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Abstract. Epithelia, which consists of cell sheets lying on a substrate, are prevalent structures of multi-cellular organ-
isms. The physical basis of epithelial morphogenesis has been intensely investigated in recent years. However, as 2D
mechanics focused most attention, we still lack a rigorous description of how the mechanical interactions between the
cell layer and its substrate can lead to 3D distortions. This work provides a complete description of epithelial mechanics
using the most straightforward model of an epithelium: a thin elastic bilayer. We first provide experimental evidence
in Drosophila tissues that localized alterations of the cell-substrate (the extracellular matrix) can lead to profound 3D
shape changes in epithelia. We then develop an analytical model modifying the Föppl-von Kármán equation with growth
for bilayers. We provide a complete description of all contributions from biophysical characteristics of epithelia. We
show how any localized inhomogeneity of stiffness or thickness drastically changes the bending process when the two
layers grow differently. Comparison with finite-element simulations and experiments performed on Drosophila wing
imaginal discs validate this approach for thin epithelia.

PACS. ERC Keywords : PE3-11,PE3-15,PE3-16,LS3-11
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1 Introduction

Biological cell assemblies are often organized in laminar structures called epithelia. Epithelia cover most of our hollow organs,
such as the esophagus [1], intestine [2,3] and stomach. The skin is also an epithelium constituted of several cell layers. The
structure of epithelia is of one or several attached cell layers, which rest on a more disorganized polymeric substrate, called the
extra-cellular matrix (ECM). Even the simplest epithelium, constituted of a single cell layer, must rest on an abutting ECM layer.

In the past decade, a lot of emphasis has been put on the role of the cytoskeletal cortex on the apical side of the cells (the side
away from the ECM layer) in setting mechanical properties of epithelia [4]. However, recent investigations have established that
the mechanical properties of the ECM may be as important in setting the shape of a tissue [5]. Both the cell layer and the ECM
must be taken into account in the mechanical description of epithelia.
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From the biomechanical viewpoint, an epithelium may be viewed as a bilayer made of two different soft materials with
different stiffnesses and different ways to grow: the cell layer grows by mass increase and proliferation, while the ECM grows
by addition of polymer-chains and swelling. A bilayer can also serve as a suitable approximation for more complex geometries,
such as the multilayered skin, sub-divided into the dermis and the epidermis. In between layers of cells or in between cells and
connective tissues, the ECM may develop into a stiff membrane enriched in collagen filaments called the basal membrane [6].
Epithelial cells may also have a reinforced cortex at their basal side, increasing the interfacial stiffness [7,8]. A more realistic
mechanical view of epithelia would thus be that of a bilayer with the addition of stiff interfaces originating from the ECM or the
cytoskeleton.

When one layer is a very soft substrate, several studies have attempted to deal with such bilayered systems [9–14] by treating
the soft layer as an elastic foundation or as an ad-hoc resistance potential [10,11]. These models become essentially single-
layered and cannot account for the diversity of behavior of two-layered systems where the two layers play similar roles and have
similar properties. We aim here to present a simple mechanical model of thin bilayers using the Föppl-von Kármán equations
(FvK) with growth. In the context of a thin plate hypothesis, the FvK equations allow a 3D to 2D dimensional reduction which
considerably simplifies the analytical treatment of plate mechanics. The FvK equations are thus well adapted to incorporate many
different biological features of layered tissues which are difficult to handle analytically in a fully three-dimensional formalism. It
has recently been shown that FvK equations with growth allow to explain the buckling of thin objects such as flowers and algae
in a rather simple way [15,16], when compared to the full treatment of finite elasticity with growth [17]. In addition, a slight
modification of these equations allows to treat initially weakly curved membrane. This prompted us to use the same approach for
a bilayer with growth. When modeling a single-layered epithelium, the two layers of the model are the ECM and the cells, while
the interfacial stiffness represents the basal cytoskeletal cortex of cells (left inset in fig. (1)). When modeling a more complex
system, such as the skin, one layer of the model represents the cell layers of the epidermis, the second layer is the dermis (a
connective tissue) and the interfacial stiffness represents the extra-cellular basal lamina (right inset in fig. (1)), see reference
([6]). Our model can account for local variations in the stiffness or in the thickness of the layers as well as interfacial stiffnesses.
Such variations are often present in biological tissues, and are thought to be shape generators in morphogenetic processes. These
local variations in mechanical properties can also be induced in the context of perturbative experiments.

As much as elasto-mechanical processes may drive the shape of epithelia, this shape builds upon a long and intricate history of
growth, stress distribution, and changes in mechanical properties. On the other hand, our formalism, which uses linear elasticity
with moderate non-linear elastic strains, can only account for slight shape variations, spanning time intervals typically smaller
than the doubling time of cells within the tissue. To mitigate this problem, we encapsulate all the previous history of development
and morphogenesis in an initial shape and a pre-stress. This allows confrontation with experiments where the tissue, at the onset
of observation, is rarely in a flat and stressless configuration and where the full history of development is also inaccessible. We
show that the model can treat many aspects of biological tissues, which are not so common in material sciences. Although the
formalism was initially developed to treat biological growth, it could also serve for the opposite case of resorption, which could
be of interest both in a biological and material science context.

In this paper, we first demonstrate experimentally how alteration of the ECM can substantially impact the shape of an ep-
ithelium. For this, we genetically degrade the ECM in a band of cells in the Drosophila wing imaginal disc -the precursor of
the adult wing. Subsequent sections are devoted to developing an analytical and numerical treatment of a bilayer model. We aim
to account for the experimentally observed distortion of the tissue and provide a general framework to address the mechanics
of growing bilayered tissues at large. Section (3), is devoted to the geometry of the sample under study and a reminder of the
necessary approximations to incorporate the formalism of finite elasticity with growth into the FvK approach. In sect.(4), we
give the main equations for a bilayer and an approach of the treatment of the interface. In sect.(5), we derive the Euler-Lagrange
equations for the elastic bilayer equivalent to the FvK equations and we demonstrate the peculiar role of the neutral surface for
the bending of the plate. Its position is derived for arbitrary stiffness and thickness, not necessarily constant, of the two layers.
Section (6) focuses on uniaxial deformations, which simplify the FvK modified equations for a bilayer with additive terms at
the origin of buckling. In this section, numerical results illustrate the various cases for pre-stressed plates but also for slightly
curved membranes, and the theory is confronted to experimental data. In sect.(7), results obtained with finite element simulations
achieved in the same context of growth, thickness, stiffness and defects are presented. Finally, we conclude in sect.(8) by giving
some perspectives.

The model can be adapted to many other biological systems, as epithelia are ubiquitous in most living species. It could also
be used for other thin objects such as leaves or algae.

2 Experimental motivation: biomechanics of Drosophila wing imaginal discs

The Drosophila wing imaginal discs (the precursors of the adult wing) are epithelial tissues that became, over the years, one of
the most studied and best characterized system to study growth [18]. The growing wing imaginal disc displays a highly patterned
field of mechanical stresses[19–21]. Cells at the periphery of the epithelium sustain a strong mechanical stretch. This pre-stress
builds up as the tissue grows. In addition, the tissue becomes curved as development proceeds, gradually changing from a simple
flat surface to a more complex curved surface.
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Fig. 1. Geometry of the bilayer model. w0(x, y) is the deviation of the initial configuration from a flat surface; ⇣(x, y) is the displacement
from this initial configuration as a result of elastic energy minimization under the action of growth and pre-stress (N0). The schema at bottom
represent biological context that can be modeled by the theory: the two layers can either be cell or ECM layers of different height, Young
modulus and growth rate; the stiff interface can be a cytoskeletal cortex or a thin ECM.

Until recently, most attention was brought upon the role of the apical surface of the epithelium in setting its mechanical
properties. It was however recently demonstrated that the extracellular matrix upon which the epithelium sits plays a major role
in shaping the tissue. Alterations in the basement membrane composition, which includes collagen IV, laminin, nidogen, and
heparan-sulfate proteoglycans, have profound effects on the shape of the wing imaginal disc [22]. Alterations of the basement
membrane have also been shown to play an active part in setting the 3D shape of the wing disc by promoting the formation of
the folds that gradually arise in the tissue [23,24]. From these experiments, it now stands that wing imaginal discs, and most
epithelia in general, are two layered composite structures. Both the cell layer and the ECM layer take an active part in shaping
the tissue [25].

