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ABSTRACT 15 

Flexibly switching attentional strategies is crucial for adaptive behavior in changing environments.  16 
Depending on the context, task demand employs different degrees of the two fundamental 17 
components of attention– attentional selectivity (preferentially attending to one location in visual 18 
space) and effort (the total non-selective intensity of attention). Neuronal responses in the visual 19 
cortex that show modulation with changes in either selective attention or effort are reported to 20 
partially represent motivational aspect of the task context. The relative contributions and 21 
interactions of these two components of attention to modulate neuronal signals and their sensitivity 22 
to distinct motivational drives are poorly understood. To address this question, we independently 23 
controlled monkeys’ spatially selective attention and non-selective attentional intensity in the same 24 
experimental session during a novel visual orientation change detection task. Attention was 25 
controlled either by adjusting the relative difficulty of the orientation changes at the two locations 26 
or by the reward associated with stimuli at two locations while simultaneously recording spikes 27 
from populations of neurons in area V4. We found that V4 neurons are robustly modulated by 28 
either selective attention or attentional intensity. Notably, as attentional selectivity for a neuron’s 29 
receptive field location decreased, its responses became weaker, despite an increase in the animal's 30 
overall attentional intensity. This strong interaction between attentional selectivity and intensity 31 
could be identified in single trial spike trains. A simple divisive normalization of spatially 32 
distributed attention performances can explain the interaction between attention components well 33 
at the single neuron level. The effects of attentional selectivity and attentional intensity on neuronal 34 
responses were the same regardless of whether the changes were motivated by reward or task 35 
difficulty. These results provide a detailed cellular-level mechanism of how fundamental 36 
components of attention integrate and affect sensory processing in varying motivational and 37 
stimulus contexts. 38 
  39 
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INTRODUCTION 40 

Attention plays an essential role in motivating human behavior and cognition by selectively 41 
enhancing the processing of relevant sensory information. To engage and perform in cognitively 42 
demanding tasks, goal directed attention is often driven by external incentives. Many cortical and 43 
subcortical brain areas, including V4, change their activity when attention shifts1-4. They are also 44 
sensitive to the size of the reward that motivates those shifts5-11. Although reward expectation and 45 
attention have been described as conceptually distinct cognitive constructs (for review12), it 46 
remains challenging to distinguish these factors owing to their covariance and the high similarity 47 
of their effects on neuronal responses. Attentional levels can also be elevated owing to internal 48 
desire to complete a task without any apparent changes in external incentives, such as increased 49 
cognitive demand as a result of increased task difficulty13. For example, professional athletes or 50 
musicians address demanding situations with increased effort so as to maintain a given 51 
performance level. The contributions of different sources of motivation to regulation of sensory 52 
processing in cortex and overall perceptual behavior remain elusive. 53 

In order to adapt to varying environmental and stimulus contexts, subjects shift their 54 
attention between spatially localized targets or selective stimulus features to spatially global targets 55 
or nonselective features. Many studies have characterized the neuronal modulations associated 56 
with selective attention by assaying how performance improves for attended spatial locations or 57 
stimulus features relative to distant locations or unrelated features. When a monkey’s attention is 58 
selectively directed towards the location of a neuron’s receptive field (RF), improvement in 59 
perceptual performance in that region is typically accompanied by increased spike rates4,14, 60 
reduced individual response variance and pairwise spike count correlations1,15. Although 61 
experimental studies most often treat attention as all-or-none, it has another fundamental aspect, 62 
intensity16–how strongly attention is focused independent of selectivity. Attentional intensity can 63 
be considered as an objective measure of perceived effort or cognitive engagement in a goal 64 
directed attention demanding task17. Attention related modulations of neurons in area V4 in 65 
primate visual cortex have been examined using a variety of visual detection tasks2,3,18,19. Some of 66 
these studies show that V4 neuronal activity is enhanced as a result of higher cognitive engagement 67 
or attentional effort in response to increased task demand13,20. It remains relatively unknown how 68 
selective attention and attentional intensity integrate in the brain to improve sensory perception 69 
and performance, and how motivational contexts influence these processes. 70 

To address these questions, we trained monkeys to do an attention demanding visual task 71 
that allowed us to independently control the monkey’s attentional selectivity and intensity in two 72 
different motivation contexts. We varied either task difficulty while reward size was kept fixed or 73 
varied reward size for a fixed task difficulty. Using simultaneous electrophysiological recordings 74 
from populations of V4 neurons and computational models, we found that attentional selectivity 75 
and intensity independently modulate neuronal spiking. Single trial spike trains encode 76 
multiplexed signals of attentional selectivity and intensity with comparable strengths in a way that 77 
is independent of the how the animal was motivated to allocate its attention. Further, the effects of 78 
attentional selectivity and intensity interact to determine the resultant influence of attention on 79 
spiking. A spatially tuned normalization model of attention can account for this interaction. Thus, 80 
we provided a detailed account of how fundamental components of attention interact at the level 81 
of V4 spikes. By extending the spectrum of attention-related cognitive representations in V4, the 82 
result provide help clarify how individual neurons contribute to higher-order cognition. 83 
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RESULTS 84 

Independent control of attentional selectivity and intensity by varying task difficulty 85 
We trained two rhesus monkeys to distribute their visual spatial attention between stimuli in the 86 
left and right hemifields while doing an orientation change detection task (Figure 1a). The animal 87 
held its gaze on a central fixation spot throughout each trial. After a randomly varying period of 88 
fixation, two Gabor sample stimuli appeared for 200 ms. This was followed by a delay of 200-300 89 
ms, after which a single Gabor test stimulus appeared at one of the two sample locations (selected 90 
pseudo-randomly). If the orientation of the test stimulus differed from the orientation of the sample 91 
stimulus that had appeared in that location (a target), the monkey had to rapidly make a saccade to 92 
the stimulus to earn a juice reward. On a random 50% the trials, the orientation of test stimulus 93 
was unchanged (a non-target) and the monkey was required to maintain fixation. In that case, a 94 
second test stimulus that always had a different orientation was presented after a short delay and 95 
monkey needed to saccade to this target stimulus to earn a reward. 96 

To control the animal’s attention, in each block of trials we set the orientation change of 97 
the first test stimulus at each location to be either easy to detect (~80°) or difficult to detect (~18°) 98 
(Figure 1b). In each block the size of the orientation change at the two locations was set 99 
independently, providing four possible combinations (Figure 1c). We measured the behavioral 100 
consequences of different combinations of difficulty by presenting an orientation change of 101 
intermediate difficulty (30°, probe) on a randomly selected fraction of all trials (~30%). These 102 
probe trials allowed us to directly compare behavioral sensitivity (d’) at both location across all 103 
four block types. Figure 1d plots the average d’s for the left and right stimulus locations on probe 104 
trials for the two monkeys separately, with different colors representing the four different 105 
combinations of difficulty. Crosses mark mean d’s from individual sessions and gray lines join the 106 
four means from individual sessions. The changes in behavioral performance document that the 107 
animals responded to task difficulty by adapting their allocation of attention. Behavioral d’ for the 108 
probe orientation change on each side was substantially higher when most orientation changes 109 
were difficult to detect, and lower when most changes were easy to detect, with approximately 110 
symmetrical d’s at both locations during most individual sessions. 111 

Spatial selectivity of attention was quantified by selectivity index that measured the relative 112 
behavioral d’ at the RF location compared to the opposite location (Methods). Attentional 113 
intensity was measured by overall absolute behavioral d’s in the two locations (Methods). The ~4-114 
fold difference in orientation change (median easy change 80o, IQR 80o-90o; median difficult 115 
change 18o, IQR 16o-18o) strongly motivated animals to adjust their behavioral d’, whether the 116 
inter-block changes on the two sides were in opposite directions (blue arrows, Figure 1d) or in the 117 
same direction (gold arrows, Figure 1d). In both cases behavioral d’ changed by ~2-fold 118 
(selectivity indices in the opposite direction: monkey S, for low RF d’ mean –0.58 SEM 0.01; for 119 
high RF d’ 0.52 mean 0.01 SEM, p < 10–12; monkey P, for low RF d’ mean –0.41 SEM 0.02; for 120 
high RF d’ mean 0.46 SEM 0.01; p < 10–13; attentional intensity in the same direction: monkey S, 121 
for non-selective low d’ mean 1.46 SEM 0.04; for non-selective high d’ mean 3.84 SEM 0.08; p < 122 
10–9; monkey P, for non-selective low d’ mean 1.71 SEM 0.07; for non-selective high d’ mean 123 
3.78 SEM 0.11; p < 10–13; Supplementary Table T1). These changes in allocation of attention 124 
were driven by changes in task difficulty alone. Although reward sizes for correct responses were 125 
varied somewhat from trial to trial (see below), the average was kept the same on both sides across 126 
all task difficulty configurations (Figure 1e). 127 

Non-luminance mediated task-evoked increases of pupil size are commonly considered a 128 
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proxy for arousal or attentional engagement and are sensitive to task demands across species21-23. 129 
Consistent with this, pupil area during the sample stimuli increased progressively with the increase 130 
in attention intensity (F(3, 76) = 62.71, p < 10–19 for monkey S; F(3, 84) = 88.19, p < 10–25 for monkey 131 
P, ANOVA; Figure 1f). Pupil area was greatest when discriminations were difficult on both sides, 132 
and smallest when they were easy on both sides. 133 

