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17 Abstract

18 The rhizosphere, the region of soil surrounding roots of plants, is colonized by a unique population of 

19 Plant Growth Promoting Rhizobacteria (PGPR). By enhancing nutrient uptake from the soil and 

20 through modulation of plant phytohormone status and metabolism, PGPR can increase the stress 

21 tolerance, growth and yield of crop plants. Many important PGPR as well as plant pathogens belong 

22 to the genus Pseudomonas. There is, however, uncertainty on the divide between phytobeneficial and 

23 phytopathogenic strains as previously thought to be signifying genomic features have limited power 

24 to separate these strains. Here the Genome properties (GP) common biological pathways annotation 

25 system was applied to establish the relationship between the genome wide GP composition and the 

26 plant-associated phenotype of 91 Pseudomonas strains representing both phenotypes. GP enrichment 

27 analysis, Random Forest model fitting and feature selection revealed 28 discriminating features. A 

28 validation dataset of 67 new strains confirmed the importance of the selected features for 

29 classification. A number of unexpected discriminating features were found, suggesting involvement 

30 of novel molecular mechanisms. The results suggest that GP annotations provide a promising 

31 computational tool to better classify the plant-associated phenotype. 

32

33 Author summary

34 With a growing population the need to double the agricultural food production is specified. 

35 Simultaneously, there is an urgent need to implement sustainable and climate change resilient 

36 agricultural practices that preserve natural ecosystems. Cooperative microbiomes play important 

37 positive roles in plant growth development and fitness. Properly tuned, these microbiomes can 

38 significantly reduce the need for synthetic fertilizers and can replace chemicals in crop pest control.   

39 To select beneficial candidates, their traits need to be described and likewise, potential detrimental 

40 traits should be avoided. Here we applied GP-based comparative functional genomics, enrichment 

41 analysis and Random Forest model fitting to compare known phytobeneficial and phytopathogenic 
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42 Pseudomonas strains. A number of unexpected discriminating features were found suggesting the 

43 involvement of novel molecular mechanisms. 

44

45 Introduction

46 Among the targets set by the UN to achieve the zero-hunger goal, the need to double the agricultural 

47 food production is specified [1]. Earlier attempts to improve plant performance and production 

48 focused on plant breeding, pest control by chemical means and the implementation of synthetic 

49 fertilizers tapping into finite global reserves. While these strategies were successful in enhancing 

50 production, the increasing adverse effects on the environment challenges us to find sustainable 

51 alternatives [2–4]. 

52 A multitude of studies has demonstrated that cooperative microbiomes can play important 

53 positive roles in plant growth, development and fitness. One particular hotspot is the rhizosphere, the 

54 region of soil surrounding plant roots, colonized by Plant Growth Promoting Rhizobacteria (PGPR)[5].  

55 A stable PGPR population can increase the stress tolerance, growth and yield of crop plants by 

56 enhancing nutrient uptake from the soil and through modulation of plant phytohormone status and 

57 metabolism [6–13]. As a result, a large catalogue of plant beneficial bacterial strains has been 

58 identified. The most studied are Pseudomonas spp., a functionally diverse group representing both 

59 plant beneficial and pathogenic strains  [14–16]. 

60 A diverse spectrum of plant-host interaction pathways determines the plant-associated 

61 phenotype of a Pseudomonas strain. Correlational approaches have identified a number of marker 

62 genes contributing to the phenotype [17–19]. These genes are however, to a certain degree, shared 

63 between beneficial and pathogenic strains [20] and consequently, with each new genome addition 

64 the uncertainty on the divide between beneficial and the pathogenic strains increases. Until now, a 

65 generic description of presence and completeness of biological pathways contributing to the plant-

66 associated phenotype of a Pseudomonas strain is lacking. Such knowledge would bring fundamental 
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67 insights into their potential to enhance plant performance and resilience. When genes are placed in 

68 context of biological pathways comparative functional genomics is possible. Genome Properties (GP) 

69 is an annotation system whereby functional attributes can be assigned to a genome [21]. The resource 

70 represents a collection of 1286 common biological pathways, and each GP is evidenced by a distinct 

71 set of protein domains.

72 Here we applied GP-based comparative functional genomics to compare known 

73 phytobeneficial and phytopathogenic Pseudomonas strains using both traditional statistical analysis 

74 and machine learning methods. This allowed us to accurately classify Pseudomonas strains, and to 

75 identify discriminating features for both the phytobeneficial and phytopathogenic lifestyle. In the 

76 discussion section these discriminating features are placed into biological context. 

