a modeler is 

whether to choose a deterministic or a stochastic solver [5-10]. While deterministic mass-action reaction-

diffusion approach offers superior computational efficiency, it completely ignores local fluctuations in Ca2+ 

resulting from the stochastic Ca2+ channel gating, diffusion, and biochemical reactions. For processes 

controlled by single-channel Ca2+ domains, fluctuations are considerable: a typical Ca2+ current of 0.2 pA 

and duration of 0.2 ms translates to an influx of only about 120 Ca2+ ions, many of which become bound to 

mobile buffers and transmembrane proteins before reaching their downstream target sensors [11-13]. Thus, 

one should expect large Ca2+ concentration fluctuations at the location of a relevant Ca2+ sensor that only 

a few Ca2+ ions will reach [13, 14]. Stochastic fluctuations were shown to have functional consequences in 

reaction-diffusion models of a variety of cell processes (see e.g. [15-18]).  For Ca2+-controlled processes, 

such stochastic effects are especially pronounced in the presence of Ca2+–induced Ca2+ release (CICR) 

responsible for excitation-contraction coupling in myocytes, since CICR introduces a direct feedback 

between Ca2+ fluctuations and Ca2+ influx [19-28]. 

Despite the widely recognized importance of stochastic effects, comparative studies suggest that 

downstream of stochastic channel gating, the discrepancy between deterministic and stochastic simulations 

of Ca2+ diffusion, buffering and binding can be surprisingly small [24, 29]. Therefore, in the absence of 

CICR, computationally inexpensive simulations of Markovian stochastic channel gating can be combined 

with deterministic models of Ca2+ diffusion and binding (either compartment-based or spatially resolved), 

leading to computationally inexpensive methods that avoid simulations of particle-based Brownian motion 

and stochastic reactions [7, 27-30]. This in fact has often been the approach even in the modeling of CICR, 

where Ca2+ channel gating is the primary source of fluctuations [5, 19-21, 31-39]. This simplified approach 

has also proved useful in the study of vesicle fusion [40, 41], Ca2+ signaling in dendrites [42], and Ca2+-

dependent K+ channels [43]. 

Despite a large number of relevant studies, in particular a comprehensive comparative computational study 

by Modchang et al. [29], a deep understanding of the discrepancy between stochastic and deterministic 

simulations downstream of stochastic Ca2+ channel gating effects is still lacking. As a result, as has been 

noted previously [24], the choice between deterministic and stochastic solvers is usually made on a 
completely ad hoc basis. In particular, it is widely accepted that deterministic reaction-diffusion methods 

are highly inaccurate in the modeling of any biochemical process involving a small number of molecules 

(e.g. the number of Ca2+ ions, NCa). This expected inaccuracy is due to the well-known discrepancy between 

mass-action and stochastic representations of any nonlinear process [44, 45]. 

However, here we show that the size of this discrepancy between deterministic and stochastic approaches 

is not always as large as expected from an often-used naïve 1/√𝑁  scaling, and depends not only on the 

size of the Ca2+ fluctuations, but also on the type of observable targeted by the modeling, and the type of 

reactions involved. In particular, following several recent studies, we focus on the first passage time 

distribution (FPTD) to full finding of a model Ca2+ sensor for vesicle fusion in the presence of bimolecular 

Ca2+ buffering reactions [13, 14, 46-51]. We consider a maximally reduced but spatially resolved model that 

contain only two sources of fluctuations: (1) the diffusive fluctuations in Ca2+ concentration, and (2) the 

fluctuations due to Ca2+ binding and unbinding to Ca2+ buffers and sensors. Considering such a reduced 
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model reveals more clearly the interplay between fluctuations due to diffusion and reaction in limiting the 

accuracy of the mean-field modeling of Ca2+ sensor binding time. Our main finding is that the discrepancy 

between deterministic and stochastic estimates of FPTD can be negligible as long as the number of Ca2+ 
ions is above the threshold of about ⁓50 (see Figs. 1-3). Finally, to clarify our conclusions, we will also 

analyze an even simpler two-compartment model of Ca2+ diffusion and binding, following the approach of 

G.D. Smith and S.H. Weinberg [26, 48, 52]. Our results further elucidates how the interplay between the 

diffusion and the reaction time scales affects the accuracy of the deterministic approach [15, 23, 24, 29, 38, 

48]. 

II. METHODS 

II.1 Deterministic 3D mass-action / mean-field approach 

Let us first describe the deterministic model of Ca2+-dependent exocytosis. For the sake of simplicity, we 

consider the case of a single dominant Ca2+ buffer with a single Ca2+ ion binding site, as described by the 

reaction 
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Here B and B* represents the free buffer and Ca2+-bound buffer molecules, respectively (i.e. B*=CaB), and 

k+ (k) are the Ca2+-buffer binding (unbinding) rates. Assuming isotropic diffusion and mass-action kinetics, 

this yields the following mass-action reaction-diffusion system [53-55]: 
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where DB , D*
B  and DC are the diffusivities of the free buffer, bound buffer and Ca2+, respectively, and Ca, 

B and B* denote concentrations of Ca2+, free buffer and Ca2+-bound buffer, respectively. The delta function 

indicates a point source (channel) centered at location rCa, with amplitude Ca =ICa/(2F) where ICa  is the 

Ca2+ current strength, and F is the Faraday constant. The sink term S describes Ca2+ binding to the model 

exocytosis sensor, as will be explained further below (see Eqs. 6-7). 

