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ABSTRACT 

Biosynthetic gene clusters (BGCs) in microbial genomes encode for the production of bioactive secondary 
metabolites (SMs). Given the well-recognized importance of SMs in microbe-microbe and microbe-host 
interactions, the large-scale identification of BGCs from microbial metagenomes could offer novel functional 
insights into complex chemical ecology. Despite recent progress, currently available tools for predicting BGCs 
from shotgun metagenomes have several limitations, including the need for computationally demanding read-
assembly and prediction of a narrow breadth of BGC classes. To overcome these limitations, we developed 
TaxiBGC (Taxonomy-guided Identification of Biosynthetic Gene Clusters), a computational pipeline for 
identifying experimentally verified BGCs in shotgun metagenomes by first pinpointing the microbial species 
likely to produce them. We show that our species-centric approach was able to identify BGCs in simulated 
metagenomes more accurately than by solely detecting BGC genes. By applying TaxiBGC on 5,423 
metagenomes from the Human Microbiome Project and various case-control studies, we identified distinct BGC 
signatures of major human body sites and candidate stool-borne biomarkers for multiple diseases, including 
inflammatory bowel disease, colorectal cancer, and psychiatric disorders. In all, TaxiBGC demonstrates a 
significant advantage over existing techniques for systematically characterizing BGCs and inferring their SMs 
from microbiome data. 
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INTRODUCTION 

Microbial-derived secondary metabolites (SMs) are a group of low molecular-weight and structurally 
diverse, bioactive, chemical compounds (1–3). Although not essential for the primary growth, development, and 
reproduction of microorganisms, these compounds—which include pigments, bacteriocins, and siderophores—
are known to play key biological roles in mediating interactions within complex ecosystems (4–6). 
Interestingly, these SMs have recently been shown to play critical roles in regulating many aspects of human 
health and disease (7–11). For example, pyrazinones of Staphylococcus aureus could induce bacterial virulence 
(12); colibactin, which is a genotoxin produced by Escherichia coli, was found to contribute to colon cancer 
(13–16); and polysaccharide A from Bacteroides fragilis was shown to suppress gut mucosal inflammatory 
response (17, 18). In addition, B. fragilis was able to produce the canonical CD1d ligand α-galactosylceramide, 
revealing a specific mechanism by which the gut microbiota is capable of modulating host natural killer T cell 
function (19). Lastly, microbial-derived SMs are a major source of antibiotics, antifungals, anticancer agents, 
immunosuppressants, and other pharmaceutical drugs (20–24). Major categories of SMs and a few examples of 
their biomedical applications are summarized in Supplementary Information. 

For the large-scale mining of SMs from microbial communities, researchers have harnessed recent 
advances in molecular biology and sequencing techniques to connect SMs to their genetically encoded 
biosynthetic machinery (25). The genes responsible for the synthesis, export, and regulation of SMs in microbes 
are often found in biosynthetic gene clusters (BGCs), which are physically clustered groups of genes in a 
microbial genome that together encode a biosynthetic pathway for the production of a SM and its chemical 
variants (26, 27). Recent advances in genomic and metagenomic sequencing technologies have enabled the 
prediction and discovery of novel SMs (9, 28). As such, recent studies have newly identified a vast number of 
previously unknown BGCs and their corresponding SMs (27, 29–34), including from human microbiomes (23, 
35). 

Computational detection of BGCs (which allows the inference of SMs) from microbial genomes has 
evolved in parallel with the exponential rise in publicly available microbial genomes and metagenome 
sequences. Early approaches of BGC detection from microbial genomes (e.g., antiSMASH (36), CLUSEAN 
(37), PRISM (38)) used heuristic, rule-based algorithms based upon gene/protein domain compositional 
similarity to annotated reference BGCs. Other tools that utilize machine-learning models have emerged, 
demonstrating a greater ability to discover novel BGCs. One such widely used method is ClusterFinder (27), 
which employs a Hidden Markov Model-based approach for BGC detection. Additionally, DeepBGC (39) 
implements recurrent neural networks for BGC identification. These rule-based and machine learning-based 
approaches have been shown to detect a wide variety of BGCs. Moreover, Navarro-Muñoz et al. provided an 
integrated computational workflow, which consists of two software tools (BiG-SCAPE and CORASON), for 
identifying novel gene cluster families and their phylogenetic relationships from microbial genomes (40). 
Recently, the primary specialized metabolic gene clusters (MGCs) of anaerobic bacteria were extensively 
studied using gutSMASH (41); this web server determines the metabolic potential of anaerobic bacteria by 
predicting both known and putative MGCs using the same Pfam domain detection rules employed by 
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antiSMASH. Notably, gutSMASH is specifically designed to uncover MGCs from the gut microbiome that 
have been associated with microbe-microbe and host-microbe interactions. 

Approaches to predict BGCs have expanded beyond assembled or complete genomes to enable BGC 
prediction directly from culture-independent analyses of microbial communities via shotgun metagenomics. 
One such method is BiosyntheticSPAdes (42), which uses assembly graphs to detect clusters encoding 
nonribosomal peptide synthetases (NRPSs) and polyketide synthases (PKSs) from whole-genome shotgun 
sequences and low-complexity metagenomes with long reads. Recently, MetaBGC (35) demonstrated the 
characterization of BGCs directly from metagenome reads. This method first detects BGC reads from shotgun 
metagenome sequences based upon sequence-scoring models; afterwards, the identified reads are binned for 
targeted assembly for the reconstruction of novel BGCs. 

Despite the variety of approaches to detect BGCs from microbial genomes and metagenomes, currently 
available tools have several shortcomings: Approaches such as antiSMASH (36), CLUSEAN (37), PRISM 
(38)) can predict BGCs of known pathway classes from only individual microbial genomes. Machine-learning-
based methods can predict unknown BGCs, but these methods can generate much more false-positive 
predictions than rule-based approaches (43). Moreover, these rule-based and machine-learning-based 
approaches require assembled or complete genome sequences to detect BGCs, which limits the scalability of 
their application towards metagenomic sequencing datasets. Among metagenome-based BGC detection 
methods, BiosyntheticSPAdes is limited by the requirement of read-assembly before BGC prediction, and thus 
requires large computational time and memory consumption. MetaBGC, which is an assembly-independent 
method, can be used directly on metagenome reads for BGC prediction; however, as mentioned in its 
publication (35), the requirement of laborious parameter optimization and unavailability of pre-built models for 
a BGC of interest makes it difficult to use across a wide range of metagenome datasets. Furthermore, neither 
metagenome-based BGC detection methods pinpoint the specific microbes that harbor the predicted BGC 
genes. Clearly, there is a need to improve upon current BGC detection methods to enable the large-scale 
prediction of BGCs (and their corresponding SMs) from microbiomes.  

