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Abstract9

Neural circuits can produce similar activity patterns from vastly different combinations of channel and synaptic con-10

ductances. These conductances are tuned for specific activity patterns but might also reflect additional constraints,11

such as metabolic cost or robustness to perturbations. How do such constraints influence the range of permissible12

conductances? Here, we investigate how metabolic cost affects the parameters of neural circuits with similar activity13

in a model of the pyloric network of the crab Cancer borealis. We use a novel machine learning method to identify a14

range of network models that can generate activity patterns matching experimental data. We find that neural circuits15

can consume largely different amounts of energy despite similar circuit activity. We then study how circuit param-16

eters get constrained by minimizing energy consumption and identify circuit parameters that might be subject to17

metabolic tuning. Finally, we investigate the interaction between metabolic cost and temperature robustness. We18

show that metabolic cost can vary across temperatures, but that robustness to temperature changes does not nec-19

essarily incur an increased metabolic cost. Our analyses show that, despite metabolic efficiency and temperature20

robustness constraining circuit parameters, neural systems can generate functional, efficient, and robust network21

activity with widely disparate sets of conductances.22

23

Introduction24

Neural activity arises from the interplay ofmechanisms atmultiple levels, including single-neuron andnetworkmecha-25

nisms. Several experimental and theoretical studies have found that neural systems can produce similar activity from26

vastly different membrane and synaptic conductances [1–5], a property sometimes referred to as parameter degen-27

eracy [6, 7]. Such parameter degeneracy has been argued to be a prerequisite for natural selection [6] and translates28

into potential mechanisms of compensation for perturbations of the systems’ parameters [3, 5, 8–13]. However, in29

addition to a specific target activity, neural systems are likely subject to additional constraints such as the require-30

ment to be energy efficient [14–16]. In order to understand experimentally observed variability and probe potential31

compensation mechanisms in functioning neural systems, it is thus crucial to characterise the extent of the systems’32

parameter degeneracy under such additional constraints.33

Neuronal activity accounts for the majority of the energy consumed by the brain [17–19]. Energy is stored in34

the ionic gradients across the cell membrane, and consumed mostly by action potentials and synaptic mechanisms.35

Maintaining the ionic gradients requires the action of ion pumps, which consume ATP [14, 20]. Previous work has in-36

vestigated themetabolic efficiency in small neural systems, often at the single neuron level and with few ion channels37
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(often sodium, potassium, and leak) [14, 21, 22]. In these studies, it has been demonstrated that energy consump-38

tion of single neurons can be reduced by tuning maximal conductances or time constants of gating variables, while39

maintaining electrophysiological characteristics, e.g. spike width. However, questions regarding energy efficiency of40

neural systems remain: First, it is unclear how previous findings in models with only sodium, potassium, and leak41

currents extrapolate to the context of complex patterns of neuronal activity such as burst firing, which arise through42

the interaction of a larger diversity of currents. Second, synaptic currents interact with single neuron properties43

[11, 20, 23], raising the question of how membrane and synaptic conductances should be tuned in order to achieve44

low metabolic cost. Third, energy efficiency has often been characterised for parts of, rather than the whole neural45

system within which it operates. For example, the energy efficiency of single neurons is often studied in isolation of46

the neural network it is immersed in [24–26], which precludes the full characterisation of how the operation of neural47

systems impacts energy efficiency. Lastly, metabolic cost is only one of many constraints under which neural circuits48

operate, and it is often unknown whether energy efficiency trades-off with other constraints (for a study of how en-49

ergy efficiency trades off with temperature robustness in a single neuronmodel of the grasshopper, see Roemschied50

et al. [27]).51

Here, we investigate the energy efficiency of the pyloric network in the stomatogastric ganglion (STG) of the crab52

Cancer borealis [28, 29], a canonical example of a neural system with parameter degeneracy [5]. The pyloric network53

produces a triphasic motor pattern, and consists of a pacemaker kernel (anterior burster neuron, AB, and two pyloric54

dilator neurons, PD), as well as two types of follower neurons (a single lateral pyloric, LP, and several pyloric, PY,55

neurons), interconnected by inhibitory synapses. A model of this circuit with three model neurons (AB/PD, LP, PY),56

each with eight membrane currents, and seven inhibitory synapses (Fig. 1a, details in Methods) has been shown to57

be capable of producing similar network activity with widely different parameters [5].58

We start by characterising the parameter degeneracy of thismodel: We apply a recently introducedmachine learn-59

ing tool for simulation-based inference, Sequential Neural Posterior Estimation (SNPE) [13] to estimate the full set of60

membrane and synaptic conductances for which themodel reproduces experimental data. We reduce the number of61

model simulations required to run SNPE by introducing an additional classifier which detects and rejects parameter-62

combinations that produce non-bursting model outputs [30]. After characterising the parameter degeneracy in the63

model, we show that disparate circuit configurations can have different energy consumption despite similar activity.64

Notably, a reduced but significant parameter degeneracy is present in themodel evenwhen enforcing circuits to have65

both similar activity and energy consumption. Furthermore, energy consumption is linearly predictable from circuit66

parameters, allowing us to identify circuit parameters that most strongly influence energy consumption. We then67

show that individual neurons in the pyloric network can be tuned separately to minimize their energy consumption,68

and thereby achieve low energy consumption at the circuit level. Finally, since the crab Cancer borealis is subject to69

daily and seasonal fluctuations in temperature, we study the trade-off between metabolic cost and robustness to70

changes in temperature [31–34]. We find that metabolic cost can vary across temperatures, but that the system can71

be energy efficient and temperature robust at the same time.72

Results73

Disparate energy consumption despite similar network activity74

We studied the metabolic cost in a model of the pyloric network (Fig. 1a). In this model, disparate sets of maximal75

membrane and synaptic conductances can give rise to similar network activity [5]. As an example, we simulated76

two such circuit configurations (Fig. 1b) and computed their metabolic cost using a previously described measure of77

energy consumption [35]. In this measure, the energy for each ion channel is the time integral of the product of the78

membrane current and the respective difference between the membrane voltage and the reversal potential. The79

energy consumed by the entire neural circuit is the sum of the energies across channels of all neurons (details in80

Methods).81

Although the two simulated circuit configurations produce similar network activity, even at the single-spike level82

(Fig. 1c), the total energy consumption (Fig. 1d) as well as the moment by moment energy consumption differ sub-83

stantially (Fig. 1e). A closer inspection of the energy consumed by each current in the PY neuron during the action84

potentials [36] shows that the difference in energy between these two network configurations is also evident in the85

energy consumed by the sodium current Na, the delayed-rectifier potassium current Kd, and the transient calcium86
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Figure 1. Similar activity with different energy consumption. (a) Computational model of the pyloric network consisting ofthree model neurons (AB/PD, LP, PY) and seven synapses. (b) Traces with similar circuit activity (traces from top to bottom: AB/PD,LP, PY) despite different circuit parameters (parameter values not plotted). Scale bars indicate 50 mV. (c) Close-up of two spikes inthe PY neural activity shown in (b). (d) Total energy consumption divided by the duration of the simulation (10 seconds) for thetraces shown in (b). The left trace has 3-fold lower metabolic cost than the right trace. (e) Consumed energy at each time point.Scale bar indicates 100 µJ/s. (f) The energy consumed by each of the ion currents during the two spikes shown in (c).

current CaT (Fig. 1f).87

Disparity in energy consumption in models matching experimental data88

The example above illustrates that the model of the pyloric network can, in principle, produce the same activity with89

different metabolic costs. However, it is unclear how broad the range of metabolic costs associated with the same90

network output is. In order to address this, we need to identify the full space of maximal membrane and synaptic91

conductances (31 parameters in total) thatmatch experimentalmeasurements of network activity and to characterise92

the energy consumption of each of these configurations.93

We used a recently introduced machine learning tool for simulation-based inference, Sequential Neural Posterior94