We take a simple cube as the diffusion domain, with zero flux boundary conditions for Ca2+ and buffer on 

all boundaries. Reflective boundary conditions are well suited for simulating an array of Ca2+ channels on 

a large section of a flat cell membrane. Further, reflective boundary conditions ensure non-negligible 

probability of Ca2+ binding to a model exocytosis Ca2+ sensor (see below) within a short time after the 

channel opening, even if only 20 Ca2+ ions enter the model volume during the 1ms-long current pulse (see 

Figs. 1-3). Replacing no-flux conditions with Robin boundary conditions simulating Ca2+ pumps and 

exchangers on the part of the boundary containing the channel would be more realistic, but would introduce 

the same type of bimolecular Ca2+-binding reactions already present in this model, and therefore would not 

substantially impact the comparison of stochastic and deterministic simulation results. 
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The reaction-diffusion system given by Eqs. 2 is locally coupled to reactions describing a single stationary 

Ca2+ binding exocytosis sensor, with parameters inferred from the studies of neurotransmitter release at 

the calyx of Held synapse [56, 57]: 
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The rate parameters are k=8.43 ms1; k+=0.116 M1ms1; b=0.25; γ=7.0 ms1 (except Fig. 3, where the 

binding rate k+ is increased by a factor of 10). This reaction is converted to a system of deterministic ODEs 

describing the Markovian transitions between distinct sensor states: 
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Here CaS is the time-dependent [Ca2+] averaged over a small spherical volume describing the sensor, 

obtained by numerically solving Eq. 2, whereas S1..5 and R are the time-dependent occupancy 

probabilities of the distinct states of the single-copy sensor. In this simplified approach, all rates in Eq. 4 

are deterministic, with the forward binding rates proportional to the time-dependent but deterministic local 

Ca2+ concentration, CaS. Thus, Eq. 4 represents a mean-field description, neglecting stochasticity in the 

binding rates caused by local Ca2+ fluctuations. Nevertheless, this deterministic mean-field approach allows 

to estimate the fluctuation in the FPT to the fully-bound state R by computing its probability density, given 

by the transition rate to this final absorbing state [58]: 

       . FPT

d R
t

dt
                                                                              (5) 

The primary goal of this study is to compare the FPT density (FPTD) given by Eq. 5 with the one obtained 

using fully stochastic simulation explained in the next subsection (see Figs. 1-3), in order to  reveal the 

quantitative impact of various fluctuation sources on the latency to vesicle release. 

In the simplest deterministic implementations of Ca2+ signaling models, the sink term in Eq. 2 is usually 

ignored, and therefore Ca2+ is not fully conserved. However, the binding of Ca2+ to exocytosis sensor can 

become significant when the Ca2+ influx current is small. As has been pointed out previously [24, 29], failure 

to account for the binding-induced Ca2+ depletion is not an inherent deficiency of the deterministic approach, 

and can be corrected by restoring full Ca2+ conservation. In our implementation, this is achieved by adding 

a localized Ca2+ sink term in Eqs. 2: 

                       , .S St g q tr r r                          (6) 

Here g(rrS) has a finite support defined by the sensor volume, centered at the sensor location rS, with a 

total volume integral of 1, whereas q(t) is the total Ca2+ flux induced by the sensor reactions in Eq. 4:    
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In our model, the sensor position rS  in Eq. 6 is close to the channel location rCa, as shown in Fig. 1A,B. The 

distance between the two is either 33 nm (Figs. 1-2) or 83 nm (Fig. 3). The full deterministic simulation 

system is described by Eqs. 2-7, and satisfies exact Ca2+ conservation. However, in order to fully quantify 

the impact of this binding-induced Ca2+ depletion, we will repeat all simulations with and without the S sink 

term in Eq. 2.  

Note that Eqs. 2-7 describe the Ca2+ sensor as a volume reactivity (Doi) model, whereby the binding 

reaction takes place within a certain finite volume at a given time-dependent rate. In contrast, we will treat 

the same sensor binding as a surface reactivity (Smoluchowski) model in the stochastic simulation 

described in the next subsection, whereby the reaction takes place with certainty when the Ca2+ ion is within 

the binding distance of the sensor [59, 60]. However, the two sets of results presented below are 

nevertheless remarkably close to each other (see Figs. 1-3), with the sensor’s binding radius (the support 

of g(r) in Eq. 6) constituting one free matching parameter, set slightly larger than the Smoluchowski binding 

radius in the stochastic approach. We note that the exact Ca2+ conservation is exactly satisfied for any 

value of this parameter. In principle this free parameter could be avoided by using the surface reactivity 

model in the deterministic approach as well, but at the expense of greater complexity of implementing the 

prescribed flux given by Eq. 7 as a time-dependent boundary condition on the sensor’s surface.  

Biologically, exocytosis sensors are positioned around the base of a vesicle, the latter acting as an obstacle 

to diffusion [13]. However, we deliberately excluded vesicles and other obstacles from our comparative 

analysis, since they would not contribute to the discrepancy between deterministic and stochastic 

simulations arising from the neglect of local Ca2+ fluctuations, unless molecular crowding effects are taken 

into account. The effect of diffusion obstacles on exocytosis has already been explored in detail [13, 46, 

61-66]. 

All deterministic reaction-diffusion simulations are performed using the CalC (“Calcium Calculator”) 

software [67, 68], and take less than a minute of single-thread CPU time. 

II.2 Stochastic approach 

Stochastic approach allows a more realistic modeling of the biochemical pathways leading to vesicle 

release, taking into account relevant fluctuations, albeit at the computational expense of repeated trials of 

an appropriate Markov Chain Monte Carlo (MCMC) simulation. However, accurately combining diffusion 

with second-order bi-molecular reactions described by Eqs. 3 is an inherently complex issue for both the 

deterministic approach and the stochastic approach. Since this study aims to compare these two types of 

computation, it is important to recognize the different methods used to combine stochastic reaction and 

diffusion [6-9, 44, 59, 69-71]: 

1) First Passage-Time Kinetic Monte-Carlo method (FPKMC) [72-74] directly combines stochastic bi-

molecular binding with Brownian diffusion using an exact, event-based approach. This algorithm takes 

into account excluded volume and crowding effects. Approximate implementations include the Green’s 

Function Reaction Dynamics method (GFRD) [75, 76]) and the Cellular Dynamics Simulator [77]. 

