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Abstract 16 

Antibiotic resistance genes (ARGs) have emerged in pathogens and spread faster than 17 

expected, arousing a worldwide concern. Current methods are suitable mainly for the 18 

discovery of close homologous ARGs and have limited utility for discovery of novel 19 

ARGs, thus rendering the profiling of ARGs incomprehensive. Here, an 20 

ontology-aware deep learning model, ONN4ARG (http://onn4arg.xfcui.com/), is 21 

proposed for the discovery of novel ARGs based on multi-level annotations. 22 

Experiments based on billions of candidate microbial genes collected from various 23 

environments show the superiority of ONN4ARG in comprehensive ARG profiling. 24 

Enrichment analyses show that ARGs are both environment-specific and host-specific. 25 

For example, resistance genes for rifamycin, which is an important antibacterial agent 26 
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active against gram-positive bacteria, are enriched in Actinobacteria and in soil 27 

environment. Case studies verified ONN4ARG’s ability for novel ARG discovery. 28 

For example, a novel streptomycin resistance gene was discovered from oral 29 

microbiome samples and validated through wet-lab experiments. ONN4ARG 30 

provides a complete picture of the prevalence of ARGs in microbial communities as 31 

well as guidance for detection and reduction of the spread of resistance genes. 32 

Keywords: antibiotic resistance gene, ontology-aware, deep learning, novel ARG, 33 

microbiome 34 

 35 

Introduction 36 

With the development of metagenomics and next-generation sequencing, many new 37 

microbial taxa and genes have been discovered, but different kinds of “unknowns” 38 

remain. For instance, the microbes found in the human gut microbiome involve 25 39 

phyla, more than 2,000 genera, and 5,000 species1. However, the functional diversity 40 

of microbiomes has not been fully explored, and about 40% of microbial gene 41 

functions remain to be discovered2. A typical example is the antibiotic resistance gene 42 

(ARG), which is an urgent and growing threat to public health3. In the past few 43 

decades, problems caused by antibiotic resistance have drawn the public’s attention4. 44 

Antibiotic resistance in pathogens has been an increasing threat to human health over 45 

the past decade, and it is widely accepted that antibiotic resistance development and 46 

spread in microbes can be largely attributed to the abuse and misuse of antibiotics. A 47 

direct correlation between antimicrobial use and the extent of antimicrobial resistance 48 

has been reported4. Antimicrobial resistance genomic data is an ever-expanding data 49 

source, with many new ARG families discovered in recent years5,6. The discovery of 50 

resistance genes in diverse environments offers possibilities for early surveillance, 51 

actions to reduce transmission, gene-based diagnostics, and, ultimately, improved 52 

treatment7. 53 

 54 

Existing annotated ARGs have been curated manually or automatically for decades. 55 
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Presently, there are 2,979 annotated ARGs in the reference database CARD5,6 (v3.1.2, 56 

released in April 2021), 3,159 in the ResFinder database8 (as of May 2021), and 2,675 57 

in SwissProt9 (as of May 2021). These annotated ARGs are categorized into antibiotic 58 

resistance types, which are organized in an ontology structure (see Methods, 59 

Supplementary Figure 1), in which higher-level ARG types cover lower-level ARG 60 

types. For example, AHE40557.1 is annotated in the CARD database as a 61 

streptomycin resistance gene, which belongs to a lower-level ARG type 62 

aminoglycoside and a higher-level ARG type non-beta-lactam. Current ARG 63 

databases are far from complete: though no ARG database contains more than 4,000 64 

well-annotated ARGs, NCBI non-redundant database searches yielded more than 65 

7,000 putative genes annotated with “antibiotic resistance” as of May 2021. Therefore, 66 

we deemed that there is a large gap between the genes annotated in ARG databases 67 

and the possible ARGs that already exist in general databases, not to mention ARGs 68 

that are not yet annotated. 69 

 70 

Many ARG prediction tools have been proposed in the past few years8,10-20. These 71 

tools can generally be divided into two approaches. One approach is 72 

sequence-alignment, such as BLAST21, USEARCH22, and Diamond23, which uses 73 

homologous genes to annotate unclassified genes. A confident prediction requires a 74 

homolog with sequence identity greater than 80% in many programs, such as 75 

ResFinder8,11. The other approach is deep learning, such as DeepARG12 and 76 

HMD-ARG16, which uses neural network models to predict and annotate ARGs. The 77 

input of deep learning approach can be bit-score (for DeepARG) or one-hot encoding 78 

vector of protein sequence (for HMD-ARG). 79 

 80 

Several limitations still preclude comprehensive profiling of antibiotic resistance 81 

genes. A more comprehensive set of ARGs could be roughly defined as having more 82 

ARGs in type and number with less false-positive entries, regardless of the homology 83 

with known ARGs, and many of these ARGs could be experimentally validated. 84 

Based on this definition, existing tools fall short in comprehensive profiling of ARGs. 85 
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First, existing tools are limited to a few types of ARGs due to the fact that the datasets 86 

used for building models are specialized and therefore cannot reconstruct the 87 

comprehensive profile of ARGs across various environments. For example, 88 

HMD-ARG16 identifies only 15 types of resistance genes, and PATRIC13 is limited to 89 

identifying ARGs encoding resistance to carbapenem, methicillin, and beta-lactam 90 

antibiotics. Second, existing tools fall short in discovering novel ARGs, which usually 91 

lack homology to known sequences in the reference databases. For instance, the gene 92 

POCOZ1 (VraR) that confers resistance to vancomycin has a sequence identity of 93 

only 24% to the homolog from the CARD12. Recognizing such remote homologs 94 

requires the ability to perceive the correlation between the internal features of genes, 95 

which is challenging for existing tools. Therefore, there is an urgent need for a new 96 

approach to address these limitations. 97 

 98 

Here, we propose an ontology-aware deep learning approach, ONN4ARG, which 99 

allows comprehensive identification of ARGs. ONN4ARG is an ontology-aware 100 

neural network model that employs a novel ontology-aware layer and generates 101 

multi-level annotations of antibiotic resistance types (Figure 1). Systematic 102 

evaluations show that the ONN4ARG model has a profound performance 103 

improvement over state-of-the-art models such as DeepARG, especially for the 104 

detection of remotely homologous ARGs. The application of ONN4ARG has 105 

uncovered a total of 120,726 ARGs from the microbiome, which has greatly expanded 106 

the existing ARG repositories. Enrichment analyses have confirmed the enrichment 107 

patterns of ARG types across multiple environments, showing that ARGs are both 108 

environment-specific and host-specific. For example, resistance genes for rifamycin, 109 

which is an important antibacterial agent active against gram-positive bacteria, are 110 

enriched in Actinobacteria and in soil environment. Case studies have also verified 111 

the ability of ONN4ARG for novel ARG discovery. For example, a recently 112 

experimentally validated ARG gene GAR7, which is not in the CARD database, could 113 

not be identified by DeepARG or HMD-ARG but was predicted by ONN4ARG. A 114 

novel streptomycin resistance gene was also discovered by ONN4ARG from oral 115 
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microbiome data and validated through wet-lab experiments. 116 