Relative neuronal modulation of V4 with attentional selectivity and non-selective intensity 134 
We recorded from 1194 single units and small multi-unit clusters (single unit, 385; multiunit, 809) 135 
during 42 recording sessions from the two monkeys (monkey S, 20 sessions, 714 units; monkey 136 
P, 22 sessions, 480 units) using 96 channel multielectrode arrays chronically implanted in V4 in 137 
the superficial prelunate gyrus. Neurons typically responded more strongly to the sample stimuli 138 
during the trial blocks when the monkey’s behavioral d’ at the RF location was high. This increased 139 
spiking response was seen whether the behavioral d’ differences involved different selectivity for 140 
the RF versus other location (red versus blue) or a change in attentional intensity with no change 141 
in selectivity (gold versus green). Importantly, the spike responses did not depend exclusively on 142 
d’ in the RF location. Neuronal responses during high non-selective behavioral d’ (green, Figure 143 
2a-b) were reduced compared to responses with identical RF d’ and low d’ at the distant location 144 
(blue, Figure 2a-b). 145 

To quantify neuronal modulation by attentional selectivity and intensity, we computed a 146 
neuronal d’ as the difference of z-scored firing rates (60-260 ms from sample onset) between high 147 
and low attention states. The mean firing rate modulation was significantly greater for attention 148 
selectivity compared to non-selective intensity (neuronal d’ for selective attention, mean±SEM = 149 
0.30±0.01; for non-selective attention, mean ± SEM = 0.22 ± 0.05, p < 10–31, n = 1194, t-test; 150 
Figure 2c). Single neurons and multiunit clusters separately showed similar spike modulation by 151 
attentional selectivity and non-selective intensity (single units, p < 10–7; multiunits, p < 10–26). 152 
These attentional effects were also significant for the monkeys individually (monkey S, p < 10–27; 153 
monkey P, p < 10–8). 154 

Changes in attentional intensity with this task design do not rule out all forms of spatial 155 
selection because the animals might have attended to locations other than the two stimulus 156 
locations tested. If so, V4 neurons could have been modulated by the spatially selective shifting of 157 
attention from those other locations to the two stimulus locations. We examined the broader spatial 158 
distribution of attention by measuring the correlation between firing rate modulation and the 159 
proximity of a V4 neuron’s RF and the attended Gabor stimulus (Figure 2d) using Mahalanobis 160 
distance to measure proximity. As expected, neuronal d’ dropped substantially with increasing RF 161 
distance from the stimulus center when animals shifted their spatially selective attention 162 
(Spearman, r = –0.18, p < 10–8; Figure 2d). In contrast, d’ for the same neurons varied little with 163 
RF distance when animals were encouraged to adjust their attentional intensity (Spearman, r = –164 
0.05, p = 0.11; Figure 2d), supporting the absence of spatially selective attention in this 165 
manipulation. Correlation between the RF distance and neuronal d’ for attentional selectivity was 166 
significantly higher compared to attentional intensity (p = 0.002, z-test). 167 

Because we recorded from the same fixed multielectrode arrays over many sessions, it is 168 
possible that some units were sampled in more than one session. We investigated the effect of 169 
potential resampling by analyzing a subsample that included only one unit from each electrode 170 
across all recording sessions (n = 85 for monkey S, n = 80 for monkey P). For this conservative 171 
set of unequivocally unique units, both the high selective and non-selective intensity increased 172 
spike rates and the modulation was stronger for selective than non-selective attention (mean ± 173 
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SEM neuronal d’ for monkey S, selective attention, 0.25 ± 0.01, non-selective attention, 0.19 ± 174 
0.01, p < 10–3; for monkey P, selective attention, 0.31 ± 0.02, non-selective attention, 0.25 ± 0.02, 175 
p = 0.02, t-test; Supplementary Figure S2) by amounts that were indistinguishable from the 176 
whole population. Thus, the results cannot be attributed to multiple sampling that might have 177 
occurred from units with uncharacteristic properties. 178 

In addition to spike rate modulation, we tested the relative effects of attentional selectivity 179 
and non-selective intensity on signal-to noise of individual V4 units by measuring mean-matched 180 
Fano factor (the ratio of the variance of the spike counts to the mean). Fano factors during the 181 
sample stimulus period were significantly reduced by increased attention selectivity (F(1, 140996) = 182 
236.82, p < 10–10, ANOVA) as well as intensity (F(1, 140996) = 705.29, p < 10–10, ANOVA; Figure 183 
2e). Further, a significant interaction was detected between the selectivity and intensity on the 184 
Fano factor (F(1, 140996) = 4.63, p = 0.03, ANOVA). Similar to the signal-to-noise, pairwise spike 185 
count correlations of simultaneously recorded units were also reduced with higher attention 186 
selectivity and intensity (selectivity, F(1, 124917) = 16.04, p < 10–3; intensity, F(1, 124917) = 167.04, p < 187 
10–10; interaction, F(1, 124917) = 7.12, p = 0.008, ANOVA; Figure 2f). These results suggest that 188 
although the neuronal modulation by selective attention is stronger than the modulation by non-189 
selective intensity, they share many similarities and both contribute appreciably to attention-190 
related modulations. 191 

Independent control of attentional selectivity and intensity using differential reward size as 192 
the external motivator 193 
Subjects are motivated in many different ways to allocate their attention. So far in our task, changes 194 
in task difficulty motivated monkeys to spatially redistribute their attention in order to match task 195 
demands. We next tested whether the encoding of attention components in V4 neurons depends 196 
on how animals are motivated to attend. For this, we instructed the same monkeys to shift their 197 
spatial attention by varying reward sizes between the two locations (Figure 3a-b). The size of the 198 
orientation change was kept constant and challenging on both sides throughout the session. 199 
Consequently, no probe orientation changes were needed or presented. The reward manipulation 200 
sessions were conducted on different days that were interleaved with the task difficulty sessions 201 
described in previous sections. The trial distributions and the probability of an orientation change 202 
in the two locations in opposite hemifields were same. Thus, the allocation of spatial attention 203 
across the hemifields were primarily motivated by the reward distributions. Figure 3c plots 204 
behavioral d’ on the first test stimuli on the left and right sides for all four reward schedules. 205 
Behavioral d’s on both locations were symmetrical during most individual sessions. 206 

The ~2.5-fold increase in reward size (median small 136 µl, IQR 87-177 µl; median large 207 
340 µl, IQR 305-373 µl; Figure 3d) strongly motivated animals to adjust their behavioral d’, 208 
whether the direction of change on the two sides was opposite (blue arrows, Figure 3c) or the 209 
same (gold arrows, Figure 3c). In both cases behavioral d’ changed by ~2-fold (opposite direction: 210 
selectivity indices in RF, monkey S, for low d’ mean –0.64 SEM 0.02, for high d’ 0.54 mean 0.02 211 
SEM, p < 10–11; monkey P, low d’ mean –0.47 SEM 0.02; high d’ mean 0.48 SEM 0.02; p < 10–212 
11; same direction: intensity indices, monkey S, for low non-selective intensity mean 1.45 SEM 213 
0.05; for high non-selective intensity mean 3.72 SEM 0.1; p < 10–9; monkey P, for low non-214 
selective intensity mean 1.53 SEM 0.07; for high non-selective intensity mean 3.70 SEM 0.09; p 215 
< 10–10). These changes in attention allocation were produced by changes in reward size alone. 216 

As with changes in task difficulty, high non-selective attention intensity mediated by 217 
reward size was also associated with increased pupil area during the sample stimuli (F(3, 76) = 54.12, 218 
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p < 10–18 for monkey S; F(3, 60) = 160.47, p < 10–27 for monkey P; ANOVA; Figure 3e). 219 

Neuronal modulation of attention selectivity and intensity by differential reward size was 220 
indistinguishable from task difficulty mediated modulation 221 
We recorded from total 1331 single units and small multi-unit clusters (single unit, 419; multiunit, 222 
912) in V4 during 36 reward manipulation recording sessions from the two monkeys (monkey S, 223 
20 sessions, 850 units; monkey P, 16 sessions, 481 units). Spike response modulation was similar 224 
to the effects observed when attention was controlled using task difficulty (Figure 4a-c). 225 
Population PSTHs for correctly completed trials increased with high selective attention inside the 226 
neuron’s RF (orange and blue traces, Figure 4a-b). Spiking activity also increased for higher non-227 
selective attention intensity but was relatively smaller compared to the modulation due to increased 228 
selective attention (yellow and green traces, Figure 4a-b). Neuronal d’ for attention selectivity 229 
was higher than non-selective intensity (mean ± SEM for selectivity, 0.37 ± 0.006; intensity, 0.24 230 
± 0.004; p < 10–72, t-test) and they were significantly correlated (r = 0.25, p < 10–19, Spearman; 231 
Figure 4c). Compared to the non-selective intensity, neuronal d’ for attention selectivity dropped 232 
more strongly compared to non-selective intensity with the RF-sample stimulus (selective 233 
attention, r = –0.21 (p < 10–13); non-selective intensity, r = –0.09 (p = 0.0003); p = 0.005, z-test; 234 
Figure 4d). In addition to spiking, neurons’ mean-matched Fano factor and pairwise spike-count 235 
correlations reduced with higher attentional selectivity and intensity (Fano factor, selectivity, p < 236 
10–315, intensity, p < 10–136; pairwise correlations, selectivity, p < 10–36, intensity, p < 10–6; 237 
ANOVA; Figure 4e-f). A significant interaction was also detected between the selectivity and 238 
intensity on the Fano factor (p < 10–5, ANOVA) as well as pairwise spike-count correlations (p = 239 
0.039, ANOVA). 240 