Realizing the above limitations, we set out to develop a method for accurate and rapid detection of 
BGCs from real-world, complex microbiomes. Herein, we introduce TaxiBGC (Taxonomy-guided 
Identification of Biosynthetic Gene Clusters), an original computational pipeline that identifies experimentally 
verified BGCs from shotgun metagenomic data and infers their known SM products. TaxiBGC is a read-based, 
assembly-independent BGC prediction method that can be applied to any given metagenome. Importantly, our 
novel method enables the prediction of experimentally verified BGCs by first considering the microbial species 
from which they are derived, thereby allowing us to trace the predicted BGCs’ likely taxonomic origin. To 
evaluate its prediction accuracy, we test our TaxiBGC pipeline on simulated metagenomes constructed from 
varied combinations of species identities, species numbers, and library sizes. Furthermore, we demonstrate 
TaxiBGC on publicly available microbiomes from healthy human body niches, as well as on gut microbiomes 
from several disease-control studies. We expect that our taxonomy-guided approach provides a robust analytical 
method for the large-scale identification of BGCs in microbial metagenomes, and carves a path towards 
systematically characterizing the chemical ecology of microbiomes. 
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MATERIALS AND METHODS 

Microbial species from the MetaPhlAn2 marker database and their genomes from GenBank database 

For BGC prediction, the TaxiBGC pipeline relies on the TaxiBGC database, which is the background 
database that links BGCs and SMs with microbial species. Microbial species for the construction of the 
TaxiBGC database were obtained from the MetaPhlAn2 v2.7.8 (44) marker gene database (mpa_v20_m200), 
which is comprised of clade-specific marker genes derived from 16,903 microbial species (12,926 bacterial, 300 
archaeal, 3,565 viral, and 112 eukaryotic species). Viral species were excluded from our analysis, as their 
genomes are not widely known to harbor BGCs. Uncharacterized species were also excluded from further 
analysis. The remaining 13,338 species were searched in GenBank (as of November 2019) (45), which led to 
the download of a total of 380,184 genomes from 4,187 species of archaea, bacteria, and fungi. 

BGCs and their SMs for the construction of the TaxiBGC database 

BGCs in all 380,184 microbial genomes were predicted using the ‘KnownClusterBlast’ function in 
antiSMASH v4.0 (46) on the Minimum Information about a Biosynthetic Gene cluster (MIBiG) database v2.0 
(as of November 2019) (47), which is a data repository for BGCs. Of note, MIBiG encompasses annotations of 
only experimentally verified BGCs that encode known SM-products. In brief, antiSMASH identifies BGCs in 
genomes using profile Hidden Markov Models that identify BGC enzymatic domains encoded within the same 
genomic neighbourhoods (46). In antiSMASH, a similarity criterion (i.e., proportion of genes of the BGCs that 
have significant KnownClusterBlast hits) of 100% was used to predict only the BGCs whose entire repertoire of 
MIBiG genes were identified in the genomes. A KnownClusterBlast hit was considered significant if e-
value�<�1E-05; sequence identity > 30%; and alignment coverage > 25%. 

Simulated metagenomes 

For the construction of simulated metagenomes, microbial communities of 25, 75, and 125 unique 
species were used to represent different sizes of community compositions (Supplementary Table S1). Each 
community was composed of randomly selected species from the TaxiBGC database (Supplementary Table 
S2). An even distribution of species’ abundances was considered for each microbial community, thereby 
providing equal weight to all species. All strains of selected species (from GenBank) were considered during 
the creation of microbial communities. The genome sequences of all species in a given microbial community 
were combined and then converted into paired-end metagenome reads of 150 bp read-length using WGSIM 
v1.9 in the SAMtools software package (48). The number of reads generated from each genome was 
proportional to the size of the respective genome. Seven different sets of randomly selected species (from the 
TaxiBGC database) for each microbial community size (25, 75, and 125 species) were considered for the 
creation of simulated metagenomes. For each species set, simulated metagenomes with seven different 
sequencing library sizes (1.25M, 2.5M, 5M, 10M, 20M, 40M, and 80M reads) were constructed 
(Supplementary Table S3). In all, a total of 147 simulated metagenomes ((3 community sizes) × (7 species 
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sets) × (7 library sizes)) were created, resulting in unique combinations of BGCs (Supplementary Tables S2 
and S4) 

BGC prediction through direct gene-detection of BGC genes 

As an alternative to the taxonomy-guided BGC identification approach, a direct BGC gene-detection 
strategy was used to predict BGCs in a given metagenome without taxonomic profiling. In this approach, by 
considering all BGCs in the MIBiG v2.0 database (1,927 total BGCs), we performed prediction by mapping 
reads of BGC genes using Bowtie 2 v2.3.5 with the ‘sensitive’ preset for ‘end-to-end’ alignment (49) without 
any taxonomic guidance. Accuracies for BGC prediction were calculated based upon known compositions of 
BGCs (in the case of simulated metagenomes) in the form of the F1 score. 

BGC prediction accuracy 

Accuracies for both BGC prediction approaches (TaxiBGC and direct BGC gene-detection approach) 
were calculated based upon the known composition of BGCs in each simulated metagenome. Both accuracies 
were then compared to identify the more robust approach. Determining whether a BGC is present or absent in a 
metagenome is largely dependent on the proportion of its constituent genes found to be available; as such, BGC 
prediction accuracy was evaluated over a range of thresholds (selected a priori) for the minimum proportion of 
genes that must be detected as present. To select the best gene-presence threshold for predicting BGCs from the 
metagenomes, multiple thresholds (20%, 40%, 60%, 80%, and 100%) were tested on the simulated 
metagenomes. The F1 score, which is defined as the harmonic mean of precision and recall, was used to 
evaluate prediction accuracy. The threshold that yielded the highest F1 scores was selected as the optimal BGC 
gene-presence threshold. 

Metagenomic datasets for TaxiBGC pipeline demonstration 

The following metagenomic datasets were downloaded and used for TaxiBGC pipeline demonstration: 
2,355 metagenomes from the Human Microbiome Project (HMP), whose samples were collected across five 
distinct body sites (gut, oral, anterior nares, retroauricular crease, and vagina) from healthy subjects (50, 51) 
(Supplementary Table S5); 2,418 stool metagenomes from seven inflammatory bowel disease (IBD) studies 
(six studies with data from both Crohn's disease (CD) and ulcerative colitis (UC) patients, and one study with 
only CD) (52–58); 277 stool metagenomes from three colorectal cancer (CRC) studies (59–61); and 189, 74, 
and 110 stool metagenomes from one study on rheumatoid arthritis (RA) (62), autism spectrum disorder (ASD) 
(63), and schizophrenia (64), respectively (Supplementary Table S6). In summary, the TaxiBGC pipeline was 
applied on 5,423 human-derived metagenomes from 14 independent studies.  

