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Abstract Epilepsy can have many different causes and its development (epileptogenesis)17

involves a bewildering complexity of interacting processes. Here, we present a first-of-its-kind18

computational model to better understand the role of neuroimmune interactions in the19

development of acquired epilepsy. Our model describes the interactions between20

neuroinflammation, blood-brain barrier disruption, neuronal loss, circuit remodeling, and21

seizures. Formulated as a system of nonlinear differential equations, the model is validated using22

data from animal models that mimic human epileptogenesis caused by infection, status23

epilepticus, and blood-brain barrier disruption. The mathematical model successfully explains24

characteristic features of epileptogenesis such as its paradoxically long timescales (up to25

decades) despite short and transient injuries, or its dependence on the intensity of an injury.26

Furthermore, stochasticity in the model captures the variability of epileptogenesis outcomes in27

individuals exposed to identical injury. Notably, in line with the concept of degeneracy, our28

simulations reveal multiple routes towards epileptogenesis with neuronal loss as a sufficient but29

non-necessary component. We show that our framework allows for in silico predictions of30

therapeutic strategies, providing information on injury-specific therapeutic targets and optimal31

time windows for intervention.32

33

Introduction34

Epilepsy is a common neurological disorder that affects numerous physiological mechanisms in35

the central nervous system (Lytton, 2008; Devinsky et al., 2018). Several processes play an im-36

portant role in the development of epilepsy. These include the activation of innate and adaptive37

immune responses (Ravizza et al., 2008; Bauer et al., 2017), disruption of the blood-brain barrier38
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(BBB) integrity (Marchi et al., 2012; Löscher and Friedman, 2020), neuronal loss (Tasch et al., 1999;39

Dingledine et al., 2014), and remodeling of neural circuits (Liao et al., 2011; Bertram, 2013; Jo et al.,40

2019). Among the common causes of acquired epilepsy are traumatic brain injury (Annegers and41

Coan, 2000; Pitkänen and Immonen, 2014), stroke (Olsen, 2001; Pitkänen et al., 2016), central neu-42

ral system infection (Van Baalen et al., 2010; Ramantani and Holthausen, 2017), and new onset43

status epilepticus (SE) (Holtkamp et al., 2005; Gaspard et al., 2018). All three lead to neuroinflam-44

mation, which has been widely studied in the context of epilepsy (Barker-Haliski et al., 2017; Rana45

and Musto, 2018; Vezzani et al., 2019). In particular, signaling pathways of neuroinflammation46

have been shown to modulate neuronal excitability (Devinsky et al., 2013; Vezzani and Viviani,47

2015), seizure threshold (Heida et al., 2004; Galic et al., 2008) and severity of the seizure burden48

(Auvin et al., 2010b; Tan et al., 2015; Rana and Musto, 2018). For example, Patel et al. (2017) have49

shown that TNF knockout mice have a significantly reduced seizure burden. A similar effect was50

observed in animals with a deletion of TNFR1, while ablation of TNFR2 led to an increase of seizure51

burden. Moreover, it has been hypothesized that noxious stimuli causing neuroinflammation may52

not only be associated with an acute injury but also with abnormal neuronal activity, resulting in53

so-called neurogenic neuroinflammation (Xanthos and Sandkühler, 2014).54

The complexity of the involved processes interacting on various timescales makes understand-55

ing epileptogenesis (EPG) a great challenge. In such a complex system with several nonlinear inter-56

acting processes, mathematical modeling is a useful tool for a better understanding the system’s57

dynamics. In addition, modeling helps to systematize and explain the great body of observations58

obtained in clinical and animal model studies, and to provide valuable predictions for further ex-59

perimental studies. The mathematical modeling approach has already been successfully applied60

to studying the dynamics of ictogenesis (initiation, spreading, and termination of epileptic seizures)61

(Jirsa et al., 2014; Proix et al., 2017; Jirsa et al., 2017). However, no computational model of EPG62

that implements multiple major pathomechanisms at their relevant time scales (including neuroin-63

flammation) has yet been developed.64

Therefore, in this paper, we present a first-of-its-kind mathematical model that describes and65

simulates the course of acquired epilepsy development and accounts for the epileptogenic role of66

neuroimmune interactions. Being tested on data from three animal models, our unified compu-67

tational framework allows for simulation of EPG caused by most common types of neural injuries68

using a single parameter set. It explains, among other things, how different causes (injury types)69

lead to similar outcomes (epilepsies) and why the development of epilepsy may take months or70

years after the triggering injury in certain conditions. Our mathematical analysis reveals that these71

long time scales result from the underlying dynamical system slowing down and lingering in the72

vicinity of an unstable fixed point. In addition to the reproduction and explanation of injury-specific73

features of EPG, our model provides insights into general principles of EPG and allows us to gen-74

erate testable predictions for different therapeutic strategies.75

Methods76

Model structure and interactions captured by the model77

The model describes interactions between neuroinflammation (I ), BBB disruption (B), neuronal78

loss (D), circuit remodeling (R) and epileptic seizures (S) upon neurological injury (Fig. 1A). The79

probability of spontaneous recurrent seizure occurrence is assumed to depend on two seizure-80

promoting factors: intensity of neuroinflammation and degree of pathological circuit remodeling81

(arrows I → S, R → S in Fig. 1A). Pathological remodeling in circuits (R) may be constituted by,82

among others, loss of inhibitory neurons (Sloviter, 1987; Knopp et al., 2008), abnormal excitatory83

synaptogenesis (Weissberg et al., 2015; Kim et al., 2017b), or increase of recurrency in neural cir-84

cuits due to mossy fiber sprouting (Tauck and Nadler, 1985; Buckmaster, 2014). Such pathological85

remodeling leads to an increase of excitability in neuronal circuits and rising of the chance of criti-86

cal synchronization that results in the occurrence of spontaneous seizures (arrow R → S). A facil-87
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itation of a neuroinflammatory response was shown to modulate neuronal excitability (Devinsky88

et al., 2013; Vezzani and Viviani, 2015) and, consequently, lower seizure threshold (Heida et al.,89

2004; Galic et al., 2008) (arrow I → S). In agreement with a recent finding of the inhibition of90

neuronal activity by microglia (Badimon et al., 2020), we assume that in conditions of profound91

neuroinflammation this physiological function may be impaired due to adoption of proinflamma-92

tory phenotypes by microglia.93

0.0 0.5 1.0

Extent of blood-brain
barrier disruption B º I

0.0

0.5

1.0

D
eg

re
e

o
f
ci

rc
u
it

re
m

o
d
el

in
g

R

D=0

0.0 0.1

Extent of blood-brain
barrier disruption B º I

0.00

0.05

0.10

0.15

D
eg

re
e

o
f
ci

rc
u
it

re
m

o
d
el

in
g

R

0
.0

0
.5

1
.0

0
.0

0

0
.2

5

0
.5

0

0
.7

5

1
.0

0

0
.0

5

0
.1

0

Velocity of state changes

0
.0

0
.5

1
.0

0
.0

0

0
.2

5

0
.5

0

0
.7

5

1
.0

0

0
.0

5

0
.1

0

Velocity of state changes

Low                   High

Circuit remodeling, R

Neuroinflammation, I

Blood-brain barrier 
disruption, B

Seizures, S

Neuronal death, D

A

FIG 1 


0 1 2 3 4 5 6

Seizure promoting factors I2 + R

0

5

10

15

S
ei

zu
re

p
ro

b
a
b
il
it
y

d
en

si
ty

fu
n
ct

io
n

P
s

=
f
(I

,R
)

0 1 2 3 4 5 6

Seizure promoting factors I2 + R

0

5

10

15

S
ei

zu
re

p
ro

b
a
b
il
it
y

d
en

si
ty

fu
n
ct

io
n

P
s

=
f
(I

,R
)

E
xp

ec
te

d
 s

ei
zu

re
 f

re
q

u
en

cy
 

fu
n

ct
io

n
 

 FIG S1
7.8 cm

stable steady states
unstable steady state

B

8 cm


Figure 1. Model overview: A. Interactions betweenvariables in our model. B. State space plot for the ratemodel with 3 steady states: ’healthy’ stable steady state(black), unstable fixed point (white), and ’epileptic’ stablesteady state corresponding to state of progressed EPG(gray). The dashed black line going through the unstablefixed point is a separatrix, which separates the basin ofattraction of the ’healthy’ steady state (shaded area) fromthe basin of attraction of the ’epileptic’ steady state. Color ofarrows indicates the velocity of state changes. Red dashedline corresponds to the glial neurotoxicity threshold Θunder conditions of timescales separation I ≈ B.