Encoding of attention selectivity and intensity within single trial spike train 241 
Spike trains of V4 neurons provide dynamic information about many task relevant variables24. We 242 
next measured and compared the relative contributions of attentional selectivity and intensity on 243 
the within-trial instantaneous spiking of individual V4 neurons in varying difficulty and varying 244 
reward contexts using a generalized linear encoding model24 (Figure 5a). The probability of an 245 
observed spike count within a small time window (50 ms) was modeled as an exponential function 246 
of a weighted linear combination of task variables: attentional selectivity (ratio of d’s at the RF 247 
location over the oppRF location), attentional intensity (radial distance from the inRF d’-oppRF 248 
d’ to the origin), selectivity-by-intensity interaction, orientation of the sample stimulus inside the 249 
neuron’s RF and the direction of the eventual response saccade. The probability of a spike was 250 
constructed to follow a negative binomial distribution (Methods). Most neurons were well fit with 251 
this model (difficulty context, 1169/1194 (98%), p < 0.05; reward context, 1311/1331 (98%), p < 252 
0.05; F test). Figure 5b shows PSTHs of observed and model fitted spike counts in different 253 
attention conditions for trials in cross-validation test data sets for an example neuron in a session 254 
with varying task difficulty. Figure 5c illustrates fitted model components of attention for the same 255 
example neuron as in Figure 5b. The effective influence of distinct attention components on spike 256 
counts are expressed as multiplicative gains (exponentiated fitted coefficients) at a representative 257 
time during the sample stimulus (150 ms). The product of these gain components results in the 258 
predicted rate for a single trial (combined gain, bottom row). For an identical increase in behavioral 259 
d’ in the RF location, the increase in spike counts will be higher when the opposite-RF d’ is small 260 
(blue arrow, Figure 5c) compared to large (green arrow, Figure 5c). 261 

We next ask whether attentional selectivity, intensity and their interaction were encoded 262 
by distinct set of V4 neurons and task context affects these population representations. Many units 263 
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showed significant effects for several or all variables: attentional selectivity, intensity; and 264 
selectivity-by-intensity interaction (difficulty context: selectivity and intensity, 586/919 (64%), p 265 
< 10–10; selectivity and selectivity-by-intensity, 604/904 (67%), p < 10–10; intensity and selectivity-266 
by-intensity, 621/772 (80%), p < 10–10; selectivity, intensity and selectivity–by–intensity, 542/934 267 
(58%), p < 10–10; reward context: selectivity and intensity, 709/1038 (68%), p < 10–10; selectivity 268 
and selectivity-by-intensity, 713/1033 (69%), p < 10–10; intensity and selectivity-by-intensity, 269 
710/871 (81%), p < 10–10; selectivity, intensity and selectivity–by–intensity, 642/1047 (61%). p < 270 
10–10 (61%); chi2 test; Figure 5d, f). Further, these distributions were largely unchanged across 271 
the difficulty and reward contexts (p = 0.97, chi2 test). This mixed representation indicates 272 
multiplexed encoding of attention components by the same V4 unit. 273 

We next compared the relative contributions of the cognitive and task variables on spike 274 
responses for individual units as measured by predictor importance (normalized magnitude of 275 
fitted coefficients, Figure 5e, g) (Methods). Following the onset of sample stimulus, stimulus 276 
orientation had a dominant contribution to the spike counts in both task contexts. This is expected 277 
because V4 neurons have robust visual responses and most are orientation selective. Attentional 278 
selectivity, intensity and selectivity-by-intensity interaction remained strong predictors of spike 279 
trains from the start of the trial, and increased immediate after the stimulus onset. Saccade direction 280 
contributed negligibly to V4 activity. Contributions of attention components were indifferent to 281 
the task contexts. Both animals showed similar results (Supplementary Figure S3, S5). 282 
Collectively, these results suggest that individual V4 neurons independently carry multiplexed 283 
information about selective attention and attention intensity in single trial spike trains relative to 284 
other sensory and task variable. These two attention components are integrated independent of the 285 
way the animal is motivated to allocate their attention. 286 

A normalization model of attention can account for the interactions between attentional 287 
selectivity and intensity 288 
The decrease in V4 responses with the increase in behavioral d’ in the opposite hemifield (blue to 289 
green, yellow to orange, Figure 2d, 3c) might seem unexpected, both because behavioral 290 
performance at the receptive field location does not change and because overall behavioral 291 
performance is better when the animal allocates high attention to both locations. This reduced rate 292 
of firing can be understood in the context of spike response normalization. To gain a mechanistic 293 
understanding of the observed interactions between attentional selectivity and non-selective 294 
intensity seen in V4 responses, we tested whether a simple extension of a sensory normalization 295 
model25 with spatially distributed behavioral d’ can account for these effects on spike responses. 296 
Mean stimulus evoked spike counts were expressed as: r = (d’in*Ein,G + d’opp*Eopp,G)/(d’in*Sin,G + 297 
d’opp*Sopp,G + s); where d’i represents behavioral d’ at location i in or opposite the RF hemifield, 298 
Ei,G and Si,G represent excitation and suppression at location i due to the Gabor stimulus (G = 1) or 299 
the background (G = 0), and s is baseline suppression (Figure 6a and Methods). Model 300 
parameters Ei,G, Si,G and a were fit for each unit with the trial-averaged spike counts over 200 ms 301 
during the pre-stimulus fixation, sample and test interval periods on training datasets. Performance 302 
of the full model (model with d’) was measured on the 4-fold cross-validation test datasets 303 
subsampled across different stimulus configurations and attention conditions, and compared with 304 
two alternate models that lacked any behavioral d’ factors: model without d’, and model without 305 
d’ and background display (Methods) 306 

The surface plot in Figure 6b shows mean spike counts fitted with the normalization model 307 
(model with d’) as a function of behavioral d’s in two hemifields for an example unit in a difficulty 308 
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context session. Most units in the two task contexts were better fit with the attention model of 309 
normalization compared to alternate d’-independent normalization models (difficulty session: 310 
model with d’, 910/1194 (76%), model without d’, 626/1194 (52%), model without d’ and 311 
background display, 479/1194 (40%), reward session: model with d’, 1006/1331 (76%), model 312 
without d’, 614/1331 (46%), model without d’ and background display, 486/1331 (37%); variance 313 
explained >80%; Figure 6c-d). At the population level, the quality of normalization model fits of 314 
spike responses in the two task contexts did not differ (p = 0.23, chi2 test). The normalization 315 
model with d’ captured multiple features of observed spike counts across different stimulus and 316 
attention conditions, including relative changes in spike counts across different and attention 317 
conditions, and neuronal modulation indices for attentional selectivity and intensity 318 
(Supplementary Figure S7, Figure 6e-h). Population correlation between the observed and 319 
normalization model estimated spike count modulation indices for attentional selectivity and 320 
intensity were strongly correlated across the task contexts (difficulty context: attentional 321 
selectivity, r = 0.87, p < 10–10, attentional intensity, r = 0.83, p < 10–10; reward context: attentional 322 
selectivity, r = 0.89, p < 10–10, attentional intensity, r = 0.84, p < 10–10; Spearman correlation 323 
coefficient; Figure 6e-h). Further, the model fitted excitatory and suppressive stimulus drives of 324 
recorded neurons decreased with the proximity of the neuron’s RF and the stimulus irrespective of 325 
task context that motivated animals to attend (Figure 6i-j). Together, these results show that a 326 
simple normalization model captures the effects of attentional engagement at a distant site on the 327 
spike response in the RF location regardless of the stimulus or attentional context of that RF 328 
response. 329 

DISCUSSION 330 

We isolated the contributions of attentional selectivity and non-selective intensity to the activity 331 
of individual V4 neurons while precisely and independently controlling monkeys’ behavioral d’ at 332 
the RF location and a distant location in the opposite hemifield. Changes in either attentional 333 
selectivity or intensity independently are associated with overall increases in V4 spike rates and 334 
decreases in V4 spiking variability and pairwise spike count correlations. Further, spike rates were 335 
reduced when behavioral d’ increased at a distant location in opposite hemifield. A spatially tuned 336 
response normalization model explained all these changes in spike rate across attention conditions 337 
and task contexts. Finally, single trial encoding of attentional selectivity, intensity and their 338 
interaction in V4 neurons were found to be independent of the way the subject is motivated to 339 
regulate its attention.  340 