Prior to their downloading, metagenome samples from the following were excluded from further 
analysis: i) healthy individuals (i.e., controls) from case-control studies if their reported BMI fell outside the 
range of normal BMI (18.5–24.9), regardless of whether they had been determined as healthy in the original 
studies; ii) subjects undergoing dietary interventions; and iii) patients with other comorbidities. Raw sequence 
files (.fastq) for all metagenomes were downloaded from the NCBI Sequence Read Archive. All runs of a 
sample were merged together if multiple runs were available for a particular sample. If multiple samples were 
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collected from the same individual at different time-points, then all of those samples were included in the 
analysis. 

Association between BGCs and cohort-specific features 

Body-site-specific variations in the presence of microbiome BGCs were identified using 2,355 
metagenome samples from the HMP dataset. Hierarchical clustering of the BGC presence/absence profiles from 
different body sites was performed using the ‘pheatmap’ function in R based upon pairwise, euclidean 
distances. In addition, BGCs associated with different pathologies were identified using 3,068 case-control stool 
metagenomes. The significance of association was calculated by a two-tailed Fisher's exact test using the 
‘fisher.test’ function in R. 

 

RESULTS 

Development of the TaxiBGC pipeline for prediction of biosynthetic gene clusters from metagenomes  

TaxiBGC (Taxonomy-guided Identification of Biosynthetic Gene Clusters) is a computational strategy 
for profiling the composition of experimentally verified BGCs and their annotated SMs from metagenomic 
shotgun sequencing data (.fastq files). The TaxiBGC pipeline includes three major steps (Fig. 1A): the first step 
of the TaxiBGC pipeline performs species-level, taxonomic profiling on the metagenome using MetaPhlAn2; 
the second step performs a first-pass prediction of BGCs through querying these species (identified in the first 
step) in the TaxiBGC database (Fig. 1B)—a pre-defined collection of 744 species with their experimentally 
verified BGCs and associated SMs (Table 1 and Supplementary Table S7); the last step of the TaxiBGC 
pipeline confirms (in silico) the prediction of BGCs (from the second step) based on the detection of BGC genes 
in the metagenome (via gene-mapping) using Bowtie 2 with a predetermined minimum gene-presence threshold 
followed by retrieval of their corresponding SMs from the TaxiBGC database. TaxiBGC is fully open access on 
GitHub (https://github.com/jaeyunsung/TaxiBGC_2021) for anyone to apply on their own metagenomic dataset. 

The gene presence of a BGC is defined as the proportion of its total number of genes that were found to 
be available in a metagenome via gene-mapping (Bowtie 2). We determined the optimum gene-presence 
threshold of the TaxiBGC pipeline based upon our prediction results from simulated metagenomes: microbial 
communities of 25, 75, and 125 species (Fig. 1C). We considered seven different species combinations per 
specified community size (i.e., number of species) to account for variability in community compositions. 
Simulated metagenomes were constructed with varying library sizes: 1.25M, 2.5M, 5M, 10M, 20M, 40M, and 
80M paired-end reads. Afterwards, analogous to the steps described in Fig. 1A, we predicted BGCs and their 
SMs from the simulated metagenomes accordingly: i) species-level taxonomic profiling; ii) initial prediction of 
experimentally verified BGCs based upon the identified species; and iii) in silico confirmation of the BGC 
predictions where BGC genes were searched in the metagenomes using a range of different gene-presence 
thresholds. We obtained prediction accuracy in the form of an F1 score by comparing the predicted BGCs with 
the known (actual) BGCs of the microbial species comprising the simulated metagenomes. The threshold 
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yielding the highest average F1 scores across various species sets and library sizes was selected as the optimal 
BGC gene-presence threshold for our TaxiBGC pipeline (Methods). 

 

 
Figure 1. Schematic overview of TaxiBGC for the identification of microbial BGCs in shotgun metagenomes. A) The 
prediction of BGCs and their corresponding SMs from a metagenome (i.e., microbiome) sample by TaxiBGC can be 
summarized in three main steps: first, species-level, taxonomic profiling is performed on a metagenome using MetaPhlAn2 with 
default parameters; second, all detected species are queried in the TaxiBGC database (see B) as a first-pass prediction of which 
experimentally provided BGCs may be present in the metagenome sample; and third, as an in silico confirmation of the 
predicted BGCs, genes of those BGCs are searched in the metagenomes using Bowtie 2 (with the ‘sensitive’ preset for ‘end-to-
end’ alignment) with a pre-determined minimum gene-presence threshold (see C). For the BGCs whose gene presence are 
confirmed, their corresponding SMs are retrieved from the TaxiBGC database. B) The TaxiBGC database provides annotated 
information on microbial species’ experimentally verified BGCs and their SMs (see Methods). Genomes of all archaeal, 
bacterial, and fungali species in the MetaPhlAn2 marker database (while excluding viruses and uncharacterized species) were 
obtained from GenBank (November 2019). BGCs were predicted in all genomes by using antiSMASH (v4.0) on experimentally 
verified BGCs from the Minimum Information about a Biosynthetic Gene cluster (MIBiG) repository. BGCs and information 
regarding their SM products were retrieved from MIBiG. The final TaxiBGC database encompasses 744 BGC-encoding 
microbial species, 390 experimentally verified BGCs, and 351 SMs. C) Determining the optimal BGC gene-presence threshold 
using simulated metagenomes of microbial communities. Simulated metagenomes were created for microbial communities of 
25, 75, and 125 species (Methods). To account for variability in community compositions, seven different species combinations 
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per specified community size (i.e., number of species) were considered. Simulated metagenomes were created with varying 
library sizes: 1.25M, 2.5M, 5M, 10M, 20M, 40M, and 80M paired-end reads. Afterwards, as described in part by A, BGCs and 
their SMs were predicted from the simulated metagenomes by TaxiBGC in three main steps: i) species-level taxonomic 
profiling; ii) prediction of initial prediction of experimentally verified BGCs based upon the identified species; and iii) for in 
silico confirmation of the BGC predictions, where genes of the BGCs were searched in the metagenomes (via gene-mapping 
using Bowtie 2 with the ‘sensitive’ preset for ‘end-to-end’ alignment) using a range of different gene-presence thresholds 
(Methods). Here, gene presence of a BGC is defined as the proportion of its total number of genes that were mapped (i.e., 
found to be available, in principle) in a metagenome. Prediction accuracy in the form of an F1 score can be obtained by 
considering the predicted BGCs and the actual BGCs comprising the simulated metagenomes of known composition. A ‘20%’ 
gene-presence threshold, which resulted in the highest collection of accuracies (average F1 scores) across various species sets 
and sequencing library sizes, was selected as the optimal threshold to be used in A (Methods). 
 

Table 1. Phylogenetic summary of the TaxiBGC database. 