FPKMC has also been extended to the Doi volume reactivity model of bimolecular binding [60]. 
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2) Discrete-time particle-based Brownian reaction dynamics (BRD) simulators (e.g. Smoldyn [78], MCell 

[79], GridCell [80]) can be viewed as approximations of the FPKMC/GFRD method. Since bi-molecular 

binding probability is not modeled exactly by a finite time-step method, convergence of results with time 

step size has to be carefully checked. 

3) Course-grained stochastic simulation algorithm referred to as the Reaction-Diffusion Master Equation 

(RDME) method  (e.g. SmartCell [81], MesoRD [82], URDME [83], STEPS [84], Lattice Microbes [85]) 

implement reactions exactly in elementary sub-volumes using the Gillespie stochastic simulation 

algorithm [86], assuming that reactants are well-mixed in each sub-volume. Diffusion is treated as an 

exchange reaction between neighboring voxels. Spatial resolution is limited by sub-volume size, which 

cannot be arbitrarily reduced without losing all reactions [59, 60, 87-89]. A convergent modification of 

this approach resolves the latter problem by allowing reactions between neighboring cells [90]. 

A large variety of hybrid methods have also been developed, for instance methods combining the 

advantages of RDME and BRD algorithms [27, 91, 92], as well as hybrid methods combining in various 

ways the stochastic and deterministic reaction-diffusion components [14-16, 30, 93-98]. Finally, for larger 

number of reactants, the Langevin approximation and formulations based on stochastic partial differential 

equations can be used [8, 71, 99-101]. 

For our comparative study, we will use Smoldyn [78], a particle-based BRD method, because of its flexibility, 

ease of use, and computational efficiency. This algorithm uses the Smoluchowski surface-reactivity model 

of bi-molecular reaction, with binding radii calibrated by approximate matching of the corresponding 

macroscopic mass-action reaction rates, making this method particularly well-suited for comparing with the 

deterministic mass-action simulation approach. This allows us to use the same reaction and diffusion 

parameters values in the stochastic and in the deterministic model of Ca2+ buffering and diffusion, without 

modification. It should be remembered however that the relationship between the macroscopic binding 

rates (“propensities”) and the underlying microscopic binding radius is a separate, nontrivial problem [8, 59, 

60, 78, 88, 102-104]. Moreover, the functional form of mass-action bimolecular reaction rate is known to be 

violated at large densities [105, 106]. However, it is precisely the sum of all sources of quantitative 

discrepancy between straightforward mass-action and stochastic approaches that we want to investigate 

in this study.  

To check the convergence of results with respect to the time step size, we repeated Smoldyn simulations 

for a range of time steps. In the results shown in Figs. 1-2, the time step size is set to t=1 s, while t=0.2 

s was used for the case of larger Ca2+-sensor binding rates in Fig. 3. Simulation in Figs. 1-3 took over a 

month of total computation time with 12 simultaneous Smoldyn threads, while the corresponding 

deterministic simulations take less than one CPU-minute. 
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III. RESULTS 

III.1 Spatially resolved 3D model 

From a practical point of view, local fluctuations in Ca2+ concentration ultimately reveal themselves through 

the fluctuations in the latency to vesicle membrane fusion or other macroscopic Ca2+-dependent effects, 

which is the most important observable in the modeling of Ca2+-dependent exocytosis. Therefore, in our 

comparison of deterministic and stochastic modeling of vesicle release, we will focus on the latency 

between the opening of a Ca2+ channel, and the time of fusion of nearby vesicle(s). This latency is given 

by the first passage time (also known as the waiting time or hitting time) to the fully bound final “release” 

state R of the vesicle’s putative Ca2+ sensor [13, 14, 46-51]. We assume that the binding kinetics are 

described by Eqs. 3-5, inferred from the studies of the calyx of Held synapse [56, 57]. The qualitative 

conclusions of this work however do not depend on the type of model used for the sensor. In our simulations 

of 3D Ca2+ diffusion, buffering and binding, illustrated in Fig. 1, the sensor is located at a distance of 33nm 

away from the channel, within the channel’s “nanodomain”. The sensor position is marked by a square in 

the bottom-left corner of the diffusion volume in Fig. 1A,B: the two panels illustrate one time frame of the 

deterministic and stochastic simulation, respectively, as described in Methods and the figure caption. 

In the full stochastic approach, each MCMC trial provides one sample of the Markovian sensor state 

transition time series shown in Fig. 1D, driven in turn by the stochastic Brownian motion of Ca2+ and buffer 

particles illustrated in Fig. 1B. The simulation is repeated in order to construct a histogram estimate of 

FPTD. In Fig. 1E, the resulting FPTD estimate is shown as a black curve, and was obtained using about 

108 Smoldyn iterations, each of which in turn comprises thousands of elementary MCMC iterations updating 

particle positions and binding states. In contrast, in the deterministic mean-field approach the FPTD is 

computed as the rate of change of the occupancy of the final absorbing state of the exocytosis sensor, 

obtained by numerically solving the coupled PDE-ODE reaction-diffusion problem (Eqs. 2-5). In Fig. 1E we 

directly compare FPTDs obtained using these two approaches, for the case when only NCa=100 ions enter 

the model volume during a 1ms-long Ca2+ channel current pulse. In this first comparison we set the binding 

sink term S in Eq. 2 to zero, ignoring the depletion of Ca2+ ions due to their binding to the sensor. Figure 

1E reveals a surprisingly good agreement between stochastic and deterministic simulations of FPTD, 

despite this simplification. Note that no curve scaling is involved, or would be appropriate, in comparing the 

FPTD obtained using the two methods.  