 117 

In summary, ONN4ARG is a comprehensive deep learning method for ARG 118 

discovery, which provides a complete picture of the prevalence of ARGs in microbial 119 

communities as well as guidance for detection and reduction of the spread of 120 

resistance genes. 121 

 122 

Results 123 

ONN4ARG model employs an ontology-aware neural network for ARG 124 

identification and classification 125 

To address the large gap between the genes annotated in ARG databases and the 126 

possible ARGs that already exist in general databases along with the ARGs that are 127 

not yet annotated, we propose ONN4ARG, which is an ontology-aware neural 128 

network model (Figure 1a), that could be used to predict ARGs in a comprehensive 129 

manner. ONN4ARG takes similarities (e.g., identity, e-value, bit-score) between the 130 

query gene sequence and ARG gene sequences and profiles (i.e., PSSM) as inputs and 131 

predicts ARG annotations for the query gene. These sequence-alignment similarities 132 

and profile-alignment similarities are pre-processed by calling Diamond23 and 133 

HHsearch24. ONN4ARG generates multi-level annotations of antibiotic resistance 134 

types, which are compatible with the antibiotic resistance ontology structure. One 135 

advantage of ONN4ARG over state-of-the-art models is that ONN4ARG employs a 136 

novel ontology-aware layer that incorporates ancestor and descendent annotations to 137 

enhance annotation accuracies. ONN4ARG outperforms existing models, including 138 

DeepARG, with higher average accuracies and better generalization ability for unseen 139 

data. To train and evaluate our ONN4ARG model and for rapid deployment of ARG 140 

discovery in multiple contexts, we also built an ARG database (Figure 1b), namely, 141 

ONN4ARG-DB, which comprises ARGs from CARD and UniProt (see Methods). 142 

 143 

Systematic evaluation and comparison 144 
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ONN4ARG has high efficiency, high accuracy, and comprehensiveness for ARG 145 

identification based on our systematic evaluation of ONN4ARG and comparison with 146 

other models. The evaluation and comparison were based on ONN4ARG-DB, with 147 

28,396 positive ARGs and 17,937 negatives, out of which 75% of the dataset was 148 

randomly selected for training and the remaining 25% of the dataset was selected for 149 

testing (see Methods). 150 

 151 

We evaluated ONN4ARG’s efficiency, accuracy, and comprehensiveness. As an 152 

ontology-aware deep learning model, ONN4ARG is fast: it could complete ARG 153 

identification for all genes in the testing dataset within four hours, which is equivalent 154 

to one second per gene identification. As shown in Figure 2a, ONN4ARG was more 155 

accurate for ARG identification (overall accuracy of 97.70%) compared to sequence 156 

alignment (overall accuracy of 69.11%) and DeepARG (overall accuracy of 96.39%). 157 

Moreover, ONN4ARG achieved an overall precision of 75.59% and an overall recall 158 

of 89.93%, which were higher than DeepARG’s overall precision of 68.30% and 159 

overall recall of 77.84% (Figure 2b). It is natural that ONN4ARG could not 160 

outperform DeepARG in all resistance types and this is exemplified by results on 161 

pleuromutilin due to the small number of sequences for pleuromutilin in the 162 

ONN4ARG-DB. In addition, for most of the resistance types that have adequate 163 

number of sequences, ONN4ARG’s results could achieve higher precision and recall. 164 

Thus, with the accumulation of annotated ARG sequences, greater advantages of both 165 

ONN4ARG-DB and ONN4ARG could be expected. Furthermore, ONN4ARG was 166 

more comprehensive for ARG identification: there were 4,916 ARGs in the testing set 167 

(with the masking threshold of testing equal to 0.4, see Methods), out of which 4,913 168 

were identified by the ONN4ARG model, whereas DeepARG identified 4,906 169 

(Supplementary Table 1). 170 

 171 

ONN4ARG demonstrates an advantage over other methods in identification of 172 

remotely homologous ARGs whose sequences are not similar to existing ARG 173 

sequences (Supplementary Tables 2 and 3). In this context, when testing with only 174 
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remote homologs (i.e., the masking threshold of testing set equal to 0.4), ONN4ARG 175 

achieves an accuracy of 94.26%, which is significantly improved from 89.85% of 176 

DeepARG. When testing with all close and remote homologs (i.e., the masking 177 

threshold of testing set equal to 1.0), both ONN4ARG and DeepARG achieved high 178 

accuracies. These results validate ONN4ARG’s significantly better generalization 179 

abilities than sequence-alignment and DeepARG, which makes ONN4ARG especially 180 

suitable for identification of remotely homologous ARGs and indicates ONN4ARG’s 181 

ability for novel ARG discovery (Supplementary Tables 1–3). 182 

 183 

In summary, ONN4ARG has high efficiency, accuracy, and comprehensiveness for 184 

ARG identification, and it possesses the ability for identification of remotely 185 

homologous ARGs. 186 

 187 

Applications of ONN4ARG on metagenomic data 188 

We collected metagenomic samples from several published studies25,26. These samples 189 

were mainly from “marine,” “soil,” and “human” environments. Human-associated 190 

samples consisted of two gut groups (one group from Madagascar, i.e., GutM; the 191 

other group from Denmark, i.e., GutD), one oral group, and one skin group (both oral 192 

and skin groups were from the HMP project). Details about these samples are 193 

provided in Supplementary Table 4. Then, genes were obtained by calling Prodigal27. 194 

The ONN4ARG model was used to predict whether these unclassified genes were 195 

ARGs and their corresponding resistance types. In total, 120,726 ARGs were 196 

identified from microbiome samples, many of which are novel, which greatly expands 197 

the existing ARG repositories. 198 

 199 

Broad-spectrum profile of predicted ARGs among diverse environments 200 

We first investigated the proportion of predicted ARGs for different sequence lengths. 201 

The distribution shows that about half of the predicted ARGs have a length of 202 

128–256 amino acid residues (Figure 3a). We found that human-associated 203 

microbiome samples carry a higher abundance of ARGs, especially for the oral group, 204 
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in which more than one resistance gene could be observed out of a hundred genes on 205 

average (Figure 3b, Supplementary Table 5). 206 

 207 

For ARGs detected in samples from all environments, we found that about a third of 208 

them (42,848 out of all 120,726 ARGs) had sequence identity of less than 40% to 209 

their homologs in the ONN4ARG-DB (Figure 3c). We define these ARGs as novel 210 

ARGs, which have low sequence identities when aligned to their homologs in the 211 

reference database (i.e., ONN4ARG-DB). For example, we found 45% of predicted 212 

ARGs in the marine group belonged to novel ARGs (Figure 3c). 213 

 214 

In total, 31 ARG types were detected in these various environments (Figure 3d, 215 