Kingdom Phylum Class 
# of 

species 
# of 

strainsa 

# of BGC 
producing 

strainsb 

# of 
unique 
BGCs 

# of 
unique 
SMsc 

Bacteria 

Actinobacteria Actinobacteria 262 9,724 5,980 131 118 

Bacteroidetes 

Cytophagia 3 4 4 1 1 

Sphingobacteriia 1 6 3 2 2 

Flavobacteriia 1 11 2 1 1 

Chlamydiae Chlamydia 1 69 1 1 1 

Cyanobacteria Cyanobacteria 24 127 81 22 20 

Firmicutes 

Clostridia 3 286 46 3 2 

Bacilli 112 26,003 13,346 83 81 

Negativicutes 1 10 1 1 1 

Planctomycetes Planctomycetia 1 1 1 1 1 

Proteobacteria 

Alphaproteobacteria 93 796 422 18 14 

Betaproteobacteria 35 3,012 2,588 26 24 

Gammaproteobacteria 179 51,187 10,733 86 74 

Deltaproteobacteria 10 38 37 20 19 

Archaea Euryarchaeota Methanomicrobia 1 15 1 1 1 

Eukaryota Ascomycota Eurotiomycetes 12 124 115 29 29 
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Sordariomycetes 4 28 11 4 4 

Dothideomycetes 1 3 3 2 2 

  Total unique 744 91,444 33,375 390 351 
a Strain information from Genbank (November 2019). b Identified after running antiSMASH (at 100% similarity criterion) on 
strain genome sequences. c According to MIBiG database (November 2019). 

 
The TaxiBGC database provides annotated information on the experimentally verified BGCs and their 

corresponding SMs found in microbial species. This database, which is relied on by the TaxiBGC pipeline 
during BGC prediction, is pre-defined and not assembled anew for each metagenome sample. For the 
construction of this database (Methods; Fig. 1B), we obtained genomes of all species in the MetaPhlAn2 
marker database (while excluding viruses and uncharacterized species) from GenBank (as of November 2019). 
More specifically, we downloaded a total of 380,184 genomes from 4,187 species of archaea, bacteria, and 
fungi. We predicted BGCs in these genomes by using antiSMASH v4.0 (46) on experimentally verified BGCs 
from the MIBiG) repository (47), which provides information regarding BGCs and their SM products. In sum, 
the final TaxiBGC database encompasses 744 BGC-encoding microbial species, 390 experimentally verified 
BGCs, and 351 SMs (Table 1, Supplementary Tables S7–S9). Of note, a unique SM can be encoded by more 
than one BGC. 

Depending on their chemical structure and biosynthetic origin, the 390 experimentally verified BGCs in 
the TaxiBGC database can be categorized into following classes (26): alkaloids, nonribosomal peptides (NRPs), 
ribosomally synthesized and post-translationally modified peptides (RiPPs), polyketides, saccharides, terpenes, 
hybrid classes, and an undefined class (‘others’) (Fig. 2). Among these 390 BGCs, NRPs were the most 
prevalent (102 of 390, 26.2%), followed by RiPPs (80 of 390, 20.5%), polyketides (69 of 390, 17.7%), others 
(42 of 390, 10.8%), terpenes (31 of 390, 7.9%), alkaloids (4 of 390, 1.0%), and saccharides (1 of 390, 0.3%). In 
addition, a major portion of the BGC classes in the TaxiBGC database are hybrids of two BGC classes (61 of 
390, 15.6%) (Supplementary Table S9). 

BGCs for producing terpenes are the most prevalent among the 744 species (258 of 744 species, 34.7%), 
which include those of Actinobacteria, Cyanobacteria, and Proteobacteria phyla. NRPs were found in 230 of the 
744 species (30.9%) from mostly Actinobacteria, Ascomycota, Cyanobacteria, Firmicutes, and Proteobacteria 
phyla. In addition, species with polyketides (172 of 744 species, 23.1%) were found mostly in Actinobacteria, 
Ascomycota, Cyanobacteria, and Proteobacteria phyla. RiPPs were in 160 of the 744 species (21.5%) spanning 
Actinobacteria, Cyanobacteria, Firmicutes, and Proteobacteria phyla. Alkaloids (6 of 744 species, 0.8%) were 
found in Actinobacteria, Ascomycota, and Proteobacteria phyla. A saccharide was found only in a single 
species (1 of 744, 0.1%) of Proteobacteria. Furthermore, hybrid BGCs, which are defined as secondary 
metabolites having hybrid structures of two (or more) classes, are in 117 of 744 species (15.7%) from the 
Actinobacteria, Ascomycota, Cyanobacteria, Firmicutes, and Proteobacteria phyla. Lastly, the undefined 
‘others’ class (340 of 744 species, 45.7%) was found in mostly Actinobacteria, Cyanobacteria, Firmicutes, and 
Proteobacteria. BGC classes in our database and the taxa from which they are derived are described in 
Supplementary Tables S8 and S9. 
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Figure 2. Distribution of taxonomic ranks and BGC classes in the TaxiBGC database. A phylogenetic tree (center) shows 
the evolutionary relationships (distances) among the 744 microbial species comprising the TaxiBGC database. These species 
are spread across nine phyla (outermost colored nodes of the tree) and eighteen classes (innermost colored ring). Encoded in the 
genomes of these species are a total of 390 unique experimentally verified BGCs, which can all be categorized into 
nonribosomal peptides (NRPs), ribosomally synthesized and post-translationally modified peptides (RiPPs), polyketides, 
terpenes, alkaloids, saccharides, hybrid classes, and undefined ‘others’. Alkaloids and saccharides are not shown due to 
simplicity, as each were found in only six and one of the 744 total species, respectively. Gray and white in the outer six rings 
reflect the presence and absence, respectively, of a particular BGC class (or a hybrid class) in the genome of the corresponding 
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species. Full details regarding BGCs, their classes, their SM products, and their taxonomic origins, as provided by the TaxiBGC 
database, are available in Supplementary Tables S7–S9. 
 

The number of genes comprising the BGCs in the TaxiBGC database widely varies, ranging from 2 to 
135 genes (Supplementary Table S10). Ideally, when a BGC is present in a metagenome, all the genes of that 
BGC should be detected in the metagenome; however, in reality, accurate and comprehensive computational 
detection of the genes depends upon several technical issues (65, 66), including coverage (67) and sequencing 
depth in the metagenome (68, 69). Therefore, we evaluated a range of gene-presence criteria (20%, 40%, 60%, 
80%, and 100%) in TaxiBGC to decide on the optimum threshold (Fig. 3). Using simulated metagenomes 
composed of seven sets of 25, 75, and 125 microbial species ranging across seven library sizes (1.25M, 2.5M, 
5M, 10M, 20M, 40M, and 80M reads), we predicted BGCs in each metagenome and then compared them with 
the actual BGC composition. Our predictions in simulated metagenomes showed that, on average, F1 scores 
increased with increasing library sizes up to 20M reads and then remained consistent for higher library sizes 
(Fig. 3). Notably, prediction accuracies gradually increased with smaller BGC gene-presence thresholds: 
average F1 scores of 0.27–0.72 for 100% BGC gene-presence; 0.47–0.75 for 80% BGC gene-presence; 0.61–
0.78 for 60% BGC gene-presence; 0.66–0.81 for 40% BGC gene-presence; and 0.70–0.82 for 20% BGC gene-
presence. Furthermore, we detected no further increase in F1 scores with BGC gene-presence thresholds below 
20% (Supplementary Fig. S1). Taken together, we selected ‘20%’ as the optimal BGC gene-presence 
threshold, as it clearly resulted in the most robust and accurate predictions. 