To assess the role of basement membranes in setting mechanical properties of the imaginal discs, we used Drosophila ge-
netics to express the matrix-cleaving metallo-protease Mmp2 in a band of cells, located at the center of the wing imaginal disc
along the Dpp-Gal4 genetic pattern (fig.(2a)). The genotype of the observed tissues is ubi-cad:GFP UAS-GFP tub-Gal80ts/+;
Dpp-Gal4/UAS-Mmp2. It combines the necessary transgenes to express the metallo-protease locally and to visualize cells with a
cadherin: GFP fusion. The biochemical action of Mmp2 is to degrade structural components of the ECM [26], which in mechan-
ical terms implies a possible change of ECM stiffness as well as the thickness. We cannot rule out also an indirect effect on the
the basal cytoskeletal cortex of cells, as an altered ECM in the vicinity of the cell layer implies a reduced activation of integrin
receptors. Our elastic model will need to take into account these different contributions. The metallo-protease expression is con-
trolled in time via the thermo-sensitive mutant of Gal80, by switching Drosophila from 18°C to 29°C 24h before observations
(fig.(2b)). Such a timing corresponds to approximately 18 hours of Mmp2 expression since 6 hours are required to reach full
Gal4 expression after the temperature switch [27]. To image the imaginal discs, we performed ex-vivo cultures of wing imaginal
discs as in [19]. The living tissues were then imaged with a spinning disc confocal microscope.
Figure (2c) shows the cross-section of an imaginal disc 18 hours after metalloprotease expression. The region of perturbation,
identified by RFP expression, is shaded in red on the figure. Figure (2d) shows the profile of the apical surface of the epithelium,
which has a region of inflection near the protease expression. This profile (fig.(2c,d) corresponds to a wing imaginal disc that
was initially flat. Alternatively, fig.(2d,e). shows the same perturbation outcome on a wing imaginal disc that was initially curved
- curvature normally builds up at late stages of wing disc development (around 80 hours after egg laying). The resulting tissue
is very different from the previous case. This time, the profile shows a more complex configuration: the naturally occurring
curvature is prevalent on the borders of the wing disc; at the same time, the metalloprotease action in the region of perturbation
induces an inversion of the curvature there.
To conclude, we observed that upon ECM degradation (which may impact the stiffness, the thickness, and the interfacial mechan-
ics), the epithelium curves in the perturbation region (fig.(2h)). We observed two archetypal outcomes depending on whether the
tissue was initially flat or curved, which can lead to the inversion of the naturally occurring curvature in the perturbation region.
These experimental observations will be subsequently confronted to our FvK bilayer model and our finite-element simulations
(see fig.(8) and fig.(10)).
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Fig. 2. Folding an epithelium by local ECM degradation. (A) Transmission light imaging of a Drosophila wing imaginal disc (left) and
corresponding sketch with the region of localised expression of the protease Mmp2 shaded in red (right). (B) To control expression of the
metalloprotease, the sample is switched from 18°C to 29°C several hours before observation. (C-F) Experimental demonstration. (C) An xz
cross section demonstrates the shape of an initially flat wing imaginal disc under the effect of a localized metalloprotease expression (in the
red colored region). The schema in (D) demonstrates the change in shape of the tissue. (E,F) Same as (C,D) but with an initially curved wing
imaginal disc. (G) A schematic representation of the shape changes observed in the wing imaginal disc.

3 Modeling

The geometry of the model is represented in fig.(1): two layers of different thickness (hf and hs), stiffness and growth rate are
organized in a bilayer, with an interface which may also bear a stiffness. The shape of the initial configuration (see explanations
in fig.(1) is given by w0(x, y), the deviation from the horizontal line; the vertical deflection arising from the elastic minimization
is denoted ⇣(x, y). There are no explicit rules about the difference in stiffness or thickness of the two layers, but they have the
same order of magnitude most of the time for living species. While there is also no rules regarding the thin interface layer, it will
only play a role if it is much stiffer. Contrary to inert materials, changes in the shape of the structure arises from inner processes
such as volumetric growth rather than through external loading, although this latter is not eliminated a priori from the model.
The bilayer can model, with different degrees of accuracy, a single or a multi-layered epithelium.

A decade ago, Dervaux et al. established the formalism of a growing plate using the theory of finite elasticity with growth
[15,16]. Here, we extend their analysis of a single layer to a thin bilayer, both layers having different growth rates and different
elastic properties but remaining thin. Indeed, the FvK equations rest on some limitations: the order of magnitude of the vertical
deflection ⇣ due to the buckling and the initial deviation from the horizontal line w0 must remain small compared to the horizontal
length L (they may be larger than the thickness h of the plate).

In the following, we first present the model for the general 2D case with arbitrary buckling deformations, and subsequently
treat the simpler uni-axial folding.

3.1 The geometric and elastic strain

We consider two different layers with thickness hf (top) and hs (bottom). When volumetric growth or degrowth occurs in an
elastic sample, each point is displaced and the gradient of this displacement is a geometric tensor called the deformation tensor:
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F . According to the famous Kroner-Lee decomposition [28], F results from both the elastic tensor A and the growth tensor G
in a simple way :

F = AG (1)

Here, plasticity is neglected. The amount of growth per unit volume is given by Det G � 1, which is negative for mass
resorption and positive for growth. When it is small, the growth tensor G can be decomposed into : Gij = �ij + �gij with
|�gij | << 1. The deformation tensor is then also small leading to the following displacement of the points originally located at
r = (x, y, Z) :

u(r) = u0(x, y) + (Z � Zn)u
1(x, y) +w0(x, y)

=
�
U

0
1 (x, y) + (Z � Zn)U

1
1 (x, y)

�
e1 +

�
U

0
2 (x, y) + (Z � Zn)U

1
2 (x, y)

�
e2 + (⇣(x, y) + w0(x, y)) e3

(2)

where w0(x, y) represents the intial position of the interface bilayer, and ⇣(x, y) the deflection due to the buckling event. Each
ei represents a cartesian unit vector and the superscripts ”0” or ”1” stand for the order of perturbation. Indeed, the ratio between
the thickness of the bilayer and the horizontal size L is one small parameter ✏1 = h/L but the magnitude of the displacement in
the Z direction compared to L is a second independent small parameter ✏2 = ⇣/L. We assume that both layers have comparable
thickness and h means either hf or hs. In the classical FvK approach, ✏2 ' p

✏1 a scaling which is justified below and which
will constrain g̃ij and w0. Since we examine here a composite material, the choice of the origin of the Z axis is free at this stage.
We define this origin at the physical interface between both layers. We also introduce Zn, a possible shift in the expansion of
order h , whose role is to minimize the elastic strains. This surface defines the surface of separation between parallel surfaces in
extension compared to the ones in compression due only to the buckling process. In the single plate geometry, Zn corresponds
to the position of the neutral surface and is located at h/2. We can then define the geometric deformation gradient :

Fij = �ij +
@ui

@xj
(3)

where, as in Landau’s book of elasticity [29], the index i indicates an index varying between 1 and 3 while greek letters restrict
to 1 or 2. The elastic strain that we deduce from eq.((1)) when A and G are close to unity reads :

Aij = �ikG
�1
kj +

@ui

@xk
G

�1
kj (4)

Defining G�1 = I � g̃, each component of g̃ must remain a small quantity to validate the FvK approach. In addition, we
assume no change of the thickness of the sample which means g̃33 = 0, this hypothesis simplifies the equations and can be easily
revisited. A spatially constant value of g̃33 over the sample simply enters in the definition of h. We also assume that g̃↵� scales
as ✏22 while g̃↵3 and g̃3↵ scale as ✏2. To order 2 in ✏2, the elastic strain ✏ reads:

✏↵� ⇡ 1

2

✓
@u↵

@x�
+

@u�

@x↵
� g↵� � g̃3↵

@⇣

@x�
� g̃3�

@⇣

@x↵
+

@⇣

@x↵

@⇣

@x�
+

⇣

R↵
�↵�

◆
(5)

where we only keep the quadratic term in ⇣ for the deformation tensor, all the other contributions being neglected. In addition,
to simplify the notations, we define g↵3 = g̃3↵ + g̃↵3 and g↵� = g̃↵� + g̃�↵ � g̃3↵g̃3� . The last term in eq.(5) represents the
geometric stretch of the deformation due to the eventual curvature of the initial shell formulated with Rx and Ry , the local radii
of curvature, in the direction x and y [10]. A more precise mathematical formulation can be found in [30] in function of the
curvature tensor of the shell. To simplify, we have assumed that Rx and Ry are the principal radii of curvatures of the initial
shell, positive for a concave membrane. So R

�1
x = �@xxw0(x, y) and R

�1
y = �@yyw0(x, y) for a slightly curved membrane.

For a consistent expansion, all terms in this relation must have the same order of magnitude. This implies several scaling
relations. We get for the horizontal deformation: u ' ⇣

2
/L, for the growth element g↵� ' ⇣

2
/L

2 and for the two radii of
curvature Ri or Rj : R ' L

2
/⇣ ' L✏

�1
2 .