Part of the discrepancy between the two methods seen in Fig. 1E is explained by the depletion of five 

Ca2+ ions as they bind to the Ca2+ sensor, which is absent from a straightforward implementation of the 

mass-action approach that doesn’t include the feedback from the Ca2+-sensor binding onto the local Ca2+ 

concentration [24, 29]. To reveal the effect of this Ca2+ ion depletion, in Fig. 2 we repeat the numerical 

solution of Eqs. 2-5 with and without the Ca2+ sink term, given by Eqs. 6-7. Simulations are then repeated 

for several values of Ca2+ current strength corresponding to different number of total Ca2+ ions entering the 

volume during a 1ms-long channel opening, from NCa=200 (Fig. 2A) down to NCa=20 (Fig. 2D). Note that 

the depletion correction almost fully abolishes the discrepancy between stochastic and deterministic 

simulations for the case of 100 Ca2+ ions, but not for smaller number of ions. These results suggest that 

deterministic results become unreliable when only ⁓40 or less Ca2+ ions enter the simulation volume (Figs. 

2B-D).   
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Figure 1. Deterministic vs. stochastic simulation of buffered Ca2+ diffusion and binding to a stationary sensor. Ca2+ 

and buffer molecules diffuse within a (0.2μm)3 cube, with diffusivities DCa=0.2μm2/ms and DB=0.05μm2/ms, 

respectively. Ca2+ sensor is 33nm away from a point Ca2+ source (Ca2+ channel) in the corner of the cube. Ca2+ 

current pulse of 0.032 pA lasts 1ms, letting in a total of 100 Ca2+ ions. Buffer has a concentration of 20μM and 

affinity of 1μM, corresponding to a total of 96 ions.  (A) One time frame of a 2D slice of the mass-action simulation 

of [Ca2+] on a color-coded logarithmic scale, 0.2ms after Ca2+ channel opening. (B) One time frame of the stochastic 

Smoldyn iteration shows the locations of all tracked particles 0.2ms after Ca2+ channel opening (magenta square: 

Ca2+ sensor; red squares: Ca2+ ions; gray and blue squares: free and bound buffer molecules, respectively). Symbol 

sizes are not to scale. (C) Stationary vesicle fusion sensor undergoes 5 Ca2+ binding steps with progressively 

decreasing unbinding rate, i.e. increasing binding cooperativity (Eq. 4) [56, 57],  (D) Sensor state transition 

sequence illustrates a single MCMC trial of the stochastic Smoldyn simulation. FPT is computed from the start of 

the Ca2+ current pulse to the time of sensor transition to the final state R. (E) Comparison of FPTD obtained from 

the histogram of stochastic trials shown in D (black curve), or from deterministic reaction-diffusion simulation (Eqs. 

2-5) (red dotted curve), with binding depletion ignored (S=0 in Eq. 2). 

While full parameter sensitivity analysis is prohibitive in view of the computational cost of the full stochastic 

approach, in Figure 3 we repeat our comparison with the binding rate increased by a factor of 10, 

corresponding to an unrealistically large sensor binding radius. To compensate for such a large Ca2+ binding 
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rate, we also increased the distance from the Ca2+ channel to the release sensor, from 33nm to 83nm. As 

Fig. 3 shows, in this case the depletion correction (Eqs. 6-7) is critical for achieving good agreement 

between the two approaches even for a relatively large number of Ca2+ ions. Note also that the peak release 

occurs before the end of the current pulse, due to faster saturation of the Ca2+ sensor caused by the larger 

binding rate. However, despite significant difference in parameters used in Fig. 3 vs. Fig. 2, in both cases 

the discrepancy between stochastic and depletion-corrected mass-action simulations is apparent only when 

the total number of entering Ca2+ ions falls below about 40-50. The close agreement between the two 

approaches for such small total numbers of Ca2+ ions is a priori surprising, and is the focus of further 

analysis presented below.  

 
Figure 2. Mass-action vs stochastic estimation of FPTD in response to a 1ms-long Ca2+ current pulse of varying 

amplitudes. All parameters as in Fig. 1, except for the varying Ca2+ current values and the total number of Ca2+ ions 

entering during the 1-ms current pulse (NCa), as indicated in text labels. In all panels, black solid curves represent 

the histograms of FPT to full sensor binding, the dotted red curves show the corresponding deterministic estimate 

of FPTD (Eq. 5), with binding depletion ignored (S=0 in Eq. 2), while the solid blue curves show the deterministic 

estimate of FPTD, with binding depletion taken into account (Eqs. 6-7). Note the difference in scale: the cumulative 

probability of full binding within 1.5 ms of channel opening is about 18% in A (NCa=100), while in D (NCa=20) it is 

on the order of 104, explaining the large number of MCMC trials required in the latter case, since most binding 

events happen in the long tail of this distribution. 
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Figure 3. Mass-action vs stochastic simulation of FPTD for unphysiologically large sensor binding rate, and a 

greater distance between release sensor and the Ca2+ channel, in response to a 1ms-long Ca2+ current pulse of 

varying amplitude. Simulation parameters are similar to the ones in Figs. 1-2, except a factor of 10 faster exocytosis 

sensor binding rate k+, requiring a smaller MC simulation time step of t=0.1s, larger diffusion volume of (0.3μm)3, 

and larger distance from channel to sensor of 83 nm.  The Ca2+ current value and the total number of Ca2+ ions 

entering during the 1-ms long current pulse is indicated in the panel titles. In all panels, black solid curves represent 

the histograms of FPT to full sensor binding, the dotted red curves show the corresponding deterministic estimates 

of FPTD (Eq. 5), with binding depletion ignored (S=0 in Eq. 2), while the solid blue curves show the deterministic 

estimate of FPTD, with binding depletion taken into account (Eqs. 6-7). Note the difference in scale: the cumulative 

probability of binding within 1.5ms is about 74% in A (NCa=200), while in D (NCa=20) it is ⁓0.5%. 