A functional role for the spiking of V4 neurons is supported by a correlation with enhanced 341 
sensory processing of an attended stimulus at the RF location, as well as impaired behavioral 342 
detection in subjects with V4 lesions. V4 lesions in macaques and humans impair attentional 343 
performance by making it difficult for the subjects to exclude irrelevant distractors26,27. However, 344 
our results reveal a mismatch between V4 spiking and behavioral performance: lower spike rates 345 
for the same behavioral performance when monkey’s attention strategy shifts from spatially 346 
selective to non-selective high intensity at the RF location (Figures 2b, 4a). This raises questions 347 
about the relationship between neuronal signals in V4 and a subject’s perceptions and 348 
performance. Other studies also found a dissociation between behavioral performance and activity 349 
in cortical visual areas, including V45,24,28. That work showed dissimilar dynamics of top-down 350 
attentional control signals, sensory modulation and executive action. Specifically, when attention 351 
shifted, behavioral changes lagged changes in the spike rates of sensory neurons by seconds to 352 
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minutes, breaking the link between spikes and performance24. Our results show that a mismatch 353 
between V4 activity and behavior can also go beyond lags: when animals spread their field of 354 
attention beyond the RF, V4 spike rates go down even though the animals maintained the same 355 
behavioral d’. While a normalization mechanism can explain the reduced spiking (Figure 6) it 356 
does not address this disconnect with behavior. Changes in pupil diameter suggest that the animal 357 
in fact increased its total effort at both sites to maintain performance in the high effort condition 358 
(Figures 1f, 3e), making the reduced spike rates even less expected. Nevertheless, there is little 359 
reason to believe that behavioral performance should be uniquely determined by the strength or 360 
quality of sensory signals in any one brain region. A primate brain doing an attentionally-361 
demanding task depends on contributions from many structures throughout the neuraxis. Even if 362 
perceptual stages perform perfectly, overall behavioral performance can be affected by distractions 363 
and lapses associated with activity in other brain stations. The somewhat reduced spike rates in V4 364 
that occur with high attention to both hemifields might in fact lower performance, but be 365 
counterbalanced by attention-related changes in other structures that enhance performance by 366 
reducing errors related to factors like distractions or motor error.  367 

In the current experiments, monkeys were motivated to direct their spatial attention by 368 
expectation of either larger rewards or higher task demands associated with two locations. The 369 
invariance of neuronal modulations in V4 with these two distinct motivational factors suggest that 370 
these effects depend on a common top-down cognitive control and do not represent reinforcement 371 
signals to any appreciable extent. This notion is further supported by previous reports of weak 372 
evidence of encoding of reward information by single trial spike counts of V4 neurons across 373 
different attention states and during state transitions24 (but see5). Motivation plays a crucial role in 374 
influencing attention control, giving priority to the most appropriate goal among multiple 375 
competing targets. Both humans and animals can be motivated to execute actions either for 376 
intrinsic pleasure or for satisfying some basic needs such as hunger, thirst, etc. Several brain 377 
structures within the frontoparietal network are modulated by motivationally salient signals such 378 
as errors, rewards and penalties29. Although various forms of motivations (intrinsic and extrinsic) 379 
can have different origins, they have common nodal points in the striatum and prefrontal cortex 380 
that receive dopaminergic afferents that play a crucial role in reward learning30. Consistent with 381 
this, previous evidence points to common cortico-limbic neural pathways that are activated by 382 
either changes in expectation of reward or changes in task difficulty31.  383 

Our results show a close relationship between attentional intensity and “effort”. Previous 384 
work has associated cognitive effort exclusively with changes in task difficulty, and viewed it as 385 
a specific type of “arousal” that is distinguishable from other forms of arousal elicited by 386 
exogeneous factors such as stress, novel stimuli and drugs16 (but see32). The manifestation of 387 
attentional intensity on regulating visual sensory processing of V4 neurons in both of our task 388 
contexts instead supports identifying effort as an intensive aspect of attention16. It is possible that 389 
the component of bottom-up stimuli driven arousal that affects performance might map well onto 390 
the neuronal modulation associated with attentional intensity or effort. Future experiments with 391 
precise and independent control of these cognitive components in simultaneous tasks might 392 
identify their precise relationships and how subjective experience of effort relates to attentional 393 
intensity. Other important questions to be addressed concern the circuit, cellular and molecular 394 
mechanisms that mediate attentional intensity. These could involve activation of diverse 395 
neuromodulatory systems such as norepinephrine, acetylcholine, serotonin6,33-37.  396 

V4 spike responses for varying attentional selectivity and intensity were well explained by 397 
an extension of normalization model of visual responses38 with spatially tuned attentional gain 398 
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factors represented by behavioral d’. A similar normalization model with uniform attentional 399 
effects on excitation and surround suppression have been previously used in explaining neuronal 400 
modulations in V4 with spatially selective attention25. Previous normalization models considered 401 
attentional effects on stimulus-induced excitation and surround suppression. To explain a modest 402 
but non-zero neuronal modulation during the fixation period in absence of any stimulus, our 403 
normalization model included an attention effect on the background display similar to the visual 404 
stimulus. This is consistent with the evidence that attention acts as a constant gain factor3. Similar 405 
to reward expectations, increased task difficulty associated with spatial attention increases visual 406 
excitation13 and response suppression20 of V4 neurons. Further, response suppression with high 407 
task load is considered to serve as a mechanism for reducing peripheral interference and improving 408 
signal detection39. These reports are inconsistent with the correlated decrease in model estimated 409 
excitation and suppression with an increase in the proximity of neuron’s RF and attended stimulus 410 
across task difficulty and reward expectation contexts. Together, this normalization model of 411 
attention provides a canonical neuronal computation to explain how distributed spatial attention 412 
influences neuronal responses. Future experiments are required to examine how other forms of 413 
attention such as feature-based or bottom-up attention act on normalization mechanisms across 414 
different visual areas that are responsive to attentional modulation.  415 

Taken together, our results provide new experimental evidence revealing how attentional 416 
selectivity and non-selective intensity interact and modulate sensory processing in visual cortex in 417 
reference to behavioral performance. Moreover, our study identified a computational mechanism 418 
of normalization through which spatially distributed attentional performances interact. 419 

METHODS 420 

Subjects and surgery 421 

Two adult male rhesus monkeys (Macaca mulatta, 13 and 9 kg) were implanted with a titanium 422 
head post using aseptic surgical techniques before training began. After the completion of 423 
behavioral training (3 to 5 months), we implanted a 10x10 array microelectrodes with 400 µm 424 
spacing (Blackrock Microsystems) into dorsal visual area V4 of one hemisphere, between lunate 425 
and superior temporal sulci. The same two monkeys were used in a previous study that included 426 
some of the same neuronal responses, but described different findings24.  427 

Behavioral task 428 
During training and neurophysiological recording, the monkey sat in a primate chair facing a 429 
calibrated CRT display (1024 x 768 pixels, 100 Hz refresh rate) at 57 cm viewing distance inside 430 
a darkened room. Binocular eye position and pupil area were recorded at 500 Hz using an infrared 431 
camera (Eyelink 1000, SR Research). Trials started once the animal fixated within 1.5° of a central 432 
white spot (0.1° square) presented on a mid-level gray background (Figure 1a). The animal had to 433 
maintain fixation until its response at the end of the trial. After a fixation period of 400-800 ms, 434 
two achromatic Gabor sample stimuli appeared for 200 ms, one in each visual hemifield. After a 435 
variable delay of 200-300 ms, a Gabor test stimulus (test 1) appeared for 200 ms at one of the two 436 
target locations, randomly selected with equal probability. The test stimulus was identical to the 437 
preceding sample stimulus, except potentially its orientation. On half of the trials, the test 1 438 
stimulus had a different orientation (nonmatch trial) and the monkey had to make a saccade to that 439 
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target to receive an apple juice reward. On the remaining half of the trials, the test 1 stimulus had 440 
the same orientation as the corresponding sample stimulus (match trial), and the monkey had to 441 
maintain fixation until a second test stimulus with a different orientation (test 2, 200 ms) appeared 442 
in the same location after an additional delay of 200-300 ms. The monkey then had to saccade to 443 
that target to get a reward. Inter-trial intervals varied from 2-3 s. Stimuli were presented always in 444 
the lower hemifields at 2o-4o eccentricity. Gabors were static and odd-symmetric with the same 445 
average luminance as the background. Spatial frequency, size and base orientation of Gabor stimuli 446 
were optimized for one neuron recorded each day, and remained unchanged throughout each 447 
session (left, azimuth –2.5o to –4.5o, elevation –0.5o to –4.0o, sigma, 0.35o to 0.70o, spatial 448 
frequency 0.6 to 3.5 cycles/o; right, azimuth 1.8o to 5.5o, elevation –0.5o to –4.0o, sigma, 0.25o to 449 
0.58o, spatial frequency 0.7 to 3.0 cycles/o). On every trial, the orientation of the sample stimuli 450 
randomly took one of two values (independently), base orientation or orthogonal. Stimulus 451 
parameters and orientation changes remained fixed within a session and varied across sessions. 452 
Orientation changes differed between blocks when task difficulty was manipulated, but every 453 
block contained probe trials that had the same orientation change throughout a session (24o-40o for 454 
monkey S, 20o-40o for monkey P). Reward sizes for hits (correct response in nonmatch trial) and 455 
CRs (correct rejections in match trial) were adjusted by < 10% as needed to encourage the animal 456 
to maintain a behavioral criterion close to zero. Behavioral task was controlled using custom-457 
written software (https://github.com/MaunsellLab/Lablib-Public-05-July-2016.git). 458 
Behavioral task contexts: Animals were motivated to allocate their spatial attention using two 459 
different task contexts, varying task difficulty or varying reward size. In alternate sessions, 460 
animal’s spatial distribution of behavioral d’ at two locations in opposite hemifields was controlled 461 
by either of the task contexts. In task-demand context, selective attention and non-selective 462 
attentional intensity were controlled over interleaved blocks of trials (160-440 trials/block) by 463 
changing relative task difficulty at the two locations in opposite hemifields (Figure 1c). 464 
Orientation change randomly took one of two values, probe orientation change (~30% of the trials) 465 
or contextual orientation change (~70% of the trials). Contextual orientation change was small for 466 
difficult task (high task-demand) and large for easy task (low task demand) compared to the probe 467 
orientation change. A high behavioral d’ (selective attention) at location 1 relative to the location 468 
2 was achieved by making the task difficulty high at the location 1 (DΘcontext, 17o-20o for monkey 469 
S, 8o-22o for monkey P) and easy at the location 2 (DΘcontext, 80o-90o for monkey S, 80o-90o for 470 
monkey P). A high non-selective behavioral d’ (high non-selective attention intensity) was 471 
obtained by making the task difficulty high at both the locations (DΘcontext, 15o-18o for monkey S, 472 
6o-22o for monkey P). A low non-selective behavioral d’ (low non-selective attention intensity) 473 
was obtained by making the task difficulty easy at both the locations (DΘcontext, 80o-90o for monkey 474 
S, 80o-90o for monkey P) (Figure 1b). Reward values for correct behavior responses were always 475 
the same across blocks on both sides and fixed. 476 