3.2 Dimensional reduction of the Hooke’s Law for one layer

We aim here to establish the equilibrium equations of a growing bilayer under initial pre-stress (represented by N0 in fig.(1)
when it is initially planar or weakly curved. For that, as in Landau et al. book [29] and in [11,15,16], our strategy consists in
calculating the elastic energy and deriving the Euler-Lagrange equations through variations. Most importantly, we write the stress
and strain tensors as a function of x and y only. First, we consider each layer independently since each of them has its own elastic
coefficients and its own growth characteristics. The coupling will be realized via the boundary conditions. Due to the weakness
of the deformation for slender objects, we can apply the Hooke’s Law which is the constitutive equation of linear elasticity, but
we maintain the nonlinearities of the strains according to the strategy of the FvK equations. We also consider the usual membrane

(which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprintthis version posted July 31, 2021. ; https://doi.org/10.1101/2021.07.30.454446doi: bioRxiv preprint 

https://doi.org/10.1101/2021.07.30.454446


6 Please give a shorter version with: \authorrunning and \titlerunning prior to \maketitle

hypothesis: �i3 = 0 which is equivalent to the plane stress approach. Then, it reads for the Cauchy stress components �↵� where
↵ and � are restricted to x, y:

�↵� =
E

1� ⌫2

�
(1� ⌫)✏↵� + ⌫✏���↵�

�
(6)

with ⌫ ' 1/2 for the incompressible case, an assumption commonly used for living tissues. In order to determine the elastic
energy ⌥ , we then write the elastic strain tensor (also a function of x and y), which we decompose in orders of (Z � Zn) with
the help of the expansion 2), so that

✏↵� = ✏
0
↵� + (Z � Zn)✏

1
↵�

First the zero order:

✏
0
↵� =

1

2

✓
@↵U

0
� + @�U

0
↵ + @↵⇣@�⇣ � g↵� � g̃3↵

@⇣

@x�
� g̃3�

@⇣

@x↵
+

⇣

R↵
�↵�

◆
(7)

The first order results from the cancellation of the stresses of the third dimension : �33 = �13 = �23 = 0, so ✏13 = ✏23 = 0 (see
[29]) and using the definition eq.((5)), we derive:

U
1
1 (x, y) ⇡ � @

@x
⇣ + g13; U

1
2 (x, y) ⇡ � @

@y
⇣ + g23 (8)

Thus the strains at first order become :
✏
1
↵� = �@

2
↵�⇣ +

1

2
(@↵g�3 + @�g↵3) (9)

One recovers the bending contribution @
2
↵,�⇣, multiplied by Z � Zn. Following the equilibrium equation eq.(6) and the decom-

position of the elastic strain (eq.((7))) and eq.((9))), we can also decompose �↵� as �↵� = �
0
↵� + (Z � Zn)�1

↵� .

4 FvK equations for the bilayer case

As in Landau’s book of linear elasticity [29], we average the elastic energy in the thickness of the bilayer.

4.1 Averaging the FvK equation

An important problem in the construction of the model is to establish the position of the neutral surface when the layer is
not perfectly homogeneous or for multiple layers. According to [29], the neutral surface defines the separation between layers
in compression from layers in tension when the structure is weakly bent. For an homogeneous sample, the neutral surface is
naturally the middle surface of the sample. But for a bilayer, the position of the neutral surface is unknown. The interface
between both layers seems to be the natural choice for the definition of the origin of the Z coordinate but it is not the neutral
surface. So, we put the neutral surface at a position Zn that we ignore and this position will also contribute to the minimization
of the elastic energy ⌥ .

⌥ =

Z hf

�hs

dZ

ZZ

S0

dS

✓
1

2
�↵�✏↵�

◆
(10)

The Euler-Lagrange equations result from variations of ⌥ with respect to ⇣ and u↵, the linearity between � and ✏ leading
to �⌥ = �↵��✏↵� . These variations, taken one after the other must vanish at linear order. Special attention must be given if the
growth tensor or the Young modulus E are dependent on Z as it is obviously the

Case 1 for the bilayer, and sometimes of the other coordinates x and y. The variation of ⌥ with respect to the horizontal defor-
mation u↵ is easily derived and gives:

�⌥ (u↵, ⇣, Zn;u↵) = �
ZZ

S0

dS�u↵

(
@

@x�

 Z hf

�hs

�↵�dZ

!)
= 0 (11)

This corresponds to the second equation in the FvK formalism [29], sometimes re-written with the Airy potential, which is very
useful for analytical or numerical solutions of a 2D problem. Variation of ⌥ with respect to ⇣ gives:

�⌥ (u↵, ⇣, Zn; ⇣) =

ZZ

S0

dS�⇣

(Z hf

�hs

dZ

✓
�(Z � Zn)@

2
↵��↵� � @↵(@�⇣ · �↵�) +

�↵↵

R↵
+

���

R�

◆)
= 0 (12)
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In eq.(11,12), the two bracketed terms mush vanish. We do not mention explicitly the contributions coming from integration
by part which fixes the boundary conditions for free boundaries. In the following, we consider only clamped boundary conditions.
Finally, there remains one free parameter, Zn, that we will use to minimize the bending energy. Indeed at a low level of stress, the
bending contribution given by eq.(12) ([29]) is the dominant one. As mentioned above, the neutral surface Zn is a characteristic
of the bilayer structure and geometry and does not depend on any loading and/or any growth process. Considering ⌥ in the limit
of a tiny buckling mode ⇣ in eq.(10) and separating � as �↵� = �

0
↵� + (Z � Zn)�1

↵� , we have:

�⌥ (u↵, ⇣, Zn;Zn) = �
ZZ

S0

dS�Zn

Z hf

�hs

dZ
�
�
0
↵�✏

1
↵� + 2(Z � Zn)�

1
↵�✏

1
↵�

�
= 0 (13)

where we have separated in �↵� the contribution of zero and first order in (Z�Zn) as for ✏↵� , both terms satisfying the Hooke’s
law independently. In the limit of negligible in-plane stresses and tiny bending deformations, with ⇣ << h, the scaling evaluations
estimated before indicate that the first term will behave as E(Z)⇣3/L4 while the second term behaves as E(Z)h⇣2/L4 and so
the second term dominates, giving an implicit equation for the neutral surface position:

Z hf

�hs

E(Z, x, y)(Z � Zn)dZ = 0 (14)

since ✏
1
↵� does not depend on Z. Notice that if E is also a function of (x, y), Zn becomes also a function of (x, y). It is now

possible to transform eq.(12) once we define the new bending coefficient and the new spontaneous curvature due to growth:

D =
1

1� ⌫2

Z hf

�hs

E(Z, x, y)(Z � Zn)
2
dZ; C↵� =

1

2

Z hf

�hs

E(Z, x, y)

1� ⌫2
(Z � Zn)

2

✓
@g↵3

@x�
+

@g�3

@x↵

◆
dZ (15)

Doing again the separation of � into �
0 and �

1, an intermediate step consists in integrating �↵� over the Z variable, which gives
first:

⌃↵� = �
Z hf

�hs

(Z � Zn)�↵�dZ = (1� ⌫)(D@
2
↵�⇣ � C↵�) + ⌫(D�⇣ � C��)�↵� +M↵� (16)

where we have dropped the dependence of D and C↵� in x, y to simplify notations, introduced the 2D Laplacian � = @↵↵, and
a new tensor M↵� :

M↵� =

Z hf

�hs

E(Z, x, y)

1� ⌫2
(Z � Zn) {(1� ⌫)g↵� + ⌫gµµ�↵�} dZ (17)

The simplification of M is due to the definition of the neutral surface and the fact that only the growth component g↵� may
depend on Z. If it is not the case, M↵� vanishes. At last, eq.(12) gives the equivalent of the first FvK equation:

@
2
↵�⌃↵� � @↵

(Z hf

�hs

�↵�@�⇣dZ

)
+

 R hf

�hs
�xxdZ

Rx
+

R hf

�hs
�yydZ

Ry

!
= P (18)

where P is a vertical pressure, possibly applied to the bilayer.
This last equation, eq.(18), governs mostly the bending deformation. In the nonlinear regime of the FvK formalism, it is

coupled to the horizontal stresses �↵� whose equilibrium is given by eq.(11). When not stated otherwise, �↵� is the total stress.
D appears to be an effective bending coefficient of the composite structure and C↵↵ as a spontaneous curvature associated with
growth. For a homogeneous layer with no growth Zn = h/2, M↵� vanishes and one recovers the traditional FvK equations
without growth, see [29]. Notice that in eq.(18), we also recover the spontaneous curvature  = @↵g↵3 found in [16]. Let us
focus now on the uniaxial folding where all the equations simplify.

4.2 New FvK equations governing uniaxial folding

For uniaxial folding, the only dependence is along the x axis and all the tensors are reduced to one element, which simplifies a
lot the analysis but reduces the diversity of observed buckling patterns, as explored in previous works [12,14]. The elastic plane
stress equilibrium equation, eq.(11) gives :

N =

Z
�11dZ = �N0 (19)

where N0 is a constant that we choose positive. N0 indicates a lateral compression, a situation easily realized in material sciences
but in embryo it results from accumulated pre-stress [31,20] (see fig.(1)). The bending equilibrium equation now reads:
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d
2

dx2

✓
D

d
2
⇣

dx2

◆

| {z }
Elastic term

+N0
d
2(⇣ + w0)

dx2
| {z }

Pre-stress

=
d
2

dx2
(C11 �M11)

| {z }
Growth contribution

+ P (x)| {z }
External stress

(20)

where we detail M11 in the simplified case of growth occurring only in a single layer.
8
><

>:

M11 =
R hf

�hs

E(Z�Zn)
1�⌫2 g11dZ =

R hf

0
E(Z�Zn)

1�⌫2 g
f
11dZ +

R 0
�hS

E(Z�Zn)
1�⌫2 g

s
11dZ

C11 =
R hf

�hs

E(Z�Zn)
2

1�⌫2
dg13
dx dZ =

R hf

0
E(Z�Zn)

2

1�⌫2

dgf
13

dx dZ +
R 0
�hS

E(Z�Zn)
2

1�⌫2
dgs

13
dx dZ

(21)

We have derived an effective equation for the bilayer, which takes into account that the growth may differ from the top to the
bottom layer via C11 and M11. Contrary to C11, M11 appears only if the growth tensor component g11 is different in both layers.
If in addition, the second derivative of these two quantities does not vanish, they appear equivalent to a vertical loading acting on
the bilayer giving it a curvature in absence of an initial one (w0 = 0). This will destroy the perfect symmetry up and down, once
averaged over the thickness of the bilayer and explain the bending in the case of growth. We now examine in more detail how the
structure of the bilayer and eventually how defects affect the bending one-dimensional equation.