We note that in instances when the stochastic FPTD appears smaller in amplitude compared to the 

deterministically computed FPTD, as is the case in Fig. 2B-D and Fig. 3D, the tail of the stochastically 

computed FPTD is much longer, since the cumulative binding probability always equals one, due to the 

closed domain with reflective boundary conditions. 

To understand the close agreement between the results of 3D simulations obtained using the two 

approaches, we will now turn to a simplified model of this reaction-diffusion process. 

III.2 Analysis of a simplified two-compartment model 

To gain an intuitive understanding of the factors affecting the relative accuracy of the mass-action approach, 

we will analyze a highly simplified model of Ca2+ diffusion and binding shown in Fig. 4, similar to the one 

analyzed by S.H. Weinberg [48] (see also [26, 52]). This reduced model consists of two well-mixed 
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compartments of Ca2+ ions, with the Ca2+ sensor for exocytosis contained within the inner compartment. 

We assume that the sensor can bind two Ca2+ ions before triggering exocytosis, according to the reaction  

 
0 1 2

1 2

21

 ,
k n k n

k k
S S S

 

 
 R    (8) 

where n is the number of free Ca2+ ions in the sensor sub-compartment. For the sake of simplicity, the 

stoichiometric factors of 2 are absorbed into the definitions of the forward and backward binding rates, 𝑘 ,
  

We set 𝑘 = 2, 𝑘 = 1, 𝑘 = 1, 𝑘 = 2, 𝛾 = 2.  

Diffusion is represented as transitions between the two compartments, with forward and backward 

transitions rates equal to   and , respectively: 

 



 ,Bulkn n   (9) 

where the nBulk is the number of free Ca2+ ions in the bulk compartment, given by 

    .Bulk Bndn N n n  (10) 

Here N=const is the total number of Ca2+ ions in both compartments, and nBnd is the number of sensor-

bound Ca2+ ions, determined by the occupancies of all Ca2+-bound sensor states, indicated by angled 

brackets (for precise notation description, see Appendix, Eq. 16): 

   1 22 2 2Bndn S S R                (11) 

The ratio of diffusion rates  and β in Eq. 9 implicitly defines the ratio of the volumes of the two 

compartments. The total number of Ca2+ ions, N, is a constant parameter: initial condition is set by adding 

N ions to the bulk compartment. Therefore, initially there are no ions in the sensor compartment, nor bound 

to the sensor: n(0)=nBnd(0)=0 (alternative initial conditions were also explored, but did not provide significant 

new insights). Even though Ca2+ buffering is not explicitly implemented in this simplified model, buffering 

can be viewed as being part of the exchange reaction with the bulk compartment described by Eq. 9, 

whereby buffer-bound Ca2+ ions are to be understood as belonging to the bulk (non-sensor) compartment. 

 

  

Figure 4. Two-compartment model of Ca2+ diffusion and sensor binding. 

The inner compartment contains n ions of Ca2+, which can bind to the 

Ca2+ sensor. The inner compartment exchanges ions with the bulk 

compartment with diffusive rates   and . The total number of ions 

equals N and is conserved, therefore there are nBulk=N n  nBnd ions in 

the bulk compartments, where nBnd is the number of ions bound to the 

sensor, as described by Eq. 11. At initial time, all N particles are added 

to the bulk compartment. 

“Bulk” compartment: 
nBulk=NnnBnd Ca2+ ions 

Sensor sub-compartment 
with n free Ca2+ ions 

2Ca sensor with

n  bound ionsBnd
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The stochastic implementation of this model is given by the following continuous-time Markov chain, with 

(n, Sk) and (n, R) denoting a state with n Ca2+ ions in the sensor sub-compartment, and the sensor in state 

Sk or in the final fusion state R: 
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      (12) 

This model is almost equivalent to the one analyzed by S.H. Weinberg [48] (see Eq. 2.8 therein), except 

that we compare this model with a similar two-compartment deterministic representation of the same 

process, rather than its single-compartment reduction, allowing us to clearly separate the effects of binding-

induced Ca2+ ion depletion from the impact of stochastic fluctuations. Another difference of our approach is 

that we consider the bulk compartment of a finite volume. Therefore, no particle number truncation is 

required, since the total number of Ca2+ ions is conserved and set equal to N.  

The Markov Chain described by Eqs. 12 is readily converted to linear Chemical Master Equations (CME) 

describing the evolution of state probabilities, dp/dt = Wp, where vector p has 4N1 states shown in Eq. 12

. We note parenthetically that the number of states can be further reduced using sensor state conservation 

law and by collapsing together all (n, R) states. The CME system is shown explicitly in Eq. 15 of the 

Appendix. The CME system can in turn be converted (using appropriate summations) to the ODEs for the 

moments of the state variables, i.e. the occupancy probabilities of sensor states Sk and R, and the 

moments of the Ca2+ ion number n conditional on the state of the sensor, denoted as nm |Sk (see 

Appendix). The first five of these moment equations read: 

    

 

 

0
1 1 1 0 0

1
2 2 2 1 1 1 1 1 0 0

2
2 2 2 1 1 2

2

1 0 0 2 1 1 1 1 2 2 Bnd

| ,

| | ,

| ,

,

| | .