 

Figure 3. Best accuracy in predicting BGC presence in simulated metagenomes is consistently achieved at a minimum 
BGC gene-presence threshold of 20%. BGCs were predicted from simulated metagenomes composed by seven sets of A) 25, 
B) 75, and C) 125 microbial species ranging across seven sequencing library sizes (1.25M, 2.5M, 5M, 10M, 20M, 40M, and 
80M reads) (Methods). The predicted BGCs of each simulated metagenome were then compared with the actual BGC 
composition, and F1 scores were used to assess prediction accuracy. In general, prediction accuracy markedly increased with 
increasing library size up to 20M reads and remained nearly consistent for higher library sizes. In all three community sizes, a 
minimum BGC gene-presence threshold of 20% was found to provide the best range of prediction accuracies (average F1 
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scores: 0.70–0.82). F1 scores resulting from different thresholds are shown in different colors. Mean and standard errors of the 
F1 scores are shown in circles and error bars, respectively. 

 

 

Taxonomy-guided BGC prediction provides higher prediction accuracy than direct BGC gene-detection 
from metagenome reads 

As described above, the TaxiBGC pipeline predicts BGCs from metagenomes by first identifying the 
microbial species that encode BGCs. As an alternative to this taxonomy-guided approach, we can also predict 
BGCs from metagenomes through direct detection of BGC genes without considering their taxonomic origins. 
In this approach, we first used a range of BGC gene-presence thresholds for directly mapping reads of BGC 
genes (Methods). By and large, higher gene-presence thresholds led to less false-positive predictions, and 
thereby improved prediction accuracies (F1 score). As such, we found that the BGC gene-presence threshold of 
100% led to the best F1 scores in all three community sizes of 25, 75, and 125 microbial species 
(Supplementary Fig. S2). This was due, in part, to the lowest number of false positive predictions. With this 
BGC gene-presence threshold, we evaluated the predictive performance of the direct BGC gene-detection 
approach on the same aforementioned simulated metagenomes.  

The taxonomy-guided approach (TaxiBGC) clearly demonstrated higher predictive performances on the 
simulated metagenomes. More specifically, the average F1 scores of TaxiBGC varied between 0.74–0.78, 0.74–
0.82, and 0.70–0.82 for community sizes of 25, 75, and 125 species, respectively (Fig. 4). On the other hand, in 
the direct BGC gene-detection approach, average F1 scores varied between 0.43–0.52, 0.36–0.56, and 0.26–0.57 
for community sizes of 25, 75, and 125 species, respectively (Fig. 4). Of note, we observed higher positive 
predictive values (PPV) in the taxonomy-guided approach compared to the direct BGC gene-detection approach 
(Supplementary Fig. S3). In all, these data suggest that the taxonomy-guided strategy is a more sensitive and 
precise method for predicting species-specific, experimentally verified BGCs from metagenome reads. 
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Figure 4. TaxiBGC outperforms a direct BGC gene-detection method in all simulated metagenome combinations. The 
optimal BGC gene-presence thresholds for TaxiBGC and a direct BGC gene-detection approach (Methods) was set to 20% and 
100%, respectively; these cut-offs led to the best prediction accuracies for their respective methods. In simulated metagenomes 
of seven different combinations of A) 25, B) 75, and C) 125 microbial species members and library sizes, TaxiBGC provided 
higher prediction accuracies, with average F1 scores varying between 0.74–0.78, 0.74–0.82, and 0.70–0.82 for community sizes 
of 25, 75, and 125 species, respectively. On the other hand, in the direct BGC gene-detection approach, average F1 scores varied 
between 0.43–0.52, 0.36–0.56, and 0.26–0.57 for community sizes of 25, 75, and 125 species, respectively. 

Human body sites harbor distinct BGC signatures in their microbiomes 

We first demonstrated our TaxiBGC pipeline on 2,355 metagenomic samples from the Human 
Microbiome Project (HMP-1-I and HMP-1-II). These samples originated from five major human body sites 
(anterior nares (253 samples), gut (553 samples), oral (1,259 samples), retroauricular crease (left/right; 56 
samples), and vagina (234 samples)) collected from 265 healthy human individuals (Supplementary Table 
S5). We investigated microbiome samples of each body-site to determine the frequency of predicted BGCs 
(Methods). Briefly, a BGC that was predicted in 2% or more of the samples (log2(proportion of samples) ≥ 1) 
in at least one body-site was considered for further analysis; this resulted in a total of 55 unique BGCs, which 
were used to form body-site-specific BGC profiles. Clustering of these profiles revealed similar patterns 
between body sites (Fig. 5). For example, possibly due to the aerobic/anaerobic nature of their respective 
environments, BGC profiles of the gut, oral cavity, and vagina clustered together (gut more closely with the oral 
cavity, as expected); whereas BGC profiles of anterior nares closely clustered with those of the retroauricular 
crease. 
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Figure 5. Distribution of BGCs across metagenomes derived from five major human body sites. Microbiome samples of 
each body-site (provided by the Human Microbiome Project (HMP)) were investigated to determine how frequently a BGC was 
predicted. Color intensity in the heatmap reflects proportions of samples in a body-site wherein the corresponding BGC was 
predicted to be present. Only the BGCs detected in 2% or more of the samples (log2(proportion of samples) ≥ 1) in at least one 
body-site were considered. Clustering (Euclidean distance) based upon similarity of BGC distributions shows gut and oral 
cavity as the two closest body sites. The next two body sites to cluster together were the anterior nares and retroauricular crease. 
BGCs mostly present across human body sites are non-ribosomal peptides (NRPs) and ribosomally synthesized and post-
translationally modified peptides (RiPPs). 
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In Figure 5, we show that 44 of the 55 unique BGCs identified from the 2,355 HMP metagenomes were 
distributed into three major BGC classes: twenty-three RiPPs, fourteen NRPs, and seven terpenes. Among the 
remaining eleven BGCs, eight were of an undefined class (‘other’) and one each were of NRP/polyketide, 
polyketide, and saccharide. We found eleven core BGCs present in all body sites (Supplementary Table S11): 
six RiPPs (cytolysin ClyLl/cytolysin ClyLs, enterocin W alpha/enterocin W beta, microcin J25, microcin J26, 
mutacin II, and nisin U), two NRPs (aureusimine and pseudomonine), a hybrid NRP/polyketide class (N-
myristoyl-D-asparagine), a saccharide (lipopolysaccharide), and a terpene (carotenoid). Interestingly, twenty 
BGCs were identified exclusively in the microbiomes of particular body sites (Supplementary Table S12): 
three RiPPs (BhtA1/BhtA2, mutacin III, and Smb A/SmbB) in the oral cavity; three NRPs (acinetoferrin, 
fimsbactin A, and massetolide A), one RiPP (paeninodin), four terpenes (all code for carotenoids) and three 
BGCs of an undefined class (one for bacilysin and two for ectoines) in retroauricular crease; two NRPs 
(andrimid and tilivalline) and one terpene (carotenoid) in anterior nares; and one NRP (equibactin) and two 
RiPPs (salivaricin A and streptin) in the vagina. Furthermore, two BGCs, one for an NRP (lugdunin) and 
another for a RiPP (nukacin ISK-1), were found only in the two outer body areas (anterior nares and 
retroauricular crease). 