4.3 Boundary conditions for the bilayer.

Boundary conditions concern the top and the bottom interfaces between the surrounding fluid and the two layers, as well as
the interface between the two layers (Z = 0). In solid mechanics, the interface between layers is often considered as a line of
discontinuity. More realistically, it is a thin zone of sharp variations for physical constants - in our case for growth coefficients or
stiffness. Moreover, it may happen that the elasticity of the interface is not simply the mean-value of both elastic coefficients. As
discussed above, this happens when the interface of a cell layer and the ECM is enriched in intracellular cytoskeletal filaments,
or when a thin basal lamina separates two cell layers, both circumstances leading to a stiffer interface. If the interface is really
smaller than each layer, we can consider it as a transition zone around Z = 0, then avoiding the application of boundary
conditions to a system of 3 layers. A way to avoid writing boundary conditions is to represent the sample as a unique layer where
the elastic parameters such as the Young modulus vary continuously. If the interface is very thin, one needs only to know its
thickness relative to the thickness of the bilayer, the detail of the description is not really important. The fact that we use the
so-called membrane hypothesis with cancellation of the stresses �13 = �23 = �33 = 0 ensure automatically the continuity of the
normal and shear stress at the upper and lower boundaries and at the interface of the two layers (Z = 0). So only the continuity
of the displacements is required at the interface. Choosing a ”continuous approach” and aiming to transform the bilayer into a
unique layer whose entire thickness will be hf + hs, we assume that the Young modulus E and any growth number g↵� can be
written as:

E(Z) =
Ef + Es

2
+

(Ef � Es)

2
tanh(Z/l0) with l0 <<< hf and l0 <<< hs (22)

and

gij(Z) =
g
f
ij + g

s
ij

2
+

(gfij � g
s
ij)

2
tanh(Z/l0) with l0 <<< hf and l0 <<< hs (23)

When a thin stiff membrane superposes to the two main layers of the sample at a position Zm which can be on top Zm = hf ,
or at the bottom Zm = �hs, or at the surface of separation: Zm = 0, as justified above, then we can slightly modify eq.(22) into

E(Z) =
Ef + Es

2
+

(Ef � Es)

2
tanh(Z/l0) + Eme

�↵2
m(Z�Zm)2/l20 with l0 <<< hf and l0 <<< hs (24)

the Young modulus of the membrane, Em, can be much larger than both Ef and Es. ↵m is a numerical coefficient characterizing
the thickness of the membrane. Another boundary layer may exits on top or bottom of the bilayer, in addition to the interfacial
one. The formulation of the Young modulus, E(Z), must then also includes this new contribution. Such definition of E(Z) can
be implemented into eq.(15) very easily to deliver the new FvK equations. We focus now on the the neutral surface position and
on the bending coefficients when either the elastic coefficients or the thicknesses present a sharp but small in size variation along
the sample.

5 Position of the neutral surface Zn for uniaxial loading

We can guess from the definition of the coefficients (eq.(21)) of the bending FvK equation (eq.(20)), that the position of the
neutral surface is crucial for the shape of the sample when growing and buckling. We consider first the position of the neutral
surface for layers of constant thickness and constant Young modulus and we introduce a linear perturbation dependent on the x

variable. If the linear approximation is not valid, a numerical solution is always possible as in sect.(7).
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5.1 Position of the neutral surface for a bilayer without structural defects

In the case of an ideal bilayer with no structural defects, Z(0)
N is determined implicitly via eq.(14) with a Young modulus E(Z)

defined by: E(Z) = Ef if 0  Z  hf and E(Z) = Es if �hs  Z  0. D is deduced from eq.(15) and it reads:

Z
(0)
n =

Efh
2
f�Esh

2
s

2(Efhf+Eshs)
D

(0) =
E

2
fh

4
f + 4EfEsh

3
fhs + 6EfEsh

2
fh

2
s + 4EfEshfh

3
s + E

2
sh

4
s

12(1� ⌫2)(Efhf + Eshs)
(25)

where the superscript ”(0)” for Zn and D reminds us that these formula are restricted to ideal cases. One can notice that if the
two layers have the same elastic coefficient, one recovers the standard bending stiffness: D = E(hs + hf )3/(12(1 � ⌫

2)) and
the neutral surface is located at the middle of the layer of thickness (hf +hs)/2. We can convince ourselves that the neutral layer
is located inside the bilayer since �hs < Z

(0)
n < hf , which is a necessary condition. These two quantities Z(0)

n and D
(0) play a

deep role in the bending equation, first equation of the FvK set of equation eq.(18) and for the definition given by eq.(15). It is
why we consider now the departure from the ideal situation:

Zn = Z
(0)
n + �Zn; and D = D

(0) + �D (26)

Hereafter, several causes are investigated at linear order in the perturbation amplitude.

5.2 Position of the neutral surface for diffuse or stiff interfaces

We allow a diffuse interface according to the representation given by eq.(22). The thickness of the interface l0 is small compared
to hf or hs. Although an exact calculation of Zn is doable, it involves unusual analytical functions so we give here only an
asymptotic formula for the result up to a correction of order e�h/l0 :

Zn = Z
(0)
n + bl; bl ' � ⇡

2
l
2
0(Ef � Es)

24(Efhf + Eshs)
(27)

This is a tiny effect being of order l20/h2. In the presence of a stiff interface with EI larger than Ef or Es, the correction to Zn

is more important:

Zn '

⇣
Efh

2
f � Esh

2
s

⌘
� ⇡

2
l
2
0(Ef � Es)/12

2 (Efhf + Eshs) +
p
⇡EI l0/↵I

(28)

where the symbol ' indicates also a correction of order e�h/l0 , h being either hf or hs. In the presence of an additional stiff
layer, on top or on the bottom, with a different stiffness Eb, we derive in the limit of vanishing e

�h/l0 , the following value for
the neutral surface position:

Zn '

⇣
Efh

2
f � Esh

2
s

⌘
+ ⌧bEbj l0(hs/↵b � l0/↵

2
b)� ⇡

2
l
2
0(Ef � Es)/12

2 (Efhf + Eshs) +
p
⇡l0(Eb/(2↵b) + EI/↵I)

(29)

with ⌧b = 1 when the stiff layer is on top, and ⌧b = �1 when the stiff layer is at the bottom. Knowing that the interface stiffness
EI or Eb may be an order of magnitude larger than Ef or Es, this correction may modify significantly the values of the D

coefficient in the FvK equations. The addition of thin layers, as described here, to the initial bilayered system will change the
position of the neutral surface and the resulting D coefficient, but it will not change the structure of the FvK equations.

5.3 Localized defects of the thickness

Let us consider now a weak and localized variation of the thickness of one of the two layers. The neutral surface will then be
distorted. We derive its new position by a simple linear expansion of Zn. This induces an equivalent expansion on the parameter
D which multiplies the bending term in the equation eq.(20). Assuming that the thickness varies as

h = hi(1 + �i(x)) then Zn ' Z
(0)
n +

@Z
(0)
n

@hi
hi�i(x) and D ' D

(0) +
@D

(0)

@hi
hi�i(x). (30)

where D
(0) and Z

(0)
n are given by eq.(25). and ' means an expansion restricted to first order. It reads
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Fig. 3. Cylindrical mylar shell under a localized forcing. Originally the plate has a length of � = 35 cm and a width L = 17.5 cm. The
Young modulus of the mylar plate is 3.8109 Pa.s and the Poisson ratio is ⌫ = 0.4. The initial bending is realized by imposing the boundary
conditions. On left, one notices that for a low value of the imposed deviation Z = 4 mm, the pattern of sinking is quite elliptical while it
becomes cylindrical for Z = 15 mm representing a folding in the opposite direction of the initial one. Image extracted from [32]

– On the top layer, we get:

Zn ' Z
(0)
n +

Ef

⇣
hf � Z

(0)
n

⌘

(Efhf + Eshs)
hf�f (x); and D ' D

(0) +
Ef

(1� ⌫2)

⇣
hf � Z

(0)
n

⌘2
hf�f (x) (31)

– On the lower layer:

Zn ' Z
(0)
n �

Es

⇣
hs + Z

(0)
n

⌘

(Efhf + Eshs)
hs�s(x); and D ' D

(0) +
Es

(1� ⌫2)

⇣
hs + Z

(0)
n

⌘2
hs�s(x) (32)

It is to be noted that a dip in either the upper or the lower layer means a negative value for the coefficients �i(x) so, as expected,
a local decrease of the stiffness of the sample.