FPT

d S
k S k n S S

dt
d S

k S k n S S k S k n S S
dt

d S
k S k n S S S

dt
d R

S t
dt

d n
k n S S k n S S k S k S N n n n

dt



 

 

 

   

 

   

 

   

  

 

        

     (13) 

.CC-BY-NC-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted July 31, 2021. ; https://doi.org/10.1101/2021.07.30.454536doi: bioRxiv preprint 

https://doi.org/10.1101/2021.07.30.454536
http://creativecommons.org/licenses/by-nc-nd/4.0/


13 

 

Here nBnd is given by Eq. 11 and denotes the total number of Ca2+ ions bound to the sensor, while FPT 

denotes the FPTD. The evolution equations for the first moments n | Sk are not shown, but are easily 

derived from the CME system; they depend in a somewhat complex way on higher moments n2 | Sk. Since 

we consider a finite number of Ca2+ ions, the system of moments is closed and always solvable in closed 

form due to the linearity of the CME system. 

Note that if the number of Ca2+ ions in the sensor compartment is independent of the sensor state, 

n|Sk=n, then Eq. 13 reduces to the deterministic, mean-field description of the same process,  
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d n
n k S k S k S k S N n n n
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                     (14) 

Thus, this mean-field description can be viewed as the simplest moment-closure of the stochastic 

description given by Eqs. 13 under the assumption of zero correlation between the state of the sensor and 

the number of ions in the sensor compartment. Therefore, the high variance in the local number of Ca2+ 

ions has little effect on FPTD computed using the mean-field approach, as long as the number of ions in 

the sensor sub-compartment is only weakly correlated with the binding state of the release sensor.  

This intuition is confirmed by the results shown in Fig. 5, where we compare the exact solution of the 

stochastic two-compartment model described by Eqs. 12-13 with the solution of the mean-field description 

given by Eq. 14, for a small number of Ca2+ ions, namely N=4. The diffusion rates α and β are set to equal 

each other, to ensure that exactly one Ca2+ ion remains free (on average) inside the sensor sub-

compartment upon equilibration, after 2 out of the 4 available Ca2+ ions are bound by the sensor. Figure 5 

shows this comparison between stochastic and mean-field results for three distinct ratios between diffusion 

and reaction rates: τdiff /τR=100 (Fig. 5A1-C1), τdiff /τR = 3 (Fig. 5A2-C2)  and τdiff/τR =0.01 (Fig. 5A3-C3). 

This ratio is controlled by varying the diffusion rate α==1/τdiff, while keeping the reaction rates constant 

(τR=1/k1
=1/k2

+=1). As Figure 5 demonstrates, the difference between the FPTD distributions obtained 

using the mean-field and stochastic approaches can be surprisingly small even for N=4~O(1). In agreement 

with the arguments above, the discrepancy between the FPTD obtained using the two approaches is the 

smallest for the case when the absolute correlation between the sensor state and the number of Ca2+ ions 

in the sensor sub-compartment (Fig. 5C1,C2,C3) is also the smallest, which happens for τdiff/τR  3.  In this 

case the diffusive fluctuations are sufficiently fast relative to the reaction, partially “washing out” the 

correlations between the sensor state and the number of Ca2+ ions in the sensor compartment. The 

correlations are quantified in Fig. 5C1,C2,C3 in terms of the ratio of conditional and unconditional moments 

of the Ca2+ ion number inside the sensor compartment; the latter are explicitly shown in Fig. 5B1,B2,B3. 
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Figure 5. Comparison between mass-action and stochastic simulation of the two-compartment model in Fig. 4, for 

different ratios between diffusion and reaction time scales:  τdiff /τR=100 (A1-C1), τdiff /τR=3 (A2-C2), and τdiff/τR=0.01 

(A3-C3). This ratio is controlled by varying the diffusion rate =β=1/τdiff, while keeping reaction rates constant.  

(A1,A2,A3) First-passage time to full binding probability density (FPTD). (B1,B2,B3) Average number of Ca2+ ions 

in the sensor compartment. For the stochastic simulation, also shown are the average number of Ca2+ ions 

conditional on the sensor state, nCa|Sk. Note that the number of ions in the sensor compartment approaches n=1 

in all cases, since the total number of Ca2+ ions is N=4. (C1,C2,C3) Correlation between the number of Ca2+ ions 

in the sensor compartment and the sensor state, given by the ratio of conditional and unconditional expectations 

nCa|Sk/nCa (k=0,1,2). 

The dependence of correlations on the τdiff /τR ratio can be quite non-trivial, but intuitive. For example, in 

the case of slow diffusion (Fig. 5C1), the largest correlations (in absolute value) are negative, 

n|S1,2/n1 1, since n | S1,2 <<1. This is because there is only a small probability of any ions remaining 

in the sensor sub-compartment when at least one ion is bound to the sensor: the fact that the sensor is still 

not fully bound indicates that the remaining ions are most likely outside of the sensor compartment. In 

contrast, for fast diffusion (Fig. 5C3), the largest correlation approaches n | S0 / n   1  1, or n | S0   

2n : when the sensor is unbound, there are on average n=N/2=2 Ca2+ ions inside the sensor compartment, 
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which is twice as many as there will remain upon full sensor binding. Recall that we set  =, so ions quickly 

equipartition between the sensor compartment and the bulk in the limit of fast diffusion. 