Epileptic seizures have been shown94

to cause metabolic stress on the cen-95

tral nervous system due to increased96

energy demands associated with exces-97

sive neural activity (Zhang et al., 2015;98

Prager et al., 2019). Data from humans99

and animal models also suggest that100

seizures induce leakiness of the BBB101

and that the leakiness is negatively cor-102

related with time since the last seizure103

(VanVliet et al., 2007;Rüber et al., 2018).104

In our model, we account for this effect105

of seizures (Fig. 1A, arrow S → B), as106

well as neuroinflammation that can be107

caused by exposure of the parenchyma108

to cells or soluble factors infiltrating109

through the leaky BBB (Farrell et al.,110

2017; Löscher and Friedman, 2020) (ar-111

row B → I ). Neuroinflammation it-112

self can cause leakiness of the BBB via113

activation of cells of the neurovascular114

unit (Obermeier et al., 2013), which re-115

sults in a positive feedback loop in our116

model (Fig. 1A, arrow I → B). Excessive117

neuroinflammation may lead to neuro-118

toxicity (Block et al., 2007; Biber et al.,119

2014), which is also accounted for in120

our model (arrow I → D). Neural loss,121

in turn, leads to remodeling of neural122

circuits. Some remodeling may aim at123

maintaining functional properties. Here124

we only consider the kind of remodel-125

ing that leads to increased seizure sus-126

ceptibility (arrow D → R). Furthermore,127

we also account for pathological circuit128

remodeling that is independent of neu-129

ral loss. Examples of such remodeling130

are development of chronic inhibition131

deficits (Kim et al., 2017b) and exces-132

sive excitatory synaptogenesis (Weiss-133

berg et al., 2015) due to albumin ex-134

travasation upon BBB dysfunction (Fig. 1A, arrow B → R).135
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Mathematical description136

The interactions between the processes described above are modeled with a system of stochastic137

nonlinear ordinary differential equations:138

⎧

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎩

�I İ = −I + �B→IB

�BḂ = −B + �I→BI + S(I, R)

�DḊ = �I→D(1 −
D

Dmax )max{0, I − Θ}
�RṘ = −R + �B→RB + �D→RD,

(1)

where I(t) is neuroinflammation intensity; B(t) is the extent of BBB disruption; D(t) is the ex-139

tent of neuronal loss; R(t) is the degree of circuit remodeling. All variables are assumed to be re-140

versible, except for neural loss D(t), which is motivated by the impossibility of recovery of dead141

neurons and thereby excludes the of possibility of neurogenesis in the adult nervous system.142

�B→I , �I→B , �I→D, �B→R, �D→R are parameters for coupling strengths of the respective variables. The143

described processes are assumed to operate on 3 timescales: fast (seconds-minutes) for epileptic144

seizures; intermediate (hours-days) for neuroinflammatory reaction (�I ); and slow (days-weeks) for145

permeability of the BBB (�B), neuronal loss (�D) and circuit remodeling (�R).146

Mild neuroinflammation, which is a physiological process aiming to maintain tissue homeosta-147

sis (Yong et al., 2019), is assumed to have no neurotoxic effects. Thus, neurotoxicity leading to148

neuronal loss requires excessively activated glia (I(t) > Θ), where Θ is a neurotoxicity threshold149

and Dmax is a maximum possible extent of neuronal loss.150

The occurrence of spontaneous recurrent seizures in the system is modeled with a Poisson151

process. The seizure rate (the probability of a seizure occurring per unit time) is monotonically152

increasing with the intensity of neuroinflammation I(t) and the extent of circuit remodeling R(t)153

according to:154

�s(I, R) = �max e
�I→SI2+�R→SR − 1
e�I→SI2+�R→SR + 1

, (2)
where �max is a maximum possible amount of seizures per day; �I→S and �R→S are parameters155

scaling the seizure-promoting contribution of, respectively, neuroinflammation and circuit remod-156

eling. The sigmoid shape of the function (Appendix 1) reflects the saturation effect of maximum157

possible seizure burden that nervous system may be exposed to within a finite time interval due158

to metabolic constraints. The assumption of a quadratic dependence of the seizure rate on the159

intensity of neuroinflammation minimizes seizure-promoting effects of mild neuroinflammation160

I(t) ≳ 0.161

The term S(I, R) in Eq. 1 describes an effect of seizure activity on permeability of the BBB:162

S =

⎧

⎪

⎨

⎪

⎩

�S→B , during seizure
0, beyond seizure, (3)

where �S→B = KS→B
�maxTseizure describes the effect of a single seizure on the permeability of the BBB;163

KS→B is a parameter defining themaximumpossible burden of seizure activity; Tseizure is the seizure164

duration.165

Time scale separation and rate model166

In addition to themodel simulating stochastically occurring seizures (Eqs. 1-3), we developed a rate167

model, where the Poisson process is approximated with a seizure burden function:168

S(I, R) = KS→B
e�I→SI2+�R→SR − 1
e�I→SI2+�R→SR + 1

. (4)
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The rate of seizures dictated by Eq. 4 does not allow for tracking the occurrence of individual169

seizures, but it provides a means for more intuitive explanation of the dynamics of the system.170

Moreover, we can perform the time scale separation procedure for the equation describing neu-171

roinflammation since its timescale is smaller than the timescales of the other processes (�I <172

�B , �D, �R). After performing the time scale separation (see Appendix 2 for details), the fast evolu-173

tion of the neuroinflammation variable can be approximated by the dynamics of BBB disruption174

variable according to Eq. 1: I(t) ≈ B(t). Thus, we can obtain the state space representations of the175

model in the B − R domain for particular values of the monotonically rising variable D(t). Stability176

analysis (Appendix 3) shows that in the absence of neuronal loss, the system is bistable, having177

3 steady states: a ‘healthy’ steady state in the origin; an unstable fixed point; and a stable steady178

state corresponding to the state of progressed EPG (Fig. 1B). A separatrix, illustrated with a black179

dashed line, passes through the unstable fixed point and separates the basins of attraction of the180

two stable steady states. The neurotoxicity threshold (for neuronal death), illustrated with the red181

dashed line, divides the state space into two areas: to the left are states in which no neuronal loss is182

being induced, and to the right are states in which the neuronal population experiences neurotoxic183

effects due to glial overactivation.184

Simulation of various neurological injuries185

Using a single set of parameters (Appendix 4), the mathematical model allows for the simulation186

of EPG progression caused by various types of neurological injuries. Modeling of different types187

of injuries is carried out by application of time sequences of perturbations mimicking pathological188

effects of the respective injury (Fig. 2A-C). In this study, we present simulation of three injury types189

and associated animal models, which are distinct in methods of EPG induction, and time course of190

disease pathology. Detailed simulation protocols are available in Appendix 5.191

The first animal model is Theiler’s murine encephalomyelitis virus (TMEV) mouse model, which192

is commonly used in epilepsy research for modeling infection-induced epilepsy in humans (Libbey193

et al., 2008; Stewart et al., 2010; Libbey et al., 2011; Gerhauser et al., 2019). During the first week194

post infection, the acute neuroinflammatory response is developing. It is characterized by the195

presence of excessive concentrations of proinflammatory molecules (Patel et al., 2017), micro-196

and astrogliosis (Kirkman et al., 2010), which are followed by relative recovery during subsequent197

weeks post infection. Taking this dynamics of pathology development into account, we simulate198

infectious injury by induction of neuroinflammationwith onset and offset within the first week post199

infection (Fig. 2A).200

The second animal model is a pilocarpine rodent model, which is based on induction of SE201

(excessively long generalized seizure) by injection of pilocarpine with further pharmacological ter-202

mination of SE (Polascheck et al., 2010; Zhang et al., 2015; Brackhan et al., 2016; Kim et al., 2017a).203

SE induces neuronal loss, neuroinflammation and profound leakage of the BBB. In our framework,204

we do not define the inflammatory perturbation for simulation of pilocarpine since it would be indi-205

rectly induced by BBB disruption. Thus, we simulate the induction of pilocarpine model injury as a206

combination of two external perturbations (Fig. 2B): neuronal death, which allows us to account for207

initial SE-associated neuronal loss (Auvin et al., 2010a), and BBB leakage, which normalizes after208

1-2 days post SE (Bankstahl et al., 2018).209

The third animal model is based on the induction of BBB leakage. It is obtained via exposure of210

the brain tissue to an artificial cerebrospinal fluid containing bile salts (Seiffert et al., 2004; Tomkins211

et al., 2007). Alternatively, an artificial cerebrospinal fluid may contain serum albumin, which mim-212

ics the extravasation of this protein in brain parenchymawhen blood-brain barrier is dysfunctional213

(Weissberg et al., 2015). This animalmodel is simulated by settingB to a high value for a period cor-214

responding to the time of application of bile salts or pumping albumin into the brain of an animal215

(Fig. 2C).216

5 of 33

.CC-BY-NC 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted August 1, 2021. ; https://doi.org/10.1101/2021.07.30.454477doi: bioRxiv preprint 

https://doi.org/10.1101/2021.07.30.454477
http://creativecommons.org/licenses/by-nc/4.0/


FIG 2

B

S

I

R

D

IE

Ton
Time post infection

Induced inflammation

0 Toff

B

S

I

R

D
BE

Time after pump implantation

Induced blood-brain 
barrier leakage

0 Toff

B

S

I

R

D

BE

Time after status

 epilepticus

Induced blood-
brain barrier 

leakage

0 Toff

DE

Time after status

 epilepticus

Induced neuronal 
death

0 Toff

A

B

C

9.5 cm

Figure 2. Simulation schematics for three animal models of epileptogenesis: A. Theiler’s murineencephalomyelitis virus (TMEV) mouse model. B. Chemically-induced (pilocarpine) SE rodent model. C. BBBdisruption rodent model.