Supplementary Figure 2). The number of predicted ARG sequences for different 216 

types varied greatly (Figure 3d), from a few (i.e., nitrofuran) to thousands (i.e., 217 

fluoroquinolone). In general, fluoroquinolone and tetracycline resistance genes were 218 

more abundant than other types (Figure 3d). As expected, these abundant ARGs were 219 

usually associated with the antibiotics used extensively in human medicine or 220 

veterinary medicine, including growth promotion28. Novel ARG detection indicates 221 

the unique ability of ONN4ARG in novel ARG discovery and ARG abundance 222 

profiling in various environments, which would help researchers to better understand 223 

the prevalence of antibiotic resistance genes. 224 

 225 

Enrichment of predicted ARGs among diverse hosts and environments 226 

Rapid deciphering of potential antimicrobial-resistant pathogens is necessary for 227 

effective public health monitoring. The host-tracking of ARGs allows for accurate 228 

identification of pathogens. Therefore, we conducted Kraken229 analysis to track the 229 

hosts of these predicted ARGs. Results showed that there are 949 genera, each genus 230 

carries at least one type of ARG (Supplementary Table 6). The host composition and 231 

distribution of all classified ARGs for the most abundant 20 genera are displayed in 232 

Supplementary Figure 3. The host distribution shows that these predicted ARGs are 233 

primarily affiliated with Proteobacteria (38.2%), including Candidatus Pelagibacter, 234 
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Pseudomonas, Bradyrhizobium, and Escherichia (Supplementary Figure 3). The 235 

most abundant ARGs carried by the 20 genera were resistance types of 236 

fluoroquinolone, macrolide, peptide, penam, and tetracycline, accounting for about 237 

half of the total detected ARGs (Supplementary Figure 3). We used network 238 

inference based on strong (Pearson’s correlation ρ > 0.8) and significant (P-value < 239 

0.01) correlations to investigate the co-occurrence patterns among ARG types and 240 

microbial taxa (Supplementary Figure 4, Supplementary Note). The co-occurrence 241 

network indicated the co-occurrence patterns between ARGs and microbial taxa. For 242 

example, ARGs that belong to beta-lactam resistance type (e.g., cephamycin, penam, 243 

penem, and monobactam) were observed to appear together in Proteobacteria. 244 

 245 

Enrichment analyses showed that ARGs are both environment-specific and 246 

host-specific (Figure 4). We found that the proportion of certain types of ARGs was 247 

significantly higher in certain environments than in others. For example, rifamycin 248 

resistance genes were found enriched in Actinobacteria (with proportion of 0.1%) and 249 

enriched in the soil environment (with proportion of 4.7%) (Figure 4). Rifamycin is 250 

an important antibacterial agent active against gram-positive bacteria, and it has a 251 

wide range of applications30,31. The enrichment results were not surprising because 252 

Actinomycetes is a representative genus widely distributed in various soil 253 

environments, and its rifamycin resistance is compatible with its ability for rifamycin 254 

production32-35. 255 

 256 

Evaluation of the ability for novel ARG identification using a recently annotated 257 

ARG 258 

We further evaluated ONN4ARG’s ability for novel ARG identification based on the 259 

assessment of a newly annotated aminoglycoside resistance gene, GAR7. GAR is a 260 

recently reported aminoglycoside resistance gene (e.g., gentamicin, micronomicin) 261 

that belongs to non-beta-lactam, which is not present in CARD (v3.0.3), UniProt (as 262 

of May 2021), DEEPARG-DB (v1.0.2), HMD-ARG-DB (as of May 2021), and 263 

ONN4ARG-DB. We searched the sequence of GAR with both DeepARG and 264 
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HMD-ARG models, and the results showed that both of these models indicated it as 265 

non-ARG. We searched the sequence of GAR against all the sequences in 266 

ONN4ARG-DB using Diamond and did not find any homologous gene as well. 267 

However, the prediction by ONN4ARG identified GAR as an ARG resistant to 268 

non-beta-lactam with high confidence (probability score = 100%). We should 269 

emphasize that though ONN4ARG could only predict GAR as non-beta-lactam and 270 

not as sub-type of aminoglycoside, it was the only method used in this study that 271 

could predict GAR as an ARG gene, which again confirms ONN4ARG’s better 272 

generalization ability for novel ARG discovery. 273 

 274 

Functional verification of candidate novel resistance genes 275 

To identify promising putative novel resistance genes, we used four criteria: (i) 276 

remote homologs to reference ARGs, (ii) prediction with high confidence, (iii) 277 

predicted to be single-type resistance, and (iv) the host is known. Despite the large 278 

number of candidate genes discovered by the ONN4ARG model (Supplementary 279 

Table 5), only 4,365 ARGs fulfilled all mentioned criteria (Supplementary Table 7). 280 

 281 

We selected one candidate ARG (Candi_60363_1) for further experimental validation 282 

(Supplementary Tables 8 and 9). Candi_60363_1, detected in Streptococcus in the 283 

oral environment, was predicted to be streptomycin (belonging to aminoglycoside) 284 

resistant with high confidence by the ONN4ARG model, and the closest homolog of 285 

Candi_60363_1 in ONN4ARG-DB is P12055 (sequence identity of 37.2%). One 286 

positive control from CARD (AHE40557.1, streptomycin resistance gene) was used 287 

in our experiments for verification of the experimental system. All these genes were 288 

heterologously expressed in the E. coli BL21 (DE3) host by the induction of Isopropyl 289 

β-D-1-thiogalactopyranoside (IPTG) and tested for minimal inhibitory concentration 290 

(MIC) (Figure 5a). The result showed that the mRNA level of the genes increased 291 

with the addition of 1 mM IPTG compared with that without IPTG (Figure 5b), 292 

which verified the expression of the genes induced by IPTG. Furthermore, the MIC of 293 

the strain containing the positive control gene AHE40557.1 was more than 1,024 294 
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μg/ml (Supplementary Figure 5), which is consistent with previous reports36,37. This 295 

verified that our MIC measuring experimental system works well. Our results showed 296 

that the MIC of the strain containing Candi_60363_1 was significantly higher than the 297 

negative control containing no insert (Figure 5c, Supplementary Figure 5), which 298 

demonstrated the increased resistance to streptomycin of the novel candidate gene 299 

Candi_60363_1 and verified the good performance of our model. 300 

 301 

Phylogeny and structure of Candi_60363_1 302 

There are remote similarities between Candi_60363_1 and all known ARGs in the 303 

reference database, including aminoglycoside resistance genes (closest homolog is 304 

P12055, sequence identity of 37.2%). The function annotation of P12055 shows that it 305 

has the catalytic activity of reaction between streptomycin and ATP, and it is required 306 

for streptomycin resistance (https://www.uniprot.org/citations/3357770). Additionally, 307 

the search result of Candi_60363_1 using InterPro (the Integrated Resource of Protein 308 