Estimation (SNPE) [13], to estimate the set of circuit parameters (the posterior distribution) consistent with data and95

prior assumptions about the parameters. In SNPE, random parameters which specify network configurations are96

initially sampled from the prior distribution (in our case a uniform distribution within plausible parameter ranges)97

and used to simulate network activity. Subsequently, a neural-network based density estimator is trained on these98

simulated network activities to learn which parameter sets produce network activity that is compatible with empirical99

observations. In order to generate the training data for the neural network, SNPE requires millions of model simu-100

lations to accurately infer the set of data-compatible parameters. To improve the simulation efficiency and make101

the neural network predict parameter sets that more closely match experimental data, we introduced a modification102

of the algorithm (Fig. 2a): A technical challenge for SNPE is that parameter sets sampled from the prior distribu-103

tion might produce simulation results that are not ‘valid’, i.e. produce clearly non-sensible data: E.g., if there are no104

bursts, phase gaps between bursts are not defined (Fig. 2a, forth panel, red). For SNPE, these ‘invalid’ simulations are105

discarded immediately. In order to reduce the fraction of simulations that are discarded, we introduce a classifier106

to predict whether a parameter set will lead to a ‘valid’ or an ‘invalid’ simulation output [30] (Fig. 2a, second panel).107

Once the classifier is trained on an initial set of simulations, parameters are immediately discarded without running108

the simulation, if the classifier confidently predicts that the simulation will be invalid (details in Methods). We name109

the distribution of parameters that are accepted by the classifier the ‘restricted prior’ (Fig. 2a, third panel). Once110

sufficiently many valid simulations are performed, SNPE proceeds by training a deep neural density estimator to es-111

timate the posterior distribution over parameters of the model [13] (Fig. 2a, last two panels, proof of convergence to112

the correct posterior distribution in Methods).113

We used this procedure to infer the posterior distribution over maximal membrane and synaptic conductances114

of the model of the pyloric network given salient and physiologically relevant features of experimentally measured115
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Figure 2. Bayesian inference reveals wide range of energy consumption. (a) Inferring the posterior distribution by combininga rejection classifier and a deep neural density estimator. First, a classifier (trained on an initial set of simulations) predicts whichcircuit parameters sampled from the prior produce ‘valid’ simulation outputs. We then proceed by sampling from the part of theparameter space that is accepted by the classifier, i.e. the ‘restricted prior’. All ‘valid’ data (green) are used to train a deep neuraldensity estimator, all ‘invalid’ data are discarded (red) [13]. Once this estimator is trained, it can be evaluated on experimental datato return the posterior distribution over model parameters. (b) Experimental data recorded from the pyloric network [37]. Arrowsindicate a subset of the physiologically relevant features, namely the cycle period (1), phase delays (2), phase gaps (3), and burstdurations (4) (see Methods for details). (c) Simulation output from a parameter set sampled from the prior distribution. The tracesare: AB/PD (top), LP (middle), PY (bottom). Scale bars correspond to 500 ms and 50 mV. (d) Subset of the marginals and pairwisemarginals of the 31-dimensional restricted prior, i.e. the subspace of parameters for which the model produces bursting activity.All maximal conductances are given in mS/cm2. (e) Subset of the marginals and pairwise marginals of the posterior distribution,i.e. the subspace of parameters for which the model matches experimental data shown in panel (b) (full posterior distribution inAppendix 1 Fig. 1). (f) Sample from the restricted prior producing bursting activity but not matching experimental data. (g) Samplefrom the posterior distribution closely matching features of the experimental data. (h) Histograms over energy consumed by eachneuron (blue, orange, green) as well as by entire circuit (black). Trace with lowest energy consumes 9 times less energy than tracewith highest energy. (i) Same as in (h), but for energy per spike.

data. These features are the cycle period, burst durations, duty cycles, phase gaps, and phase delays of the triphasic116

rhythm (Fig. 2b, details in Methods) [37]. Following the definitions established in previous studies [4, 5], we did not117

constrain the number of spikes or the spike shapes. Below, we describe the results obtained for a specific experimen-118

tal preparation. We qualitatively reproduced all results with two additional experimental preparations (Appendix 1119

Fig. 9, Appendix 1 Fig. 10, Appendix 1 Fig. 11, Appendix 1 Fig. 12, Appendix 1 Fig. 13, Appendix 1 Fig. 14) [37].120

When simulating the pyloric network model with parameter sets sampled from the prior distribution, 99% of121

simulations do not produce spikes or bursts and hence characteristic summary features of the circuits are not defined122

(Fig. 2c). The restricted prior (Fig. 2d) is narrower than the prior distribution, but considerably broader than the123

posterior (Fig. 2e, full posterior distribution in Appendix 1 Fig. 1; comparison between prior, restricted prior, and124

posterior in Appendix 1 Fig. 2). Parameters sampled from the restricted prior often produce activity with well-defined125
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Figure 3. Metabolic constraints on individual circuit parameters. (a) Left: Energy consumption of 35,939 models that matchexperimental data. The orange area corresponds to the energy consumption in the lowest 2% quantile, red area to the top 98%quantile. Middle: Distribution of the maximal conductance of the transient calcium channel (CaT) in the PY neuron in the 2%(orange) and 98% quantile (red). Right: Distribution of the maximal conductance of the delayed-rectifier potassium channel (Kd) inthe AB/PD neuron in the 2% (orange) and 98% quantile (red). (b) Standard deviation of parameters for models with energyconsumption in the lowest 2% quantile. Standard deviation is normalized to the standard deviation of the parameters across all
35, 939models in our database. (c) Subset of the parameter values of the five most efficient circuit configurations in our database.(d) The network activity produced by two of these five configurations. Scale bar indicates 500 ms and 50 mV. (e) The energyconsumption of the two configurations shown in panel (d). (f) Subset of circuit parameters of the two solutions shown in panel (b).Despite similar network activity and low energy consumption, several parameters differ by more than 2-fold. The membraneconductances are scaled by the following factors (left to right): 100, 10, 10, 100, 100, 10000.

summary features (Fig. 2f), but do not generallymatch experimental data, whereas samples from the posterior closely126

match experimental data (Fig. 2g). By using the classifier to reject ‘invalid’ simulations, we required half as many127

simulations compared to ‘classical’ SNPE [13] and achieved a higher accuracy (Appendix 1 Fig. 3). For the subsequent128

analyses, we only considered posterior samples whose activity was within a prescribed distance to the experimental129

data, and discarded all other samples (details inMethods). We simulated 1million parameter configurations sampled130

from the posterior, out of which approximately 3.5% fulfilled the distance criterion, leading to a database of 35, 939131

parameter sets whose activity closely matched experimental data. Sampling from the prior distribution rather than132

the posterior would have required approximately 600 billion simulations to obtain 35, 939 parameter sets that fulfill133

our criterion (60, 000 times more than with our method).134

We computed the energy consumption of each of the 35, 939 circuit activities (Fig. 2h). The circuit configuration135

with lowest total energy consumes nine times less energy than the circuit configuration with highest total energy.136