Statistics217

All experiments were performed as mathematical model simulations. Group allocation of samples218

is described in Appendix 5. No data were excluded as outliers. For stochastic model simulations,219

the sample size of N=30 was chosen, which is twice larger than a common sample size in animal220

model experiments (Weissberg et al., 2015; Patel et al., 2017; Kirkman et al., 2010; Brackhan et al.,221

2016; Zhang et al., 2015). Data are presented both in raw format (e.g. neuroinflammation intensity222

development over time, time sequences of seizures occurrence), and in format of mean ± stan-223

dard error of the mean (SEM), when convenient (e.g. latent period duration, seizure occurrence224

frequency for the whole sample). Due to bistability of system states (Fig. 1B, Appendix 3), data225

could not be assumed to have Gaussian statistics and non-parametric tests were used. Specifically,226

an unpaired two-group Mann-Whitney U test was performed for analyses of dose-dependence ef-227

fects on the intensity of the injury. p = 0.05 was chosen as a threshold for statistical significance228

and exact p-values were reported.229

Data and code availability230

Experimental data from animal models of epileptogenesis, which are used in this study, are de-231

scribed in detail in Appendix 6. Simulation code, data, analysis and figures production scripts are232

available at https://github.com/danylodanylo/math-model-epileptogenesis.git.233

Results234

Dependence of EPG on injury intensity and emergence of long timescales235

The risk of epilepsy development and severity of seizure burdenhave been shown to dependon the236

intensity of the neurological injury. Patients suffering from mild traumatic brain injury (TBI) have237

2.1% cumulative probability of seizure development over 30 years, while for severe TBI it rises up238
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to 16.7% (Annegers et al., 1998). The dose-dependence is not specific to TBI and also translates to239

animal models of epilepsy. In infection-induced epilepsy in mice, increasing viral dose from 3 × 103240

plaque forming units (PFU) to 3×106 PFU leads to an increase of the fraction of animals with seizures241

from 25% to 80% (Libbey et al., 2011). In SE models, the duration of the acute epileptiform activity242

determines the incidence of epilepsy in animals (Löscher, 2015).243

We tested whether our model captures the observed spectrum of dose-dependence effects244

of the risk of EPG (and its characteristic features) on the intensity of neurological injury. Figure 3245

illustrates the results of simulation of EPG induced by BBB disruption. The latent period duration246

(time period between injury and arrival of first seizure, Fig. 3A) and seizure burden (Fig. 3B) in247

simulated animals are in agreement with data reported in the animal model study (Weissberg248

et al., 2015). Accordingly, seizure manifestation was observed in our simulations either during the249

infusion of albumin (7 days after pump implantation), or after albumin pump removal (e.g. animals250

#6, #7, #8 in Fig. 3C). Similarly to the animal model data, no neuronal death was observed within251

the observation period because neuroinflammation did not reach the neurotoxicity threshold for252

neuronal death (Fig. 3D).253
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Figure 3. Dose-dependence of EPG on the intensity of neurological injury: A. Comparison of the latent period duration in BBB disruptionanimal model data (Weissberg et al., 2015) and simulations with the intensity of the injury: matched toWeissberg et al. (2015) (BE = 0.25, Toff = 7days); decreased via lowering albumin concentration (BE × 50%); decreased via shortening the time window of albumin infusion (Toff × 50%);increased via prolongation of the time window of albumin infusion (Toff × 150%). The p values for two-sided Mann-Whitney U test are respectively
0.0059, 0.7772, and 0.9939. B. Comparison of seizure burden on the first month after injury onset in BBB disruption animal model data (Weissberg
et al., 2015) and simulations (annotation identical to caption in A.). The p values for two-sided Mann-Whitney U test are respectively 1.0662 10−10,
5.6488 10−10, and 1.1774 10−8. C. Time sequences of seizure occurrence in individual animals. Orange bar corresponds to the time window ofinjury induction. D. Time course of neuroinflammation in individual animals (N=30). Red dashed line corresponds to the neurotoxicity threshold
Θ. Light orange area corresponds to the time window of injury induction. E. EPG in response to injuries of 4 different intensities illustrated withseizure rate development over time post pump implantation. Simulation results obtained with the rate model. The injury intensity control wasimplemented by modification of the duration of the time window of albumin infusion (Toff). F. EPG in response to injuries of 4 differentintensities (annotation identical to caption E.) illustrated over the state space plot. The state space consists of 3 steady states: ’healthy’ (black),unstable (white) and ’epileptic’ (gray). Dashed black line (separatrix) separates basins of attraction of two stable steady states. Red dashed linecorresponds to neurotoxicity threshold Θ. Distance between circle markers on EPG traces correspond to time intervals of 30 days.

Our model predicts that with a 50% decrease in the injury intensity the latent period duration254

has prolonged (5.57 ± 0.34 days vs 7.23 ± 0.47 days, Fig. 3A), and the seizure burden has dropped255

significantly (1.24 ± 0.07 seizures
day vs 0.62 ± 0.04 seizures

day , Fig. 3B). In the experimental setting, the ma-256

nipulation of injury intensity used in this simulation corresponds to lowering of the albumin con-257

centration in the infused artificial cerebrospinal fluid. An alternative approach to manipulation of258
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injury intensity is prolongation or shortening of the time window of artificial cerebrospinal fluid259

infusion. Shortening by 50% did not have a significant effect on latent period duration (Fig. 3A),260

but led to a significant drop in the seizure burden (1.24 ± 0.07 seizures
day vs 0.58 ± 0.03 seizures

day , Fig. 3B).261

On the other hand, the increase of injury intensity simulated by 50% prolongation of infusion time262

window led to a significant rise of seizure burden (1.24 ± 0.07 seizures
day vs 2.13 ± 0.17 seizures

day , Fig. 3B).263

In addition to latent period duration and seizure burden, the intensity of the injury has been also264

shown to affect the risk of epilepsy development itself. Figures 3E,F show that injury of low intensity265

does not lead to progressive EPG due to the restoration of the healthy state. Mathematically, the266

dose-dependence originates from the fact that injuries of low intensity fail to push the system state267

across the separatrix into the basin of attraction of the ’epileptic’ steady-state (Fig. 3F). Instead, the268

model recovers without progressive EPG.269

Surprisingly, but in line with clinical observations, remarkably long timescales of EPG (up to270

decades) emerge in ourmathematical model, despite the ’slowest’ variables operating on relatively271

fast timescales of weeks. From themathematical point of view, slowing down of dynamics is occur-272

ring in our model when the state of the system approaches the unstable steady state (Fig. 1B). In273

order to visualize this property, we have performed a simulation of the injury with lowered inten-274

sity, which leads to slower EPG (Fig. 3E). In this case, the progression of the pathology takes longer275

due to slowing down of state changes around the unstable fixed point (Fig. 3F), while EPG will be276

facilitated when caused by injury of increased intensity. In sum, consistent with clinical data, our277

model can capture the effect of the intensity of the injury on the latent period duration, seizure278

burden, and the risk of EPG.279

Variability of EPG risk and pathology severity280

In addition to the dose-dependent effects of injury intensity, the variability of EPG risk and the281

severity of pathology is evident even in animals exposed to identical injury. Even in highly stan-282

dardized conditions of animal experiments, the fraction of animals that develop seizures, and the283

seizure burden in seizing animals are varying despite identical parameters of induced injury. For284

example, according to the data from a study by Polascheck et al. (2010), in 12 rats treated with285

pilocarpine, 2 have not shown any seizures, while seizure frequency ranged from 1 to 72 seizures
week in286

the remaining animals at the time point of 8 weeks after the SE. The variability in EPG outcome is287

likely to depend on, among others, variability in genetic and epigenetic features of animals in exper-288

iment, and variability in various factors when conducting the experimental procedures. Moreover,289

the brain is an intrinsically stochastic complex system (Deco et al., 2009). Therefore, we added this290

intrinsic stochasticity to our model allowing for the variability in outcomes of EPG even in identical291

animals exposed to identical injuries.292

To test whether our model is able to account for the experimentally observed variability of EPG293

outcomes, we simulated infection-induced EPG in the TMEV model (Fig. 4). Our simulation repro-294

duces the characteristic temporal pattern where seizures manifest after second day post infection295

(day 2.83± 0.13) and profoundly drop in frequency during the secondweek post infection (Fig. 4A,F).296

Moreover, the computational model captures the characteristic time course of neuroinflammation297