The SM products of these BGCs were reported to have a beneficial influence on host health. For 
example, microcins, two of which (microcin J25 and microcin J26) were found in all body sites, can play a 
significant role in eliminating enteric pathogens (e.g., Salmonella enterica) (70). More specifically, in a murine 
model, microcins produced by commensal Escherichia coli strains bind to siderophore receptors of gut 
pathogenic strains, and thereby restrict their iron uptake; Mutacin III, a bacteriocin produced mainly by oral 
streptococcal species, is known to inhibit the growth of a wide spectrum of gram-positive bacteria (71). Mutacin 
III produced from oral streptococci can have a protective role against oral pathogens, such as group A 
streptococci (72, 73); furthermore, we found a BGC for lugdunin to be present exclusively in sites of the skin 
(anterior nares and retroauricular crease). Lugdunin has been reported to inhibit Staphylococcus aureus 
colonization by increasing the expression of human-derived antimicrobial peptides (AMPs) in keratinocytes 
(74, 75). Lastly, although not found exclusively in the vaginal microbiome, lactocillin was nevertheless 
observed in a high proportion (48.3%) of vaginal microbiome samples. By combining genome-mining strategies 
with empirical validation, Donia et al. discovered this SM in human-associated bacteria and demonstrated its 
potent antibacterial activity against a range of gram-positive pathogens (23). 

During the identification of taxonomic sources for the body-site-specific BGCs, we observed various 
noteworthy associations between species and BGCs in different human body sites. For example, three BGCs 
encoding RiPPs (BhtA1/BhtA2, mutacin III, and Smb A/SmbB) were exclusively found in the oral cavity. 
These three compounds are bacteriocins isolated from different members of Streptococci, and have been shown 
to contribute towards bacterial colonization in the oral cavity (73, 76, 77). The source species of all three BGCs 
was found to be Streptococcus mutans, which is a well-known member of the human oral microbiome (78). 
Two of the three BGCs exclusively present in the anterior nares (one andrimid and one terpene) were produced 
by two species of the Pantoea genus (P. agglomerans and P. ananatis); five of the eleven BGCs found 
exclusively in retroauricular crease were from three species of Acinetobacter genus (A. lwoffii, A. baumannii, 
and A. indicus) and one species each of Bacillus and Sphingobium genera (B. megaterium and S. yanoikuyae, 
respectively); the remaining six BGCs produced from two species of Pseudomonas (P. stutzeri and P. syringae) 
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and one species each of Massilia and Serratia genus (M. time and S. marcescens), respectively. Interestingly, 
we detected two exclusively present BGCs (lugdunin and nukacin ISK-1) in two skin body sites (anterior nares 
and retroauricular crease), produced from three species of genus Staphylococcus (S. lugdunensis, S. pasteuri, S. 
warneri) present in TaxiBGC database. In vaginal microbiome samples, among three experimentally verified 
BGC, the source species of equibactin is Anaerococcus lactolyticus. One strain of the Anaerococcus genus was 
first isolated from vaginal discharges and ovarian abscesses (79). Two other vagina specific BGCs, salivaricin 
A and streptin, were found to be produced from Streptococcus agalactiae. 

Meta-analysis of gut microbiome studies reveals BGCs associated with human disease 

We can also apply TaxiBGC in the context of translational research for the discovery of potential 
disease biomarkers. To this point, we investigated for differences in the prevalence of BGCs in the gut 
microbiome between patients with disease and control individuals. For this, we performed a meta-analysis by 
applying our TaxiBGC pipeline to 3,068 stool metagenome samples from the following thirteen independent 
case-control studies: seven inflammatory bowel disease (IBD) studies (six of both Crohn's disease (CD) and 
ulcerative colitis (UC) (52–57), and one study with only CD (58); three colorectal cancer (CRC) studies (59–
61); and one study each for rheumatoid arthritis (RA) (62), autism spectrum disorder (ASD) (63), and 
schizophrenia (64). Detailed information regarding these studies is available in Supplementary Table S6. As 
we elaborate further below, we identified a total of fifteen unique BGCs at significantly different frequencies 
when comparing case and control (P < 0.05, Fisher’s exact test; Methods; and Fig. 6). 
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Figure 6. Analysis of gut microbiomes from published studies reveals BGCs associated with several human pathologies. 
TaxiBGC was used to predict the presence of BGCs in microbiome samples from multiple case-control studies. A) Crohn’s 
disease (CD). BGCs encoding for six different SMs (tilivalline, N-myristoyl-D-asparagine, gassericin T, enterocin A, cytolysin 
ClyLl/cytolysin ClyLs, and lipopolysaccharide) were predicted to be associated with either case or control. In four (‘Hall 2017’, 
‘He 2017’, ‘Nielsen 2014’, and ‘Qin 2010’) of seven CD studies, a BGC encoding for N-myristoyl-D-asparagine was predicted 
significantly more often in CD compared to control. A saccharide BGC that encodes for lipopolysaccharide was found in 
significantly higher proportions in CD in three (‘Hall 2017’, ‘He 2017’, and ‘Qin 2010’) studies. B) Ulcerative colitis (UC). 
BGCs encoding for six different SMs (pyochelin, 2-amino-4-methoxy-trans-3-butenoic acid, gassericin T, lipopolysaccharide, 
pyocyanin, and Pseudomonas quinolone signal (PQS)) were predicted to be associated with either case or control. Five of these 
six were identified as having significantly higher proportions in UC than in controls. Four BGCs were predicted exclusively in 
one study (‘Lloyd-Price 2019’). Remarkably, as also seen for CD, one BGC encoding for gassericin T was found in higher 
proportions in the control samples in the ‘Schirmer 2018’ study. C) Colorectal cancer (CRC). Six BGCs were found to be 
associated with either case or control. More specifically, five BGCs encoding N-myristoyl-D-asparagine, enterocin A, 
lactocillin, lipopolysaccharide, and nisin U were predicted more frequently in CRC. Of note, three (N-myristoyl-D-asparagine, 
enterocin A, and lipopolysaccharide) of these five were also associated with CD, suggesting gut microbiome-derived BGC 
signatures shared across multiple diseases. Alternatively, one BGC (cytolysin ClyLl/cytolysin ClyLs) was found significantly 
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more often in control samples. Only the N-myristoyl-D-asparagine-producing BGC was found to be associated with CRC in 
multiple studies (in ‘Feng 2015’ and ‘Yu 2017’). D) Rheumatoid arthritis (RA). In ‘Zhang 2015’, two BGCs encoding for N-
myristoyl-D-asparagine and lipopolysaccharide were found in significantly higher proportions in case than in control. E) 
Schizophrenia. In a study concerning mental health patients with schizophrenia (‘Zhu 2020’), two BGCs that were undetected in 
previously mentioned disorders were found: a BGC encoding for thuricin and another encoding for petrobactin were both found 
in a significantly higher proportion in case than in control samples. F) Autism spectrum disorder (ASD). In a study with ASD 
patients and control subjects (‘Wang 2019’), one microcin J25-encoding BGC was found in a significantly higher proportion in 
case samples, while one tilivalline-encoding BGC was found to have a significantly higher proportion in control. Case-control 
studies are designated with the lead author’s (last) name and publication year. Number of samples for case and control are 
shown for each study. Further details on all case-control studies are provided in Supplementary Table S6. Levels of 
significance for the two-tailed Fisher’s exact test are indicated by the following symbols: higher abundance in case: *, 0.01 ≤ P 
< 0.05; ** for 0.001 ≤ P < 0.01; and *** for P < 0.001; higher abundance in control: #, 0.01 ≤ P < 0.05; ## for 0.001 ≤ P < 
0.01. 
 