77

78 Results

79 Based on literature review, the complete genomes of 84 Pseudomonas strains were retrieved from 

80 the Pseudomonas Genome DB (version 17.2) [22] and categorized as encoding either a 

81 ‘phytobeneficial’ strain (51 strains) or a ‘phytopathogenic’ strain (33 strains). This selection was 

82 supplemented with the complete genomes of seven new or re-sequenced phytobeneficial strains; P. 

83 putida P9, P. corrugata IDV1, P. fluorescens R1 and WCS374, P. protegens Pf-5, P. chlororaphis Phz24 

84 and P. jessenii RU47. To avoid gene and protein domain annotation inequality, the genome sequences 

85 of all 91 strains were de novo annotated. Subsequently, the two groups were compared using 

86 nucleotide sequence similarity, by protein domain presence and by presence and completeness of 

87 domain-based GPs (Fig 1). Domain content was subjected to enrichment analysis and the GP content 

88 of both groups was used to train a Random Forest (RF) model for classification and feature selection 

89 [23]. The performance of the classification methods was further validated using a set of 67 newly 

90 sequenced soil derived Pseudomonas genomes obtained from a newer version (V20.2) of the 

91 Pseudomonas Genome DB. Based on literature data. Using literature data, 17 strains of this validation 

92 set could be classified as phytobeneficial strains while 34 strains were involved in bioremediation. For 
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93 16 strains the classification was unclear however, a number of these strains were P. chlororaphis 

94 strains known to be phytobeneficial. 

95

96 Sequence similarity

97 We first examined the genomic relatedness between the phytobeneficial and phytopathogenic group, 

98 by calculating the Average Nucleotide Identity (ANI) scores between all possible pairs (Fig 2). The ANI 

99 scores showed that corresponding with their phenotypic classification the genome sequences could 

100 be divided into two groups with Pseudomonas sp. M30-35 being less similar to the rest of the 

101 phytobeneficial group. The average sequence similarity within the phytopathogen and the 

102 phytobeneficial group was 90.01 ± 5.53 and 79.57 ± 4.27 respectively. The ANI-score measures 

103 genomic similarity between the coding regions of two genomes at nucleotide-level taking into account 

104 hits that have 70% or more identity and at least 70% coverage of the shorter gene. The ANI score does 

105 not take into account the fraction of coding sequences that actually contribute to this score and thus 

106 provides no insight in the degree of strain-specific functional adaptations. To study which strain-

107 specific functional adaptations impact the phenotype, the protein domain content of each strain was 

108 considered.

109

110 Protein domain content 

111 The 91 complete Pseudomonas genomes contained, on average, 5640 ± 643 protein encoding genes. 

112 For each genome, 9342 ± 709 domains were identified with an average domain copy number of 2.35 

113 ± 0.12 (S1 Table). Using domain presence as input, a group-wise enrichment analysis was done and a 

114 total of 410 and 329 protein domains were found to be significantly enriched in respectively 

115 phytobeneficial and phytopathogenic strains (S2 Table). 

116 Phytobeneficial strains were enriched with five domains linked to Type II secretion systems (T2SS), ten 

117 domains linked to the term “cytochrome”, eight domains linked to, “quinohemoprotein” and six 

118 domains linked to “biofilm” (Poly-beta-1,6-N-acetyl-D-glucosamine type) biosynthesis. Interestingly, 
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119 domains related to “quinohemoprotein” and “biofilm” were not only enriched but also exclusively 

120 found in phytobeneficial strains. 

121 Phytopathogenic strains were enriched with domains involved in various types of secretion 

122 systems. Moreover, some of these domains were not present in any of the phytobeneficial strains. 

123 Eighteen of those pathogen enriched domains are reported to be involved in the Type III secretion 

124 system and five in the Type IV secretion system. In addition, the phytopathogen list showed 

125 enrichment of nine different domain involved in phosphonate metabolism. Functional clustering of 

126 enriched domains was further explored using genome properties. 

127

128 Genome properties 

129 Genome properties (GP) represent a collection of currently 1286 common biological pathways. Each 

130 GP is constructed from a precomputed cluster of core protein domains which are  used as  essential 

131 evidence for the presence of the biological pathway  [21].  Genome derived protein domains were 

132 used to construct for each strain a list of GPs with two possible evidence values: ‘YES’ indicating that 

133 the complete set of precomputed evidences had been detected and ‘PARTIAL’, indicating that the GP 

134 is likely present due to the presence of an incomplete set of evidences above a per GP specified 

135 minimal threshold. In addition, we took into account that the bacterial genes encoding domains that 

136 function in the same biological pathway are often arranged in operonic structures corresponding to 

137 syntenic blocks. For each strain therefore GPs were reconstructed not only based on protein domain 

138 presence/absence (GP-PA) but also on protein domain colocalization (GP-SND; synteny-non-

139 directional) and on domain colocalization and being encoded on the same strand (GP-SD; synteny-

140 directional). For domain colocalization a nearest neighbor approach was applied using a sliding 

141 window of 20 protein domains. 