 

Figure 6. Comparison of the correlations and the central moments of FPTD obtained using deterministic mean-field 

vs stochastic approaches, as a function of diffusive time constant diff=1/β, for two values of total particle number, 

N=4 (A1-D1) and N=20 (A2-D2). (A1, A2): FPT average, (B1, B2): coefficient of variance of FPT, (C1, C2): total 

normalized discrepancy of first 3 central moments of FPTD between stochastic and deterministic simulations. (D1, 

D2) sum of absolute correlations n | S0, n | S1 and n | S2 in the stochastic model. Diffusive rates satisfy /=1 for 

all simulation conditions, ensuring that the average number of ions in the sensor compartment upon full sensor 

binding is n=1 in (A1-D1) and n=9 in (A2-D2). 

Interestingly, results shown in Fig. 5C1,C2,C3 suggest that the dependence of the maximal correlation size 

on the diffusive time scale is non-monotonic. This is confirmed by a more detailed comparison shown in 

Figure 6 as a function of the diffusive time scale, diff=1/β (assuming again a constant reaction rate and  

=, for the sake of simplicity). 

Intuition suggests that in the limit diff, diffusion is very slow on the time scale of the reaction, and 

therefore the correlation between the sensor state and the number of Ca2+ ions in the sensor compartment 

imposed by the Ca2+-binding reaction is strong, resulting in a large error of the mean-field reduction of the 

problem. Figure 6 confirms this intuition, showing that this discrepancy between stochastic and deterministic 

computation of FPTD grows as the diffusion rate decreases. However, Fig. 6D1,D2 also reveals that the 

dependence of FPTD discrepancy on diffusive time scale is non-trivial, reaching a minimum for certain fixed 

relationship between the rates of diffusion and reaction. Therefore, correlations between the sensor state 

and the number of Ca2+ ions in the sensor sub-compartment do not disappear as diff0. In this limit, the 

numbers of Ca2+ ions in the bulk compartment and the sensor sub-compartment are in instantaneous 

equilibrium with each other, so a Ca2+ binding reaction leads to an immediate reduction of the latter. Thus, 
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in the case of very fast diffusion, Ca2+-binding reactions create strong negative correlations between the 

sensor state and the number of Ca2+ ions, which is lower in absolute magnitude than in the case of very 

slow diffusion, but still significant. Therefore, in the compartmental model, the correlations and the 

discrepancy between mean-field and stochastic computations of FPTD reach its minimum values for certain 

intermediate level of the ratio between the diffusion and reaction time scales. However, for larger number 

of Ca2+ ions, this non-monotonic relationship is less significant, as shown in Fig. 6A2-D2: the discrepancy 

between the two approaches is in general more pronounced in the limit diff.  

Another way to understand the growing inaccuracy of the mean-field approach as diff0 is that the two-

compartment mean-field description given by Eq. 14 does not approach the physically correct model in this 

limit, since it does not take into account the immediate reduction of the free Ca2+ ion number n upon binding. 

In other words, in the limit diff0 (𝛼 → ∞, 𝛽 → ∞) the number of ions in the sensor compartment is no 

longer an independent variable, and is directly determined by the sensor’s binding state: 𝑛 → 𝛼(𝑁 −

𝑛 )/(𝛼 + 𝛽). Unlike the mean-field description, the stochastic description given by Eq. 13 remains 

meaningful for any values of rate parameters. 

IV. Discussion 

Our main finding is that the discrepancy between stochastic and deterministic simulation of Ca2+ diffusion 

and bi-molecular binding/unbinding reactions can in certain cases be much smaller than expected from 

naïve intuition (i.e., naïve application of 1/√𝑁  scaling). This result has very practical significance, since 

stochastic Ca2+ channel gating (and more generally, fluctuating Ca2+ current) is computationally inexpensive 

to simulate and combine with deterministic mass-action reaction-diffusion equations, providing an efficient 

hybrid method for the modeling of Ca2+-dependent phenomena [7, 14, 30]. 

However, we want to emphasize once again that the accuracy of such an approach was shown to be greatly 

reduced in the presence of positive feedback on Ca2+ influx provided by CICR [19-28, 107]. We should 

point out that recent studies suggest that CICR does contribute to both pre- and post-synaptic processes 

[108-112]. Still, it is useful and important to explore the impact of fluctuations on each part of the biochemical 

pathways to vesicle release, including those not involving CICR. 

To complement prior work on the role of stochastic fluctuations in Ca2+-dependent mechanisms, we 

considered a maximally reduced model to focus on two sources of stochasticity downstream of Ca2+ influx, 

namely the diffusive fluctuations in Ca2+ concentration, and the fluctuations due to Ca2+ binding and 

unbinding reactions. Further, following several prior studies [13, 14, 46-51], we focused on the modeling of 

FPTD, which can be considered as the true “output observable” whose uncertainty combines all upstream 

sources of stochasticity in this biochemical process. Considering such maximally simplified, reduced model 

allowed us to study more directly the interplay between fluctuations due to diffusion and reaction in 

determining the final fluctuations in the Ca2+ sensor binding time. 

Simulations of the reduced spatially-resolved model revealed that the distribution of FPT to full binding of 

the exocytotic Ca2+ sensor is accurately predicted by the mass-action / mean-field approach, as long as the 

number of Ca2+ ions is above about 50 (Figs. 1-3). This rough estimate of the threshold of accuracy seems 

to be relatively stable with respect to several parameters of the model, as seen for instance by comparing 

Figs. 2 and 3 that differ considerably in several critical model parameters. We note that this is a surprising 

result, given the presence of multiple bimolecular reactions, since the associated nonlinearities are 

expected to amplify the impact of fluctuations in the local Ca2+ ion concentration [44]. Intuition may suggest 
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that buffering “washes out” stochastic fluctuations in the local Ca2+ ion numbers, reducing the contribution 

of such fluctuations to the fluctuation in FPT. Interestingly, it has been shown [52] that exactly the opposite 
is the case: namely, mobile buffers typically increase stochastic fluctuation amplitude. Therefore, another 

explanation for the close agreement between the two approaches is needed. 