Domains and Functional Sites) shows the protein family matching to Candi_60363_1 309 

is IPR007530, which is also known as aminoglycoside 6-adenylyltransferase that 310 

confers resistance to aminoglycoside antibiotics. Then, we used BLAST to search 311 

homologs of Candi_60363_1 from the NCBI non-redundant protein database. The 312 

BLAST result showed that there are 44 homologs with sequence identity greater than 313 

80%, and they are from various organisms (Supplementary Table 10), such as 314 

Streptococcus oralis, Peptoniphilus lacrimalis DNF00528, and Mycobacteroides 315 

abscessus subsp. Abscessus. Considering that Candi_60363_1 is harbored by distantly 316 

related species, it obviously has mobility. Notably, the most similar protein of 317 

Candi_60363_1 from the NCBI non-redundant protein database (87.5% identity, 318 

SHZ78752.1) is also annotated as aminoglycoside adenylyltransferase 319 

(Supplementary Table 10). The result of BLAST search against the NCBI 320 

non-redundant protein database and other databases showed that Candi_60363_1, 321 

which is absent in all the existing ARG databases, is highly likely to be an ARG that 322 

confers resistance to aminoglycoside antibiotics. 323 

 324 
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Aminoglycoside modifying enzymes are the most clinically important resistance 325 

mechanism against aminoglycosides38. Aminoglycoside modifying enzymes are 326 

divided into three enzymatic classes, namely, aminoglycoside N-acetyltransferase 327 

(AAC), O-nucleotidyltransferase (ANT), and O-phosphotransferase (APH). We 328 

investigated the phylogenetic relationship between Candi_60363_1 and the known 329 

aminoglycoside modifying enzymes. The phylogenetic tree of Candi_60363_1 and 330 

related proteins (Figure 6a) shows that Candi_60363_1 is clearly separated from the 331 

known aminoglycoside modifying enzymes and is located among proteins mostly 332 

annotated as aminoglycoside adenylyltransferase. Phylogenetic analysis indicated its 333 

evolutionarily close relationships with known aminoglycoside adenylyltransferase. 334 

 335 

Protein structure prediction results confirmed the anti-microbial functionality of 336 

Candi_60363_1. The optimal Candi_60363_1-streptomycin complex structure and the 337 

corresponding interaction details are described in Figure 6b. The optimal binding 338 

affinity between the Candi_60363_1 and streptomycin is -7.7 kcal/mol 339 

(Supplementary Table 11), which is 1.6 kcal/mol lower than the negative control. As 340 

shown in Figure 6b, the Streptomycin ligand can fit the ARG protein structure well 341 

and generate a geometric and energetic docking complex. 342 

 343 

From wet-lab experiments, phylogenetic analysis, and protein structure docking, we 344 

consider that Candi_60363_1 predicted by ONN4ARG is highly likely a real ARG 345 

gene. 346 

 347 

Discussion 348 

In this study, we proposed an ontology-aware deep learning method, ONN4ARG, for 349 

the detection and understanding of antibiotic resistance genes. The ONN4ARG model 350 

is capable of accurately identifying ARGs from coarse to fine levels and discovering 351 

novel ARGs that lack homology to known sequences in the reference databases. To 352 

complement ONN4ARG for ARG mining applications, we have also created a custom 353 
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ARG database, ONN4ARG-DB, that contains 28,396 well-curated ARGs. The 354 

application of ONN4ARG uncovered 120,726 ARGs from microbiome samples, out 355 

of which 42,848 are novel, which substantially expands the existing ARGs 356 

repositories. 357 

 358 

The novelty of this work is in three contexts. First, ONN4ARG has the potential for 359 

detection of remotely homologous ARGs and thus generates a more comprehensive 360 

set of ARGs. The advantage of our ONN4ARG model over state-of-the-art models is 361 

that ONN4ARG employs a novel ontology-aware layer that incorporates ancestor and 362 

descendant annotations to enhance annotation accuracies. The comprehensive 363 

antibiotic resistance ontology used in the ONN4ARG model consists of four levels 364 

and more than 100 resistance types (Supplementary Table 12), which includes 365 

hierarchical antibiotic resistance annotations from the most popular ARG database, 366 

CARD. Thus, the classification range of the ONN4ARG model is substantially larger 367 

than current tools (e.g., 30 types supported for DeepARG and 15 types supported for 368 

HMD-ARG). The ability of ONN4ARG to identify remote homologs (i.e., sequence 369 

identity between 30% and 40%) allows more accurate prediction for those 370 

misclassified by sequence-alignment based tools as false negatives. Therefore, 371 

ONN4ARG greatly reduces false negatives and offers a powerful approach for 372 

comprehensive and accurate profiling of ARGs. 373 

 374 

Second, it enabled the comprehensive enrichment analysis of ARGs, species-wise and 375 

environment-wise. For the actual application of the ONN4ARG model, we 376 

investigated the presence of ARGs in a variety of environments, including water, soil, 377 

and the human gut, and the results showed that ARGs are environment-specific and 378 

host-specific (Figure 4). The environment-specific and host-specific phenomenon of 379 

ARGs may be caused by specific bacteria evolving to possess specific types of ARGs 380 

in response to specific environments, and horizontal gene transfer may be one of the 381 

mediating pathways of this process. For example, one published study has reported 382 

that Amycolatopsis in the soil environment produces rifamycin and thus gains 383 
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ecological advantages over other bacteria32. 384 

 385 

Third, the novel ARGs predicted by ONN4ARG could be functionally validated. 386 

Functional verification of a novel streptomycin resistance gene (i.e., Candi_60363_1) 387 

with wet-lab experiments demonstrated the ability of the ONN4ARG model for novel 388 

ARG discovery. Although the MIC test value of Candi_60363_1 was only two times 389 

higher than that of the control (Figure 5), this increase was still sufficient to indicate 390 

the presence of resistance. Moreover, phylogenetic analysis and protein structure 391 

docking further confirmed that Candi_60363_1 is highly likely to be an ARG that 392 

confers resistance to aminoglycoside antibiotics. Another validation of novel ARG 393 

identification based on the assessment of a recently annotated ARG (i.e., GAR) also 394 

indicated the ability of the ONN4ARG model for novel ARG discovery. GAR is a 395 

novel ARG that is resistant to a variety of aminoglycosides (e.g., gentamicin and 396 

micronomicin). We searched the sequence of GAR using other tools (i.e., DeepARG 397 

and HMD-ARG), and the results showed that both of those models indicated it as 398 

non-ARG. We emphasize that the ONN4ARG model only identified GAR as 399 

non-beta-lactam. This shows that the multi-level annotations of ONN4ARG allow low 400 

resolution recognition, which can greatly decrease the false negative rate. 401 

 402 

In summary, ONN4ARG is a deep learning approach for ARG identification. It allows 403 

in-depth gene mining on large-scale metagenomic data and helps researchers discover 404 

novel ARGs. ONN4ARG provides a complete picture of the prevalence of ARGs in 405 

the microbial communities and guidance for detection and reduction of the spread of 406 

resistance genes in such scenarios, including clinical research, environmental 407 

monitoring, and agricultural management. 408 

 409 

ONN4ARG could be improved in a few ways. For more comprehensive ARG 410 

prediction, continuous improvement of curating ARG nomenclature and annotation 411 

databases is required. For novel ARG prediction, especially those belonging to 412 

entirely new ARG families, deep learning models might need to consider more 413 
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information other than sequence alone. We believe these efforts could lead to a 414 

holistic view about ARGs in diverse environments around the globe. 415 

 416 

Methods 417 

Dataset 418 

The ARGs we used in this study for model training and testing were from the 419 

Comprehensive Antibiotic Resistance Database (CARD5,6, v3.0.3). We also used 420 

protein sequences from the UniProt (SwissProt and TrEMBL) database to expand our 421 

training dataset. First, genes with ARG annotations were collected from CARD (2,587 422 