5.4 Localized inhomogeneity of the Young modulus

We now consider a localized variation of the Young modulus, which we treat through the expansion:

E ' Ei(1 + �i(x)) and Zn ' Z
(0)
n +

@Zn

@Ei
Ei�i(x) and D ' D

(0) +
@D

@Ei
Ei�i(x) (33)

Leading to:
– Inhomogeneity in the top layer:

Zn ' Z
(0)
n +

EfEshfhs(hf + hs)

(Efhf + Eshs)2
�f (x); and D ' D

(0) +
Ef

3(1� ⌫2)

⇣
h
3
f � 3h2

fZ
(0)
n + 3hf (Z

(0)
n )2

⌘
�f (x) (34)

– Inhomogeneity in the bottom layer:

Zn ' Z
(0)
n � EfEshfhs(hf + hs)

(Efhf + Eshs)2
�s(x); and D ' D

(0) +
Ef

3(1� ⌫2)

⇣
h
3
s + 3h2

sZ
(0)
n + 3hs(Z

(0)
n )2

⌘
�s(x) (35)

6 Results for uni-axial folding

As mentioned above, the uniaxial case simplifies a lot the analytical analysis but reduces the diversity of buckling patterns that
can be accounted for compared to the 2D case. Nevertheless, the 1D approximation is still of great experimental relevance for
some experimental systems. In the case of the experiments of fig.(2), for example, the tissue and the genetic perturbation can be
assumed to be spatially invariant along the y-coordinate, making it essentially a 1D problem. In this context, the present section
provides an in-depth analysis of bending contributions of the bilayer in the uniaxial case, with and without structural defects.
We first analyze the bending equation of the uni-axial folding analytically. We then address the problem numerically by selected
possible 1D examples using the software of resolution Mathematica. Finally, simulations from the FEM (Finite-element method)
software COMSOL Multi-Physics are presented.
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6.1 Source of bending in bilayers

We will demonstrate in the following that the source of bending for growing bilayers are numerous and diverse and may have
different biological origins. We analyze here some cases as examples. First, we define dimensionless parameters which will
govern our FvK equations for a bilayer made of two layers with constant elastic coefficients.

6.1.1 Dimensionless bending equation

Using as length unit the length L of the sample, eq.(20) reads:

d
2

dX2

⇢
(1 + �D)

d
2
⇣

dX2

�

| {z }
Elastic term

+N0
d
2(⇣ +W0)

dX2
| {z }

Pre-stress

=
d
2

dX2
(C �M)

| {z }
Growth contribution

(36)

where we keep the same notation for ⇣(X) which becomes ⇣(x)/L, X = x/L, N0 = N0L
2
/D

(0)
, �D = (D�D

(0))/D(0)
,M =

M11L/D
(0)

, C = C11/(D(0)
L) are dimensionless quantities and W0(X) = w0(x)/L represents the initial position of the curved

sample. External vertical loading is discarded. It is worth noting however that the equivalent of a loading can arise from the growth
contribution (right-hand term of eq.(36)) owing to the fact that it involves spatial second derivatives, like the pre-stress term. For
such a growth-induced loading to arise, growth of the two layers must differ to get a non-vanishing M value, and at least one
of the terms (C or M) must vary spatially. This growth induced loading accords with previous investigations that demonstrated
the need for differential growth of apposed layers to induce buckling of brain cortical folds for example [33–36]. Even with
homogeneous growth, the right hand term can lead to a non-vanishing contribution, for example in the case of a structural defect
that will change Zn, and induce high spatial frequency components in C or M . Nevertheless, it is difficult to discuss a priori the
⇣ profile which is added to W0 as a result of the growth term, since it depends also on the boundary conditions. We can intuitively
predict that inhomogeneous growth is responsible to a ”fictitious pressure” or on the contrary to a tension added to the sample.
The simplest case may be the one of a homogeneous bilayer that we consider first.

6.1.2 Bilayer without structural defects

This case corresponds to sect.(5.1). For simplification, we do not consider the case of a sharp interface and the bilayer is made
of two perfect layers of constant thickness and Young modulus. The growth process occurs mostly in one layer. Assuming first
g
f
11(X) in the upper layer and g

s
11(X) = 0 in the lower layer, we have for Mf

0 and C
f
0 according to eq.(21):

M
f
0 = g

f
11(X)

 
Efhf (hf � 2Z(0)

n )

2D(0)(1� ⌫2)

!
; C

f
0 =

dg
f
13

dX

 
Efhf (h2

f � 3Z(0)
n (hf � Z

(0)
n )

3D(0)(1� ⌫2)

!
(37)

where Z
(0) and D

(0) are given by eq.(25). It is easy to check that both parameters M0 and C0 have the same sign as the growth
elements gf11 and @Xg

f
13. If growth occurs in the lower layer and not in the upper layer, it reads

M
s
0 = �g

s
11(X)

 
Eshs(hs + 2Z(0

n )

2D(0)(1� ⌫2)

!
C

s
0 =

dg
s
13(X)

dX

 
Eshs

(
h
2
s + 3Z(0)

n (hs + 3Z(0)
n )

3D(0)(1� ⌫2)

)!
(38)

Here again, hs + 2Z(0)
n is a positive quantity and the sign of M

s
0 is opposite to the sign of g

s
11 while the sign of C

s
0 is

automatically given by the growth coefficient derivative. Without pre-stress it is possible to observe a buckling of an initially flat
plate because of a differential and inhomogeneous growth process. It exists a competition of the origin of this buckling between
g11 or g13, or between M0 and C0. Differences in growth of the two layers induces a symmetry breaking between up and down.
It is non trivial to compute the sign of the growth term -whether it contributes to a vertical pressure or tension-owing to the fact
that it stems from the competition of two terms (M0 and C0) through their second derivatives. Notice however, if the growth is
not x dependent, these terms will disappear from the buckling equation, on the contrary they will become more efficient if they
strongly depend on x. Localized defects will increase the efficiency of the buckling as shown hereafter.

6.1.3 Analysis of structural defect in growing bilayers

a) Localized stiffness variation in one layer

We first consider that the stiffness can be locally modified as discussed in fig.(2), inducing a small change in the position
of the neutral surface. We focus on the linear variation of Mf or Ms, and C

f or Cs, simply deduced from eq.(37,38). The
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modification of these quantities are simply deduced taking into account the variation of �Zn reported by eq.(34,35) in sect.(5.4),
which reads:

�M
f =

@M
f
0

@Z
(0)
n

@Z
(0)
n

@Ei
�Ei; �C

f =
@C

f
0

@Z
(0)
n

@Z
(0)
n

@Ei
�Ei (39)

where Ei is the Young modulus of the layer affected by the defect: Ef or Es and �Ei is represented by Ei�i(X), in a similar
way to eq.(34,35). Similar results apply for �Ms which corresponds to growth in the lower layer and for �Cs. We give here only
the results but we define first the following positive quantities:

m
f =

E
2
fEsh

2
fhs(hs + hf )

2D(0)(1� ⌫2)(Efhf + Eshs)2
c
f =

(EfEshfhs(hf + hs))
2

2D(0)(1� ⌫2)(Efhf + Eshs)3
(40)

– When the growth occurs in the upper layer, which also exhibits a stiffness defect, then
8
><

>:

�M
f = �g

f
11(X)mf

�f (X); �C
f = �dgf

13
dx c

f
�f (X) defect on top

�M
f = g

f
11(X)mf

�s(X); �C
f = dgf

13
dx c

f
�s(X) defect on the bottom

(41)

– When the growth occurs in the substrate, perturbation occurs now on M
s
0 and C

s
0 and one needs to consider again a defect of

the stiffness either on top or on the lower layer.
8
><

>:

�M
s = �g

s
11(X)mf Eshs

Ehhf
�f (X); �C

s = dgs
13

dx c
f
�f (X) defect on top

�M
s = g

s
11(X)mf Eshs

Ehhf
�s(X); �C

s = �dgs
13

dx c
f
�s(X) defect on the bottom

(42)

b) Localized variation of the thickness of one layer.
A defect in the thickness affects the position of the neutral surface but also, when the thickness defect occurs in the same

layer as the growth, the averaged value of the coefficients of eq.(21) related to the first bending FvK equation, eq.(20). We give
here only the schema when a dip appears in the lower layer, the growth occurring either on the top or the lower layer. A similar
analysis gives

�M
f =

dM
f
0

dZ
(0)
n

�Zn = g11(X)Mf
�s(X); �C

f =
dC

f
0

dZ
(0)
n

�Zn =
dg

f
13

dX
Cf

�s(X) (43)

where as in sect.(5.3), �s(X) describes the shape of a notch and Mf and Cf are dimensionless positive quantity.

Mf = EfEshfhs
Esh

2
s + Efhf (2hs + hf )

2D(0)(1� ⌫2)(Efhf + Eshs)2
; Cf =

Eshs(hf + hs)

Ehhf + EshS
Mf (44)

We examine now the case where growth occurs in the bottom layer where also the defect is localized: .