(Fig. 4B) as well as neuronal death, which is characterized by the occurrence of macroscopically298

measurable neuronal damage on day 4 post infection and its further progression and saturation299

from the second week post infection (Fig. 4C). Our results suggest that this characteristic plateau300

of neuronal loss progression originates from the attenuation of the neuroinflammatory response301

during week 2 post infection (Fig. 4D). Kirkman et al. (2010) have shown that neuronal death was302

significantly more abundant in animals that developed seizures versus those that did not. Consis-303

tent with this observation, neuronal loss in the model is correlated with seizure burden during the304

acute post infection stage (Fig. 4E).305
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Figure 4. Model explains key features of infection-induced EPG: A. Comparison of characteristic seizure occurrence patterns from TMEVanimal model data (left, Patel et al. (2017)) and simulation (right). Patel et al. (2017) reported the total number of seizures per day aggregatedover N=11 animals together. B. Comparison of neuroinflammation time courses from TMEV model (left, Patel et al. (2017)) and simulation(right). C. Comparison of neuronal loss score progression from TMEV model (left, Kirkman et al. (2010)) and simulation (right). Neuronal lossscore for the simulation was computed using the masking procedure from (Kirkman et al., 2010). Masking procedure and its effect of ’maskingout’ variability in the simulation results are explained in detail in the supplementary figure. D. Neuroinflammation course in individual animals(N=30). Red dashed line corresponds to the neurotoxicity threshold Θ. Light red area corresponds to the time window of injury induction. E.Neuronal loss one month post infection (day 35) is correlated with severity of seizure burden in the acute phase (week 1 post infection). Bluedots correspond to individual animals. Blue line corresponds to linear regression fit with coefficient of determination R2 = 0.65. F. Timesequences of seizure occurrence in individual animals. Red bar corresponds to the time window of injury induction.
Figure 4–Figure supplement 1. Neuronal loss score computation (masking procedure) from Kirkman et al. (2010): Raw neuronal death data
from TMEV model simulation (left) and neuronal loss score computation scheme (right). Horizontal dashed lines on the left correspond to 10%,
30% and 60% extent of neuronal loss, which are the border values separating score values in the scheme from Kirkman et al. (2010). In Kirkman
et al. (2010), neuronal loss score data are presented as a sum of scores for 2 hippocampi (maximum score: 3 × 2 = 6). Thus, neuronal loss score
computed for simulated TMEV animals was multiplied by factor of 2 for comparability with experimental data. Absence of variability (0 SEM) in
Fig. 4C is explained by ’masking out’ of variability in neuronal loss score computation (left).

Evaluation of seizure occurrence on a follow-upperiod of one year post infection (Fig. 4F, Fig. 5A,B)306
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illustrates the variability of EPG outcomes in simulated animals. Among 30 simulated animals, 9307

did not exhibit any seizures within one week, while the remaining 21 exhibited seizure burdens308

of various severity. Our model suggests that even for (hypothetically) identical animals exposed309

to identical injury, the EPG outcome is variable due to the stochastic nature of spontaneous recur-310

rent seizures. Mathematically, the stochastic nature of seizure generation induces noise in the EPG311

(Fig. 5C), affecting disease progression and outcome (Fig. 5A,B).312
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Figure 5. Variability of EPG outcomes in identical animals exposed to identical injury originates from
the stochastic nature of spontaneous seizures: A. Distribution of seizure rate one year after infection for30 simulated TMEV animals. B. Examples of seizure rate development in time for 3 animals with differentseizure burden outcomes on one year post infection (line color code for 3 animals is consistent in allsubfigures). The raster plot on top illustrates the occurrence of seizures in time for corresponding animals. C.EPG course for 3 animals with different seizure burden outcomes on one year post infection illustrated in B-Rdomain. Distance between circle markers on EPG traces correspond to time intervals of 7 days. Overallvisualization period is 1 year post infection.

Computational model accounts for complex and injury-specific features of EPG313

EPG is often conceptualized as a two-stage process comprising a clinically silent latent period be-314

fore the occurrence of a first spontaneous seizure and a subsequent seizure period. However, a315

growing body of evidence suggests that this view may be overly simplistic (Pitkänen et al., 2015).316

For example, in a perforant path stimulation rat epilepsy model epileptiform activity is already317
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observed just after the injury induction prior to the first seizure (Bumanglag and Sloviter, 2018),318

questioning the existence of a latent period. Indeed, EPG appears to exhibit various injury-specific319

features. In the following, we show how our model can account for qualitatively different types320

of EPG. We illustrate this for different types of EPG-inducing injuries including BBB leakage, in-321

fection, and SE (due to pilocarpine administration) in Figs. 3, 4 and 6, respectively. In the case322

of EPG induced by BBB leakage, the latent period approaches one week in duration (4.97 ± 0.33323

days, Fig. 3A,C). On the contrary, in the TMEV infection model, the occurrence of first spontaneous324

seizures takes place already after the second day after the viral infection (2.83 ± 0.13 days). Then,325

this early onset of seizures is followed by a period of profound decrease in seizure activity starting326

during the 2nd week post-infection (Fig. 4A,F).327

In the pilocarpine-induced SE model of EPG, gliosis and neuronal death are progressing rapidly328

during the first week after SE (Fig. 6A,B). Data (Brackhan et al., 2016) suggests that the progression329

is slowing down during the second week after injury, reaching a plateau as indicated by a compar-330

ison of day 5 and day 14 post SE (Fig. 6). However, when looking at a longer time scale, a compari-331

son of the immunoreactivity of neuron-specific nuclear protein (NeuN) in the hippocampus (Zhang332

et al., 2015) between days 7 and 60 suggests a profound progression of neuronal loss (Fig. 6C).333

Our model captures this temporal pattern of pathological development of gliosis and neuronal334

loss with a relative recovery after the acute neurological injury (Fig. 6A,B) and further progression335

of pathology in the chronic phase (Fig. 6C).336
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Figure 6. Mathematical model captures and explains mechanisms of injury-specific features of EPG in pilocarpine-induced SE animal
model of epilepsy: A. Comparison of microglial activation progression from animal model (left, Brackhan et al. (2016)) with neuroinflammationcourse in simulated animals (right). Data are shown with mean values (red dots) and error bars for SEM. Gray area corresponds to the timewindow of injury induction. B. Comparison of neuronal loss progression from animal model (left, Patel et al. (2017)) with neuronal loss insimulated animals (right). Data are shown with mean values (blue dots) and SEM bars. Gray area corresponds to the time window of injuryinduction. C. Comparison of neuronal loss progression from animal model data (left, Zhang et al. (2015)) with neuronal loss in simulated animals(right) illustrated for 3 time points. For simulation results, data are shown with mean values (blue bars) and error bars for SEM. D. Simulationresults illustrate processes underlying the rise of seizure rate after injury despite relative recovery of the BBB integrity. Orange, light blue andblack thin lines correspond respectively to extent of BBB disruption, degree of circuit remodeling and seizure rate in individual animals (N=30).Solid lines correspond to prediction from the rate model. Gray area corresponds to the time window of injury induction. E. Neuroinflammationdevelopment in time with indication of presumed phase of relative recovery characterized by absence of neurotoxicity in rate model prediction.Thin lines correspond to individual animals (N=30). Solid lines correspond to prediction from the rate model. Red dashed line corresponds tothe neurotoxicity threshold Θ. Gray area corresponds to the time window of injury induction. F. Extent of neuronal loss development in timewith indication of presumed phase of relative recovery characterized by absence of neurotoxicity in rate model prediction (annotation identicalto caption in E.).

Themodeling results suggest that despite the relative recovery of the BBB permeability, seizure337

burden grows due to the gradual increase in the degree of circuit remodeling (Fig. 6D). The patho-338

logical changes in circuity are happening in reaction to the remaining BBB leakage and ensuing339
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damage to the neural population. The slowing of neuronal loss progression (Fig. 6B) and later340

progression during the chronic phase (Fig. 6C) are explained by the leveling off of the neuroinflam-341

mation after the initial injury and subsequent growth of neurotoxicity associated with the growth342

of seizure burden (Fig. 6D). Thus, seizures take over the propellent role in pathology development343

from the initial neurological injury. This results in the emergence of the complex temporal pattern344

of pathology progression in the pilocarpine animal model.345

Multicausality and degeneracy in EPG: Neuronal loss is sufficient but not necessary346

for inducing EPG347

The role of neuronal loss in epilepsy development has been extensively debated. Massive neu-348

rodegeneration in the hippocampus, known as hippocampal sclerosis, is a common pathology of349

temporal lobe epilepsy and other epilepsy syndromes (Thom, 2014). Moreover, the extent of neu-350

ronal loss has been shown to be positively correlated with seizure frequency (Lopim et al., 2016).351

However, it is still an open question whether neuronal loss is a primary cause of EPG, its conse-352

quence, or both (Tasch et al., 1999; Kapur, 2003; Sendrowski and Sobaniec, 2013). In a study by353

Weissberg et al. (2015), EPG with recurrent seizures was triggered in mice by induction of BBB354

disruption without evidence of neuronal loss. This indicates that neuronal loss may not be neces-355

sary for EPG. As discussed above, this phenomenon is readily explained by our model, which can356

produce EPG without cell death based on inflammation and BBB disruption alone (Fig. 3F). Given357

these results, we wondered if cell death, while not being necessary for EPG induction, may still be358

sufficient for it.359

Indeed, our model predicts that neuronal loss alone can trigger the induction of EPG (Fig. 7A).360