In the differential reward context, selective attention and non-selective attention intensity 477 
were controlled over interleaved blocks of trials (120-220 trials/block) by changing reward size at 478 
the two locations (Figure 3b). There was only a single orientation change that remained fixed 479 
throughout the experiment session. A high selective behavioral d’ (selective attention) at location 480 
1 relative to the location 2 was achieved by delivering high rewards at the location 1 compared to 481 
the location 2. High non-selective behavioral d’ (high non-selective attention intensity) was 482 
controlled by delivering high rewards for correct responses at both locations. Similarly, a low non-483 
selective behavioral d’ (low non-selective attention intensity) was controlled by giving low 484 
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rewards for the correct responses at both locations. Animals were encouraged to maintain a 485 
behavioral target/non-target criterion close to zero by small adjustment of trial-by-trial reward ratio 486 
for hits and correct rejections (Supplementary Figure S1). 487 

Electrophysiological Recording and Data Collection 488 
Extracellular neuronal signals from the chronically implanted multielectrode array were amplified, 489 
bandpass filtered (250–7,500 Hz) and sampled at 30 kHz using a data acquisition system (Cerebus, 490 
Blackrock Microsystems). We simultaneously recorded from multiple single units as well as 491 
multiunits over 42 differential task-demand sessions (714 units and 20 sessions for monkey S; 480 492 
units and 22 sessions for monkey P) and 36 differential reward sessions (850 units and 20 sessions 493 
for monkey S; 481 units and 16 sessions for monkey P). At the start of each experimental session 494 
we mapped RFs and stimulus preferences of neurons while the animal fixated. These RFs were 495 
used to optimize the stimulus parameters. Spikes from each electrode were sorted offline (Offline-496 
Sorter, Plexon Inc.) by manually well-defining cluster boundaries using principal component 497 
analysis as well as waveform features. Well isolated clusters were classified as single units from 498 
multiunits based on the isolation quality of unit clusters. The degree to which unit clusters were 499 
separated in 2D spaces of waveforms features (first three principal components, peak, valley, 500 
energy) was measured by Multivariate Analysis of Variance (MANOVA) F statistic using Plexon 501 
offline Sorter (Plexon Inc.). A unit cluster of MANOVA p-value of < 0.05 was considered as single 502 
unit which indicates that the unit cluster has a statistically different location in 2D space, and that 503 
the cluster is statistically well separated. 504 

Data Analysis 505 
Behavioral Sensitivity (d’), criterion: All completed trials in the reward context and all probe 506 
orientation trials in task-demand context were included in our analysis. Behavioral sensitivity (d’) 507 
and criterion (c) at a spatial location were measured from hit rates within nonmatch trials and FA 508 
rates within match trials as: 509 
𝑑! = Φ"#(ℎ𝑖𝑡	𝑟𝑎𝑡𝑒) − Φ"#(𝐹𝐴	𝑟𝑎𝑡𝑒) 510 

𝑐 = −
1
2
[Φ"#(ℎ𝑖𝑡	𝑟𝑎𝑡𝑒) + Φ"#(𝐹𝐴	𝑟𝑎𝑡𝑒)] 511 

where F–1 is inverse normal cumulative distribution function. We measured average d’ and c 512 
within a session across all trials across blocks separately for four different attention conditions. 513 
Index of attentional selectivity and intensity: Attention selectivity was measured by the relative 514 
value of the behavioral d’ inside the RF location with respect to opposite RF location. The measure 515 
mapped directly onto polar angle in d’-space (Figure 1d, 3c) and was normalized to a range from 516 
-1 (inside RF d’ = 0) to 1 (opposite RF hemifield d’ = 0): 517 

𝑠𝑒𝑙𝑒𝑐𝑡𝑖𝑣𝑖𝑡𝑦	𝑖𝑛𝑑𝑒𝑥 =
4
p
tan"# @

𝑑!$%&'
𝑑!())&'

A − 1 518 

Where, 𝑑*%&'!  and 𝑑+,-&'!  are the sensitivities in the two hemifields, inside and outside the recorded 519 
neurons’ RFs. Attentional intensity represented the absolute value of total behavioral d’ (distance 520 
from the origin in d’ space): 521 

𝑖𝑛𝑡𝑒𝑛𝑠𝑖𝑡𝑦	𝑖𝑛𝑑𝑒𝑥 = 	B(𝑑!$%&'
. + 𝑑!())&'

. ) 522 
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Pupil area: All pupil area measurements were measured binocularly at 500 Hz while monkeys 523 
maintained fixation in absence of a luminosity change using infrared camera (EyeLink 1000, SR 524 
Research). Raw pupil areas were z-scored for each session and each eye separately. Mean pupil 525 
area was measured by averaging the z-scored pupil area during the 400 ms after sample 526 
appearance. 527 
Neuronal response modulation: Only neurons with an average spike rate 60-260 ms after sample 528 
stimulus onset that was significantly (p < 0.05) greater than the rate 0 to 250 ms before sample 529 
onset were used in the analysis. To construct peri-stimulus time histograms (PSTHs) for figures, 530 
spike trains were aligned to sample stimuli onset and averaged across trials and smoothed with a 531 
half Gaussian kernel (rightward tail, SD 15 ms). A spike rate modulation (Figure 2c, 2d, 4c and 532 
4d) was quantified by neuronal d’ as: 533 

𝑑′%/,0(% =
〈𝑟1$21〉 − 〈𝑟3(4〉

B12 Fs1$21
	. + s3(4	. G

 534 

Where <rx> and sx are the average and SD of the spike counts within 60 to 260 ms from sample 535 
stimuli onset. Neuronal d’s were calculated for each unit separately for attentional selectivity and 536 
intensity. Neuronal modulation index (MI, Figure 6e-h) was measures as: 537 

𝑀𝐼 =
〈𝑟1$21〉 − 〈𝑟3(4〉
〈𝑟1$21〉 + 〈𝑟3(4〉

 538 

Proximity between neuron’s receptive field (RF) and sample stimulus: Proximity between 539 
neuron’s receptive field (RF) and sample stimulus was estimated by the Mahalanobis distance 540 
(standardized distance, Figure 2d and 4d). For each neuron, spatial RF was measured and fit using 541 
a bivariate Gaussian. We then calculated the Mahalanobis distance between probability densities 542 
of spatial RF and the Gaussian contrast profile of the Gabor stimulus. 543 

Fano factor: Mean-matched Fano factor (Figure 2e and 4e) was measured using spike counts 544 
over 100 ms sliding windows in 2 ms steps for each neuron according to procedures described 545 
previously24,40. Then the variance and mean across trial was computed at every time bin. The 546 
greatest common distribution of means across neurons, attentional intensities and time bins were 547 
measured. In order to match the mean distribution to the common mean distribution, a different 548 
subset of neurons was randomly chosen (50 times) at every time bin and the average Fano factor 549 
was computed (ratio of the variance to the mean). 550 
Spike-count correlations: Pearson correlation coefficients were computed for pairs of 551 
simultaneously recorded units on spike-counts over 200 ms (60-260 ms from sample stimuli 552 
onset), defined as the covariance of spike counts normalized by the variances of individual 553 
neurons: 554 

𝜌#. =	
𝐶𝑜𝑣(𝑟#, 𝑟.)