�M
s = �g

s
11(X)Mf

�s(X); �C
s =

d
s
g13

dx
Cs

�s(X) (45)

with

Cs =
E

2
sh

3
s + EfEshfhs(�hf + hs) + E

2
fh

2
f (hf + 2hs)

2Efhf (Efhf + EshS)
Mf (46)

c) Shape of defects

Localized defects can be positioned in any place of the sample. From eq.(36), we have noticed that they may induce an
equivalent forcing on the sample if they contribute to strong variation of the second derivatives of the coefficients �M and/or
�C. Choosing a sharp defect in the center of the sample, a good representation may be � = eY e

�X2/`2 where eY is the relative
amplitude of the stiffness defect which can be positive or negative, 2` depicts qualitatively its width. The second derivative is
@XX� is of order �2eY /`2 which for a defect of width 0.05 corresponds to an amplitude of 200eY at the center. It is to be noted
that the sign is opposite to eY . So the sign of the second derivative of �M or �C can be easily found from paragraph (a). The
convention for thickness defect is the following:hi�i(X) where �i(X) is negative for a notch and positive for a protusion. Here
again, @xx� will be opposite to �. In any case, it remains that the prediction of the global sign of the second member of eq.(36).
is hard to predict due to the competition between g11 and g13. Let us remember that a positive sign of a localized contribution
will be equivalent to a localized forcing which will mimic the experiment [32] shown in fig.(3).

(which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprintthis version posted July 31, 2021. ; https://doi.org/10.1101/2021.07.30.454446doi: bioRxiv preprint 

https://doi.org/10.1101/2021.07.30.454446


Please give a shorter version with: \authorrunning and \titlerunning prior to \maketitle 13

(a) ⇣ under pre-stress and variable stiffness (b) ⇣ under variable stiffness on a shell (c) Full shell profile ⌦ = ⇣ +W0(X)

Fig. 4. Buckling deviation due to a variable stiffness coefficient D(X), in a pre-stressed non-growing plate or shell. In (a), the profile ⇣ of an
initial elastic plate under pre-stress N0 = 4 is plotted as a function of the X coordinate. The X-domain is reduced to the interval {�0.3, 0.3}
for clarity. At both ends,X±0.5, ⇣ = 0 and X = ±0.5, @X⇣±0.03. �D = �D0e

�(X�Xd)
2/l2d with D0 = 0 for the black line and D0 = 0.3

for the blue, red, magenta colored lines. Except for the magenta line, the dip is centered on X = 0, otherwise, it is located at Xd = 0.3. The
blue and magenta curves correspond to a narrow dip with ld = 0.1, the red curve to a larger one with ld = 0.3. Notice that a dip located far
from the center has no effect and the deflection remains weak in any case (scale of the vertical line). In (b), ⇣ for a pre-stressed shell of equation
W0(X) = (1/4� x

2)/5 of negative curvature and clamped boundary conditions :X ± 1/2,⇣ = @X⇣ = 0. In (c) the full profile ⌦ = ⇣ +W0

with dotted black line for W0. The same code of colors is applied in the three panels (a, b, c).

6.2 Numerical investigations of the FvK bilayer for a plate or a shell.

In this section, we aim to demonstrate the role of defects on plates and slightly curved shell portion under pre-stress. To simplify
we focus first on a homogeneous growth process: it means a process independent of X and identical in both layers or equivalently
a non growing sample. Then we will give numerical examples to illustrate the analytical results of the previous section when
differential growth occurs contingently to defects.

6.2.1 Decrease of thickness on a non-growing pre-stressed plate or shell

In this section, we will evaluate the role of a sharp variation on the D coefficient of a pre-stressed sample initially flat or
curved. For numerical purpose the defect has the shape of a penetrating peak and is represented by a Gaussian so �D =
�D0e

�(X�Xd)
2/l2d . D0 is a positive coefficient which can be evaluated with either eq.(31) or eq.(32), ld is an estimation of

the scale of the defect compared to the scale of the sample L and Xd is its relative position in the sample. For a plate, a curvature
is initially induced by the pre-stress and applying a slope at both ends. In fig.(4a) the imposed slope is @X⇣ ± 0.03 at X ± 0.5
giving a deflection below the horizontal (black line). This deviation increases with the defect since it weakens the stiffness more
and more with the amplitude D0 = 0.2 (blue curve), D0 = 0.3 amplitude (red curve). Even for a sharp-pointed defect, with
ld = 1/10, the deviation ⇣ remains small and not very selective. In addition, a displacement on the position of the defect does
not affect ⇣ too much (magenta curve). For a shell which is initially curved in the positive Z direction with clamped conditions at
both ends, as shown in fig.(4b,c), the deviation ⇣ is amplified by the initial curvature and the pre-stress. Here again, any deviation
on the right of the defect weakens its role on ⇣ since we cannot distinguish the deviation with lateral defect (magenta line) from
the black line. When the whole profile ⌦ = ⇣ +w0(X) is considered, we clearly observe on increase of the total curvature when
the defect is centered at the maximum of deflection.

6.2.2 Thickness defects on growing plates and shells

The thickness variation on �D gives a very intuitive result. A much less intuitive result concerns the sign of @X2�M and @X2�C

of eq.(36) since the results are dependent of the second derivative of these growth coefficients. These quantities have been studied
in details in sect.(6.1.3). We must notice that they have an opposite sign a priori and in practical situations, we will have little
information except by comparison with genetically modified tissues. So we will join these two contributions into a unique term
�SG = �(�M � �C) = sge

�(X�Xd)
2/l2d in the right-hand-side of eq.(36). Intuitively, as soon as this term is differentiated 2

times, it behaves as either a pressure if it is positive or a tension in the opposite case while the initial curvature of the concave
shell behaves like a pressure and a convex one like a tension. Knowing that a groove in the substrate is represented by a negative
profile, the second derivative is then positive for X = Xd being given by @X2�SR ⇠ �2/l2dsge

�(X�Xd)
2/l2d . Illustration is
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(a) Centered defect with ld = 0.1 (b) Centered defect with ld = 0.3 (c) Defect with ld = 0.3, Xd = 0.2

Fig. 5. Buckling deviation ⇣ in a pre-stressed growing plate. The prescribed boundary conditions are: ⇣ = 0 and @X⇣ = ±0.03 at X ± 0.5,
N0 = 4 and the black line is the initial shape of the plate under pre-stress. The defect is as follows: for D , �D(0) = �0.3e�(X�Xd)

2/l2d ,
�SG = sge

�(X�Xd)
2/l2d with sg = 0.5 (resp. �0.5) represented by a continuous blue line (resp. a dot-dashed blue line) and sg = 1 (resp.

sg = �1) represented by a continuous red line (resp. dotted-dashed red line) for the 3 panels. In (a), Xd = 0 and ld = 0.1. In (b),Xd = 0 and
ld = 0.3. In (c) the same as in (a) for an eccentric defect positioned at Xd = 0.2. Notice the strong asymmetry of all curves in panel (c).

(a) ⇣ deviation of a concave shell (b) ⇣ deviation from a convex shell (c) ⇣ deviation for eccentric defect:Xd = 0.2

Fig. 6. Buckling deviation ⇣ for a pre-stressed (N0 = 4) shell. The same definition and color codes apply as in fig.(5): black no defect, blue
continuous sg = 0.5,blue discontinuous sg = �0.5, red continuous curve sg = 1 and ld = 0.1, red discontinuous sg =1 for the 3 panels.
Clamped boundary conditions are applied. In (a), the shell is initially concave and ld = 0.1. In (b) the shell is initially convex. In (c), the defect
is localized on right xd = 0.2 and the shell is concave. W0(X) = (1/4�X

2)/5., for concave shape and W0(X) = (X2�1/4)/5 for convex
shape

.

given in fig.(5) for a pre-stress plate with defect localized at X = 0 with two different length-scales: ld = 0.1 and ld = 0.3 and
different amplitudes for sg = ±0.5 and ±1. A defect put on the right is also shown with a noticeable distortion in panel (c) of
fig.(5). In fig.(6), the same set of perturbations act on a shell either concave (panel(a)) or convex (panel(b)) and the deviation
⇣ is plotted with boundary conditions ⇣ = @X⇣ = 0 for X ± 0.5. For the concave case (a), the deviation due to the defect is
decreased for sg > 0 and increased otherwise. The opposite result is obtained for in the convex case panel (b).The distortion is
shown in panel (c) only for the concave case. Once the deviation is superposed on the initial shell, depending on the respective
sign of the deviation versus the shell geometry, it is possible to observe an inversion of the curvature. This is demonstrated in the
three panels of fig.(7).