Specifically, neuronal loss triggers slow remodeling of neural circuits, which gradually lowers the361

seizure threshold and increases the seizure rate. Mathematically, the presence of neuronal loss362

modifies the locations of the steady states (Fig. 7B): the ‘healthy’ steady-state and the unstable363

fixed point move towards each other, resulting in a non-zero seizure rate even when the system is364

resting in the ‘healthy’ steady state. Further increase of neuronal loss leads to a bifurcation where365

the ‘healthy’ steady state collides with the unstable fixed point at a certain value of neuronal cell366

loss Dcritical ≈ 0.41 (Fig. 7B, for derivation see Appendix 7). For values of neuronal cell loss greater367

or equal than Dcritical, the development of progressive EPG towards the ‘epileptic’ steady-state is368

inevitable (Fig. 7A). In this case, the exact extent of neuronal loss determines the average time until369

the development of progressive EPG (Fig. 7C). However, progressive EPG is also possible in animals370

with a subcritical extent of neuronal loss due to stochasticity (D < Dcritical, see animals with D = 0.3371

in Fig. 7A). The finding that neuronal loss is sufficient for EPG initiation and progression, while372

not being necessary for EPG in other types of injuries (Fig. 3), highlights the multicausal nature of373

EPG, where distinct processes may drive the process in isolation or in a convergent fashion. This374

is in line with a recent proposal that in degenerate systems (Edelman and Gally, 2001) multiple375

different pathological changes are sufficient but not necessary to cause hyperexcitability (Ratté376

and Prescott, 2016).377
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Figure 7. Model reveals that neuronal loss is sufficient but not necessary for EPG. A. EPG progression in 5 simulated animals withsupercritical (D = 1.0 > Dcritical ≈ 0.41) and subcritical (D = 0.3 < Dcritical ≈ 0.41) extents of neuronal loss. The raster plots above seizure ratetraces indicate seizure times of each animal. B. Effect of neuronal loss on the system stability illustrated with state space plots for rising extentof neuronal loss from left to right panels (D = 0; 0.3; ≈ 0.41; 1.0). Filled circles correspond to ’healthy’ (black) and ’epileptic’ (gray) steady states.Empty circles correspond to unstable fixed (saddle) points. Crossed empty circles correspond to semistable (one of the eigenvalues is zero) fixedpoints. For detailed analysis see Appendix 3. Red dashed line corresponds to neurotoxicity threshold Θ. C. Average time until inevitableprogressive EPG for different extents of neuronal loss obtained with rate model. The time of progressive EPG was heuristically calculated as thetime from the start of the simulation to the time point of the neuroinflammation I(t) reaching 90% of the value corresponding to the ’epileptic’steady state. Black dashed line corresponds to critical extent of neuronal loss Dcritical ≈ 0.41.

Simulation of therapeutic interventions reveals injury-specific targets and optimal378

time windows for treatment379

Neuroimmune interactions are potential targets in the search for efficient treatments for pharma-380

coresistant epilepsy. However, not only selection of prominent targets for intervention, but also381

the timing and duration of interventions seems to matter. For example, application of rapamycin,382

which is suspected to have antiepileptogenic effect via restoration and strengthening of the BBB,383

over the period of 6 weeks after induced SE was efficient in the reduction of number of animals de-384
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veloping seizures, seizure frequency and extent of neuronal loss (van Vliet et al., 2012). In contrast,385

treatment that continued only for 2 weeks had no positive effect over a 6 week observation period386

(Sliwa et al., 2012). Our model provides an opportunity for simulating various intervention strate-387

gies, allowing for the selection of target and time window and exploring the effects of multi-target388

interventions.389

Specifically, our model shows that a permanent suppression of the effect of seizures on BBB390

integrity (intervention I in Fig. 8A) prevents EPG in a simulated pilocarpine rodentmodel of epilepsy.391

The long term effect on seizure rate is illustrated in Fig. 8C. The extent of neuronal loss over the392

first half a week after injury does not differ among simulations with and without interventions393

(Fig. 8B). Figure 8D illustrates the impact of the suppression of the effect of seizures onBBB integrity.394

Under this suppression (right plot), only a single attractor corresponding to the ’healthy’ steady395

state remains in the state space of the system.396
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Figure 8. Modelling therapeutic intervention with suppression of seizure effect on BBB integrity reveals injury-specific time window
for intervention in pilocarpine rodent model of epilepsy: A. Time windows for 6 various interventions and a reference simulation withoutintervention. Gray area corresponds to the time window of injury induction. The suppression of seizure effect on BBB integrity is simulated with100-fold decrease of respective model variable KS→B ↓. Simulations are performed using the rate model. B. Neuronal loss progression inanimals exposed to various types of intervention. Gray area corresponds to the time window of injury induction. C. Seizure rate development inanimals exposed to various types of intervention. D. State space plots illustrating the state of the system after the injury offset (D=0.2) without(left) and under the effect of intervention (KS→B ↓, right). Filled circles correspond to ’healthy’ and ’epileptic’ steady states. Empty circlecorresponds to the unstable fixed point. Red dashed line indicates the neurotoxicity threshold Θ. E. Response of the system to injury in animalsexposed to various types of intervention illustrated in the B-R state space domain. Red lines correspond to the reference simulation withoutintervention. Solid black lines starting with ’x’-symbol and ending with a star corresponds to the time interval of injury induction. Solid color linesstarting with ’x’-symbol and ending with a star correspond to time windows of intervention.

Further, we also investigated transient suppression of the effects of seizures on BBB integrity.397

Suppression during a long time window of 10 weeks (intervention II in Fig. 8A) is sufficient to pre-398
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vent EPG (Fig. 8C,E), while a shorter window of 2 weeks (intervention III in Fig. 8A) does not suffice399

(Fig. 8C,E).400

Interestingly, not only the duration of an intervention, but also its precise timing relative to the401

injury is crucial for successful prevention of EPG. For example, in the simulated pilocarpine rodent402

model of epilepsy, a suppression of the effects of seizures on BBB integrity for 5 weeks can prevent403

EPG when applied 2 weeks after the injury (intervention V in Fig. 8A). However, identical interven-404

tions starting at 0 or 5 week delays (interventions IV and VI in Fig. 8A) are inefficient (Fig. 8C,E).405

Moreover, the timewindows, during which interventions should be applied, have injury-specific406

durations and timings. For example, in the simulated TMEV infection rodent model, a 1 week long407

suppression of the effects of seizures on BBB integrity (intervention II in Fig. 9A) is sufficient to408

prevent EPG (Fig. 9C). Interestingly, in this model the intervention time window has to overlap with409

the time window of the injury effects. Interventions that are applied with 1 and 2 week delays410

(interventions III and IV in Fig. 9A) do not prevent EPG (Fig. 9C). In contrast to the simulation of411

the pilocarpine rodent model (Fig. 8B), in the TMEV infection model interventions that are applied412

during and after the period of injury effects lead to different levels of neuronal loss after the injury413

offset (Fig. 9B). This results in different structures of the systems’ state spaces: in case of interven-414

tions I and II, which overlap with the injury time window (Fig. 9A), a lower extent on neuronal loss415

leads to preservation of a larger basin of attraction of the ’healthy’ steady state (Fig. 9D). This is in416

contrast to interventions III and IV (Fig. 9A), for which the ’healthy’ steady state and the separatrix417

are in close proximity (Fig. 9E). Therefore, interventions that are not applied during the first week418

after injury onset are insufficient for the prevention of EPG (Fig. 9C).419
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FIG 9

KS→B ↓ KS→B ↓

Figure 9. Modelling therapeutic interventions suppressing the effects of seizures on BBB integrity and activation of glia by factors
infiltrating the parenchyma reveals injury-specific optimal time windows for intervention in TMEV infection rodent model of epilepsy:
A. Time windows of 4 interventions suppressing the effects of seizures on BBB integrity. REF indicates reference without intervention. Light redarea corresponds to the period of injury induction. The suppression of the effect of seizures on BBB integrity is simulated with a 100-folddecrease of the respective model variable KS→B . Simulations are performed using the rate model. B. Neuronal loss progression for the differenttime windows of KS→B reduction. Light red area corresponds to the period of injury induction. C. Seizure rate development for differentintervention time windows. D. State space plots illustrating the state of the system after the injury offset (D = 0.34) for interventions thatcoincided with injury time window without (left) and under the effect of intervention (right). Filled circles correspond to ’healthy’ and ’epileptic’steady states. Empty circle corresponds to the unstable fixed point. Red dashed line corresponds to neurotoxicity threshold Θ. E. Same as D butfor a higher value of D = 0.38. F. Time windows of 4 interventions with suppression of activation of glia by factors infiltrating the parenchyma.Light red area corresponds to the period of injury induction. The suppression of activation of glia by factors infiltrating the parenchyma issimulated with 100-fold decrease of the respective model variable �B→I . Simulations are performed using the rate model. G. Neuronal lossprogression for different time windows of �B→I reduction. Light red area corresponds to the time window of injury induction. H. Seizure ratedevelopment for different time windows of �B→I reduction.