N𝑉𝑎𝑟(𝑟#) ∗ 𝑉𝑎𝑟(𝑟.)
 555 

Where r1 and r2 are spike counts of neuron 1 and neuron 2 across trials. Pairwise spike-count 556 
correlations were binned according to the geometric mean of the evoked responses of the two 557 
neurons in 5 Hz intervals. Evoked response was computed and subtracting by the trial-averaged 558 
baseline spike rate (–200 to 0 ms from sample onset) from the trial-averaged spike rate during the 559 
sample (60-260 ms from sample onset) (Figure 2f and 4f). 560 
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Generalized linear encoding model: Generalized linear model (GLM) regression was used to 561 
estimate the encoding of different attention components and task variables in single trial spike 562 
trains. Spike counts (r) over 50 ms bins with 10 ms shift in single trials were modeled to follow a 563 
negative binomial distribution. The negative binomial distribution is well suited for the purpose, 564 
as spike count variances of cortical neurons are most often equal to or greater than their 565 
means24,40,41. The details of the model implementation were described in an earlier study24. Briefly, 566 
expected value of spike count at each time bin according to the GLM was represented as: 567 
𝜇0 = 𝑒𝑥𝑝	(𝛽6 + 𝛽7/3𝑆𝑒𝑙 + 𝛽$%-𝐼𝑛𝑡 + 𝛽7/3∗$%-𝑆𝑒𝑙 ∗ 𝐼𝑛𝑡 + 𝛽(0$𝑂𝑟𝑖 + 𝛽79:𝑆𝑎𝑐) 568 
Where, bi is the coefficient for the predictor variable i; Sel, session averaged attentional selectivity, 569 
ratio of the behavioral d’ at the RF location to the d’ at the opposite hemifield location; Int, session 570 
averaged attentional intensity, distance from the origin in d’ space; Sel*Int, interaction between 571 
selectivity and intensity; Ori, orientation of sample stimulus inside neuron’s RF; Sac, saccade 572 
choice (1 for saccade towards the RF, –1 for saccade opposite to the RF and 0 for saccade 573 
withheld). For the reward context dataset, we also used another alternate GLM containing an 574 
additional predictor variable, reward history. 575 
𝜇0 = 𝑒𝑥𝑝	(𝛽6 + 𝛽7/3𝑆𝑒𝑙 + 𝛽$%-𝐼𝑛𝑡 + 𝛽7/3∗$%-𝑆𝑒𝑙 ∗ 𝐼𝑛𝑡 + 𝛽(0$𝑂𝑟𝑖 + 𝛽79:𝑆𝑎𝑐 + 𝛽0/490;𝑅𝑒𝑤𝑎𝑟𝑑) 576 
Here, reward represents average of reward values on the 3 immediately preceding trials. GLM was 577 
implemented in Matlab separately for each neuron. In order to compare different predictor 578 
coefficients, predictor variables were converted to z-scored values and fitted with GLMs to obtain 579 
standardized beta-coefficients. Goodness of fit for a given GLM was measured by residual 580 
deviance, pseudo R-squared value (Cragg & Uhler's method) and F-statistics compared to a null 581 
model. 582 
Predictive performance of the GLMs was measured by cross validation. Observations in each 583 
neuron’s dataset were split at random into 10 partitions. GLM fit was done on 9 training partitions 584 
and the remaining partition was used for cross-validation. This cross-validation error for each 585 
neuron was measured by:  586 

𝑒𝑟𝑟𝑜𝑟 =
1
𝑛𝑘YYF𝑦$,- −	𝑦Z$,-G

.
%

$=#

>

-=#

 587 

Where n is the number of cross-validation trials; k is the number of time bins; yi,t and 𝑦Z$,- are 588 
respectively recorded and GLM estimated spike count at tth time bin in ith trial. The quality of cross 589 
validation for neuron populations was measured by the Spearman correlation coefficients between 590 
the observed and GLM fit spike counts. 591 

Relative importance of each predictor variable was measured by predictor importance (PI) 592 
expressed as the absolute z-statistic of each fitted predictor coefficient: 593 

𝑃𝐼?,- = \
𝛽?,-

SEF𝛽?,-G
\ 594 

Where j = 1, 2, 3,…, m, predictor variables; t is time bin. A neuron with predictor coefficient 595 
different from zero (p < 0.05; t-test) during the sample stimuli presentation (60 - 260 ms from 596 
sample on) was classified as sensitive to that predictor. Because of the exponential nonlinearity in 597 
the GLM, exponentiated fitted predictor coefficients were used to illustrate how attentional 598 
selectivity, intensity and their interaction (selectivity-by-intensity) influence on spike rates as a 599 
function of attentional selectivity and intensity (left, Figure 5c). as well as a function of behavioral 600 
d’s at the RF location and opposite hemifield location (right, Figure 5c). These components are 601 
combined multiplicatively to drive instantaneous spike rates of individual units. 602 
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Normalization model: Trial averaged spike counts over 200 ms across all attention conditions and 603 
stimulus configurations were fit with three different normalization models. Two were simple 604 
stimulus normalization models without any spatial tuning (model without d’ & background display 605 
and model without d’) and the third model was an extension of spatially tuned normalization model 606 
(model with d’). All the 3 models were fit with 9 non-negative parameters and used the same set 607 
of 27 training data points out of 36 using nonlinear least-squares solver (MATLAB lsqnonlin.m, 608 
MathWorks). The quality of fit was measured by residuals using 9 cross-validation test data points 609 
(4-fold cross-validation). The training dataset consisted of mean spike counts during 3 pre-sample 610 
(–200 to 0 ms), 12 sample stimuli (60 -200 ms) across two Gabor orientations and four attention 611 
conditions, 6 test 1 stimulus (60 - 200 ms) on left hemifield and 6 test 1 stimulus on right hemifield 612 
across all four attention conditions and two Gabor orientations. Cross-validation (fourfold) test 613 
dataset contained spike counts during 1 pre-sample, 4 during the sample stimuli, 2 during test 1 614 
stimulus inside the RF location and 2 during test 1 stimulus in the opposite RF location across all 615 
attention conditions and Gabor stimulus configurations.  616 

Model without d’ and without background display. Mean spike counts during the sample stimuli 617 
period according to the normalization model without d’ & without background display is described 618 
as: 619 

𝑟$%,()) =
𝐸$% + 𝐸())

𝑆$% + 𝑆()) + 𝜎
 620 

Where fit parameters Ei, Si respectively represents excitation, suppression drives due to a Gabor 621 
stimulus at ith location (inRF or oppRF) and s represents a constant baseline suppression. For every 622 
Ei (or Si), there are two parameters, Ei,base and Ei,base+90 (or Si,base and Si,base+90) associated with each 623 
of the two Gabor orientations (base and base + 90o). The contrast term was 1 for the Gabor stimulus 624 
and 0 for no-stimulus. Thus, the mean spike counts during the inRF and oppRF test 1 presentations 625 
respectively are: 626 

𝑟$%,6 =
@!"

A!"BC
  and 𝑟6,()) =

@#$$
A#$$BC

 627 

The mean of spike counts during the pre-sample period was zero. 628 
Model without d’. According to the normalization model w/o d’, mean spike counts during the 629 
sample, test 1 and pre-sample periods are respectively described as: 630 

𝑟$%,()) =
@!"B@#$$
A!"BA#$$BC

             (sample) 631 

𝑟$%,6 =
@!"B@#$$,&
A!"BA#$$,&BC

              (test 1 inRF) 632 

𝑟6,()) =
@!",&B@#$$
A!",&BA#$$BC

            (test 1 oppRF) 633 

𝑟6,6 =
@!",&B@#$$,&
A!",&BA#$$,&BC

              (pre-sample) 634 

Where, Ei (or Si) could be either Ei,base and Ei,base+90 (or Si,base and Si,base+90), excitatory (or 635 
suppressive) stimulus drives at ith location (inRF or oppRF) due to the two Gabor orientations; Ei,0 636 
(or Si,0) is the excitatory (or suppressive) drive due to the background display in absence of Gabor 637 
stimulus. Only one common parameter was used for excitatory (or suppressive) drives at the 638 
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opposite RF location for both Gabor stimulus as well as background display, i.e., Eopp,base = 639 
Eopp,base+90 = Eopp,0 and Sopp,base = Sopp,base+90 = Sopp,0. Total 9 parameters were fit with the model. 640 

Spatially tuned normalization model (model with d’). According to the normalization model with 641 
d’, mean spike counts during the sample, test 1 and pre-sample periods are respectively described 642 
as: 643 

𝑟$%,()) =
;!!"@!"B	;!#$$@#$$
;!!"A!"B	;!#$$A#$$BC

             (sample) 644 

𝑟$%,6 =
;!!"@!"	B	;!#$$@#$$,&
;!!"A!"B	;!#$$A#$$,&BC

              (test 1 inRF) 645 

𝑟6,()) =
;!!"@!",&B	;!#$$@#$$
;!!"A!",&B	;!#$$A#$$BC

            (test 1 oppRF) 646 

𝑟6,6 =
;!!"@!",&B	;!#$$@#$$,&
;!!"A!",&B	;!#$$A#$$,&BC

             (pre-sample) 647 

Where, d’in and d’opp are respectively behavioral d’ at the RF and opposite RF locations. The fit 648 
parameters are same as in model without d’. In Figures 6i-j, excitatory (or suppressive) drives 649 
across stimulus types were averaged at the RF location for each neuron and the then the neurons 650 
sorted according to the distance  651 