One BGC encoding for the pre-colibactin metabolite N-myristoyl-D-asparagine (hybrid 
NRP/polyketide) was predicted significantly more often in CD in four (‘Hall 2017’, ‘He 2017’, ‘Nielsen 2014’, 
and ‘Qin 2010’) of the seven CD studies. We obtained one saccharide BGC that encodes for lipopolysaccharide 
in significantly higher proportions in CD than in controls in three (‘Hall 2017’, ‘He 2017’, and ‘Qin 2010’) CD 
studies. Other BGCs found to be more prevalent in CD were cytolysin ClyLl/cytolysin ClyLs (RiPP, ‘Franzosa 
2018’), enterocin A (RiPP, ‘Franzosa 2018’), and tilivalline (NRP, ‘Lloyd-Price 2019’). In contrast, the sole 
BGC found in higher proportions in control samples was for the one encoding for gassericin T (RiPP, ‘Schirmer 
2018’). 

BGCs that were found in significantly higher proportions of UC samples (compared to those of controls) 
include 2-amino-4-methoxy-trans-3-butenoic acid (NRP, ‘Lloyd-Price 2019’), lipopolysaccharide (saccharide, 
‘Lloyd-Price 2019’ and ‘Qin 2010’), Pseudomonas quinolone signal (PQS) (other, ‘Lloyd-Price 2019’), 
pyochelin (NRP, ‘Lloyd-Price 2019’), and pyocyanin (other, ‘Lloyd-Price 2019’). Interestingly, as was 
observed in CD, a BGC for gassericin T was found in significantly higher proportions in controls than in UC 
patients (RiPP, ‘Schirmer 2018’). 

In two (‘Feng 2015’ and ‘Yu 2017’) of the three CRC studies, a BGC encoding for N-myristoyl-D-
asparagine (hybrid NRP/polyketide) was predicted significantly more often in the gut microbiome of patients 
with CRC than in controls. Five other BGCs found to be associated with CRC were those for cytolysin 
ClyLl/cytolysin ClyLs (RiPP, ‘Zeller 2014’), enterocin A (RiPP, ‘Feng 2015’), lactocillin (RiPP, ‘Yu 2017’), 
lipopolysaccharide (saccharide, ‘Feng 2015’), and nisin U (RiPP, ‘Yu 2017’). In the RA study (‘Zhang 2015’), 
BGCs for N-myristoyl-D-asparagine (hybrid NRP/polyketide) and lipopolysaccharide (saccharide) were found 
in higher proportions in patients with RA than in controls. Finally, in gut microbiomes of major psychiatric 
disorders, we found two BGCs (petrobactin (other) and thuricin (RiPP)) more often in schizophrenic patients; 
and in patients with ASD (‘Wang 2019’), a microcin J25-encoding BGC (RiPP) was found to be more prevalent 
in ASD, whereas one tilivalline-encoding BGC (NRP) was found in a significantly higher proportion in 
controls. 

Notably, the SM product of two BGCs identified in our case-control gut microbiome meta-analysis have 
previously established links with their respective diseases: i) One BGC that was identified in significantly 
higher proportions in CD, CRC, and RA stool metagenomes (compared to controls) was N-myristoyl-D-

.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted August 2, 2021. ; https://doi.org/10.1101/2021.07.30.454505doi: bioRxiv preprint 

https://doi.org/10.1101/2021.07.30.454505
http://creativecommons.org/licenses/by/4.0/


 

19 

asparagine, a structural part of pre-colibactin that gets cleaved by the peptidase ClbP to form the active 
colibactin (80). In regard to colibactin, this small-molecule is synthesized by an NRPS/PKS hybrid BGC, and is 
commonly produced by E. coli and other members of the Enterobacteriaceae family (14). Colibactin induces 
double-strand DNA breaks, eukaryotic cell cycle arrest, and chromosome aberrations (14). Previous studies 
reported that colibactin-producing E. coli can have a deteriorative effect on human intestinal mucosa in CRC 
and IBD patients, with profound tissue damage, increased antigen delivery from the lumen into the gut 
submucosa, and chronic inflammation (81–83); ii) the frequency for a BGC encoding lipopolysaccharide (LPS) 
was found to be higher in all three auto-immune or inflammatory diseases (CD, RA, and UC) and CRC. 
Possibly in line with these findings, LPS has previously been shown to be elevated in serum and plasma of CRC 
and IBD patients (84–86). Moreover, in the context of RA pathogenesis, LPS has shown to physically interact 
with collagen type II in the extracellular matrix of in vitro human cell models, thus developing procollagen-
endotoxin complexes that trigger joint cartilage inflammation and degeneration (87). 

Our BGC predictions provide two candidate SMs that may warrant further investigation into their 
possible beneficial or protective effects in specific diseases. More specifically, a BGC for gassericin T (a RiPP) 
was found in significantly higher proportions in controls than in IBD (both CD and UC) patients. Although we 
were not able to find studies that associate gassericin T with either CD or UC, this SM produced by 
Lactobacillus gasseri (a microbe commonly present in the human gut) has been shown to have strong 
bactericidal activity against gram-positive bacteria that cause food poisoning (e.g., Listeria monocytogenes, 
Staphylococcus aureus) (88). In addition, we more frequently observed a BGC for cytolysin (ClyLl/ ClyLs) in 
controls than in CRC. Cytolysins are a large family of enterococcal toxins and bacteriocins that are known to be 
lethal to a broad range of prokaryotic and eukaryotic microorganisms (89). However, to the best of our 
knowledge, their role in CRC is currently unknown. 