142

143 Table 1 summarizes the results obtained for the three approaches. 

144
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145 Table 1: Number of strain specific GP classes per approach

Approach Complete Partial Not detected
GP-PA 440 ± 22 256 ± 14 590 ± 14

GP-SND 161 ± 11 362 ± 6 763 ± 12
GP-SD 158 ± 10 365 ± 7 763 ± 13

146

147 A total of 438 GPs were not present in any the investigated Pseudomonas strains. The majority of 

148 these GPs represented functions and processes typically found in eukaryotic species (S3 Table). 

149 Conversely, using the GP-PA method, a functional GP core of 154 complete GPs present in all strains 

150 could be obtained. When domain colocalization was used as an additional constraint a functional core 

151 of 37 complete, likely operonic, GPs was found with both domain colocalization methods. Note that 

152 overall, the GP-SND and GP-SD generated very similar output underpinning a strong linkage between 

153 operonic structures and functional genome properties in bacterial species (

154

155 Table 1). 

156 Next, a principal component analysis (PCA) was applied to the GP data. With all three methods 

157 a clear separation between the pathogen and the biocontrol group were obtained (S4 Fig). Fig 3 shows 

158 the results obtained with the GP-SND approach.

159 To further understand the contribution of each GP to the separation, we performed an 

160 enrichment analysis on the results obtained with the GP-PA, GP-SD and GP-SND approach (S3 Table). 

161 The enrichment analysis was performed on the binary data of presence and absence of the properties 

162 by considering “PARTIAL” as presence or absence separately, creating two enriched sets per approach. 

163 Subsequently, the two enriched sets were intersected to create the enriched set for that particular 

164 approach. Lastly, an overall enriched set was constructed by considering only the GPs that were 

165 enriched in the GP-SD and GP-SND approaches (

166 Table 2). 

167 To extend our analysis utilizing the full information of the classes and to capture feature 

168 importance, a Random Forest (RF) classifier was built. For 99% of the strains, the RF classifier correctly 

.CC-BY 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is 

The copyright holder for this preprintthis version posted July 30, 2021. ; https://doi.org/10.1101/2021.07.30.454435doi: bioRxiv preprint 

https://doi.org/10.1101/2021.07.30.454435
http://creativecommons.org/licenses/by/4.0/


169 predicted the phenotype. The only exception was Pseudomonas cichorii JBC1, which had been 

170 reported to be pathogenic but was classified by RF-classifier as phytobeneficial. To study the 

171 discriminating variables further, variable selection from RF was implemented (

172

173 Table 3 and S3 Table). These variables were integrated with the list of enriched GPs to 

174 generate a comprehensive list of key genomic features contributing to the plant-associated phenotype 

175 (Fig 4). 

176

177 Table 2: Genome Properties related to the plant-associated phenotype: enrichment analysis

Genome
Property

Description Adjusted
P-value

GPs enriched in phytobeneficial strains
GenProp0238* 2-aminoethylphosphonate catabolism to acetaldehyde < 10-6

GenProp0721* 2-aminoethylphosphonate (AEP) ABC transporter, type 
II

< 10-6

GenProp0613* Cytochrome c reductase < 10-6

GenProp0907 Poly-beta-1,6 N-acetyl-D-glucosamine system, PgaABCD 
type

< 10-6

GenProp0271 Trehalose utilization < 10-6

GenProp1745 GA12 biosynthesis < 10-6

GenProp1189 MqsRA toxin-antitoxin complex < 10-6

GenProp1645 Zeaxanthin biosynthesis < 10-6

GenProp0659 Tryptophan degradation to anthranilate 7.96 x 10-5

GenProp0895 Alcohol ABC transporter, PedABC-type 7.01 x 10-4

GenProp0902 Quinohemoprotein amine dehydrogenase 1.40 x 10-3

GenProp1516 Phosphatidylcholine biosynthesis V 5.37 x 10-3

GPs enriched in phytopathogenic strains
GenProp0908* 2,3-diaminopropionic acid biosynthesis < 10-6

GenProp0813* Pyrimidine utilization < 10-6

GenProp1165* PhnGHIJKL complex < 10-6

GenProp1381 Methylphosphonate degradation I < 10-6

GenProp0236 Phosphonates ABC transport 2.62 x 10-3

GenProp0710 Generic phosphonates utilization 2.62 x 10-3

GenProp1193 RelBE toxin-antitoxin complex 3.19 x 10-2

GenProp1566 D-galactonate degradation 3.64 x 10-2

178 *These Genome Properties are also important random forest features (Table 3). 