6.3 Confrontation of the uniaxial FvK bilayer model with experiments

In section (2), we presented experimental evidences that a local change in the mechanical properties of the ECM can induce
major morphological changes in the wing imaginal disc epithelium. Here, we confront our bilayer FvK formalism in the uniaxial
geometry to experimental profiles extracted from the images of fig.(2c,e).
We first focus on the tissue presented in fig.(2c), that we rescale in unit of the lateral size of the imaginal disc (fig.(8a)). The
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(a) Full profile ⌦ for a concave shell (b) Full profile ⌦ for a convex shell (c) Eccentric defect of the convex shell

Fig. 7. In (a,b,c)The shell profile ⌦(X) = W0(X) + ⇣(X). The colored lines correspond to the buckling conditions of fig.(6)
. Notice the possibility to observe an inversion of curvature in panel (a) and (b) for a suitable size of sg with respect to the curvature of the

shell.
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fitted final profile with FvKexperimental final profile fitted inital profile with FvK

Fig. 8. Fitting experimental wing disc profiles with the uniaxial FvK bilayer theory. (a): Theoretical fit of an early wing imaginal disc, for
which the initial profile before perturbation was flat (same as fig.(2c)). (b): Theoretical fit of an older wing imaginal disc, for which the initial
profile before perturbation was curved (same as fig.(2e).

perturbation of the ECM was induced before the naturally occurring curvature could develop in the tissue. We therefore assume
no initial curvature: a horizontal plate only under pre-stress. We fix the slope conditions at the border, making the hypothesis that
the tissue periphery is not affected by the perturbation. This hypothesis is justified by the fact that the defect is well localized
at the center of the tissue. The fit of parameters is achieved by a limited number of trials. Fitted parameters converge to the
following values: a pre-stress of order 9 in unit of D and a parameter D0 = 0.3; a defect characterized by an amplitude sg = 4,
position xd = 0.1 and width ld = 0.25, when the defect is modeled by the relation sge

�(X�Xd)
2/l2d , see sect.(6.2.2). Finally

in fig.(8b), the shape of the disc at the boundaries and the developmental timing of the perturbation, suggest that the tissue was
already curved at the onset of the perturbation. We then used the shell treatment with a best guess for the unperturbed shape
w0(X) = 0.7(1/4�X

2 + 4(1/16�X
4)), N0 has little effect and is put to zero, which suggests that in old epithelia, the outer

stresses have relaxed which is not the case for young epithelia. The amplitude of the defect have increased: it is now sG = 10;
localization is Xd = �0.05, and width ld = 0.1. Thus, the bilayered FvK theory can account for the mechanics at play in the
growing wing imaginal disc in the presence of a localized defect in the ECM, both when the tissue is initially flat and curved.

7 Numerical Simulations with Finite-Element Method

We now consider the problem of the bilayer bending in the linear Hookean elasticity approach using Comsol Multiphysics which
computes the deformations in the real geometry of the bilayer, two different connected layers, without averaging the elastic
properties. The bilayer we study in the following is made of a thin (hf = 10µm) and relatively soft (Ef = 50 kPa) upper layer
and a thicker (hs = 12µm) and stiffer (Es = 75 kPa) bottom layer. The length of the bilayer is L = 500 µm. The layers are
submitted to growth and pre-stress, and the boundaries are either free or constrained. We investigate a defect, as a local removal
of the basal layer in the middle of the bilayer with an extension of 10 µm and a thickness hd  hs, and as a local change of
stiffness and growth in the bilayer. The growth is anisotropic and is introduced in a tensorial form: Gij = 1 + g �1i�1j , with
g ⇠ 0 � 0.1. The growth may be introduced in the top layer only as in sect.(7.2), the bottom layer only in sect.(7.4), or in
both layers as in sect.(7.3). The pre-stress consists in an anisotropic compression or tension, so that �PS

ij = ��
PS

�1i�1j where
�
PS ⇠ 0� 500 Pa.
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We also study the case of the shell on the further deviation of the sample. We set an initial curvature to the shell: W0 =
H⇥ (L/2)�2((L/2)2�X

2) where H is the displacement at X = 0. In order to compare the different results, we plot the profile
of the interface between the upper and lower layer (the red line in fig.(9e).

Finally, we fit FEM simulations to the experiment described in sect.(2). The result is compared to the one obtain from the
FvK calculation sect.(6.3).

7.1 Pre-stress on an initially curved bilayer

In fig.(9a) we investigate different initial shell shapes with different curvatures characterized by H = �20 µm, 0 µm, 20 µm with
the same pre-stress �PS = 200 Pa in the bilayer. For a plate, with no initial curvature, a bending toward the stiffer and thicker
basal side is obtained while for a convex or a concave shell, the initial curvature of the shell is reinforced in absolute value. This
is consistent with the previous FvK model for shells. In fact the bending deviation follows the initial shape of the shell.

7.2 Thickness and growth defect on growing plates and shells

In biological systems, the two layers in epithelia are not independent. For instance, the basal membrane regulates the proliferation
and the differentiation in the epithelium. In general, the basal layer structures the upper layer of the epithelium, and a defect in
the lower layer can have consequences on the proliferation and metabolism of the upper layer. Therefore, we now investigate
the shape change at the level of a defect which alters the thickness of the basal layer and consequently the growth of the upper
growing layer. Figure (9b) displays the results when the basal layer is removed in proportion of 85% (dotted lines) in thickness
and the upper layer is not growing at the defect level, as well as the case with no defect (continuous lines). We observe a buckling
towards the basal membrane, in the neighborhood of the defect.

7.3 Place of a defect

Defects can appear anywhere along a bilayer. In fig.(9c) we impose defects on a planar bilayer, located at X = 0, 0.08, 0.16 for
the blue, green and red lines respectively. Both layers grow to the same extent g = 0.1. The defect consists in removing a part of
the bottom layer. Interestingly, with the same size of the defect, the amplitude of the deformation is different, and the shift of the
defect is not only a shift in the deformation.

7.4 Dependence on boundary conditions

The comparison between confined and free geometries is a recurrent topic in cellular growth studies [37,38] from multiple
perspectives, such as the folding of epithelial sheets [39]. The boundary conditions of bilayer plates or shells are also necessary
for the analytical and numerical study of the system. But unfortunately, they are not always perfectly known. When the set-up
is symmetric, one can use those symmetries to constrain the problem, and the system has free-boundary conditions. Sometimes
the experiment is such that the system is clamped, or loses its symmetry. Confined systems are strongly dependent on boundary
conditions.

In fig.(9d) we compare the buckling in a constrained and free geometry. The buckling is very different, and its direction
(up or down) even changes when starting with a concave geometry. It may lead to strong inaccuracies in FEM simulations of
rectangular geometry and semi-analytical treatments become necessary, see reference [40]. Notice that in the previous sections,
sect.(6.2.1,6.2.2), boundary conditions are always fixed symmetrically for plates and clamped boundary conditions for shell
deviations. This point is important for comparing our numerical results to the experiments as shown in the next section. There
can be a few types of constrained geometry. In fig.(9d), it is obtained by imposing a zero displacement at two points on the lateral
boundaries. In fig.(9f), the whole lateral boundaries are imposed a zero displacement. In the second case, the Z-displacement is
close to have a zero derivative as boundary conditions.

7.5 Confrontation of the finite-element simulations with experiments

We use the finite element method to reproduce qualitatively the side to which the imaginal wing curves. We assume that the stress
inside the cell layer is induced by growth, and is relaxed when a defect is introduced. Since in classical mechanics only the stress-
free configuration and the configuration obtained after the process are to be taken into account, we make a multi-layer growth
with and without defect. In our simulations, we observed that a 2-layer model could not reproduce the experimentally observed
change of curvature upon ECM degradation. Only when an apical membrane is introduced in the model, can we reproduce
the behavior - making it essentially a 3 layers model. Indeed, contrary to the resolution of the FvK equation where boundary
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Fig. 9. (a): Profile of the interface between the two layers for different curvatures and a pre-stress �
PS = 200 Pa, with no defect in the

lower layer. The continuous, dashed, and dotted lines correspond respectively to W0 + ⇣, W0 and ⇣. The red, green and blue lines correspond
respectively to H = {�20, 0, 20} µm. (b): Profile of the interface between the two layers for a case with a defect of relative thickness
hd/hs = 0.85 with hd the defect thickness and hs the bottom layer thickness. The growth parameter is g = 0.05. The green, blue, and red
curves correspond respectively to cases with an initial zero, concave and convex curvatures H = 0, 20,�20. (c): Different shifts for the defect,
which is at X = 0, 0.08, 0.16 respectively for the blue, green, and red line. The amplitude of the deformation depends on the localization of
the defect. The growth parameter takes the value g = 0.1. (d): Comparison between constrained (dashed lines) and free (continuous lines)
boundary conditions for zero, convex and concave initial curvatures (H = 0,�20, 20 for the green, red and blue lines) and a growing bottom
layer (g = 0.03). (e): Interface between the lower and upper layer in red. (f): Buckling for a constrained bilayer with a growing bottom layer
and an initial concave curvature.
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Fig. 10. Cuts of the imaginal wing for the different FEM simulations with and without defect. The colors reflect the stiffness: red for the basal
ECM, blue for the upper membrane and the cell layer, and cyan for the zone of the cell layer around the defect that softens in the refined model.

conditions are imposed, we use free boundary conditions with the Finite Element Method. Therefore a third layer has to be added
in order to constrain the system to bend towards the correct side.

More precisely, we simulated a thick (15 µm) cell layer of length L = 500 µm, growing between two non growing thin layers.
This process creates a compressive stress in the two non growing layers. The top layer has a thickness of 5 µm and the lower
layer has a thickness of 2 µm. The apical membrane may represent the apical cortex, and the apical adherens layer that dominates
apical mechanics in epithelia [4], whereas the basal membrane represents the ECM. The growth deformation gradient is written
as: Gij = 1 + �1i�1jg11. The boundary conditions are free.