Taken together, we uncover a widespread distribution of small-molecule-encoding BGCs across a range 
of pathologies. Accordingly, our findings warrant the use of TaxiBGC as a computational tool for the unbiased 
identification of novel BGC- or SM-based ‘molecular signatures’ of disease (90) or small molecules with 
possible clinical roles. A notable example of such is gliotoxin, which is an immunosuppressive cytotoxin 
produced by fungi and has been suggested for the detection of aspergillosis (91). 

DISCUSSION 

Accurately predicting the biosynthetic potential of BGCs from uncultivated microbiome sequencing data 
is currently one of the biggest challenges in the field of microbial natural product discovery. Thus, using an 
experimentally verified set of BGCs as a query provides a promising direction to infer specific SMs using 
bioinformatics tools. In this study, we present TaxiBGC, a computational pipeline for the prediction of known 
BGCs from shotgun metagenomes. TaxiBGC employs three main steps for predicting microbial BGCs: i) 
identification of BGC-producing species, ii) initial prediction of experimentally verified BGCs based upon the 
presence of those identified BGC-producing species, and iii) in silico confirmation of the predicted BGCs by 
mapping their genes in the metagenome. We evaluated the prediction accuracy of the TaxiBGC pipeline on 
simulated metagenomes constructed using varied combinations of species identities and sequencing library 
sizes. We showed that BGC prediction using our taxonomy-guided approach was superior to directly predicting 
BGC genes from the metagenomes (average F1 scores of 0.70–0.82 and 0.26–0.57, respectively). Next, to 
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identify BGCs (and thereby their corresponding SMs) associated with human health and disease, we 
demonstrated our TaxiBGC pipeline on metagenomes sampled from different body sites; and on gut 
metagenomes collected from patients with various diseases (IBD (CD and UC)], CRC, ASD, RA, and 
schizophrenia) and their controls. Our results show that human body sites harbor distinct BGC signatures in 
their microbiomes. Furthermore, by characterizing the potential chemical milieu of the gut environment for 
these diseases, we provide candidate stool-borne SM biomarkers. Importantly, TaxiBGC is not limited to the 
use in only human metagenomes, but can easily be applied to environmental metagenome samples for BGC 
identification. To the best of our knowledge, our novel pipeline to date is the most rapid, accurate, and 
comprehensive method for identifying BGCs from shotgun metagenomes of microbial communities. In sum, we 
anticipate that TaxiBGC can facilitate the large-scale identification of experimentally verified BGCs and their 
annotated SMs from microbiome datasets; and assist in the computational analyses of metagenomic samples to 
systematically characterize the chemical ecology of various microbial niches. 

Apart from identifying BGCs and their SM products associated with human health and disease, 
TaxiBGC can also be used to infer SMs that play important roles in interspecies interactions (92–96). For 
example, within complex microbial communities composed of highly diverse taxa with overlapping metabolic 
requirements, competition for similar energy resources is one of the most abundant forms of microbial 
interactions (97–101). Accordingly, microbes evolved the ability to produce SMs with antimicrobial properties 
(e.g., antibiotics, siderophores, bacteriocins) to limit the number of surrounding species competing for 
metabolic nutrients (102, 103). Conversely, microbial SMs such as cichofactin, holomycin, and pyrrolnitrin can 
initiate aggregation of mutually cooperative microorganisms to form biofilms (104–106); in turn, biofilms can 
bestow competitive advantages to microbial taxa, including protection from the environment, nutrient 
availability, and metabolic cooperativity, and acquisition of new genetic traits (107–110). Such interspecies 
competition and cooperation within microbial communities can lead to taxonomic divergence (111–113), 
which, in turn, leads to the diversity of SM production. The comprehensive prediction of microbial species, 
their BGCs, and their corresponding SMs provided by TaxiBGC may elucidate novel insights regarding the 
dynamics and divergence of microbial interactions. 

Several limitations of TaxiBGC should be noted when interpreting our results. First, by design, BGC 
prediction by TaxiBGC depends upon the successful identification of species from the metagenomes. In the 
case where MetaPhlAn2 does not identify all the BGC-producing species, TaxiBGC would fail to accurately 
predict the entire breadth of BGCs. Second, predictions regarding the taxonomic origins of BGCs need to be 
interpreted with caution. This is because, in the ‘mixed bag of genes’ context of metagenomes, gene elements of 
a particular BGC could originate from other BGCs and/or multiple species. Nevertheless, TaxiBGC can spark 
new and interesting hypotheses into the connections between microbiome BGCs and their source species, which 
can be validated in future research. Third, in order to minimize false-positive predictions, TaxiBGC 
purposefully employs a high stringency cut-off in identifying BGCs from genomes of the GenBank database 
(i.e., all genes of a BGC need to be detected). The trade-off to having this stringent criterion is that TaxiBGC 
may miss identifying BGCs of comparably long and intricate gene sequences, thereby leading to false-negative 
predictions. Fourth, TaxiBGC may have limited utility in metagenomes of relatively small library sizes, as 
suggested by the drop in predictive accuracy observed in metagenomes of less than 2.5M reads (see Fig. 3). 
Fifth, TaxiBGC provides only the chemical family but not the specific molecule for a small number of SM 

.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted August 2, 2021. ; https://doi.org/10.1101/2021.07.30.454505doi: bioRxiv preprint 

https://doi.org/10.1101/2021.07.30.454505
http://creativecommons.org/licenses/by/4.0/


 

21 

products, such as lipopolysaccharide and carotenoid, as that information is not yet available in MIBiG. Finally, 
experimental validation of whether the small-molecule products of any of the identified BGCs are indeed 
implicated in specific pathogenic mechanisms is necessary but beyond the scope of this in silico study. 

Nonetheless, TaxiBGC provides several advantages over currently available tools for BGC 
identification. First, TaxiBGC employs an assembly-independent, read-based prediction method; this solves a 
key limitation of BGC prediction tools that assume each BGC is encoded within a single contig in the genome 
or metagenome assembly, whereas in reality, genes of BGCs can be dispersed throughout several contigs. 
Second, TaxiBGC can be used to associate BGC presence with species abundance. This can help pinpoint 
which BGCs originate from which species in different phenotypic conditions. Third, TaxiBGC can 
simultaneously identify several classes of experimentally verified BGCs in a metagenome sample. This 
comprehensive detection is essential to deepen our understanding of the diversity of known BGCs and their 
SMs in a microbiome. Fourth, no parameter selection or optimization is necessary prior to applying TaxiBGC 
on shotgun metagenomic datasets. The only pre-installed software needed in TaxiBGC are: i) MetaPhlAn2 for 
species identification, and ii) Bowtie 2 for mapping metagenome reads onto BGC genes. Finally, TaxiBGC can 
easily be upgraded over time to detect a broader range of BGC classes that are not included in the present 
version. Notably, we plan to iteratively expand and curate the current TaxiBGC database with newly discovered 
species and strains, and their corresponding BGC and SM annotations from MIBiG. 
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