In a next step, we were interested in investigating the effects of different types of interventions420

in the TMEV infection model of epileptogenesis. Interestingly, the necessity of early intervention421

already during the active injury effect on the system also applies to the TMEV infection model.422

Here, we have simulated an intervention that suppresses glial ability to be activated by infiltrating423

blood factors with a 100-fold decrease of the respective model variable �B→I ↓ (Fig. 9F). This type424

of intervention requires a much longer time window of application, but also requires application425

during the first week after injury onset (Fig. 9F-H). In sum, our model can be used as a framework426

for simulation of intervention strategies. It provides means for studying the efficiency of various427

therapeutic targets, intensities and time intervals of intervention in an injury-specific manner.428
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Discussion429

The pathophysiology of EPG is associated with the activation of innate and adaptive immune re-430

sponses, disruption of BBB integrity, neuronal loss, circuit remodeling and various other processes431

acting over a range of different timescales. Furthermore, the injury-specific time courses of clinical432

markers point to a bewildering complexity of the disease. This makes understanding EPG and the433

development of effective treatments a formidable challenge. Computational and mathematical434

modeling can be a valuable tool in understanding such complex systems. Indeed, other epilepsy-435

associated phenomena, such as ictogenesis, have already been successfully studied with mathe-436

matical modeling methods (Jirsa et al., 2014; Proix et al., 2017; Jirsa et al., 2017). Here, we have437

presented the first-of-its-kind mathematical model of EPG in the context of acquired epilepsy. Our438

model explains a wide range of EPG phenomena and is a tool for testing different interventions in439

silico, while generating testable predictions regarding their effectiveness. The model describes the440

interaction between neuroinflammation, BBB disruption, neuronal loss, circuit remodeling, and441

seizures in response to neurological injury. Mathematically, the model consists of a system of cou-442

pled stochastic non-linear ordinary differential equations. Our formal analysis of the model has443

revealed the existence of two stable fixed points, representing the healthy state and the state of a444

developed epilepsy.445

Our model explains how EPG is triggered by very different types of neurological injuries. Here,446

we have focused on three such injuries: infection as represented by a TMEV rodent model; chem-447

ical intoxication as represented by pilocarpine SE rodent model; and BBB leakage as represented448

by BBB disruption rodent model. We have found our model to be in good agreement with the449

experimental data from these animal models using a single set of parameters for all simulations.450

The model captures injury-specific characteristics of EPG such as temporal patterns of seizure451

occurrence, the progression of neuronal loss, neuroinflammation and BBB disruption. Interest-452

ingly, the model explains long timescales (years and decades) of disease development despite453

time-limited injuries that directly affect the central nervous system for much shorter durations454

(days). Mathematically, these unexpectedly slow timescales of EPG are explained by a slowing of455

the system’s dynamics in the vicinity of an unstable fixed point. This resembles the emergence456

of slow dynamics in, e.g., wound healing after injury with paradoxically long scar formation (Adler457

et al., 2020). Moreover, our model describes the dependence of the latent period duration, the458

seizure burden, and the risk of EPG on the intensity of an injury — the dose-dependence effects of459

injury intensity observed in various human and animal models of EPG.460

Our model also captures the multicausal nature of epilepsy. For example, our model explains461

how, on the one hand, neuronal loss alone may be sufficient to induce EPG, but, on the other hand,462

it is not at all necessary for EPG. This is in agreement with a recent observation that, in neuronal sys-463

tems with degenerate mechanisms, several distinct pathologies are sufficient but not necessary to464

account for the hyperexcitability (Ratté and Prescott, 2016). Furthermore, ourmodel suggests that465

the variability of EPG outcomes originates in part from the stochastic nature of epileptic seizures,466

which can push the system from the basin of attraction of the ‘healthy’ steady state to that of a467

developed epilepsy.468

In order to demonstrate the utility of themodel for generating testable predictions of therapeu-469

tic interventions, we performed simulations with different intervention targets and time windows470

for different initial injuries. Our results suggest that therapeutic interventions applied during only471

a short but critical time window may be just as effective as long-term interventions. Moreover,472

the optimal time windows for interventions are injury-specific. For example, in the case of a TMEV473

infection model, the intervention has to be applied during the first week after injury onset and474

without a delay. In the pilocarpine model, in contrast, a 5-week intervention starting after 2 weeks475

prevented EPG, while earlier or later interventions were ineffective.476

Due to its simplicity, our model also has a number of important limitations. For example, the477

complex process of neuroinflammation is described by just a single “coarse-grained” variable. This478
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aids mathematical analysis, but it complicates the interpretation of simulation results. Further-479

more, the model does not distinguish different seizures types (e.g. focal vs generalized) nor does480

it allow for an evolution of seizure severity and duration throughout EPG. Besides processes de-481

scribed by themodel, phenomena such as channelopathies, neurogenesis, gene transcription, epi-482

genetic modifications, and others are also associated with EPG, but yet to be accounted for in our483

modeling framework.484

Also, the model does not include any positive antiepileptic aspects of neuroinflammation, i.e.485

processes aimed at the maintenance of healthy central nervous system function. Future exten-486

sions of the model should take into account such protective aspects of neuroimmune interactions.487

This will allow for computational modeling of paradoxical phenomena such as inflammatory pre-488

conditioning and epileptic tolerance. These, together with further exploration of injury-specific489

targets and time windows for therapeutic interventions, are promising directions for future work.490

Finally, while we view it as a strength of the model that it explains data from different animal mod-491

els with a single set of parameters, we acknowledge that there is always inter-individual variability492

of physiologic parameters. It will therefore be interesting to investigate how parameter variations493

change the individual susceptibility to EPG and its trajectory. Such an understanding will facilitate494

the development of individualized interventions in the spirit of precision medicine.495
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Appendix 1676

This figure illustrates the sigmoid function of seizure rate dependence on seizure promot-
ing effects (Eq.2). This function is used in simulation and vizualization of simulation out-
comes.
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Appendix 1 Figure 1. Seizure rate dependence on seizure promoting factors: neuroinflammation andcircuit remodeling.678
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Appendix 2684

Timescale separation685

In this work, we assume that the process of neuroinflammatory reaction evolves faster than
BBB disruption and recovery of its integrity, neuronal loss, and circuit remodeling: �I ≪
�B , �D, �R. Thus, under condition of absence of the neuroinflammatory external input IE , wecan perform a time scale separation, which at equilibrium will result in I ≈ �B→IB, and thesystem described in Eq. 1 becomes:

⎧

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎩

I = �B→IB

�BḂ = −B + �I→BI + S(I, R)

�DḊ = �I→D(1 −
D

Dmax )max{0, I − Θ}
�RṘ = −R + �B→RB + �D→RD

(5)

686

687

688

689

690

691

692

693

From Eq. 5, we can obtain a system of equations for fixed values of neuronal loss extent
D = Dconst, where 0 ≤ Dconst ≤ Dmax. The resulting system of equations describes the system
in the dynamical regimes characterized by the absence of neurotoxicity I ≈ �B→IB < Θ:

694

695

696

⎧

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎩

I = �B→IB

�BḂ = −B + �I→BI + S(I, R)

D = Dconst
�RṘ = −R + �B→RB + �D→RDconst

(6)

697

698

699

700

Substituting I = �B→IB in the equation for the extent of BBB disruption, we obtain the
system described in B −R dimensions. It is used for analysis and visualization of dynamics
with state space plots for variables B and R:

701

702

703

704

⎧

⎪

⎨

⎪

⎩

�BḂ = −B + �I→B�B→IB + S(�B→IB,R)

�RṘ = −R + �B→RB + �D→RDconst
(7)

where I = �B→IB < Θ and D = Dconst.

705

706

707

708

709
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Appendix 3710

Stability analysis711

In this section, we are going to analyse the stability of the steady states of the system (state
space composition).

712

713

In a steady state, Ḃ = 0 and Ṙ = 0. From Eq. 7 we obtain:
⎧

⎪

⎨

⎪

⎩

0 = −B + �I→B�B→IB + S(�B→IB,R)

0 = −R + �B→RB + �D→RDconst
(8)

714

715

716

717

Substituting S(I, R) from Eg. 4:718

⎧

⎪

⎨

⎪

⎩

0 = −B + �I→B�B→IB +KS→B
e�I→S (�B→I B)

2+�R→SR−1

e�I→S (�B→I B)2+�R→SR+1

0 = −R + �B→RB + �D→RDconst
(9)

719

720

721

722

The steady states (fixed points) in the system are the result of intersection of Ḃ = 0 and
Ṙ = 0, which gives us (inserting the parameter values from Appendix 4) two equations:

R = B + 0.0005Dconst (10)
7
8
e2(B2+B+0.0005Dconst) − 1
e2(B2+B+0.0005Dconst) + 1

− 0.9 B = 0 (11)
The intersection of the latter Eq. 11 with the horizontal axis will give alll B∗ that satisfy Ḃ = 0
and Ṙ = 0. And corresponding values of R∗ can be found using Eq. 10.