We fit the experiment (fig.(11a,11b)) and we find a basal ECM stiffer (Eb = 100 kPa or Eb = 30 kPa) than the upper
membrane and that the cell layer (E = 10 kPa). In the case of the early imaginal wing, g11 = 0.2 and Eb = 30 kPa, and for the
old imaginal wing g11 = 0.25 and Eb = 100 kPa. We also introduce an asymmetry for the place of the defect at X = �0.025
for the old epithelium and X = 0.15 for the early epithelium. The apparent growth is thus higher and the ECM stiffer for the
old imaginal wing when compared to the early imaginal wing. This set-up results in a bending toward the upper layer in the case
with no defect for the old imaginal wing and a slight bending towards the basal side for the early imaginal wing (fig.(10a,10c)).
However, when a defect of length ld = 100 µm is introduced in the form of a removal of the basal ECM, the curvature undergoes
an inversion toward the basal side in in both cases (fig.(10b,10d)).

It seems that for the early imaginal disc this model is sufficient to properly reproduce the experimental profile (fig.(11a)).
However, the agreement was not as good for the older initially curved imaginal disc (fig.(11b)).We then modified the FEM model
with the same strategy as for the FvK model, by changing the stiffness at the level of the defect, making the cell layer softer. This
refined model provided a better fit to the experiments (fig.(10e,11c)). The new values of the fit for the old imaginal wing are:
g11 = 0.43 and E = 1.7 kPa in the cell layer at the defect level. The other parameters remain unchanged. Contrarily, changing
the growth rate at the level of the defect does not improve the fit. We deduce that the contribution sg of the defect in sect.(6.3) is
mostly due to a change of the stiffness in the growing cell layer at the level of the defect, rather than a change of growth. This
is consistent with the duration of Mmp2 expression during the experiment (18-24 h), see sect.(2). No pre-stress was introduced
in the FEM simulations, since this pre-stress is assumed to be caused by growth, and the growth can be introduced explicitly
with an order of magnitude larger than with FvK. For the same reason, growth generates the curvature, which is not introduced
explicitly. To conclude, FEM simulations validate the FvK calculations.
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Fig. 11. Fitting experimental wing disc profiles with the FEM model. (a): Theoretical fit of an early wing imaginal disc, for which the initial
profile before perturbation was flat (same as fig.(2c)). (b): Theoretical fit of an older wing imaginal disc, for which the initial profile before
perturbation was curved (same as fig.(2e). The stiffness of the cell layer is not altered by the defect. (c): Comparison between the refined fit
when the stiffness of the cell layer is altered by the defect (in green) and the case when it is not (red).

8 Discussion and conclusion

Motivated by experimental evidence that the ECM plays an important role in shaping epithelia in 3D, as shown in fig.(2), this
work provides a mechanical description of growing epithelia in the Föppl-von Kármán framework. In the context of embryo-
genesis and organo-genesis, previous theoretical studies have modeled epithelia using the vertex model [41–43] inspired from
the physics of foams [44]. Indeed, epithelia are cellular pavings where the main unit has a polygonal shape in 2D or a shape
of polyhedrons in 3D. Vertex models approximate cells as polygons, make hypothesis about the mechanics of individual cells
(e.g.their growth, surface or line tension and stiffness) and simulate the behavior of cell assemblies from these elementary rules.
These simulations are based on energy minimisation, as in the present work. One limitation of cell-based models is the fact that
simulating cell assemblies may become difficult at very large cell number, notably when the parameter-space must be explored. In
addition, it is rather hard to extract macroscopic physical quantities such as Young modulus or surface tension from microscopic
parameters describing the cells.

Most of the aforementioned theoretical works focused on the 2D mechanics of the apical surface of epithelia, with only
few studies addressing the 3D aspects of tissues [45,46]. Epithelia are usually thin layers and the elasticity of slender elastic
objects such as plates, tubes or membranes can be good candidates to describe their mechanical properties especially in the
presence of bending. However, a single plate may be too simple a model when it comes to explain the behavior of epithelia,
which are intrinsically multilayered systems. In the present paper we have considered the multi-component structure of epithelia
from the view point of elasticity. Local changes in elastic coefficients and differential growth are at the origin of stresses able to
buckle the sample. Not only could our bilayered elastic model predict a broad range of morphogenetic behavior, it also yielded
surface profiles that were in very good agreement with experimentally observed ones. Notably, it could account for the localized
degradation of the ECM on two experimental observations that were limit cases: one initially flat and one initially curved wing
imaginal discs (figs. (2,8)). The morphogenetic processes that we observed and modeled -fold formation upon ECM degradation-
were artificially induced via an ectopic genetic expression of the metalloprotease Mmp2. These experiments, as such, fall in the
realm of ”synthetic morphogenesis”. Nevertheless, similar processes are naturally occurring in tissues. For example, deep folds
that develop at late stage of the wing imaginal disc are thought to arise through such a local degradation of the ECM [23,24].
In this paper, we performed experimental observations of tissues exclusively after the action of the genetic perturbation. Ideally,
one would need to image the tissues before and after the onset of the perturbation to completely disentangle the origin of the
buckling. This is experimentally possible in Drosophila with chronic imaging [47].

In the uniaxial geometry (with only one dimension for the sample), defects generates buckling distortions of the shape due
to variation of thickness, stiffness but also of growth process. For a 1D bending process, the in-plane elastic equation is trivially
solved and only the bending equation exhibits interesting degrees of distortions. It is not the case for 2D modes of deformations
where spatial patterns happen on the outer periphery of the samples ([15,16]). One can then expect interesting patterns in these
geometries.

9 Author Contributions

The two first authors contribute equally. Both LL and MBA conceive the project and wrote the manuscript.

10 Acknowledgements

The authors acknowledge the support of ANR (Agence Nationale de la Recherche) under the contracts MecaTiss (ANR-17-CE30-
0007) and GuideFusion (ANR-18-CE13-028); Excellence Initiative of Aix-Marseille University - A*Midex (capostromex), a

(which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprintthis version posted July 31, 2021. ; https://doi.org/10.1101/2021.07.30.454446doi: bioRxiv preprint 

https://doi.org/10.1101/2021.07.30.454446


20 Please give a shorter version with: \authorrunning and \titlerunning prior to \maketitle

French Investissements d’Avenir programme. PQQ acknowledges the support of the China Scholarship Council (CSC), file
N

0 201706100182.

References

1. B. Li, Y.-P. Cao, and X.-Q. Feng, “Growth and surface folding of esophageal mucosa: a biomechanical model,” Journal of biomechanics,
vol. 44, no. 1, pp. 182–188, 2011.

2. M. Ben Amar and F. Jia, “Anisotropic growth shapes intestinal tissues during embryogenesis,” Proceedings of the National Academy of

Sciences, vol. 110, no. 26, pp. 10525–10530, 2013.
3. E. Hannezo, J. Prost, and J.-F. Joanny, “Instabilities of monolayered epithelia: shape and structure of villi and crypts,” Physical Review

Letters, vol. 107, no. 7, p. 078104, 2011.
4. D. Pinheiro and Y. Bellaiche, “Mechanical force-driven adherens junction remodeling and epithelial dynamics,” Developmental cell, vol. 47,

no. 1, pp. 3–19, 2018.
5. N. Khalilgharibi and Y. Mao, “To form and function: on the role of basement membrane mechanics in tissue development, homeostasis and

disease,” Open Biology, vol. 11, no. 2, p. 200360, 2021.
6. P. Ciarletta and M. Ben Amar, “Papillary networks in the dermal–epidermal junction of skin: a biomechanical model,” Mechanics Research

Communications, vol. 42, pp. 68–76, 2012.
7. J. Bateman, R. S. Reddy, H. Saito, and D. Van Vactor, “The receptor tyrosine phosphatase dlar and integrins organize actin filaments in the

drosophila follicular epithelium,” Current Biology, vol. 11, no. 17, pp. 1317–1327, 2001.
8. I. Delon and N. H. Brown, “The integrin adhesion complex changes its composition and function during morphogenesis of an epithelium,”

Journal of cell science, vol. 122, no. 23, pp. 4363–4374, 2009.
9. M. A. Biot, “Folding of a layered viscoelastic medium derived from an exact stability theory of a continuum under initial stress,” Quarterly

of Applied Mathematics, vol. 17, no. 2, pp. 185–204, 1959.
10. M. Kücken and A. C. Newell, “A model for fingerprint formation,” EPL (Europhysics Letters), vol. 68, no. 1, p. 141, 2004.
11. M. Kücken and A. C. Newell, “Fingerprint formation,” Journal of theoretical biology, vol. 235, no. 1, pp. 71–83, 2005.
12. B. Audoly and A. Boudaoud, “Buckling of a stiff film bound to a compliant substrate—part iii:: Herringbone solutions at large buckling

parameter,” Journal of the Mechanics and Physics of Solids, vol. 56, no. 7, pp. 2444–2458, 2008.
13. P. M. Reis, F. Corson, A. Boudaoud, and B. Roman, “Localization through surface folding in solid foams under compression,” Physical

review letters, vol. 103, no. 4, p. 045501, 2009.
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