ARGs) and SwissProt (2,261 ARGs). Then, their close homologs (with sequence 423 

identities greater than 90%) were collected from TrEMBL (23,728 homologous genes). 424 

These annotated and homologous ARGs made up our positive dataset. The negative 425 

dataset was made from non-ARG genes that had relatively weak sequence similarities 426 

to ARG genes (with sequence identities smaller than 90% and bit-scores smaller than 427 

alignment lengths) but not annotated as ARG genes in SwissProt (17,937 genes). 428 

Finally, redundant genes with identical sequences were filtered out. As a result, our 429 

ARG gene dataset, namely, ONN4ARG-DB, contained 28,396 positive and 17,937 430 

negative genes. For evaluation and comparison of ONN4ARG, 75% of the dataset 431 

was randomly selected for training, and the remaining 25% of the dataset was selected 432 

for testing. 433 

 434 

Antibiotic resistance ontology 435 

The antibiotic resistance ontology was organized into an ontology structure, which 436 

contains four levels. The root (first level) is a single node, namely, “arg” 437 

(Supplementary Table 12). There are 1, 2, 34, and 277 nodes from the first level to 438 

the fourth level, respectively. For instance, there are “beta-lactam” and 439 

“non-beta-lactam” in the second level, “acridine dye” and “aminocoumarin” in the 440 

third level, and “acriflavine” and “clorobiocin” in the fourth level. For example, 441 

AHE40557.1 is annotated in the CARD database as a streptomycin resistance gene, 442 
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which belongs to a lower-level ARG type aminoglycoside and a higher-level ARG 443 

type non-beta-lactam (Supplementary Figure 1). 444 

 445 

Protein annotations 446 

The protein sequences for training and testing were annotated according to the 447 

antibiotic resistance ontology. For example, AHE40557.1 is annotated in the CARD 448 

database as a streptomycin resistance gene, which belongs to a lower-level ARG type 449 

aminoglycoside and a higher-level ARG type non-beta-lactam. Accordingly, this 450 

protein will be annotated as “arg” at the first level, “non-beta-lactam” at the second 451 

level, “aminoglycoside” at the third level, and “streptomycin” at the fourth level. 452 

 453 

Sequence-alignment 454 

We used Diamond23 as the sequence-alignment tool for comparison. For queries in the 455 

testing set, we searched them against the training set. The target with the highest 456 

identity was defined as the closest homologous gene for each query. Then, we 457 

compared whether the actual annotation of the query was consistent with the 458 

annotation of its closest homologous gene to evaluate the accuracy. 459 

 460 

DeepARG 461 

DeepARG12 is a newly developed tool that applies a neural network to identify 462 

antibiotic resistance genes. For queries in the testing set, we used the DeepARG12 463 

model to predict their annotations. Then, we compared whether the actual annotation 464 

of the query was consistent with the predicted annotation to evaluate the accuracy. 465 

 466 

Evaluation and comparison 467 

In this study, the performance of ONN4ARG was evaluated and compared to 468 

state-of-the-art models, including sequence-alignment and DeepARG. For these three 469 

models, the training dataset was used to train the model parameters, and the testing 470 

dataset was used to calculate the prediction accuracies. Both DeepARG and 471 

ONN4ARG are deep learning models that use millions of parameters. Unlike deep 472 
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learning models, sequence-alignment (i.e., Diamond) has only one parameter (i.e., the 473 

identity cutoff to distinguish ARG and non-ARG genes). 474 

 475 

Masking threshold 476 

To simulate remotely homologous ARG genes in our experiments, similarities 477 

between the query protein and its close homologs with sequence identities greater 478 

than a threshold were masked as zeros (i.e., no signals). For instance, when the 479 

masking threshold of testing set equaled 0.4, similarities between the query protein (in 480 

the testing set) and its close homologs (in the training set) with sequence identities 481 

greater than 40% were masked as zeros. Occasionally, all homologs were masked for 482 

a query protein, and such query proteins were removed during training and testing. 483 

For example, if query X had two homologs, M and N, and assuming the identity of M 484 

is 0.35 and the identity of N is 0.85, when the masking threshold of the testing set 485 

equaled 0.4, similarities between query X and homolog M were masked as zeros. 486 

When the masking threshold of the testing set equaled 0.9, query X was removed 487 

during testing. 488 

 489 

Benchmark method 490 

In this study, a prediction was defined to be correct if and only if all ARG annotations 491 

(including ancestor annotations from ARG ontologies) were correctly predicted. The 492 

accuracy of the tested model was defined as the number of correct predictions over 493 

the total number of predictions. The precision of the tested model was defined as the 494 

number of true positive predictions over the total number of positive predictions, and 495 

the recall was defined as the number of true positive predictions over the total number 496 

of true positive plus false negative predictions. 497 

 498 

ARG mining on metagenomic data 499 

We collected microbiome sequencing data from several published studies 500 

(Supplementary Table 4), including samples from soil, water, and human body. The 501 

gene contigs were processed by Prodigal27. Protein sequences were also obtained by 502 
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the Prodigal program. Then, the ARG annotations of these protein sequences were 503 

predicted by using ONN4ARG. 504 

 505 

Taxonomy annotation 506 

Kraken229 program was used to identify the host of gene contigs. Then, each ARG 507 

predicted by ONN4ARG was annotated according to the host of its gene contigs. 508 

 509 

Phylogenetic tree 510 

Sequences of the 44 proteins most closely related to Candi_60363_1 were collected 511 

using BLASTP with default parameters on the NCBI non-redundant protein database. 512 

The retrieved proteins, Candi_60363_1 and all aminoglycoside resistance proteins 513 

from ResFinder8 (https://bitbucket.org/genomicepidemiology/resfinder_db/src/master, 514 

last update March 2021), were aligned with ClustalW. The phylogenetic tree was 515 

calculated by MEGA39 (v10) using the maximum likelihood algorithm with default 516 

parameters. The Interactive Tree of Life (iTOL v6) online tool40 was used to prepare 517 

the phylogenetic tree for display. 518 

 519 

Protein model and docking 520 

Rosetta41 was utilized to predict the protein structure using ab initio protein folding 521 