179
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180 Table 3: Genome Properties related to the plant-associated phenotype: Random Forest features 

181 importance 

Genome 
Property

Description Predictive 
power**

GenProp0813* Pyrimidine utilization 500
GenProp0908* 2,3-diaminopropionic acid biosynthesis 500
GenProp0721* 2-aminoethylphosphonate (AEP) ABC transporter, type II 329
GenProp0238* 2-aminoethylphosphonate catabolism to acetaldehyde 328
GenProp0615 Cytochrome c based oxygen reduction and quinone re-

oxidation
251

GenProp0613* Cytochrome c reductase 243
GenProp1629 Propanoyl-CoA degradation I 215
GenProp1572 L-carnitine degradation I 145
GenProp1562 Fatty acid salvage 53
GenProp1717 Fatty acid beta-oxidation I 

(GenProp1308, GenProp1510 and GenProp1544)
53

GenProp1165* PhnGHIJKL complex 2
GenProp1251 L-tyrosine biosynthesis I 2
GenProp1281 Hydrogen sulfide biosynthesis I 1
GenProp1681 L-cysteine degradation III 1

182 *GP also found in the enrichment analysis. **Numbers were obtained using recursive feature 

183 elimination (500 iterations)

184

185 Prediction validation

186 A set of 67 newly retrieved Pseudomonas genome sequences were analyzed for the presence of GPs 

187 using the GP-SND approach and used in RF performance evaluation (S1 Table). Confirming the 

188 capability of GP content to predict the plant-associated phenotype, a PCA of the full dataset (training 

189 and validation) indicated that the separation between the phytobeneficial and the phytopathogenic 

190 strains was retained. Additionally, a clustering of bioremediation strains with phytobeneficial strains 

191 was observed (Fig 5Error! Reference source not found.). Unclassified strain Pseudomonas sp. 

192 KBS0707 was positioned within the pathogen group. As all P. syringae are considered to be 

193 phytopathogenic, the unclassified P. syringae isolate inb918 was of interest as it appeared to be a 

194 phytobeneficial strain. The ANI score however suggested that strain inb918 might have been 

195 taxonomically misclassified as among the P. syringae strains the pair-wise score between this strain 
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196 and the others remained below 79% (Fig 5). Lastly, the RF classifier was applied to the validation set 

197 and yielded the same predictions as the PCA. 

198

199 Discussion

200 Plants live in symbiotic interactions with microbial communities, which are complex networks 

201 composed of interacting microbiotic nodes. The sum of these interactions can be beneficial for plant 

202 growth and development, detrimental or neutral. Many important PGPR as well as plant pathogens 

203 belong to the genus Pseudomonas. The genomic diversity observed at species [22] and strain level 

204 suggests that Pseudomonas spp. have a broad potential for evolutionary adaptation to different 

205 environments. Consequently, the plant-associated lifestyle of a Pseudomonas strain is likely to be the 

206 result of a combinatorial accumulation and emergence of a diverse set of contributing traits. A 

207 selected isolated genome encoded feature therefore will have limited power to confidently predict 

208 the plant-associated phenotype. 

209 Differences between phytopathogenic and phytobeneficial strains emerge at all levels of 

210 analysis. At genome sequence similarity level, a separation between the two groups was prominent. 

211 As most of the described phytopathogenic genomes in the scientific literature are P. syringae strains, 

212 a higher degree of sequence similarity was observed for the phytopathogenic group. The ANI score, 

213 however, does not take into account the most variable genomic regions that are likely to harbor genes 

214 that function in the biological relevant differences and would provide further insight in the functional 

215 diversity within the two phytotypes. The Genome properties (GP) annotation system was applied in 

216 this study to specifically address functional differences encoded in the genomes. 

217 GPs represent not only metabolic pathways but also various other classes of functional 

218 attributes and provide, compared to KEGG and SEED, a better functional annotation coverage [21]. 

219 The GP annotation system is organized as a doubly linked rooted DAG. Leave nodes use domains as 

220 evidences, parent nodes, representing super-pathways, use leaf node GPs as evidences. For a 

221 functional genome comparisons at a larger scale, protein domains are better scalable and less 
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222 sensitive to sequence variation compared to techniques based on sequence similarity [24]. By focusing 

223 on the reconstruction of domain-based GPs only, feature independence is promoted, and the 

224 complexity of the RF-model is reduced. In total 848 domain-based GPs were annotated to be (likely) 

225 present in one or more of the here studied Pseudomonas strain. Underpinning the genomic diversity 

226 of the 91 Pseudomonas strains used in this study, in contrast a functional core of maximal 154 

227 complete and persistently present GPs was obtained. While for obvious reasons by far most of the 

228 typical eukaryotic GPs were not detected, a limited number of the Pseudomonas GPs may have some 