Statistical analysis 652 
Unless otherwise specified, we used paired t-test and multifactor ANOVA for comparing normally 653 
distributed datasets. Normality was checked using a Kruskal-Wallis test. 654 

REFERENCES  655 

1 Cohen, M. R. & Maunsell, J. H. R. Attention improves performance primarily by reducing 656 
interneuronal correlations. Nat. Neurosci. 12, 1594-1600 (2009). 657 

2 Krauzlis, R. J., Lovejoy, L. P. & Zénon, A. Superior colliculus and visual spatial attention. 658 
Ann. Rev. Neurosci. 36, 165-182 (2013). 659 

3 McAdams, C. J. & Maunsell, J. H. R. Effects of attention on orientation-tuning functions of 660 
single neurons in macaque cortical area V4. J. Neurosci. 19, 431-441 (1999). 661 

4 Moran, J. & Desimone, R. Selective attention gates visual processing in the extrastriate cortex. 662 
Front. Cogn. Neurosci. 229, 342-345 (1985). 663 

5 Baruni, J. K., Lau, B. & Salzman, C. D. Reward expectation differentially modulates 664 
attentional behavior and activity in visual area V4. Nat. Neurosci. 18, 1656 (2015). 665 

6 Bouret, S. & Richmond, B. J. Sensitivity of locus ceruleus neurons to reward value for goal-666 
directed actions. J. Neurosci. 35, 4005-4014 (2015). 667 

7 Ikeda, T. & Hikosaka, O. Reward-dependent gain and bias of visual responses in primate 668 
superior colliculus. Neuron 39, 693-700 (2003). 669 

8 Ramakrishnan, A. et al. Cortical neurons multiplex reward-related signals along with sensory 670 
and motor information. Proc. Natl. Acad. Sci. 114, E4841-E4850 (2017). 671 

9 Roesch, M. R. & Olson, C. R. Neuronal activity related to reward value and motivation in 672 
primate frontal cortex. Science 304, 307-310 (2004). 673 

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted August 1, 2021. ; https://doi.org/10.1101/2021.07.30.454515doi: bioRxiv preprint 

https://doi.org/10.1101/2021.07.30.454515
http://creativecommons.org/licenses/by-nc-nd/4.0/


 18 

10 Rorie, A. E., Gao, J., McClelland, J. L. & Newsome, W. T. Integration of sensory and reward 674 
information during perceptual decision-making in lateral intraparietal cortex (LIP) of the 675 
macaque monkey. PloS one 5, e9308 (2010). 676 

11 Stănişor, L., van der Togt, C., Pennartz, C. M. & Roelfsema, P. R. J. P. o. t. N. A. o. S. A 677 
unified selection signal for attention and reward in primary visual cortex. Proc. Natl. Acad. 678 
Sci. 110, 9136-9141 (2013). 679 

12 Maunsell, J. H. R. Neuronal representations of cognitive state: reward or attention? Trends. 680 
Cogn. Sci. 8, 261-265 (2004). 681 

13 Spitzer, H., Desimone, R. & Moran, J. Increased attention enhances both behavioral and 682 
neuronal performance. Science 240, 338-340 (1988). 683 

14 Luo, T. Z. & Maunsell, J. H. R. Neuronal modulations in visual cortex are associated with only 684 
one of multiple components of attention. Neuron 86, 1182-1188 (2015). 685 

15 Mitchell, J. F., Sundberg, K. A. & Reynolds, J. H. Spatial attention decorrelates intrinsic 686 
activity fluctuations in macaque area V4. Neuron 63, 879-888 (2009). 687 

16 Kahneman, D. Attention and effort. Vol. 1063 (Prentice-Hall, 1973). 688 
17 Kahneman, D. & Beatty, J. Pupil diameter and load on memory. Science 154, 1583-1585 689 

(1966). 690 
18 Bisley, J. W. & Goldberg, M. E. Attention, intention, and priority in the parietal lobe. Ann. 691 

Rev. Neurosci. 33, 1-21 (2010). 692 
19 Treue, S. & Maunsell, J. H. R. Attentional modulation of visual motion processing in cortical 693 

areas MT and MST. Nature 382, 539 (1996). 694 
20 Boudreau, C. E., Williford, T. H. & Maunsell, J. H. R. Effects of task difficulty and target 695 

likelihood in area V4 of macaque monkeys. J. Neurophysiol. 96, 2377-2387 (2006). 696 
21 Beatty, J. Task-evoked pupillary responses, processing load, and the structure of processing 697 

resources. Psychol. Bull. 91, 276 (1982). 698 
22 Laeng, B., Sirois, S. & Gredebäck, G. Pupillometry: a window to the preconscious? Perspect. 699 

Psychol. Sci. 7, 18-27 (2012). 700 
23 Piquado, T., Isaacowitz, D. & Wingfield, A. Pupillometry as a measure of cognitive effort in 701 

younger and older adults. Psychophysiology 47, 560-569 (2010). 702 
24 Ghosh, S. & Maunsell, J. H. R. Single trial neuronal activity dynamics of attentional intensity 703 

in monkey visual area V4. Nature Communications 12, 1-15 (2021). 704 
25 Verhoef, B.-E. & Maunsell, J. H. R. Attention operates uniformly throughout the classical 705 

receptive field and the surround. Elife 5, e17256 (2016). 706 
26 DeWeerd, P., Peralta, M. R., Desimone, R. & Ungerleider, L. G. Loss of attentional stimulus 707 

selection after extrastriate cortical lesions in macaques. Nat. Neurosci. 2, 753-758 (1999). 708 
27 Gallant, J. L., Shoup, R. E. & Mazer, J. A. A human extrastriate area functionally homologous 709 

to macaque V4. Neuron 27, 227-235 (2000). 710 
28 Zénon, A. & Krauzlis, R. J. Attention deficits without cortical neuronal deficits. Nature 489, 711 

434 (2012). 712 
29 Ridderinkhof, K. R., Ullsperger, M., Crone, E. A. & Nieuwenhuis, S. The role of the medial 713 

frontal cortex in cognitive control. Science 306, 443-447 (2004). 714 
30 Kouneiher, F., Charron, S. & Koechlin, E. Motivation and cognitive control in the human 715 

prefrontal cortex. Nat. Neurosci. 12, 939-945 (2009). 716 
31 Vassena, E. et al. Overlapping neural systems represent cognitive effort and reward 717 

anticipation. PLoS One 9, e91008 (2014). 718 

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted August 1, 2021. ; https://doi.org/10.1101/2021.07.30.454515doi: bioRxiv preprint 

https://doi.org/10.1101/2021.07.30.454515
http://creativecommons.org/licenses/by-nc-nd/4.0/


 19 

32 Sarter, M., Gehring, W. J. & Kozak, R. More attention must be paid: the neurobiology of 719 
attentional effort. Brain. Res. Rev. 51, 145-160 (2006). 720 

33 Aston-Jones, G. & Cohen, J. D. An integrative theory of locus coeruleus-norepinephrine 721 
function: adaptive gain and optimal performance. Ann. Rev. Neurosci. 28, 403-450 (2005). 722 

34 Krueger, J. & Disney, A. A. Structure and function of dual‐source cholinergic modulation in 723 
early vision. J. Comp. Neurol. 527, 738-750 (2019). 724 

35 Pinto, L. et al. Fast modulation of visual perception by basal forebrain cholinergic neurons. 725 
Nat. Neurosci. 16, 1857 (2013). 726 

36 Seillier, L. et al. Serotonin decreases the gain of visual responses in awake macaque V1. J. 727 
Neurosci. 37, 11390-11405 (2017). 728 

37 Thiele, A. & Bellgrove, M. A. Neuromodulation of attention. Neuron 97, 769-785 (2018). 729 
38 Heeger, D. J. Normalization of cell responses in cat striate cortex. Vis. Neurosci. 9, 181-197 730 

(1992). 731 
39 Chen, Y. et al. Task difficulty modulates the activity of specific neuronal populations in 732 

primary visual cortex. Nat. Neurosci. 11, 974-982 (2008). 733 
40 Churchland, M. M. et al. Stimulus onset quenches neural variability: a widespread cortical 734 

phenomenon. Nat. Neurosci. 13, 369 (2010). 735 
41 Shadlen, M. N. & Newsome, W. T. The variable discharge of cortical neurons: implications 736 

for connectivity, computation, and information coding. J. Neurosci. 18, 3870-3896 (1998). 737 
 738 
  739 

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted August 1, 2021. ; https://doi.org/10.1101/2021.07.30.454515doi: bioRxiv preprint 

https://doi.org/10.1101/2021.07.30.454515
http://creativecommons.org/licenses/by-nc-nd/4.0/