723

724

725

726

727

728

729

730

731

732

The Jacobian of the linearized system around each fixed point is:733

J =
⎡

⎢

⎢

⎣

)Ḃ
)B

)Ḃ
)R

)Ṙ
)B

)Ṙ
)R

⎤

⎥

⎥

⎦

(12)

where )Ḃ
)B
= −0.9 + 7 Be2(B2+R)

(e2(B2+R)+1)2
; )Ḃ
)R
= 7

2
e2(B2+R)

(e2(B2+R)+1)2
; )Ṙ
)B
= 1; )Ṙ

)R
= −1.

734

735

736

737

738

The eigenvalues for each fixed point [B∗, R∗] are the eigenvalues of the Jacobian evalu-
ated at [B∗, R∗]. Analysing the fixed point positions and their corresponding eigenvalues,
we can describe the system state space.

739

740

741

1.) when 0 ≤ Dconst < Dcritical the system has 3 fixed points (Fig. A3.1): a stable steady
state (negative eigenvalues) around the origin; a saddle point (one positive and one negative
eigenvalue); a stable steady state (negative eigenvalues) distanced from the origin in the first
quadrant;

742

743

744

745

2.) when Dconst = Dcritical ≈ 0.41 the system undergoes the saddle node bifurcation and
has 2 fixed points (Fig. A3.1): a stable steady state (negative eigenvalues) distanced from
the origin in the first quadrant, and a semistable point (one eigenvalue equal to 0) in the
position of collision of two fixed points;

746

747

748

749

3.) when Dcritical < Dconst ≤ Dmax the system has 1 fixed point - a stable steady state
(negative eigenvalues) distanced from the origin in the first quadrant (Fig. A3.1).

750
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Appendix 3 Figure 1. Saddle node bifurcation illustrated with collision (crossed circle) of stable (blackcircles) and unstable (white circles) steady states at critical value of extent of neuronal loss (
Dconst = Dcritical ≈ 0.41). The third fixed point (gray circles) shows low sensitivity to change of neuronalloss due to low value of �D→R. For values Dconst > Dcritical, only one stable steady state (gray circles)exist.

753

754

755

756

757758

The code for numerical calculation of the fixed point values of B∗ and R∗, and the eigen-
values used in the stability analysis can be found at

759

760

https://github.com/danylodanylo/math-model-epileptogenesis.git. For calculation of bifurca-
tion parameter value Dcritical (the extent of neuronal loss at which the saddle node bifurca-
tion is occurring) see Appendix 7.
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Appendix 4764

Parameter Description Value Units
�I Timescale of neuroinflammatory reaction 1 day
�B Timescale of BBB recovery 10 days
�D Timescale of neuronal death process 10 days
�R Timescale of circuit remodeling 10 days
�I→B

Scaling parameter for effect of neuroinflamma-
tion on BBB permeability 0.1 -

�B→I
Scaling parameter for proinflammatory effect of
BBB leakage 1 -

�I→D
Scaling parameter for neurotoxic effect of over-
activated glia 8 -

�B→R
Scaling parameter for effect of BBB leakage on
circuit remodeling 1 -

�D→R
Scaling parameter for effect of neuronal loss on
circuit remodeling 0.0005 -

Dmax Maximum possible extent of neuronal loss 1 -
Θ Neurotoxicity threshold of overactivated glia 0.25 -
�I→S

Scaling parameter for strength of seizure-
promoting effects of neuroinflammation 2 -

�R→S
Scaling parameter for strength of seizure-
promoting effects of circuit remodeling 2 -

KS→B
Scaling parameter for seizure burden on BBB in-
tegrity 0.875 -

Tseiz Seizure duration 5 minutes
�max

Homeostatic upper bound of daily seizure num-
ber 15 seizures

day
�S→B Burden of single seizure on BBB integrity 16.8 -

765

Appendix 4 Table 1. Model parameter descriptions and values.766767
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Appendix 5 769

Animal
model /
Condition

770

771

772

simulated

Modification
Model
type

Input type
and
intensity

Time of
injury
onset
Ton

Time of
injury
offset
Toff

Num.
of simu-
lations,
N

Fig.

Blood-brain
barrier
leakage
rodent model

- stochastic BE = 0.25 0 days 7 days 30 3A-D
descreased injury intensity
(50% concentration) stochastic BE = 0.125 0 days 7 days 30 3A,B
descreased injury intensity
(50% time window duration) stochastic BE = 0.25 0 days 3.5 days 30 3A,B
increased injury intensity
(150% time window duration) stochastic BE = 0.25 0 days 10.5 days 30 3A,B
- rate BE = 0.25 0 days 7 days 1 3E,F
increased injury intensity
(150% time window duration) rate BE = 0.25 0 days 10.5 days 1 3E,F
descreased injury intensity
(50% time window duration) rate BE = 0.25 0 days 3.5 days 1 3E,F
descreased injury intensity
(25% time window duration) rate BE = 0.25 0 days 1.75 days 1 3E,F

Theiler’s
murine
encephalo-
myelitis virus
(TMEV)
mouse model

- stochastic IE = 0.4 0.9 day 6 days 30 4, 5
testing intervention with sup-
pression of seizure effect on
BBB integrity KS→B ↓= KS→B

100applied in different time inter-
vals

rate IE = 0.4 0.9 day 6 days
5 (4 +
1 refer-
ence)

9A-E

testing intervention with
suppression of activation of
glia by factors infiltrating the
parenchyma �B→I ↓= �B→I

100applied in different time
intervals

rate IE = 0.4 0.9 day 6 days
5 (4 +
1 refer-
ence)

9F-H

Chemically-
induced
(pilocarpine)
status
epilepticus
rodent model

- stochastic DE=1; BE=1.65 0 days 2 days 30 6
- rate DE=1; BE=1.65 0 days 2 days 1 6D-F
testing intervention with sup-
pression of seizure effect on
BBB integrity KS→B ↓= KS→B

100applied in different time inter-
vals

rate DE=1; BE=1.65 0 days 2 days
7 (6 +
1 refer-
ence)

8

Neuronal loss Supracritical
extent of
neuronal loss

stochastic Initial condi-
tions D0 = 1

- - 5 7A

rate
Initial condi-
tions D0 =
[0.45; 0.5; 0.6
0.7; 0.8; 0.9; 1]

- - 7 7C

Subcritical extent of neuronal
loss stochastic Initial condi-

tions D0 = 0.3
- - 5 7A

773

Appendix 5 Table 1. Detailed specifications of performed simulations.774775
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Appendix 6776

BBB disruption rodent model data used in Fig. 3A-B777

Following data fromWeissberg et al. (2015) were used in this study:778

• latent period duration of 4.9 ± 1.3 days (mean ± SEM), N=10;779

• spontaneous seizures frequency of 1.16 ± 0.16 seizures per day (mean ± SEM), N=10.780

Theiler’s murine encephalomyelitis virus (TMEV) mouse model data
used in Fig. 4A-C

781

782

Following data from Patel et al. (2017) were used in this study:783

• number of seizures per day for N=11 mice was extracted from Figure 2 (Patel et al.,
2017). Average seizure frequency per mice was calculated for 3 time intervals: day 1
post infection, days 2-7 post infection and days 8-15 post infection;

784

785

786

• TNF protein fold change (relative to PBS-injected control mice) on day 1 post infection
(N=8): 6.9 ± 0.6, day 5 post infection (N=6): 206.2 ± 14.9, day 14 post infection (N=5):
34.8 ± 7.1. Data presented in mean ± SEM.

787

788

789

Following data from Kirkman et al. (2010) were used in this study:790

• neuronal cell loss score for 2 hippocampi (mean ± SEM) on days 1-35 post infection
from Figure 2 (Kirkman et al., 2010), N=4-13 per time point group.

791

792

Chemically-induced (pilocarpine) SE rodentmodel data used in Fig. 6A-
C

793

794

Following data from Brackhan et al. (2016) were used in this study:795

• microglial activation score for the hippocampus (mean ± SEM) on days 0, 2, 5, 14 post
SE from Figure 4 (Brackhan et al., 2016), N=3-5 per time point group;

796

797

• neuronal cell loss score for the hippocampus (mean ± SEM) on days 0, 2, 5, 14 post SE
from Figure 4 (Brackhan et al., 2016), N=3-5 per time point group.

798

799

Following data from Zhang et al. (2015) were used in this study:800

• NeuN-immunoreactive cells count permm2 in the hippocampus of pilocarpine treated
animals from Figure 5 (Zhang et al., 2015). Fraction of cells missing (in %) was com-
puted for days 7 and 60 after pilocarpine injection relatively to values for untreated
animals.