229 domain overlap with GPs of similar function typically found eukaryotic species. An example is the 

230 domain overlap between GenProp1717 and the “peroxisomal” GPs GenProp1308, GenProp1510 and 

231 GenProp1544 all involved in fatty acid beta-oxidation which we treated as one.

232 Three different approaches were used to determine the domain-based GP content of each 

233 strain. Implementation of the domain colocalization constraint mirrors the operonic structure 

234 common in bacterial genomes [25]. For domain colocalization a sliding window of 20 domains was 

235 chosen as it covers 1255 of the 1286 GPs (98%) with the most abundance group of GPs being GPs with 

236 two evidences (396 GPs) (S5 Fig). As the average domain copy number is 2.3, indicating that the same 

237 domain could be assigned to multiple functions across the genome, inclusion of protein domain 

238 colocalization in GP reconstruction also increases the prediction certainty of those GPs and further 

239 promotes the selection accessory traits, some of which may be acquired by lateral transfer, as RF-

240 variables. Very similar results were obtained with GP-SND and the strain specific GP-SD method, 

241 suggesting that domain clustering most likely yields operonic structures.

242 The validation data was used to explore the performance of the RF classifier. For most 

243 validation data the RF firmly supports the discrimination between the beneficial and the pathogenic 

244 strains. P. cichorii JBC1 was classified as non-pathogenic. However, that does not directly translate 

245 into it being beneficial. Fig 4 shows that P. cichorii JBC1 still contains three GPs associated with 

246 pathogenicity: ‘2,3-diaminopropionic acid biosynthesis’ (GenProp0908), ‘RelBE toxin-antitoxin 

247 complex’ (GenProp1193) and ‘D-galactonate degradation’ (GenProp1566). P. cichorii JBC1 has already 
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248 been reported to be quite different to other pathogenic Pseudomonas at the genome level [26] and 

249 our results confirm this finding suggesting that there may be different mechanisms for pathogenicity 

250 associated with this strain. 

251 RF recursive feature elimination and GP enrichment analysis was used to select a minimal set 

252 of GP-variables needed for a good prediction of the phenotype [27]. GenProp0238 and GenProp0721 

253 are two of those important RF-variables and are shown to be enriched in phytobeneficial strains. The 

254 two GPs are related to mechanisms of phosphonate utilization, which have been shown to occur in 

255 Pseudomonas and also in other microorganisms  [28]. Phosphonate is a form of phosphorus, which is 

256 essential for many biological processes [29]. However, both groups show differences in the usable 

257 form of phosphonate. Most phytobeneficial strains appear to be able to utilize only 2-

258 aminoethylphosphonate (AEP) via the genome properties: ‘2-aminoethylphosphonate catabolism to 

259 acetaldehyde’ (GenProp0238) and ‘2-aminoethylphosphonate (AEP) ABC transporter, type II’ 

260 (GenProp0721), whereas the phytopathogens are able to access broader forms of phosphonates, as 

261 also shown by the enriched protein domain, via ‘phosphonates ABC transport’ (GenProp0236), 

262 ‘generic phosphonates utilization’ (GenProp0710), ‘PhnGHIJKL complex’ (GenProp1165) and 

263 ‘methylphosphonate degradation I’ (GenProp1381) [30]. AEP is the most abundant C-P compound in 

264 nature while other phosphonates and their derivatives are substances used in agriculture (herbicides, 

265 fungicides and insecticides) and pharmacy (antibiotics) [31]. It has been reported that the virulence of 

266 pathogenic species was enhanced under conditions of orthophosphate limitation [32]. Thus, we 

267 hypothesize this could be due to the presence of genome traits that enable them to access a wider 

268 set of phosphate sources. 

269 GenProp0908 is another important RF-variable. This GP was found to be enriched in 

270 phytopathogenic strains and is involved in 2,3-diaminopropionic acid biosynthesis (DAP). DAP is a 

271 precursor of several secondary metabolites, such as siderophores, neurotoxins and antibiotics [33]. 

272 Pyoverdins, the principal siderophores, have been reported to be produced exclusively by the 

273 pathogens, such as P. syringae and P. cichorii [34]. Siderophores are important metabolites involved 
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274 in iron acquisition [35]. Iron is crucial to many metabolic processes and is therefore required to 

275 maintain cells in a healthy state [36]. The stronger ability to scavenge for iron, and the phosphonate 

276 previously mentioned, will increase the fitness of the pathogens.