To ensure that the difference in energy does not only stem from different numbers of spikes within a burst, we also137

computed the average energy consumed during a spike (energy per spike) in each of the neurons (Fig. 2i). As with total138

energy, energy per spike strongly varies across parameter configurations. These results show that, despite similar139

circuit function, different parameter sets can have vastly different energy consumption. Below, we investigate the140

mechanisms giving rise to this phenomenon.141

Metabolic constraints on individual circuit parameter ranges142

How strongly does enforcing low energy consumption constrain the permissible ranges of circuit parameters? We143

inspected the circuit parameters of the 2% most and least efficient configurations within our database of 35, 939144

model configurations (Fig. 3a, left). For some circuit parameters, the range of values producing efficient activity is145

clearly different from the range of values producing energetically costly activity (e.g. the maximal conductance of the146
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Figure 4. Influence of circuit parameters on energy consumption. (a) Illustration of linear regression from circuit parameters θ(taken from our database of 35, 939 configurations) onto energy consumption E . (b) The linear regression accurately predicts theenergy consumption on a test set of 300 circuit configurations (black dots). Grey line is the identity function. (c) Weights w of thelinear regression. Left: Weights of the maximal membrane conductances. Right: Weights of the maximal synaptic conductances.(d) Weights w as a function of energy consumption (both normalized), for all membrane currents (arrows highlight threeillustrative examples). Membrane conductances on the top left consume little energy, but their maximal conductances correlatestrongly with energy consumption. Conductances on the bottom right consume a lot of energy, but their maximal conductancescorrelate weakly with energy consumption. (e) Top: The gating variable n4 of the Kd current in the PY neuron during activityproduced by two circuit configurations (black and red) which are identical apart from the magnitude of gKd. Bottom: The productof gating variable and maximal conductance n4 · gKd for the same configurations. (f) Top: Weights of a linear regression onto theenergy per spike in the PY neuron. Bottom: Weights of a linear regression onto the number of spikes in the PY neuron.

transient calcium current in the PY neuron, Fig. 3a, middle). For other parameters, the range does not change (e.g. the147

maximal conductance of the delayed-rectifier potassium current in the AB/PD neuron, Fig. 3a, right). To quantify how148

strongly low energy consumption constrains parameters, we compared the parameter standard deviation across149

all 35, 939 model configurations to that of the most efficient 2% (Fig. 3b). Most parameters in the circuit barely get150

constrained by energy consumption (values close to one in Fig. 3b). The parameters that get constrained the most by151

enforcing low energy consumption are the Na and CaT conductances of the AB/PD neuron, the CaS conductance of152

the LP neuron, and the Na, CaT, CaS, and leak conductances of the PY neuron. However, for all of these parameters,153

a large fraction of variability remains.154

In order to ensure that the remaining variability of circuit parameters does not stem from the remaining variabil-155

ity of energy consumptions within the lowest 2% quantile, we inspected the five most efficient configurations in our156

database of 35, 939 model configurations. Even these five circuit configurations have strongly disparate circuit param-157

eters (Fig. 3c). Despite having similar activity (Fig. 3d) and very low (and similar) metabolic cost (Fig. 3e), their circuit158

parameters are disparate (Fig. 3f). These results demonstrate that metabolic efficiency constrains the range of some159

circuit parameters, but it is possible to achieve low metabolic cost and similar network activity with widely disparate160

circuit parameters.161

Conductances of energetically costly channels do not necessarily correlate with energy consump-162

tion163

Wewanted to understand how each circuit parameter affects energy consumption. We performed a linear regression164

from circuit parameters (taken from our database of 35, 939 model configurations) onto the energy consumption of165

these circuits (Fig. 4a). This linear regression achieved a high accuracy, demonstrating that energy consumption166

can be linearly predicted from circuit parameters (Fig. 4b; a non-linear regression with a neural network leads to167
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similar results and is shown in Appendix 1 Fig. 4; details in Methods). The regression weights w indicate how strongly168

energy consumption is correlated with each parameter value (Fig. 4c). The maximal sodium conductance gNa and the169

transient calcium conductance gCaT of the AB/PD and PY neuron as well as the slow calcium conductance gCaS of the170

AB/PD, LP, andPYneuron aremost strongly correlatedwith energy consumption: Increases of these conductances are171

associated with an increase in energy consumption, and thus, small conductance values correspond to metabolically172

more efficient solutions. The synaptic conductances are weakly correlated with energy consumption, which can be173

explained by the low values of the maximal synaptic conductances: The synaptic strengths range up to 1000 nS,174

whereas the membrane conductances can range up to 0.4 mS (i.e. 4 · 105 nS), such that synapses consume only175

0.08% of the total energy in the circuit. These results demonstrate that energy consumption can be linearly predicted176

from circuit parameters, and that energy consumption is most strongly correlated with the maximal conductances177

of sodium as well as slow and transient calcium.178

How do different currents affect total energy consumption? Do they directly consume energy, or do they trigger179

processes that then require energy? We addressed these questions by comparing the fraction of energy consumed180

by each current (as defined by our measure of energy [35], Fig. 1f) to the linear regression weight w associated with181

its maximal conductance (Fig. 4d). We found that some currents consume a lot of energy, although their maximal182

conductances barely correlate with energy consumption, e.g. the Kd current in the PY neuron (Fig. 4d, bottom right183

arrow), while other currents consume little energy, but nonetheless their maximal conductances are correlated with184

energy consumption, e.g. the CaS and CaT currents of the PY neuron (Fig. 4d, top left arrows).185

We investigated the neuronal mechanisms that give rise to these behaviors. First, to understand how currents186

can consume large amounts of energy despite their maximal conductance only weakly correlating with energy, we187

investigated the effects of the delayed-rectifier potassium conductance gKd on circuit activity. We simulated two circuit188

configurations, identical apart from the magnitude of gKd in the PY model neuron. In the configuration with higher189

gKd, the gating variable n did not reach as high values as for the other configuration, thus leading to a similar effective190

conductance n4 · gKd (Fig. 4e). This demonstrates that changes in the maximal conductance gKd only weakly influence191

the current and thereby the energy consumption. Thus, despite the potassium current consuming a lot of energy192

due to a large flow of ions (compared to other channels), its maximal conductance gKd only weakly correlates with193

energy consumption. Second, to understand how maximal conductances can correlate with energy consumption194

despite their channels consuming little energy, we disentangled the correlation of circuit parameters with energy195

consumption into two parts: The energy per spike and the number of spikes. We fitted two additional linear regression196

models: One regression from circuit parameters onto number of spikes in the PY neuron and one regression from197

circuit parameters onto energy per spike in the PY neuron. We again find good predictive performance of these198

models, showing that the energy per spike and the number of spikes can also be linearly predicted from circuit199

parameters (regression performance in Appendix 1 Fig. 5). The energy per spike is strongly correlatedwith the sodium200

conductance (Fig. 4f, top), whereas the number of spikes is most strongly correlated with the maximal conductance201

of transient calcium (also with sodium, slow calcium, and transient potassium conductances, Fig. 4f, bottom). This202

demonstrates that increases in the maximal conductance of transient calcium lead to a higher number of spikes,203

which involve increased energy consumption through other currents. We verified this hypothesis by simulating two204

configurations that were identical apart from the magnitude of gCaT in the PY model neuron and found that the205

configuration with higher gCaT indeed produced more spikes per burst. This shows that, despite the calcium channel206

consuming little energy itself, increasing gCaT can lead to higher energy consumption by increasing the number spikes,207

which involve energy consumption through other currents (mostly sodium and potassium). Overall, our analyses208

demonstrate that currents which consume a lot of energy are not necessarily the ones which influence energy the209

most.210

Neurons can be tuned individually to achieve minimal circuit energy211

We wondered how single neurons interact to produce functional and efficient circuit activity. Can the energy of the212

entire circuit beminimized by optimizing the energy of each neuron individually? And does the circuit retain functional213

activity when neurons are individually optimized for low energy efficiency? Within our database of 35, 939 model214

configurations, there is a weak correlation between the energies consumed by pairs of neurons, which suggests215

that the energy consumption between neurons might be independent from one another (Fig. 5a; AB/PD versus LP,216

correlation coefficient r = −0.006, p-value p = 0.23; LP versus PY, r = 0.02, p = 3 ·10−6; AB/PD versus PY, r = −0.03, p =217
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Figure 5. Neurons can be tuned individually to achieve minimal circuit energy consumption. (a) Black dots: Energyconsumed by each neuron separately. 100 randomly selected parameter configurations from our database of 35, 939configurations. Black line: Linear regression shows a weak correlation between the energy consumed by pairs of neurons. (b) Weselect the five most efficient parameter configurations for each neuron separately, and search with Markov chain Monte Carlo(MCMC) for synaptic conductances such that the target circuit activity is achieved. (c) The activity produced by two parameterconfigurations produced with the strategy described in (b). (d) A subset of the membrane (left) and synaptic (right) conductancesfor the configurations in panel (c). Despite generating similar network activity, the configurations have very different circuitparameters. The membrane conductances are scaled with the following factors (left to right): 10, 10000, 1, 100, 10000. (e) Histogramover the energy consumption of all 35, 939models in our database (blue, orange, green, black) and the energy consumption of theconfigurations produced with the strategy described in panel (b) (red). (f) Histogram of the posterior log-probability for samplesfrom the prior distribution (grey), for the 35, 939models in our database (black), and for the configurations produced with thestrategy described in panel (b) (red).