Our analysis of the simple two-compartment model suggests such an explanation. Namely, the inaccuracy 

of the deterministic description of FPTD is primarily determined by the correlations between fluctuations in 

the reactant molecule numbers, rather than the size of these fluctuations. This in turn follows from the fact 

that all reactions relevant to the Ca2+ buffering and sensing are hetero-species rather than homo-species: 

reactions occur between molecules of different types [59]. In this case the mean-field description of the 

Ca2+ sensor approximates its stochastic description, under the simplifying assumption of zero correlations 

(cf. Eqs. 13-14). This correspondence would break down had Ca2+ sensing involved simultaneous binding 

of two Ca2+ ions to the exocytosis sensor, as opposed to a sequence of two binding reactions. This scenario 

would correspond to a larger ratio of between reaction and diffusion rates, which is expected to amplify the 

discrepancy between deterministic and stochastic approaches. These results are quite general and apply 

to the modeling of a wide class of biochemical cell processes. The significance of the relative magnitudes 

of reaction and diffusion rates have also been pointed out by prior studies (see e.g. [16, 23, 24, 38, 48]). 

It is important to emphasize that the partial decorrelation between local Ca2+ fluctuations and the sensor 

state fluctuations does not imply a small uncertainty in FPT: in fact, FPTD is still quite “wide” (i.e. has a 

large coefficient of variance) even in cases where the mean-field results achieve significant accuracy (see 

Figs. 1-3). We note that this finding is similar to, but somewhat distinct from the concept of stochastic 

shielding, whereby stochastic fluctuations of upstream reactions in a given biochemical pathway are 

effectively shielded from fluctuations of observable variables (such as open states of an ion channel), which 

are more sensitive to fluctuations in downstream parts of the pathway [113, 114]. 

The above-mentioned threshold of NCa =50 inferred from our spatial simulations shown in Figs, 1-3 is not 

wholly satisfying, considering that our analysis of the reduced two-compartment model illustrates that good 

agreement between stochastic and deterministic (mean-field) estimates of FPTD can be achieved even for 

NCa~O(1). Further, relating the discrepancy between deterministic and stochastic simulations to the ratio of 

diffusion and reaction rates is conceptually problematic, since bi-molecular binding reactions are limited by 

diffusion, precluding truly independent variation of reaction and diffusion rates. Therefore, it would be crucial 

to bridge the conceptual gap between compartmental and fully spatially resolved models, while retaining 

the ability for rigorous analysis. The most promising approach in this direction is to use recent simplified 

models of Ca2+ diffusion, buffering and binding that allow closed-form computation of FPTD [49-51]. 

Although the latter studies involve certain simplifications, particularly in their reduced descriptions of Ca2+ 

buffering, it would be promising to examine the discrepancy between stochastic and deterministic FPTD 

obtained in the framework of such simplified models.  

It is possible that some part of the discrepancy between deterministic and stochastic methods that we 

observed with smaller number of Ca2+ ions could arise from the difference in the treatment of the exocytosis 

sensor’s Ca2+ binding used in the two approaches, as described in Methods. However, we believe it is 

important to compare the most straightforward and easily implementable approaches, which are most often 

used in practice. Further study will confirm whether the discrepancy between the two approaches is 

significantly affected by the differences in the Ca2+ sensor binding implementation. However, in general, 
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single-molecule scale effects can only be precisely computed using stochastic methods like FPKMC/GFRD 

[60, 72-77], or even more detailed molecular dynamics simulations [103]. 
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APPENDIX: CME system for the two-compartment model 

Let  k
np t  denote the probabilities of Markovian states in Eq. 12, corresponding to n (n=0..N) Ca2+ ions in 

the sensor sub-compartment while the sensor is in state Sk, k=0..3, with k=3 indexing the terminal fused 

(release) state R in the sensor binding reaction, Eq. 8. Then the Markov Chain shown in Eq. 12 corresponds 

to the following Chemical Master Equation (CME) system (Kolmogorov forward equations): 
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 (15) 

This is a linear system of form dp/dt = Wp, where the components of probability vector p correspond to the 

4N1 states shown in Eq. 12, and the elements of Markov transition matrix W are constant rates indicated 

in Eqs. 12, 15. Therefore, it is readily integrated in closed-form: p(t) = exp[W t] p(0). Since our quantity of 

interest is FPTD, given by the rate of transition to the final absorbing (release) state R, all states (n, R) with 

probabilities  3
np t could be collapsed onto a single absorbing state by summing over n. Further, one more 

variable could be eliminated using the conservation law for the sum of all states of the sensor. However, 

we keep all states in Eqs. 12, 15, for the sake of clarity.  

This CME system can be converted to an ODE system of the same dimensionality describing the moments 

of the state variables, i.e. the occupancy probabilities of sensor states Sk and R, and the moments of n, 

which depend on the state of the sensor, and denoted as nm , Sk: 
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                                               (163) 

where  min ,2 kM N k  is the number of free (unbound) Ca2+ ions contained in both compartments 

when the sensor is in state k. Introducing conditional moments through the standard definition  

, | ,m m
k k kn S n S S  and performing appropriate summations of Eqs. 15 and algebraic 

simplifications, one obtains the moment system, part of which is shown in Eq. 13. The initial condition 

corresponding to Figs. 5, 6 is given by 𝑝 (0) = 1, with all other probabilities satisfying 𝑝 (0) = 0. 
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