277 Two GPs strongly enriched among the phytobeneficial strains are GenProp0907, and 

278 GenProp0902. GenProp0907 represents a cluster of four genes involved in the synthesis, modification 

279 and export of the biofilm adhesin poly-beta-1,6-N-acetyl-D-glucosamine and the four domain 

280 evidences represent the four genes required. The GP is not present in the phytopathogen group and 

281 found to be complete as likely operonic structures in 39 phytobeneficial strains. Biofilms of the 

282 PgaABCD type have been studied in Escherichia coli [37] but not in Pseudomonas species. 

283 GenProp0902 represents quinohemoprotein amine dehydrogenase (QHNDH). QHNDH is a three-

284 subunit enzyme located in the periplasmic space of P. putida and part of the amine oxidation 

285 respiratory chain. QHNDH catalyzes the oxidative deamination of primary amines when used as a sole 

286 carbon and energy source [38]. The GP consists of four evidences, three domains representing the 

287 alpha-, beta- and gamma-subunit of the enzyme and one representing the QHNDH maturation 

288 protein. This likely operonic GP was found to be complete in 24 biocontrol strains and not present in 

289 the pathogen group. As these GPs are only present in subset of the phytobeneficial strains, they did 

290 not emerge as important RF-variables in recursive feature elimination. 

291 Protein domains associated with Type II secretion system (T2SS) were found to be enriched 

292 among the phytobeneficial strains while domains involved in the type III secretion system (T3SS) were 

293 found to be enriched among the phytopathogenic strains. T2SS is described by GenProp0053 and 

294 consists of 10 non-optional evidences and 3 optional domains. GP results however, indicated for both 

295 phytobeneficial and phytopathogenic strains a “PARTIAL” status for this GP. Similarly,  the type III 

296 secretion system, represented by GenProp0052 is considered to be a key virulence factor and has 

297 been considered as evidence for pathogenicity in many genome studies [17,39,40]. GenProp0052 is a 

298 complex GP consisting of 14 evidences and 28 optional domains. Due to the set zero threshold for 

299 “PARTIAL” for this specific GP, a single evidence domain will already result in a “PARTIAL” status. 
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300 Eighteen protein domains enriched in phytopathogens are described to be involved in Type III 

301 secretion systems. Eleven of those enriched domains are used as evidences for GenProp0052. One 

302 other, TIGR02551, did also occur in the pathogen set but was considered not to be enriched after the 

303 Bonferroni adjustment. In contrast, the two missing evidences, TIGR02105 and TIGR02546 are only 

304 present in five phytobeneficial genomes. Thus, amongst the 91 Pseudomonas strains all 14 evidences 

305 are present, but none of the strains used in this study have the complete set of 14 evidences.  

306 Due to the ‘Partial’ status of GenProp0052 (T2SS) and GenProp0053 (T3SS) for both 

307 phytotypes these GPs were not enriched, nor were they selected as discriminating variables in RF 

308 classification. We further examined the distribution of the GenProp0053 and of GenProp0052 

309 evidences over all strains (S6 Fig). The distribution showed that protein domains linked to 

310 GenProp0052 more consistently occurred in the pathogen group with more variation in the 

311 phytobeneficial group. The result suggests that the abundance of T3SS related domain content could 

312 be sufficient for an indication of the pathogenicity. However, there is no guarantee that the feature is 

313 functional due to the missing evidences. 

314 Specifically, for the phytobeneficial group a number of enriched GPs suggested a role for 

315 pathways involved in the degradation and utilization of trehalose (GenProp0271), tryptophan 

316 (GenProp0659) (Table 2), tyrosine (GenProp1251) and carnitine (GenProp1572) (Table 3). On the 

317 other hand, phytopathogenic strains appears to be more specialized in the degradation of galactonate 

318 (GenProp1566) and cysteine (GenProp1681). Carbon sources that were predicted to be degradable by 

319 preferably the phytobeneficial group could contribute to the agricultural industry. These substrates 

320 could be used as fertilizers, growth promotors, or as additives to alternate the microbial composition 

321 [41]. Similar to elicitors, which directly enhance plant defense and resistance, this indirect approach 

322 could be applied to the existing microbial community to select for the beneficial strains and potentially 

323 increase the productivity of the crop. [42]. On the other hand, carbon sources that might prolong 

324 saprobic growth and survival of pathogens should be avoided.
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325 Other GPs found in the phytobeneficial group are linked to four ‘human hormones’, which are 

326 ‘mineralocorticoid biosynthesis’ (GenProp1644), ‘estradiol biosynthesis II’ (GenProp1417), 

327 ‘glucocorticoid biosynthesis’ (GenProp1666) and ‘pregnenolone biosynthesis’ (GenProp1740). The 

328 evidence shared by these hormones, domain PF00067 (cytochrome P450), is the same as for ‘GA12 

329 biosynthesis’ (GenProp1745). Hence, only GA will be further discussed. Gibberellin 12 (GA12 ), is the 

330 common precursor of all gibberellins (GA) [43]. GA phytohormones play important roles in influencing 

331 the growth and development of the host plants [44] and GA from Pseudomonas could increase seed 

332 germination [45].