8 · 10−9). We thus investigated whether we could optimize the parameters of each neuron individually for low energy218

consumption and still retain functional circuit activity. We searched our database of 35, 939 model configurations for219

the single neuron models with minimal energy consumption individually. We selected the five most efficient single220

neuron parameter combinations for each of the neurons and assembled them into 125 (53) network configurations.221

We then identified synaptic conductances that match each of these configurations with Markov chain Monte Carlo222

(Fig. 5b, details inMethods). Notably, given the already estimated full posterior distribution, this step does not require223

additional simulations.224

For each of the 125 combinations of membrane conductances, we found a set of synaptic conductances for which225

the network activity closely resembles experimentally measured activity (Fig. 5c). The resulting configurations have226

disparate parameters (Fig. 5d) but highly similar network activity. Furthermore, we found that the resulting configura-227

tions have similar and very low energy consumption. The energy consumption of these circuits is significantly smaller228

than that of any of the configurations in our database of 35, 939 model configurations (Fig. 5e). This demonstrates229

that optimizing a specific neuron for energy efficiency does not preclude the connected neurons from being energy230

efficient. Thus, our results suggest that the pyloric network can be optimized for energy efficiency by tuning neurons231

individually for low energy consumption.232

We estimated how likely are these energy-efficient circuits under the estimated posterior. We found that all these233

models have similar posterior log-probability as the 35, 939 model configurations in our database (Fig. 5f), i.e. these234

are as likely to underlie the experimentally measured activity as the database models. Thus, the low-energy config-235

urations were not sampled when generating our original model database because of the high dimensionality of the236

parameter space, and we cannot exclude the possibility that there might be unsampled regions in parameter space237

with even more energy-efficient circuit configurations.238

8 of 25

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted August 2, 2021. ; https://doi.org/10.1101/2021.07.30.454484doi: bioRxiv preprint 

https://doi.org/10.1101/2021.07.30.454484
http://creativecommons.org/licenses/by-nc-nd/4.0/


Figure 6. Temperature robustness does not preclude energy efficiency. (a) Top: Experimental data at 11°C. Bottom:Experimental data at 27°C [37]. (b) Left: Posterior distribution given experimental data at 11°C. Right: Posterior given experimentaldata at 11°C and 27°C. (c) Simulations for a parameter set drawn from the posterior distribution matching experimental data at11°C and 27°C. Simulations at 11°C (top) and 27°C (bottom). (d) Cycle frequency (left), phase of LP neuron (middle) and phase of PYneuron (right) for parameter set shown in panel (c), simulated at temperatures between 11°C and 27°C. Green dots are the valuesof the experimental preparations. (e) Energy consumption at 11°C versus 27°C for 967 circuits sampled from the posterior (in (b)right). In grey, the identity line. (f) Influence of circuit parameters and Q10 values on energy consumption at 27°C. Weights wobtained by linear regression, similarly to Fig. 4. (g) Green: Distribution of the energy consumption of circuits matchingexperimental data at 11°C. Purple: Distribution of the energy consumption of circuits that match data at 11°C and are robust at27°C. Pink: Distribution of the energy consumption of circuits that match experimental data at 11°C and 27°C.

Robustness to temperature does not require an increased metabolic cost239

The crab Cancer borealis experiences daily and yearly fluctuations in temperature which in turn influence the chemical240

and physical properties of neurons [31–33]. Nonetheless, neural circuits such as the pyloric network can maintain241

their functionality in the presence of these temperature variations. As temperature increases, the cycle frequency of242

the circuit increases exponentially, but the phases between bursts remain relatively constant [34, 38]. We investigated243

whether the pyloric network trades off robustness to changes in temperature with energy efficiency, i.e. whether244

temperature-robust solutions are more energetically costly.245

The temperature-dependence of a biophysical parameter R is captured by the Q10 value and is defined as follows:
RT = RrefQ

(T−Tref )/10
10 ,

where Rref is the parameter value at the reference temperature Tref = 11°C. We extended the model of the pyloric246

network to includeQ10 values for all maximal membrane and synaptic conductances (details in Methods) [39, 40]. We247

then used SNPE to identify all maximal membrane and synaptic conductances, as well as the associated Q10 values248

(41 parameters in total) that match experimental recordings at 11°C and 27°C (Fig. 6a) [37]. We set the previously249

identified posterior distribution (Fig. 2e) over circuit parameters given experimental data at 11°C as the new prior250

distribution, and then applied SNPE to match the model with experimental data at 27°C (Fig. 6b, full posterior in Ap-251

pendix 1 Fig. 7, details in Methods). We sampled circuit parameters and Q10 values from the resulting distribution252

and selected samples whose activity closely matched experimental data at 11°C and 27°C (Fig. 6c). Overall, we gen-253
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erated a database of 967 sets of circuit parameters and Q10 values. When simulating at temperatures between 11°C254

and 27°C, these circuits show the characteristic exponential increase in cycle frequency as well as the constant phase255

relationship between bursts observed experimentally (Fig. 6d) [34].256

We asked whether the energy consumed by the circuit at 11°C is proportional to the energy consumed at 27°C.257

We found that, despite the number of spikes in our model being higher at higher temperatures, the total energy258

consumption is lower at 27°C (Fig. 6e; note that, for one of the three preparations, the energy consumptions at 11°C259

and 27°C are similar). This occurs because at higher temperatures, the increase in the number of spikes is accom-260

panied by an increase in channel time constants and respective decrease in energy per spike (Appendix 1 Fig. 8). In261

addition, there is a clear correlation between energy consumptions at 11°C and 27°C (Pearson-correlation coefficient:262

0.66), although circuit configurations with similar efficiency at 11°C can show a range of energy consumptions at 27°C263

(Fig. 6e). A potential reason for this range of energies at 27°C (for fixed energy at 11°C) is the influence of Q10 values264

on the energy consumption. To investigate this, we performed a linear regression to predict energy consumption265

at 27°C from circuit parameters and Q10 values and inspected the linear regression weights w (Fig. 6f): Indeed, Q10266

values correlate strongly with energy consumption, and the direction and magnitude of their influence follows that267

of the corresponding maximal membrane conductances.268

Does temperature robustness have an influence on metabolic cost? We computed the energy consumed at 11°C269

for three different scenarios: First, for all models in our database of 35, 939model configurationsmatching experimen-270

tal data recorded at 11°C (same as Fig. 2h). Second, for all models in our database of 35, 939 model configurations271

that are also functional at 27°C (i.e. produce triphasic activity). Third, for all models in our database of 967 model272

configurations matching experimental data recorded at 11°C and 27°C. In all three of these scenarios, the distribu-273

tion of metabolic cost was similar (Fig. 6g. Note that the slightly different average energy consumption between the274

first and the third scenario occurred only in two of the three preparations, see Appendix 1 Fig. 11 and Appendix 1275