801

802

803

804
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Appendix 7805

Estimation of critical extent of neuronal loss806

In this section, we are going to calculate the critical extent of neuronal loss D = Dconst =
Dcritical, at which ’healthy’ steady state collides with the unstable fixed point and only one
stable steady state remains for D > Dcritical. From equations describing system state for
fixed extent of neuronal loss (Eq. 6) and seizure burden function (Eq. 4), we derive steady
state equation for BBB disruption:

Ḃ = 0 = −B + �I→B�B→IB +KS→B
e�I→S (�B→IB)2+�R→SR − 1
e�I→S (�B→IB)2+�R→SR + 1

(13)
and steady state equation for circuit remodeling:

Ṙ = 0 = −R + �B→RB + �D→RDconst (14)
from which we derive:

R = �B→RB + �D→RDconst (15)
which will be referred to as linear R.

807

808

809

810

811

812

813

814

815

816

817

818

819

820

821

822

823

Inserting the parameter values (Appendix 4) into Eq. 13:
0 = −0.9B + 7

8
e2(B2+R) − 1
e2(B2+R) + 1

(16)
Defining � = 7

8
1
0.9
, we can derive B from Eq. 16:

B = � e
2(B2+R) − 1
e2(B2+R) + 1

(17)
Defining f = e2(B2+R) from Eq. 17, we obtain:

B = �
f − 1
f + 1

(18)
From Eq. 18, we can derive:

f = � + B
� − B

(19)
Now, we replace f with e2(B2+R):

e2(B2+R) = � + B
� − B

(20)
Taking logarithms of both sides:

2(B2 + R) = ln � + B
� − B

(21)
From Eq. 21, we can obtain nonlinear R equation:

R = −B2 + 1
2
ln � + B
� − B

(22)

824

825

826

827

828

829

830

831

832

833

834

835

836

837

838

839

840

841

842

843

844

845

846

847

848

849

850

851

The intersections between linear R and nonlinear R will give us all the fixed points of the
system. With the parameters defined in Appendix 4, this system of equations always has at
least one fixed point for B < 1. In addition to this fixed point, a saddle node bifurcation can
emergewhen two additional fixed points are generated as a result of a change of parameter
in the equations. Assuming that D could play the role of such a bifurcation parameter, we
need to find its critical value such that linear R becomes tangential to nonlinear R. Decreasing
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this critical value would result in the emergence of two fixed points; however, increasing
this value beyond Dcritical would result in no intersection between the nullclines, and hencethe system will have only one fixed point which was defined before. To find the value of
D = Dcritical in linear R which results in a tangent line to the nonlinear curve, firstly, we needto find the first derivative of nonlinear Rwith respect to B. Secondly, we should find all those
values B∗ = s, where s is equal to the slope of linear R, or in other words, dR

dB
in linear R that

is equal to �B→R = 1 (Eq. 15, Appendix 4). This indicates that we should find B∗ in dR
dB
= 1 for

the nonlinear R. Finding the first derivative of Eq. 22:
dR
dB

= −2B + 1
2
(� − B
� + B

)(� − B + � + B
(� − B)2

) = −2B + �
(� − B)(� + B)

(23)
Equating Eq. 23 to �B→R = 1, we obtain a polynomial:

2B3 + B2 − 2�2B + � − �2 = 0 (24)
Solving this polynomial numerically (code available at
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864

865
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867

868

869

870

871

872

873

https://github.com/danylodanylo/math-model-epileptogenesis.git), we get the following val-
ues for B∗= [-1.259; 0.7448; 0.01439]. Since BBB disruption variable can not take negative
values, the solution [-1.259] is discarded. Using equation for nonlinear R (Eq. 22), we can
calculate the corresponding R values for B∗= [0.7448; 0.0143]:

874

875

876

877

R∗=[0.4560; 0.0146].878

Note that these values of R∗ should hold in both nonlinear R and linear R, since they are
the result of intersections between the nullclines. From linear R (Eq. 15), we can derive the
equation for Dconst:

Dconst =
R + �B→RB
�D→R

(25)
For values of B∗ and R∗, we can calculate D∗const=[-577.5155; 0.4103]. Neuronal loss extentcan not take negative values, so we have to discard one of the solutions [-577.5155]. Thus,
we have found the only critical extent value of neuronal loss Dcritical = 0.4103 ≈ 0.41.

879

880

881

882

883

884

885

886

887

33 of 33

.CC-BY-NC 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted August 1, 2021. ; https://doi.org/10.1101/2021.07.30.454477doi: bioRxiv preprint 

https://github.com/danylodanylo/math-model-epileptogenesis.git
https://doi.org/10.1101/2021.07.30.454477
http://creativecommons.org/licenses/by-nc/4.0/


IE

1 8 15 21

days post infection

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30

N
u
m

b
er

o
f
su

b
je

ct
#

Simulation, N=30

0

1

2

3

4

5

6

7

8

se
iz

u
re

s
d
a
y

359 365

days post infection

0

2

4

6

8

10

12

14

16

18

se
iz

u
re

s
d
a
y

1 8 15 21

days post infection

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30

N
u
m

b
er

o
f
su

b
je

ct
#

Simulation, N=30

0

1

2

3

4

5

6

7

8

se
iz

u
re

s
d
a
y

359 365

days post infection

0

2

4

6

8

10

12

14

16

18

se
iz

u
re

s
d
a
y

1 8 15 21

days post infection

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30

N
u
m

b
er

o
f
su

b
je

ct
#

Simulation, N=30

0

1

2

3

4

5

6

7

8

se
iz

u
re

s
d
a
y

359 365

days post infection

0

2

4

6

8

10

12

14

16

18

se
iz

u
re

s
d
a
y

1 8 15 21

days post infection

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30

N
u
m

b
er

o
f
su

b
je

ct
#

Simulation, N=30

0

1

2

3

4

5

6

7

8

se
iz

u
re

s
d
a
y

359 365

days post infection

0

2

4

6

8

10

12

14

16

18

se
iz

u
re

s
d
a
y

1 8 15 21

days post infection

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30

N
u
m

b
er

o
f
su

b
je

ct
#

Simulation, N=30

0

1

2

3

4

5

6

7

8

se
iz

u
re

s
d
a
y

359 365

days post infection

0

2

4

6

8

10

12

14

16

18

se
iz

u
re

s
d
a
y

5 10 15 20 25

Number of seizures during
first week post infection

0.36

0.38

0.40

0.42

E
xt

en
t

o
f
n
eu

ro
n
a
l
lo

ss
D

(t
)

R2 = 0.72

Simulation, N=30,
35 days post infection

0 5 10 15 20 25 30 35

days post infection

0.0

0.2

0.4

N
eu

ro
in

fl
a
m

m
a
ti
o
n

in
te

n
si
ty

I
(t

)

Simulation, N=30

0 5 10 15 20 25 30 35

days post infection

0.0

0.2

0.4

N
eu

ro
in

fl
a
m

m
a
ti
o
n

in
te

n
si
ty

I
(t

)

Simulation, N=30IE

1 2-7 8-15

days post infection

0

1

2

S
ei

zu
re

o
cc

u
rr

en
ce

se
iz

u
re

s
d
a
y

Simulation, N=30

1 2-7 8-15

days post infection

0

1

2

S
ei

zu
re

s
o
cc

u
rr

en
ce

se
iz

u
re

s
d
a
y

[Patel et al, 2017], N=11

1 5 14

days post infection

0

100

200

T
N

F
-Æ

p
ro

te
in

(f
o
ld

ch
a
n
g
e)

[Patel et al, 2017],
N=8, 6, 5

1 5 14

days post infection

0.0

0.2

0.4

N
eu

ro
in

fl
a
m

m
a
ti
o
n

in
te

n
si
ty

I
(t

)

Simulation, N=30

1 2 3 4 5 7 14 21 35

days post infection

0

1

2

3

4

5

6

N
eu

ro
n
a
l
lo

ss
sc

or
e

[Kirkman et al, 2010]
N=4-13 per group

1 2 3 4 5 7 14 21 35

days post infection

0

1

2

3

4

5

6

N
eu

ro
n
a
l
lo

ss
sc

or
e

Simulation, N=30

A D

B

C

E

F

FIG 4

0 5 10 15 20 25 30 35

days post infection

0.0

0.2

0.4

0.6

0.8

1.0

E
xt

en
t

o
f
n
eu

ro
n
a
l
d
ea

th
D

(t
)

Simulation, N=30

1 2 3 4 5 7 14 21 35

days post infection

0

1

2

3

4

5

6

N
eu

ro
n
a
l
lo

ss
sc

or
e

[Kirkman et al, 2010]
N=4-13 per group

Score 0

Score 1

Score 2

Score 3

Figure 4–Figure supplement 1. Neuronal loss score computation (masking procedure) from
Kirkman et al. (2010): Raw neuronal death data from TMEV model simulation (left) and neuronal
loss score computation scheme (right). Horizontal dashed lines on the left correspond to 10%, 30%
and60%extent of neuronal loss, which are the border values separating score values in the scheme
from Kirkman et al. (2010). In Kirkman et al. (2010), neuronal loss score data are presented as a
sum of scores for 2 hippocampi (maximum score: 3 × 2 = 6). Thus, neuronal loss score computed
for simulated TMEV animals wasmultiplied by factor of 2 for comparability with experimental data.
Absence of variability (0 SEM) in Fig. 4C is explained by ’masking out’ of variability in neuronal loss
score computation (left).
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