333 Not all known traits are represented by a GP. Many of those are found in phytopathogenic 

334 strains such as, coronatine, cytokinin and auxin [46]. We examined the presence of the protein 

335 domains associated to these traits in our dataset (S7 Fig). The results showed that the associated 

336 protein domains are generally present in both groups. Among these domains, only PF08659 and 

337 PF16197 were enriched in the phytopathogenic group. This suggests that the occurrence of these, 

338 known to be, phytopathogenic traits may not be sufficient as a genetic marker to identify the 

339 pathogenicity of a strain. 

340 In conclusion, domain-based Genome Properties appear to be robust computational features 

341 to differentiate between phytobeneficial and phytopathogenic Pseudomonas strains and our analysis 

342 shows that incorporation of domain colocation further increases their relevance. By combining 

343 traditional statistical analysis (enrichment analysis) and machine learning methods (random forest) 

344 we were able to identify new discriminating genome properties that can be used to identify species 

345 that promote plant growth. These could be applied in strategies to develop synthetic PGPR 

346 communities and to formulate soil additives to improve plant health and performance. 

347

348 Materials and Methods
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349 Genome retrieval and annotation: Pseudomonas genomes with were downloaded from 

350 Pseudomonas Genome DB version 17.2. The validation set was obtained from database version 20.2 

351 (https://www.pseudomonas.com) [22]. Genomes were manually categorized according their 

352 phytotype using literature data. Additionally, 7 genome sequences were (re)sequenced from 

353 phytobeneficial strains P. putida P9 (accession ERS6670306), P. Corrugata IDV1 (accession 

354 ERS6652532), P. fluorescens R1 (accession ERS6670181), P. protegens Pf-5 (accession ERS6652530), P. 

355 chlororaphis Phz24 (accession ERS6670416), P. jessenii RU47 (accession ERS6670307) and P. 

356 fluorescens WCS374 (accession ERS6652531).  DNA was extracted using the Epicenter Masterpure 

357 kit (Epicentre Technologies, USA) according to the manufacturer’s protocol, quantified. For with 

358 the Infinite® 200 PRO (Tecan, Männedorf, Switzerland) using the Quant-iT™ PicoGreen™ dsDNA Assay 

359 Kit (ThermoFisher, Waltham, USA) according to the manufacturer’s protocol. The strains were 

360 sequenced on the PacBio Platform (Pacific BioSciences, Menlo Park, USA). A total of 4 ug DNA was 

361 sheared to 7 Kb and two SMRT bell libraries were prepared using the kit Barcoded Adapters for 

362 Multiplex SMRT sequencing in combination with the Sequel Binding Kit V2.0 and the Sequel 

363 Polymerase 2.0 Kit. Per library, a pool with sheared DNA of all strains was used as input according to 

364 the manufacturer’s protocol. Sequencing was done on a Sequel system operated at the services of 

365 Business Unit Bioscience, Wageningen Plant Research (Wageningen, The Netherlands). Subsequently, 

366 de-multiplexing was performed by aligning the barcodes to the sub-reads with pyPaSWAS version 3.0 

367 [47]. Canu version 1.6 [48] was used to assemble the PacBio reads

368 The SAPP semantic annotation framework [49] was used to systematically (re)annotated the 

369 genomes. Briefly, protein encoding genes were de novo predicted using Prodigal 2.6.3 [50] and protein 

370 domains were characterized with InterProScan 5.36-75.0 using the Pfam and TIGRFAMs databases 

371 [51–53]. Annotation data and meta-data was stored in a semantic database using the GBOL ontology 

372 [54,55].  SPARQL queries were used to extract protein domain identifiers, and the location and 

373 direction of the corresponding gene.
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374 Data processing: OrthoANI version 1.40 was used to calculate the Average Nucleotide Identity (ANI) 

375 score for all genomes [56].  PygenProp, was used to infer from each genome domain-based GPs, [55]. 

376 Three criteria were applied; “PA”, considering only domain presence as evidence, “SND”, synteny-

377 non-directional, requiring the genome location of the corresponding domains to be in close proximity 

378 and “SD” that in addition to gene location also considers strandness. For SND and SD a nearest 

379 neighbor approach and a sliding window of 20 protein domains was applied.  Each GP was classified 

380 as either ‘YES’, or ‘PARTIAL’ according to the completeness of the set of evidences. 