Fig. 14). In particular, all three scenarios contained configurations that produce energy efficient circuit function. This276

demonstrates that enforcing temperature robustness does not require the pyloric network to be less energy efficient.277

Overall, our analyses indicate that Q10 values can contribute to the energy efficiency of the circuit and might,278

therefore, be the subject of tuning for metabolic efficiency. In addition, we showed that temperature robustness279

does not entail additional metabolic cost.280

Discussion281

Neural systems undergo environmental and neuromodulatory perturbations to their mechanisms. The parameter282

degeneracy of neural systems, i.e. the ability to generate similar activity from disparate parameters, confers a certain283

degree of robustness to such perturbations [6–9, 41, 42]. However, not all system configurations might be equally284

desirable, with some configurations being more energy efficient than others [14]. Here, we analysed the energy285

consumption of parameter configurations with similar activity in the pyloric network of the stomatogastric ganglion.286

We found that, even when the network activity is narrowly tuned to experimental data, the energy consumption287

can strongly vary between parameter configurations. Furthermore, we studied how membrane and synaptic con-288

ductances influence energy consumption [14], and demonstrated that neurons in the pyloric network can be tuned289

individually to achieve low energy consumption. Lastly, we showed that temperature robustness does not preclude290

energy efficiency. These findings were facilitated by a methodological advance that increased the efficiency of previ-291

ously published tools for simulation-based inference [13, 30, 43, 44].292

Relation to previous work on metabolic cost of neural systems293

There has been extensive work on quantifying the metabolic cost of biophysical processes in single neurons [14, 21,294

22, 24–26], and how single neurons subject to functional constraints can be tuned to minimize energy consumption295

[14, 22, 25]. However, so far, it has been unclear how energy efficiency impacts the parameter degeneracy of neural296

systems. While a plausible hypothesis would have been that energy efficiency reduces or eliminates degeneracy297

altogether, here we found that parameter degeneracy is preserved for most parameters, even within circuits with298

highly similar energy consumption. Nevertheless, we should note that our findings are based on two simplifying299

assumptions: First, we studied simple single-compartment neurons rather than more realistic multi-compartment300

neuron models [45]; and second, the energy measure is derived directly from the Hodgkin-Huxley model [35], rather301

than taking into account all the complexity of the ionic exchange leading to ATP consumption [14, 20, 22, 25].302
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Which circuit parameters influence energy consumption the most? Consistent with previous work at the single303

neuron level, we found that total energy consumption of the pyloric network is strongly influenced by the sodium304

current [25], but also by the transient and slow calcium currents. The maximal sodium conductance is the most305

prominent driver of the energy per spike: Increases in the conductance lead to an increase of metabolic cost per306

spike [14, 25]. In contrast, calcium currents influence energy consumption through the number of spikes within307

a burst, despite not consuming much energy themselves. Our results suggest that the maximal conductances of308

sodium and calcium might be regulated for metabolic efficiency. We thus predict that these conductances are less309

variable in nature than expected by computational models only matching network activity.310

Previous studies have demonstrated that synaptic mechanisms can consume a substantial amount of energy311

[20, 46, 47]. In contrast, in the considered model of the pyloric network, synaptic currents consume only a minor312

fraction of energy (approximately 0.08% of the total energy is consumed by synapses, whereas Attwell and Laughlin313

[20] report 40% of energy per action potential being consumed by synaptic mechanisms). This difference is largely314

due to the low number of connections in the pyloric network [48]: Each neuron projects to up to two other model315

neurons, whereas the synaptic energy consumption reported in Attwell and Laughlin [20] is based on the assumption316

of 8000 synaptic boutons per neuron. Thus, models of more complex neural circuits driven by excitatory, recurrent317

connectivity, such as the ones found in the cortex, might spend a larger fraction of energy on synaptic mechanisms.318

Interplay between metabolic cost and robustness to perturbations319

Neural circuits are likely constrained by energy consumption, but also by other requirements, e.g. robustness to per-320

turbations such as fluctuations in temperature or pH [34, 39, 40, 49–53]. We investigated the interplay between energy321

consumption and temperature robustness. Consistent with previous work in a single neuron model of the grasshop-322

per [27], we found that temperature robustness does not require an increasedmetabolic cost. Whether these results323

will generalize with the inclusion of the robustness to additional external perturbations, e.g. pH fluctuations [52, 54],324

or internal perturbations, e.g. neuromodulation [38], remains a subject for future work.325

Increasing the efficiency of simulation-based inference326

We used a previously introduced tool, SNPE [13, 44] to identify all models consistent with experimentally measured327

activity as well as prior knowledge about realistic parameter ranges. We improved the efficiency of the method by328

introducing a classifier that rejects ‘invalid’ simulations [30]. By using this classifier, we were able to improve the329

accuracy of SNPE while requiring only half as many simulations [13]. Because of this larger simulation-budget, the330

resulting posterior distributions became more accurate.331

Generally, the classifier-enhanced SNPE can be applied to other modelling studies in neuroscience. In particular,332

the classifier to predict ‘invalid’ simulations is valuable whenever there are parameter values for which the computa-333

tional model of interest produces ill-defined features: E.g. the spike shape cannot be defined in cases where a neuron334

model does not produce spikes. Our method has the potential to significantly speed up inference in these scenarios.335

Another way of increasing simulation efficiency is to perform inference over multiple ‘rounds’ [30, 44, 55]. These336

methods use a previous estimate of the posterior distribution to guide new simulations into regions of high posterior337

probability. However, using the previous estimate of the posterior distribution requires changing the loss function,338

which canmake neural network training unstable [44, 56]. In contrast, using a thresholded classifier does not require339

the algorithm to adjust the loss function, leading tomore robust results and allowing it to be applied to a larger range340

of models of neural dynamics (details in Methods). In addition, unlike in multi-round SNPE, the resulting posterior341

distribution is amortized—it can be evaluated at new data traces without running new simulations or training a new342

neural network. Compared to multi-round SNPE, the main drawback of the classifier approach is that simulations343

are run from a relatively large region in parameter space (all parameter sets that might produce ‘valid’ simulation344

outputs), whereas multi-round SNPE is tailored to a specific experimental trace and can hence be more efficient in345

the number of required simulations.346

Implications for the operation of neural circuits347

Our findings suggest that neural circuits can show a range of possible metabolic costs, depending on the underlying348

biophysical parameters, even with highly specific functional requirements under constant perturbations. This raises349
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the question of whether such diversity of metabolic costs is present in real biological systems, or whether and how350

these systems are tuned for metabolic efficiency.351
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Methods359

Code availability360

Code to reproduce the figures is available at https://github.com/mackelab/stg_energy. Code for running SNPE and361

training a classifier to reject ‘invalid’ simulations is available in our toolbox: https://github.com/mackelab/sbi. A tutorial362

for how to use these features can be found on our website https://mackelab.org/sbi.363

Data from the crustacean stomatogastric ganglion364

We analyzed extracellular recordings of the stomatogastric motor neurons that are involved in the triphasic pyloric365

rhythm in the crab Cancer borealis [37]. The first dataset as seen in Fig. 2 and Fig. 6 is from files 845_082_0044 and366

845_082_0064, preparation 1. The second dataset as seen in Appendix 1 Fig. 9 and Appendix 1 Fig. 11 is from files367

857_016_0049 and 857_016_0069, preparation 1. The third dataset as seen in Appendix 1 Fig. 12 and Appendix 1368

Fig. 14 is from files 845_078_0027 and 845_078_0040, preparation 2. All preparations were decentralized, i.e. the ax-369

ons of the descending modulatory inputs were severed. The data were recorded at 11°C and 27°C. Full experimental370

details in Haddad and Marder [38].371

Circuit model of the crustacean stomatogastric ganglion372

The circuit model of the crustacean stomatogastric ganglionwas adapted fromPrinz et al. [5]. Themodel is composed
of three single-compartment neurons, AB/PD, LP, and PY, where the electrically coupled AB and PD neurons are
modeled as a single neuron. Each of the model neurons contains 8 currents, a Na+ current INa, a fast and a slow
transient Ca2+ current ICaT and ICaS, a transient K+ current IA, a Ca2+-dependent K+ current IKCa, a delayed rectifier K+

current IKd, a hyperpolarization-activated inward current IH, and a leak current Ileak. In addition, the model contains 7

synapses. As in Prinz et al. [5], these synapses are simulated using a standard model of synaptic dynamics [57]. The
synaptic input current into the neurons is given by Is = g ss(Vpost−Vs), where g s is the maximal synapse conductance,
Vpost the membrane potential of the postsynaptic neuron, and Vs the reversal potential of the synapse. The dynamics
of the activation variable s are given by

ds

dt
=

s(Vpre)− s

τs
,

with
s(Vpre) =

1

1 + exp((Vth − Vpre)/δ)
and τs =

1− s(Vpre)

k−
.