(http://robetta.bakerlab.org/). The top five protein pockets were generated for docking 522 

calculation with Surface Topography of proteins42 (CASTp). We used the Cambridge 523 

Structure Database43 to generate streptomycin conformers. The 3D protein-ligand 524 

complexes were obtained from AutoDock Vina44. 525 

 526 

ARG candidate gene expression plasmids construction and expression 527 

verification 528 

The candidate resistance gene Candi_60363_1 and a positive control resistance gene 529 

AHE40557.1 were synthesized and subcloned into pUC19 vector, replacing lacZ’ 530 

gene. The recombinant plasmids were then transformed into E. coli BL21 (DE3). The 531 

expression of resistance genes was induced by Isopropyl β-D-1-thiogalactopyranoside 532 
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(IPTG) and verified by quantitive Real-time PCR (qRT-PCR) assay. Briefly, bacteria 533 

were grown in LB supplemented with ampicillin (100 μg/ml) to OD600 of 0.5-0.6 by 534 

incubation at 37 °C with 220 rpm agitation, and the bacterial cultures were continued 535 

to grow until OD600 reached to 1.0 by adding or without adding 1 mM IPTG. The 536 

cells were harvested and total RNAs were purified using Bacterial RNA Extraction 537 

Kit (Vazyme Biotech). RNA reverse transcription was performed by using HiScript® 538 

II Q Select RT SuperMix for qPCR kit (Vazyme Biotech). qRT-PCR was performed 539 

by using SYBR Green Master Mix-High ROX Premixed (Vazyme Biotech) in a 540 

Stepone Plus system (Applied Biosystems). The ldh gene was used as internal control 541 

in all reactions. The relative fold changes were determined using the 2-ΔΔCt method, in 542 

which ldh was used for normalization. The protein sequences of the synthesized genes 543 

were presented in Supplementary Table 8 and the primer sequences for qRT-PCR 544 

were listed in Supplementary Table 9. 545 

 546 

MIC determination 547 

Minimal inhibitory concentrations (MICs) of the antibiotic for the strains containing 548 

resistance genes were determined using E-tests. Single colonies of the strains were 549 

incubated in 3 ml Mueller-Hinton (MH) medium with the addition of 100 μg/ml 550 

ampicillin at 35 oC for 4 hours, and the cells equal to 1.5X108 cells/ml were spread on 551 

MH agar plates with the addition of 100 μg/ml ampicillin and 1 mM IPTG, and 552 

streptomycin MIC Test Strips (Liofilchem®) were put in the middle of the plates. The 553 

plates were incubated at 35 oC for 18-24 hours, and the MICs were read. The strain 554 

containing empty vector was used as a negative control. 555 

 556 

Data availability 557 

We collected metagenomic samples from several published studies25,26, and these 558 

samples are mainly from “marine”, “soil” and “human” associated environments. For 559 

human associated samples, including two gut groups (one group from Madagascar, 560 

i.e., GutM, the other group from Denmark, i.e., GutD), one oral group and one skin 561 
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group (both oral and skin groups are from HMP project). Details and links about these 562 

samples are shown in Supplementary Table 4. The ONN4ARG-DB dataset could be 563 

accesses at: http://onn4arg.xfcui.com/. 564 

 565 

Code availability 566 

All source codes can be accessed at: https://github.com/xfcui/onn4arg, and 567 

http://onn4arg.xfcui.com/. 568 
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Figure 1 726 

 727 

Figure 1. Overview of the ONN4ARG model and its use for novel ARG discovery. a. The 728 

input (left), architecture (middle), and output (right) of the ONN4ARG model. ONN4ARG takes 729 

similarities between the query gene sequence and ARG gene sequences and profiles as inputs. 730 

Then, ontology-aware layers (i.e., O1, O2, O3, and O4) are employed to incorporate ancestor and 731 

descendant annotations to enhance annotation accuracy. ONN4ARG outputs multi-level 732 

annotations of antibiotic resistance types, which are compatible with the antibiotic resistance 733 

ontology structure. b. Building the dataset for training and testing and applying it on microbiome 734 

sequencing data to discover novel ARGs. 735 
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Figure 2 737 

 738 

Figure 2. Systematic evaluation and comparison between sequence-alignment, DeepARG, 739 

and ONN4ARG. a. The accuracy of three models on ARG classification was assessed using a box 740 

plot. Diamond was used for sequence-alignment; significance test was based on the t-test. b. The 741 

precision and recall of DeepARG and ONN4ARG on ARG classification for each antibiotic 742 

resistance type. The masking threshold of testing set equaled 0.4 (details of masking threshold are 743 

provided in Methods). 744 
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Figure 3 746 

 747 

Figure 3. Broad-spectrum profile of predicted ARGs among diverse environments. a. The 748 

proportion of predicted ARGs for different protein sequence lengths. b. The abundance ratio of 749 

predicted ARGs among diverse environments. Abundance ratio was defined as the number of 750 

ARGs divided by the number of total genes. c. The proportion of predicted ARGs for different 751 

sequence identities among diverse environments. d. Number of genes in ONN4ARG-DB (left), 752 

predicted homologous ARGs (middle), and predicted novel ARGs (right) for various resistance 753 

types. The horizontal axis indicates the logarithmic number of genes, and the vertical axis 754 

indicates different antibiotic resistance types. We collected metagenomic samples from several 755 
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published studies; these samples were mainly from “marine,” “soil,” and “human” environments. 756 

Human-associated samples consisted of two gut groups (one group from Madagascar, i.e., GutM; 757 

the other group from Denmark, i.e., GutD), one oral group, and one skin group (both oral and skin 758 

groups were from the HMP project). 759 
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Figure 4 761 

 762 

Figure 4. Enrichment of predicted ARGs among diverse environments and hosts. a. Relative 763 

abundance and enrichment of ARGs among diverse environments. Abundance ratio was defined as 764 

the number of ARGs divided by the number of total genes. b. Proportion and enrichment of ARGs 765 

among diverse hosts. Colors indicate the proportion of ARGs for each phylum and resistance type. 766 

Results for the most abundant five phyla that carry ARGs are shown. “+”: P-value < 0.05 (t-test); 767 

“++”: P-value < 0.01 (t-test). 768 
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Figure 5 770 

 771 

Figure 5. Functional validation of a predicted candidate novel ARG. a. A diagram showing 772 

the procedure of heterologous expression and functional analysis of the predicted candidate ARG 773 

in the E. coli BL21 (DE3) host. b. Gene expression validation of the predicted candidate ARG. 774 

The vertical axis indicates the relative mRNA level. c. The MIC of the predicted candidate ARG 775 

and negative control. The vertical axis indicates the MIC value. The MIC of the predicted 776 

candidate novel ARG is significantly higher than the negative control (t-test, P-value = 3.5e-3). 777 
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Figure 6 779 