 20 

Figures 740 

 741 

Figure 1. Independent control of attentional selectivity and intensity using differential task 742 
demands. a Visual spatial attention task. Monkeys were required to fixate, attend to sample stimuli 743 
(Gabors) presented in both hemifields (inside and opposite side of recorded neurons’ receptive 744 
field (RF)) and report an orientation change that occurred in one of the two test intervals by 745 
making a saccade to the stimulus location. b Task demands. Orientation changes on ~30% of the 746 
non-matched trials are intermediate (probe) and on the rest ~70% of the non-matched trials are 747 
either large (easy context) or small (difficult context). c Centre, distribution of task difficulties 748 
across two locations in opposite hemifields for four task conditions: high selective attention either 749 
inside the RF (blue) or opposite RF location (orange) when attentional intensity remains fixed, 750 
and low or high non-selective attentional intensity (yellow and green). Left and Right, Four 751 
attention conditions consisted of different combinations of these task contexts (easy and difficult) 752 
at the two stimuli locations. d Attention operating characteristic (AOC) curve, indicating 753 
behavioral sensitivity (d’) on individual sessions and their average (circles) for test stimuli inside 754 
and opposite side RF during the four attention conditions, (sessions: 20 monkey S; 22 monkey P). 755 
Grey lines connect attention conditions within a session. Dotted lines, iso-intensity lines. Error 756 
bars, 95% confidence intervals. e Session averaged reward sizes across different attention 757 
conditions for individual monkeys. f Session averaged pupil area (z-scored) during the sample 758 
stimuli period. Error bars, ± SEM. 759 
  760 
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 761 
Figure 2. Neuronal modulation with changes in attentional selectivity and intensity. a Peri-762 
stimulus time histograms (PSTH) of spike rates of correct trials in different attention conditions 763 
for an example neuron in V4. Single trial spike counts were binned at 2 ms, smoothed with s = 15 764 
ms half-Gaussian and then aligned at the onset of sample stimulus. b Population PSTHs for 765 
monkey S (top) and monkey P (bottom). For population average, spike rates of each neuron were 766 
normalized to its peak response within 60 - 260 ms from sample stimulus onset (monkey S, n = 767 
714; monkey P, n = 480). c Distribution of neuronal d’ for attentional selectivity and intensity of 768 
all units from both monkey S and P (n = 1194). d Top, Receptive field (RF) locations of two 769 
example units relative to the Gabor stimulus. MD, Mahalanobis distance measures the 770 
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standardized distance between neurons’ RF and Gabor stimulus in units of standard deviation. 771 
Bottom, Distribution of neuronal d’ as a function of RF-Gabor distance. e Left, Mean-matched 772 
Fano factor. Right, Mean-matched Fano factor averaged over 60-260 ms from the sample onset. 773 
Error bars, ±SEM. f Pairwise correlations between spike-counts of simultaneously recorded 774 
neurons over 60 to 260 ms from sample onset (n = 19,278 pairs, all units) and binned according 775 
to their evoked responses (geometric mean of baseline subtracted spike counts). Error bars, ±SEM.  776 
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 777 

Figure 3. Independent control of attentional selectivity and intensity using differential reward 778 
size. a Task demands. Orientation changes on ~30% of the non-matched trials are intermediate 779 
(probe) and on the rest ~70% of the non-matched trials are either large (easy context) or small 780 
(difficult context). b Centre, distribution of task difficulties across two locations in opposite 781 
hemifields for four task conditions: high selective attention either inside the RF (blue) or opposite 782 
RF location (orange) when attentional intensity remains fixed, and low or high non-selective 783 
attentional intensity (yellow and green). Left and Right, Four attention conditions consisted of 784 
different combinations of these task contexts (easy and difficult) at the two stimuli locations. c 785 
Distribution of reward sizes across two stimuli locations (inRF and oppRF) for four attention 786 
conditions. Attention conditions consist of different combinations of reward sizes at the two stimuli 787 

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted August 1, 2021. ; https://doi.org/10.1101/2021.07.30.454515doi: bioRxiv preprint 

https://doi.org/10.1101/2021.07.30.454515
http://creativecommons.org/licenses/by-nc-nd/4.0/


 24 

locations. d Session averaged reward sizes across the four conditions for individual monkeys. c 788 
Attention operating characteristic (AOC) curve, indicating behavioral sensitivity (d’, circles) on 789 
individual sessions and their average (solid markers) for test stimuli inside and opposite side RF 790 
during (sessions: 20 monkey S; 16 monkey P). Dotted colored lines indicate average d’ in each 791 
hemifield. Lines connect two reward conditions within a session. Error bars, 95% confidence 792 
intervals. e Session averaged pupil area (z-scored) sample stimuli periods. Error bars, ± SEM. 793 

794 
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 795 

Figure 4. Neuronal modulation with changes in attention components controlled by differential 796 
reward size. a-b Population PSTHs of spike rates of correct trials in different attention conditions 797 
for monkey S (a) and monkey P (b). Single trial spike counts were binned at 2 ms, smoothed with 798 
s = 15 ms half-Gaussian and then aligned at the onset of sample stimulus. Spike rates of each 799 
neuron were normalized to its peak response within 60 - 260 ms from sample stimulus onset 800 
(monkey S, n = 850; monkey P, n = 481). c Distribution of neuronal d’ for attentional selectivity 801 
and intensity of all units from both monkey S and P (n = 1331). d Distribution of neuronal d’ as a 802 
function of Mahalanobis distance between neurons’ RF and Gabor stimulus in units of standard 803 
deviation. e Left, Mean-matched Fano factor. Right, Mean-matched Fano factor averaged over 804 
60-260 ms from the sample onset. Error bars, ±SEM. f Pairwise correlations between spike-counts 805 
of simultaneously recorded neurons over 60 to 260 ms from sample onset (n = 26, 399 pairs, all 806 
units) and binned according to their evoked responses (geometric mean). Error bars, ±SEM.  807 
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 808 

Figure 5. Single trial encoding of attention components in different motivation contexts. a 809 
Generalized linear encoding model. A neuron’s spike count over 50 ms sliding window (10 ms 810 
shift) is modeled as exponential function of linear combination of weighted (b coefficient) 811 
experimental variables, stimulus orientation, saccade, attentional selectivity, attentional intensity 812 
and their interaction selectivity*intensity. b Model predicted (Left) and observed (Right) PSTHs 813 
from cross-validation test-dataset for an example neuron in varying-difficulty context. c 814 
Distributions of GLM fitted coefficients (exponentiated gain) for attention components at a 815 
representative time 140 ms as a function of attentional selectivity and intensity (left column), and 816 
behavioral d’s oppRF and inRF (right column) for the same example neuron in Figure 5b. Sel*Int, 817 
selectivity-by-intensity interaction; Combined, resultant of all 3 attention components. These 818 
components multiplicatively influence spike counts. d-e Varying task-difficulty context. Proportion 819 
of neurons that are modulated (p<0.05) by attentional selectivity, intensity and selectivity-by-820 
intensity interaction estimated from the model (d). Comparing predictor importance (PI) that 821 
measures contributions of different predictor variables estimated by absolute standardized 822 
predictor coefficient values of all well fitted neurons (e). Error bars, 95% confidence intervals 823 
(bootstrap, n = 104). f-g Varying reward context. Same as Figure 5d and 5e when attention was 824 
controlled by differential reward sizes. Error bars, 95% confidence intervals.  825 
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 826 

Figure 6. Normalization model of attention can account for attentional intensity effects on spike 827 
counts. a Normalization model of attention. Spike count, r = (d’in*Ein,G + d’opp*Eopp,G)/(d’in*Sin,G 828 
+ d’opp*Sopp,G + a). Where, d’i is the behavioral d’ at location i (inRF or oppRF). Ei,G, Si,G are 829 
respectively excitation and suppression at location i due to either the Gabor stimulus (G = 1) or 830 
the background (G = 0). a is a constant. Spikes counts were fitted with 3 different models 831 
(“Methods”). Model w/ d’: contains behavioral d’ values in two stimulus locations. Additionally, 832 
there are excitation and suppression terms for background display. Model w/o d’: same as the 833 
previous model except without the d’ terms (d’i = 1). Model w/o d’ & bg: Same as the previous 834 
model, except without any d’s and excitation/suppression parameter due to the background (Ei,G=0 835 
= 0, Si,G=0 = 0). b Fit of an example neuron with the normalization model w/ d’. Surface plot, fitted 836 
spike counts. c-d Quality of fit (SSE) for all recorded units in two behavioral contexts (difficulty 837 
and reward) fitted with the three different normalization models. Spike-counts of the most of the 838 
neurons were well fit with the normalization model w/ d’ compared to w/o d’ models. e, g 839 
Comparing spike-count modulations (modulation index, MI) with attentional selectivity (e) and 840 
intensity (g) between observed and model fits for the cross-validation test datasets across difficulty 841 
context sessions. MIs from observed and fitted spike counts are highly correlated (Spearman 842 
correlation coefficient for selectivity, r = 0.87, p < 10–100; for intensity, r = 0.83, p < 10–100). f, h 843 
Same as in (e) and (g) for reward context sessions (Spearman correlation coefficient for selectivity, 844 
r = 0.89, p < 10–100; for intensity, r = 0.84, p < 10–100). i-j Population averaged model fitted 845 
excitation (E) and suppression (S) parameters from the normalization model w/ d’ across all units 846 
binned according to the distance (Mahalanobis) of unit’s RF location from the Gabor stimulus 847 
(same or opposite of the RF hemifield). 848 
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