Here, Vpre is the membrane potential of the presynaptic neuron, Vth is the half-activation voltage of the synapse, δ373

sets the slope of the activation curve, and k− is the rate constant for transmitter-receptor dissociation rate.374

As in Prinz et al. [5], we model two types of synapses, since AB, LP, and PY are glutamatergic neurons whereas PD375

is cholinergic. We set Es = −70 mV and k− = 1/40 ms for all glutamatergic synapses and Es = −80 mV and k− = 1/100376

ms for all cholinergic synapses. For both synapse types, we set Vth = −35 mV and δ = 5 mV. The membrane area is377

0.628 · 10−3 cm2.378

For each set of membrane and synaptic conductances, we numerically simulate the circuit for 10 seconds with a379

step size of 0.025 ms. At each time step, each neuron receives Gaussian noise with mean zero and standard deviation380

0.001 mV·ms−0.5.381

We applied SNPE to infer the posterior over 24 membrane parameters and 7 synaptic parameters, i.e. 31 parame-382

ters in total. The 7 synaptic parameters are themaximal conductances g s of all synapses in the circuit, each of which is383

varied uniformly in logarithmic domain from 0.01 nS to 1000 nS, with the exception of the synapse fromAB to LP, which384

is varied uniformly in logarithmic domain from 0.01 nS to 10000 nS. Themembrane parameters are themaximalmem-385

brane conductances for each neuron. The membrane conductances are varied over an extended range of previously386

reported values [5, 13]: The prior distribution over the parameters [Na, CaT, CaS, A, KCa, Kd, H, leak] is uniform with387

lower bounds plow = [0, 0, 0, 0, 0, 25, 0, 0] mS cm−2 and upper bounds phigh = [500, 7.5, 8, 60, 15, 150, 0.2, 0.01] mS cm−2
388

for the maximal membrane conductances of the AB neuron, plow = [0, 0, 2, 10, 0, 0, 0, 0.01] mS cm−2 and phigh =389

[200, 2.5, 12, 60, 10, 125, 0.06, 0.04] mS cm−2 for the maximal membrane conductances of the LP neuron, and plow =390

[0, 0, 0, 30, 0, 50, 0, 0] mS cm−2 and phigh = [600, 12.5, 4, 60, 5, 150, 0.06, 0.04] mS cm−2 for the maximal membrane con-391

ductances of the PY neuron.392
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We computed 15 summary features proposed by Prinz et al. [5], and 3 additional features [13]. The features393

proposed by Prinz et al. [5] are 15 salient features of the pyloric rhythm, namely: Cycle period T (s), AB/PD burst394

duration dbAB (s), LP burst duration dbLP (s), PY burst duration dbPY (s), gap AB/PD end to LP start ∆tesAB-LP (s), gap LP end to395

PY start ∆tesLP-PY (s), delay AB/PD start to LP start ∆tssAB-LP (s), delay LP start to PY start ∆tssLP-PY (s), AB/PD duty cycle dAB, LP396

duty cycle dLP, PY duty cycle dPY, phase gap AB/PD end to LP start ∆φAB-LP, phase gap LP end to PY start ∆φLP-PY, LP start397

phase φLP, and PY start phase φPY. Note that several of these values are only defined if each neuron produces rhythmic398

bursting behavior. In addition, for each of the three neurons, we computed the maximal duration of its voltage being399

above −30 mV. We did this as we observed—for many model simulations and in contrast with experimental data—400

long plateaus at around −10 mV during the bursts, and wanted to detect such traces. If the maximal duration was401

below 5 ms, we set this feature to 5 ms. To extract the summary features from the observed experimental data, we402

first found spikes by searching for local maxima above a hand-picked voltage threshold, and then extracted the 15403

above described features. For the experimental preparation, we set the additional 3 features to 5 ms.404

At temperatures higher than 11°C, we include Q10 values to simulate the biochemical changes of the network405

parameters. These are defined by an Arrhenius-type factor406

RT = RrefQ
(T−Tref )/10
10 , (1)

where Rref is the parameter value at the reference temperature Tref = 11°C, and RT is the parameter value at tem-407

perature T . Each maximal conductance has a different Q10, but the Q10 value is the same across neurons [40]. We408

introduce one Q10 for the glutamatergic synapses and one for the cholinergic synapses. The prior distribution for the409

Q10 values is a uniform distribution between 1 and 2 for all maximal conductances but the hyperpolarization current,410

for which the prior bounds are 1 and 4 [34]. The Q10 values for the time constants are fixed to 2.4 for most m-gates411

and 2.8 for all h-gates. Following the results from Caplan et al. [39], the Q10 values for the m-gates of KCa and CaS as412

well as for the calcium buffer have lower values: 2.0 for CaS and the calcium buffer and 1.6 for KCa. The Q10 value for413

the time constants of the synapses is 1.7.414

Energy consumption415

To compute the energy consumption E of a specific network activity, we followed the approach of Moujahid et al. [35].416

For each neuron, we computed the energy as:417

E =

∫ ∑
m

gm(V − Vm)2 +
∑
s

gs(V − Vs)
2dt, (2)

where gm is the effective conductance of channel m (i.e. the product of the respective gating variables and maximal418

conductance) and gs is the effective synaptic conductance s into the specific neuron. Vm is the reversal potential of419

the membrane current m and Vs is the reversal potential of the synapse s. The units of energy are [S · V 2 · s = J],420

where S are Siemens, V are Volt, s are seconds, and J are Joules. The total energy consumption was defined as the421

sum of the energy consumed by each of the three neurons. Throughout the manuscript, we report the energy per422

second, which we obtained by dividing the total energy consumption by the duration of the simulation (10 seconds).423

The energy per spike was defined as the energy consumed during bursts divided by the respective number of424

spikes.425

14 of 25

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted August 2, 2021. ; https://doi.org/10.1101/2021.07.30.454484doi: bioRxiv preprint 

https://doi.org/10.1101/2021.07.30.454484
http://creativecommons.org/licenses/by-nc-nd/4.0/


Simulation-based inference426

We extended Sequential Neural Posterior Estimation [13] by using a classifier to predict ‘invalid’ simulation outputs.427

The resulting algorithm is described in algorithm 1.428

Algorithm 1: SNPE
Input: simulator with (implicit) density p(x|θ), observed data xo , prior p(θ), rejection criterion g(x) ∈ {0, 1},
classification neural network Gζ(θ), density family qψ , neural network F (x,φ), number of cycles C of classifier
training, simulation count for each cycle Nc

randomly initialize φ, ζ
p̃1(θ) := p(θ)