 780 

Figure 6. Phylogenetic analysis and structure investigation of Candi_60363_1. a. 781 

Phylogenetic tree of aminoglycoside resistance enzymes, Candi_60363_1, and its homologs from 782 

the NCBI non-redundant protein database. ANT: O-nucleotidyltransferase, AAC: 783 

N-acetyltransferase, APH: O-phosphotransferase, AADT: aminoglycoside adenylyltransferase. b. 784 

The optimal Candi_60363_1-streptomycin complex structure (left), and the local interactions 785 
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between ligand and neighboring residues (right). The docking experiment indicates there are six 786 

neighboring residues whose distances are less than three angstroms. 787 

 788 

.CC-BY-NC-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted July 31, 2021. ; https://doi.org/10.1101/2021.07.30.454403doi: bioRxiv preprint 

https://doi.org/10.1101/2021.07.30.454403
http://creativecommons.org/licenses/by-nc-nd/4.0/


Ontology-Aware Neural Network

Le
ar

ni
ng

 th
e 

on
to

lo
gy

 s
tru

ct
ur

e 
fro

m
 to

p 
do

w
n

Bi
ts

N   •   L   Y   S   G   W 
Q   •   L   Y   S   G   W 
N  K   L   Y   S   G   W 
N   •   L   –   S   G   W 

Sequence-alignment

Profile-alignment
position

Query sequence

Diamond

HHsearch

HMM database

ARGs database

Multi-level Annotations

P=1.00

P=0.99

Level 1: Node1,1
Level 2: Node2,2
Level 3: Node3,2
Level 4: Node4,2

Pseudoprediction Prediction

a

b

O1

O2

O3

O4

Incorporate

0 0

0 0
1 1

1 1
0 0

0 0
1 1
2 2

O1

O2

O3

O4

0 0

0 0
1 1

1 1
0 0

0 0
1 1
2 2

CARD
2,587

SwissProt
2,261*

TrEMBL
23,728

ARGs with annotations

Remove redundancy

ONN4ARG-DB

Training set

Testing set
Training set (75%) + Testing set (25%)

Pa
ra

m
et

er
s 

up
da

te
Train

Test

Apply

Predict

Novel ARGs

Swissprot
17,937***

Po
si

tiv
e 

da
ta

N
eg

at
iv

e 
da

ta

Incorporate

Incorporate

Node1,1

Node2,2

P=0.98
Node3,2

P=0.95
Node4,2

**

***Collecting non-ARG genes (identity < 
90% and bit-score < alignment length)

**Collecting close homologous ARGs genes 
(identity > 90%)

*Collecting ARGs by resistance annotation

Sequences from 
microbiome samples

Query’s annotations are:

.CC-BY-NC-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted July 31, 2021. ; https://doi.org/10.1101/2021.07.30.454403doi: bioRxiv preprint 

https://doi.org/10.1101/2021.07.30.454403
http://creativecommons.org/licenses/by-nc-nd/4.0/


Sequence-alignment

DeepARG

ONN4ARG

40

60

80

100

Ac
cu

ra
cy

(%
)

a

*
*: P < 0.05   

DeepARG

ONN4ARG

DeepARG

ONN4ARG

b
Precision

acridine dye
aminocoumarin

carbapenem
aminoglycoside

cephamycin
cephalosporin

diaminopyrimidine
elfamycin

free fatty
fluoroquinolone

glycycline
glycopeptide

lincosamide
macrolide

nitrofuran
monobactam

nucleoside
nitroimidazole

oxazolidinone
penam

peptide
penem

pleuromutilin
phenicol

polyamine

streptogramin
rifamycin

sulfonamide
sulfone

without-drug-class
tetracyline

Recall

1.0
0.8
0.6
0.4
0.2
0.0

non-beta-lactam
beta-lactam

*

.CC-BY-NC-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted July 31, 2021. ; https://doi.org/10.1101/2021.07.30.454403doi: bioRxiv preprint 

https://doi.org/10.1101/2021.07.30.454403
http://creativecommons.org/licenses/by-nc-nd/4.0/


a b c

d

10
0

20
30
40
50

Proportion(%)

[m
in-

12
8)

[1
28

-2
56

)
[2

56
-5

12
)

[5
12

-m
ax

) Length (aa)

Ratio(%)*

1.2
0.9
0.6
0.3

0

1.5

Gu
tM

Gu
tD

Or
al

Sk
in

So
il

M
ar

ine

Group

number of ARGs
number of total genes*: Proportion(%)

Group

[30, 40)
[40, 70)
[70, 90)

Identity(%)

Gu
tM

Gu
tD

Or
al

Sk
in

So
il

M
ar

ine

80
60
40
20
0

100

[90, 100)

Log10 No.Resistance Genes
ONN4ARG-DB

Log10 No.Resistance Genes
Predicted ARGs (identity >= 40%)

Log10 No.Resistance Genes
Predicted ARGs (identity < 40%)

acridine dye
aminocoumarin

carbapenem
aminoglycoside

cephamycin
cephalosporin

diaminopyrimidine
elfamycin

free fatty
fluoroquinolone

glycycline
glycopeptide

lincosamide
macrolide

nitrofuran
monobactam

nucleoside
nitroimidazole

oxazolidinone
penam

peptide
penem

pleuromutilin
phenicol

polyamine

streptogramin
rifamycin

sulfonamide
sulfone

without-drug-class
tetracyline

acridine dye
aminocoumarin

carbapenem
aminoglycoside

cephamycin
cephalosporin

diaminopyrimidine
elfamycin

free fatty
fluoroquinolone

glycycline
glycopeptide

lincosamide
macrolide

nitrofuran
monobactam

nucleoside
nitroimidazole

oxazolidinone
penam

peptide
penem

pleuromutilin
phenicol

polyamine

streptogramin
rifamycin

sulfonamide
sulfone

without-drug-class
tetracyline

acridine dye
aminocoumarin

carbapenem
aminoglycoside

cephamycin
cephalosporin

diaminopyrimidine
elfamycin

free fatty
fluoroquinolone

glycycline
glycopeptide

lincosamide
macrolide

nitrofuran
monobactam

nucleoside
nitroimidazole

oxazolidinone
penam

peptide
penem

pleuromutilin
phenicol

polyamine

streptogramin
rifamycin

sulfonamide
sulfone

without-drug-class
tetracyline

*

*

**

**

*  No. = 1

non-beta-lactam
beta-lactam

non-beta-lactam
beta-lactam

** No. = 0

non-beta-lactam
beta-lactam

.CC-BY-NC-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted July 31, 2021. ; https://doi.org/10.1101/2021.07.30.454403doi: bioRxiv preprint 

https://doi.org/10.1101/2021.07.30.454403
http://creativecommons.org/licenses/by-nc-nd/4.0/