381 Statistical analysis: The natural grouping of the data was visualized using principal component 

382 analysis (prcomp package). Then, with R packages; fisher.test and p.adjust, Fisher Exact Test with 

383 Bonferroni correction was applied to protein domains and the genome properties to test for 

384 enrichment. This analysis identified the over- and under-represented features. GP data was 

385 reassessed twice by considering ‘PARTIAL’ as either ‘YES’ or ‘NO’. The enriched list was created by 

386 intersecting the two cases of ‘PARTIAL’. Enrichments were considered significant if the adjusted p-

387 value after Bonferroni correction of the GP is below 0.05. 

388 The Random Forest classifier was created using R package randomForest v4.6-14 [58]. 

389 Labelled data were divided into training and test sets. The unbiased training set was created with 

390 equal numbers per group determined by using 75% of the smaller group, the pathogen group, 

391 resulting in 25 strains per group. Therefore, the test set remains with 33 phytobeneficials and 8 

392 phytopathogens. The Variable Selection from Random Forests v 0.7-8 (varSelRF) package in R was used 

393 to determine variable importance. We used 5000 trees for the first forest and 2000 trees for all 

394 additional forests during the iteration. Vars.drop.frac, the portion of the variable that is excluded on 

395 each iteration, was set to 0.2. 

396
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587 Supporting information

588 S1 Table. List of strains.

589 List of strains used in this study. The dataset used for the initial analysis and the validation data are in 

590 different tabs. The list provides strain’s name, their classification along with their corresponding 

591 annotation information.

592 (XLSX)

593 S2 Table. Enriched protein domains.

594 Enriched protein domains on phytopathogenic and phytobeneficial strains with the p-value and 

595 number of occurrences. 

596 (XLSX)

597 S3 Table. Genome Properties analysis.

598 Genome Properties analysis results divided into 9 sheets. First three sheets are according to the 

599 analysis approaches: GP-PA (presence-absence), GP-SD (synteny-directional) and GP-SND (synteny-

600 nondirectional). Sheets 4 and 5 are the enriched GP of the phytopathogen and beneficial respectively. 

601 Sheets 6 to 8 are the variable selection using the Random Forest using 3 analysis approaches. The final 

602 sheet are the GPs that are not presented according to any approaches.

603 (XLSX)

604 S4 Fig. PCA using 3 approaches.

605 (PDF)

606 S5 Fig. Distribution of number of evidences of the Genome Properties.

607 (PDF)

608 S6 Fig. Distribution of non-optional evidences of GenProp0053 and GenProp0052.

609 (PDF)

610 S7 Fig. Presence and absence of protein domains associated to genes related to selected 

611 pathogenic traits found in P. syringae.
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612 (PDF)

613

614 Figure Captions

615 Fig 1: Workflow for GPs based functional genomics and classification. Genome sequences are 

616 analyzed using sequence similarity and protein domain content. (Colocalized) protein domain content 

617 is used to infer Genome Properties. Enrichment analysis and Random Forest feature selection was 

618 used obtain genomic features. Classification performance was evaluated using a validation dataset of 

619 67 newly available genomes.

620

621 Fig 2: Pairwise Average Nucleotide Identity (ANI) scores between coding regions. Scores were 

622 calculated from alignments that have 70% or more identity and at least 70% coverage of the shorter 

623 gene.

624

625 Fig 3: PCA based on GP-SND content as variables. The fraction of the variance is given in parentheses. 

626 P. cichorii JBC1 and two strains of P. cerasi are outside 95% confidence ellipse of the phytopathogenic 

627 group. 

628

629 Fig 4: Representative list of discriminating Genome Properties obtained with the GP-SND approach. 

630 Left panel: enrichment analysis, right panel: Random Forest feature selection. Red lines indicate the 

631 phytobeneficial strains (vertical) and enriched traits (horizontal). Blue lines indicate the 

632 phytopathogenic strains (vertical) and enriched traits (horizontal). Newly sequenced strains are in red. 

633 Enriched GPs that were also highlighted in the RF feature importance analysis are indicated in red.

634

635 Fig 5: Analysis of the validation set.  (a) PCA of the complete set of SND-GP data: variance is indicated 

636 in brackets. Previously analyzed Pseudomonas strains and previous obtained 95% confidence ellipses 

637 are in gray. The validation set is composed of 3 classes: phytobeneficial strains (red squares), 

.CC-BY 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is 

The copyright holder for this preprintthis version posted July 30, 2021. ; https://doi.org/10.1101/2021.07.30.454435doi: bioRxiv preprint 

https://doi.org/10.1101/2021.07.30.454435
http://creativecommons.org/licenses/by/4.0/


638 bioremediation strains (green squares) and unclassified strains (purple squares). The arrow points at 

639 P. syringae isolate inb918. (b) Average Nucleotide Identity (ANI) score among P. syringae strains. 

640 Pseudomonas syringae isolate inb918 is at the top left.
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