N := 0

for c = 1 to C do
for i = 1 ...Nc dosample θN+i ∼ p̃c(θ)

simulate xN+i ∼ p(x|θN+i )evaluate whether ‘valid’ rN+i = g(xN+i )
N ← N + Nc

train ζ ← arg min
ζ

N∑
j=1

Le(θj , rj) // classifier training

T ← Tune classifier threshold s.t. false negative rate < 1%
U(θ)← Gζ(θ) > T

p̃c(θ) :∝ U(θ)p(θ)

train φ← arg min
φ

N∑
j=1

Ld(θj , xj) // neural density estimator training

return qF (xo ,φ)(θ)

429

Proof of convergence of SNPE with classifier430

Below, we prove that the posterior distribution inferred by our method converges to the true posterior distribution.
SNPE—with the classifier—minimizes the following loss function with respect to the neural network parameters φ:

Ld = − 1

N

∑
i

log(qφ(θi |xi ))

N→∞−−−−→ −Ep(θ,x)[log(qφ(θ|x))]

= −EU(θ)p(θ)p(x|θ)[log(qφ(θ|x))],

where U(θ) is a constant U(θ) = c > 0 at least on the posterior support and U(θ) = 0 elsewhere. Then:
Ld = −

∫∫
U(θ)p(θ)p(x|θ) log(qφ(θ|x)) dθdx

= −
∫

p(x)

∫
U(θ)p(θ|x) log(qφ(θ|x)) dθdx

Since U(θ) > 0 at least on the support of p(θ|x):
Ld = −

∫
p(x)c

∫
p(θ|x) log(qφ(θ|x)) dθdx

Since the integrandof the integral over θ is proportional to the Kullback-Leibler-divergence between the true posterior431

p(θ|x) and the inferred posterior qφ(θ|x), Ld is minimized if and only if qφ(θ|x) = p(θ|x) for all x on the support of p(x).432
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Classifier of ‘valid’ simulations433

The algorithm includes a classifier U(θ) trained to predict ‘valid’ simulations. We use a cross-entropy loss Le . We434

enforce the classifierU(θ) to be constant, withU(θ) = c > 0 at least on the posterior support andU(θ) = 0 elsewhere:435

1. In order for U(θ) to be uniform, we parameterize it as a thresholded binary classifier.436

2. To ensure that c > 0 at least on the posterior support, we choose the classifier threshold such that there are437

few false-negatives, i.e. the classifier accepts the parameters if these lie within the posterior support.438

If we train the classifier U(θ) with a large enough number of simulations, so that some are ‘valid’, the trained439

classifier includes the posterior support. In order to sample fromU(θ)p(θ), we sample from the prior over parameters440

p(θ) and accept the sampled parameters according to the classifier output.441

Inference of the posterior distribution given experimental data at 11°C442

Overall, we performed three cycles of simulation and classifier training in order to learn the restricted prior. In the443

first round, we simulated 3 million parameter sets sampled from the prior. Among these, only 0.97% produced ‘valid‘444

summary features. We trained a classifier to detect parameter sets leading to ‘valid’ simulation outputs. We used a445

residual neural network with 80 hidden units, two blocks, a dropout rate of 43%, and a batchsize of 199. To deal with446

‘valid’/‘invalid’ unbalanced data, we subsampled ‘invalid’ samples in every epoch. We post-hoc tuned the threshold447

of the classifier such that the ratio of false-negatives was below 1% on a held-out test set. We then drew 3 million448

samples from the resulting restricted prior. Out of these, 5.17% produced ‘valid’ summary features. We then repeated449

this procedure and out of 3 million simulations from the resulting restricted prior, 8.45% produced good simulations.450

Overall, in comparison to Gonçalves et al. [13], we used half as many simulations (9 million versus 18.5 million), but451

generated a database of ‘valid’ simulations 2.5 times larger. We then used all 438,608 ‘valid’ parameter sets to obtain452

the posterior distribution with SNPE (see Gonçalves et al. [13] for details). As deep neural density estimator, we chose453

a neural spline flow (NSF) [58] with 10 transform layers, each consisting of a residual block with two hidden layers,454

each with 200 hidden units.455

Lastly, to ensure that the activity produced by samples from the posterior closely matched experimental data, we456

sampled 1million parameter sets from the inferred posterior distribution and performed an additional rejection step,457

whereby posterior samples had to produce activity within a prescribed distance to the experimental data:458

• cycle duration and burst durations deviated from the experimental features by a maximum distance of 0.02459

standard deviations of all simulations accepted by the classifier, i.e. 20.6 ms for the cycle duration, and [15.0,460

13.5, 11.5] ms for the burst durations (of AB/PD, LP, and PY neurons).461

• duty cycles, phase gaps, phase delays, and phases deviated from the experimental features by a maximum462

distance of 0.2 standard deviations.463

Out of 1 million samples from the posterior, 35, 939 samples fulfilled all these criteria. Notably, these samples are464

no longer unbiased samples from the posterior distribution as estimated by SNPE, but they make up a database of465

model configurations whose activity closely matches experimental data.466

Regression neural network467

We performed a linear regression to identify the contribution of the circuit parameters to the total energy consump-468

tion using scikit-learn [59]. In order to test the robustness of the linear regression findings, we trained a regression469

network to identify directions in the parameter space predictive of total energy consumption. The regression network470

had the following characteristics: A Residual Network (ResNet) with one hidden layer with 20 hidden units, ReLU ac-471

tivation functions, and 50% dropout rate [60, 61]. We trained the network with a mean-squared error loss.472

After training the regression network, we searched for directions that were most predictive of the network output473

f (·). To do so, we followed the procedure described in Constantine [62] and computed:474

M = Eθ∼p(θ|xo )[∇θf (θ)∇θf (θ)T ]. (3)
Intuitively,M captures howmuch the regression function f (·) changes in different directions of the parameter space,475

computed as an expected value over posterior samples. We estimated this expected value with a Monte Carlo mean476

over 10,000 samples from the posterior distribution. We then computed the eigenvalue decomposition of M : The477
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eigenvectors of highest eigenvalue are directions in the parameter space along which the output of the regression478

neural network is most sensitive to changes.479

Sampling synaptic conductances, given energy efficient single-neuron configurations480

In order to investigate whether efficient single-neuron parameters could lead to efficient and robust network activ-481

ity, we first searched our database of 35, 939 network configurations for the five configurations that had the lowest482

metabolic cost in each neuron individually. We combined these single neuron configurations to generate 53 = 125483

configurations of membrane conductances. For each of the configurations, we then sampled 1, 000 synaptic configu-484

rations from the distribution:485

p(θs |θm, xo) ∝ p(θs ,θm|xo), (4)
where θs and θm are the synaptic and membrane conductances, respectively. We drew these samples with Markov486

chain Monte Carlo: Specifically, we used Slice Sampling with axis-aligned updates [63]. We then simulated each of487

these 53 ·1000 configurations. 72 out of the 53 configurations contained at least one sample that fulfilled our (distance488

to experimental data) criteria, and 123 configurations contained a sample that fulfilled a slightlywider criteria (allowing489

twice as much distance from the experimental data). For the remaining two configurations, we drew another 10,000490

samples with MCMC and for each of them found at least one configuration whose activity fulfilled the slightly wider491

criteria. The histograms in figures Fig. 5e,f are produced with all simulations that fulfilled the narrow criteria.492

Posterior distribution given experimental data at 27°C493

In order to infer the posterior distribution given experimental data at 27°C, we started by sampling 3 million param-
eter sets from the 31-dimensional posterior distribution at 11°C:

p(θ|x11o ) ∝ p(x11o |θ)p(θ).

We then drew 3 million sets of Q10 values from the prior distribution over Q10 values (Q10 prior in Methods, Circuit
model of the crustacean stomatogastric ganglion). We simulated these 3 million parameter sets at 27°C, from which
approximately 18% were ‘valid’ and were used to train a deep neural density estimator (see Proof of convergence of
SNPE with classifier). The hyperparameters of the neural density estimator were the same as the ones chosen for the
inference at 11°C. Since this density estimator was trained on parameters sampled from the posterior distribution at
11°C, the inferred posterior is an approximation to:

p(θ|x27o , x11o ) ∝ p(x27o |θ)p(θ|x11o ) ∝ p(x27o |θ)p(x11o |θ)p(θ),

where x11o and x27o are the features of the experimental data recorded at 11°C and 27°C, respectively. In other words,494

the resulting posterior distribution matches prior knowledge about circuit parameters as well as experimental data495

at 11°C and 27°C. Note that we inferred the posterior distribution at 11°C while ignoring the Q10 values because the496

Q10 values, by definition, do not influence the circuit activity at the reference temperature (which is assumed to be497

11°C).498

Metabolic efficiency at 27°C499

For panels Fig. 6e,f and Fig. 6g (pink plot), we analyzed 967 simulations that closely matched experimental data500

recorded at 11°C and 27°C. For Fig. 6g (purple plot), we simulated, at 27°C, the 35, 939 circuit configurations that501

match experimental data recorded at 11°C. Out of these, 8121 were robust, i.e. displayed pyloric activity at 27°C.502
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Supplementary material628

Supplementary figures629

630 Supplementary Figure 1. Full posterior distribution over circuit parameters given experimental data at 11°C.Panels on the diagonal are marginals, panels on the upper right are pairwise marginals. The first 24 parameters aremembrane conductances, the last 7 parameters are synaptic conductances. All membrane conductances are maximalconductances and are given in mS/cm2, all synaptic conductances are given in nS.
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636 Supplementary Figure 2. Summary features of activity produced by sampling from the prior, the restricted prior,and the posterior. Experimentally observed activity in green. The boxplots indicate maximum, 75% quantile, median, 25%quantile, and minimum. All summary features are z-scored with the mean and standard deviation of all simulations fromprior samples.

637

638

639

640641

642 Supplementary Figure 3. Accuracy of the enhanced version of SNPE versus accuracy in [13]. While we used half asmany simulations (9 million versus 18 million), the accuracy of the method improved. (a) Median squared discrepancybetween the experimentally measured activity and the activity produced by samples from the posterior. When using theclassifier (red), the activity produced by posterior samples is closer to experimental activity than without the classifier(blue). (b) Reduction of mean squared discrepancy between our previous results and the presented method. All distancesare computed after z-scoring the summary features with the mean and standard deviation of all prior samples.

643

644

645

646

647

648649

650 Supplementary Figure 4. Neural network regression from circuit parameters onto the total energy consumption.(a) Performance of a neural network predicting the total energy from circuit parameters. (b) Eigenvalue-spectrum of thetrained neural network reveals a single dominating direction (details in Methods). (c) The eigenvector corresponding to thestrongest eigenvalue is similar to the linear regression weights w (Fig. 4c).

651

652

653

654655

656 Supplementary Figure 5. Performance of linear regression. Left: Performance of linear regression from circuitparameters (taken from our database of 35, 393models) onto energy per spike in the PY neuron. Right: Performance oflinear regression from circuit parameters onto the average number of spikes within a burst.
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661 Supplementary Figure 6. Influence of maximal conductance of transient calcium current on circuit function. Left:Voltage trace in the PY neuron during activity produced by two circuit configurations (black and red) which are identicalapart from the magnitude of gCaT. Right: The average number of spikes per burst in the PY neuron for the twoconfigurations. The configuration with higher gCaT produces more spikes.

662

663

664

665666

667 Supplementary Figure 7. Full posterior distribution over 31 circuit parameters and 10 Q10 parameters givenexperimental data at 11°C and 27°C.668

669670

23 of 25

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted August 2, 2021. ; https://doi.org/10.1101/2021.07.30.454484doi: bioRxiv preprint 

https://doi.org/10.1101/2021.07.30.454484
http://creativecommons.org/licenses/by-nc-nd/4.0/


671 Supplementary Figure 8. Energy consumption of the circuit at 11°C and at 27°C. Energy per spike (left) and number ofspikes (right) for parameter configurations simulated at 11°C and 27°C. The energy per spike is smaller at highertemperatures, but the number of spikes is higher at higher temperatures.
672

673

674675

676 Supplementary Figure 9. Analysis of a second experimental preparation. (a) Experimental data recorded at 11°C. (b)Sample from posterior distribution matches the experimental data. (c) Energy consumption of 2804 model configurationsthat closely match experimental data. (d) Weights w of a linear regression from circuit parameters onto total energyconsumption.

677

678

679

680681

682 Supplementary Figure 10. Tuning neurons individually, for a third experimental preparation. (a) Black dots: Energyconsumed by each neuron separately. Black line: Linear regression (correlation coefficient r = −0.003, p-value p = 0.39; LPversus PY, r = 0.19, p = 0.007; AB/PD versus PY, r = 0.006, p = 0.77). (b) The activity produced by two parameterconfigurations produced with the strategy described in Fig. 5b. (c) A subset of the membrane (left) and synaptic (right)conductances for the configurations in panel (c). The membrane conductances are scaled with the following factors (left toright): 100, 100, 10,000, 100, 10,000. (d) Histogram over the total energy consumption of all 6926model configurations inour database and the energy consumption of the configurations produced with the strategy described in Fig. 5b (red). (e)Histogram of the posterior log-probability for samples from the prior distribution (grey), for the 6926models in ourdatabase (black), and for the configurations produced with the strategy described in Fig. 5b (red).
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690

691692

693 Supplementary Figure 11. Analysis of temperature robustness of a second experimental preparation. (a)Experimental data recorded at 27°C. (b) Sample from posterior distribution matches the experimental data. (c) Energyconsumption at 11°C versus energy consumption at 27°C. (d) Green: Distribution of the energy consumption of circuitsmatching experimental data at 11°C. Purple: Distribution of the energy consumption of circuits that match data at 11°Cand are robust at 27°C. Pink: Distribution of the energy consumption of circuits that match experimental data at 11°C and27°C.
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701 Supplementary Figure 12. Analysis of a third experimental preparation. (a) Experimental data recorded at 11°C. (b)Sample from posterior distribution matches the experimental data. (c) Energy consumption of 6926 model configurationsthat closely match experimental data. (d) Weights w of a linear regression from circuit parameters onto total energyconsumption.
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707 Supplementary Figure 13. Tuning neurons individually, for a second experimental preparation. (a) Black dots:Energy consumed by each neuron separately. Black line: Linear regression (correlation coefficient r = −0.009, p-value
p = 0.39; LP versus PY, r = 0.21, p = 0.0012; AB/PD versus PY, r = 0.059, p = 0.10). (b) The activity produced by twoparameter configurations produced with the strategy described in Fig. 5b. (c) A subset of the membrane (left) and synaptic(right) conductances for the configurations in panel (c). The membrane conductances are scaled with the following factors(left to right): 100, 10, 10,000, 100, 10,000. (d) Histogram over the total energy consumption of all 2804modelconfigurations in our database and the energy consumption of the configurations produced with the strategy described inFig. 5b (red). (e) Histogram of the posterior log-probability for samples from the prior distribution (grey), for the 2804models in our database (black), and for the configurations produced with the strategy described in Fig. 5b (red).
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718 Supplementary Figure 14. Analysis of temperature robustness of a third experimental preparation. (a)Experimental data recorded at 27°C. (b) Sample from posterior distribution matches the experimental data. (c) Energyconsumption at 11°C versus energy consumption at 27°C. (d) Green: Distribution of the energy consumption of circuitsmatching experimental data at 11°C. Purple: Distribution of the energy consumption of circuits that match data at 11°Cand are robust at 27°C. Pink: Distribution of the energy consumption of circuits that match experimental data at 11°C and27°C.
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