a b

Gu
tM

Gu
tD

Or
al

Sk
in

So
il

M
ar

ine

0.30
0.25
0.20
0.15
0.10
0.05
0.00

Ratio(%) Proportion

acridine dye
aminocoumarin

carbapenem
aminoglycoside

cephamycin
cephalosporin

diaminopyrimidine
elfamycin

free fatty
fluoroquinolone

glycycline
glycopeptide

lincosamide
macrolide

nitrofuran
monobactam

nucleoside
nitroimidazole

oxazolidinone
penam

peptide
penem

pleuromutilin
phenicol

polyamine

streptogramin
rifamycin

sulfonamide
sulfone

without-drug-class
tetracycline

non-beta-lactam
beta-lactam

non-beta-lactam
beta-lactam

acridine dye
aminocoumarin

carbapenem
aminoglycoside

cephamycin
cephalosporin

diaminopyrimidine
elfamycin

free fatty
fluoroquinolone

glycycline
glycopeptide

lincosamide
macrolide

nitrofuran
monobactam

nucleoside
nitroimidazole

oxazolidinone
penam

peptide
penem

pleuromutilin
phenicol

polyamine

streptogramin
rifamycin

sulfonamide
sulfone

without-drug-class
tetracycline

++
++

++

++

++

++

++
++

++

++

++

+

+
+
+

+

+

+

+
+

+
+

+

+

Ba
cte

ro
ide

te
s

Ac
tin

ob
ac

te
ria

Cy
an

ob
ac

te
ria

Fi
rm

icu
te

s
Pr

ot
eo

ba
cte

ria
Ot

he
rs

Un
cla

ss
ifie

d

0.00

0.02

0.04

0.06

0.08

0.10

+

+

+

+

+
+

+

+

++：P < 0.01
+：P < 0.05

++：P < 0.01
+：P < 0.05

++

++
++

++

++
++

++
++
++

++

++

++
++

++

++
++
++

.CC-BY-NC-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted July 31, 2021. ; https://doi.org/10.1101/2021.07.30.454403doi: bioRxiv preprint 

https://doi.org/10.1101/2021.07.30.454403
http://creativecommons.org/licenses/by-nc-nd/4.0/


Candi_60363_1

Candi_60363_1

Negative control

1

0
M

IC
(μ

g/
m

l) 2

3

P-value =  3.5e-3

pUC19

E. coli BL21(DE3)

Candidate 
ARG

E-test strip for 
streptomycin

MIC measurementIncubation

a

b c

AHE40557.1
0

1

2

3

4

5 - IPTG
+1mM IPTG

R
el

at
iv

e 
m

R
N

A 
le

ve
l

.CC-BY-NC-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted July 31, 2021. ; https://doi.org/10.1101/2021.07.30.454403doi: bioRxiv preprint 

https://doi.org/10.1101/2021.07.30.454403
http://creativecommons.org/licenses/by-nc-nd/4.0/


Candi_60363_1

a

b

Annotated functions

ANT

AAC
APH
AADT

Tree scale: 1

Aminoglycoside Resistance

AF031326

M
37378

EF205594

AB
46

29
03

U13880

SHZ78
75

2.1

M
22126

L29510

009838

WP 125410213.1

AB669090

APPN
01000061

AF
04

75
56

X5
77

09

L22613

WP 125399569.1

G
Q

466184

W
P 00

97
30

96
2.1

AJ
87

72
25

AF031332
Y1

80
50

WP 001258405.1

M
29953

L29044

DQ018384

WP 04
95

09
08

0.1

WP 000794837.1

AY
97

18
01

X9
08

56

AF
45

39
98

K00432

AF031331

WP 142556958.1
AY743255

H
Q

247816

AY114142

U72714

KEQ46177.1

W
P 

12
54

14
65

5.1

EF
21

00
35

CR628337

KGF34357.1

EU
85

57
87

CP00
09

71

Z5
42

41

AB
02

82
10

X55353WP 061588253.1

KF652096

AJ584700
L12710

DQ241380

Y0
04

52

HQ386848

L0
53

92

AJ871915

JTTZ01000034

WP 129313087.1

EU022314

M98270

AP
01

46
11

X13543

KF652098

WP 049477638.1
AJ

50
61

08

M
20

30
5

AB
24

73
27

AF321551

X02340

M
21

68
2

AY139599

WP 037598079.1

L06156

WP 181186872.1

NC011896

FJ
50

30
47

AB971834

AY884051

AY139594

EU02
23

15

CP023555

M22999

JF826500

AB116646

EF
63

64
61

X03615

WP 06
09

55
88

9.1

AF313472

WP 006153294.1

AB709942

AF207840

WP 009013633.1

AJ490186

M
86913

DQ
30

39
18

V0
03

59

EF
61

42
35

AP009493

AB10
98

05

AY
28

96
08

WP 183138244.1

WP 138100090.1

M28
82

9

AJ536195

WP 04
94

95
84

6.1

X74412

EU
08

55
33

L06157

KF
42

11
57

AF263519

X6
03

21

EMG31897.1

X0
56

48

DQ
176450

C
P0

06
83

2

M55427

EJO16652.1

KF
86

45
51

AJ748131

M55426

EU
72

23
51

WP 084859811.1

RSI61968.1

X51534

AB472901

L29045

AJ744850

WP 153209791.1

WP 006148702.1
21

00
00

10
JP

P
A

S81599

M13771

AM
28

34
89

EU
886977

AB211959

U51479

AY13
89

87

ORO53486.1
ORO60808.1

003197

AF031328

X15852

AF031327

AP009486

AF321550

M69221

01
25

55

WP 152906819.1

M
29

69
5

AB894482

AF
33

79
47

X07753

AY
13

67
58

KF652097

25
84

01
B

A

AJ
74

48
60

X54
72

3

HQ880250

Z4
82

31

X53527

AF031330

AF024602
AB114632

U94857

L0
61

63

X02588

U
70376

CP000490

M
18967

WP 084918252.1

Y0
04

59

V01499

AF355189

460733
Q

G
AF016483

L06160

C
TEG

01000046

X03364

AJ627643

930561
UE

KT778788

AF330699

U41471

HM
367617

AF
49

80
82

U72743

DQ266447

X0
17

02

AY920928

CP004067

AF140221

DQ336355

WP 000794836.1

EF
01

56
36 KC

170992

M88012

AP
00

42
37

WP 178894869.1

V0
06

18

X6
21

15

AJ511268
FN

59
49

49

CP000356

AB119105

WP 075229104.1

AM
74

31
69

HM
367620

LLLC01000048

G
Q

62
68

79

AJ584701

FJ0
12882

ATG
I01000028

L06161

M97172

X55652

WP 007522155.1

AJ
58

46
52

EFO01965.1

EU
28

74
76

18
67

68
89

X01385

AY701528

X04555

WP 173258067.1
WP 142998940.1

H
M

367610

M94066

AF458082

M
26832

AJ843080

AF031329WP 070677172.1

RSI48055.1
WP 125397771.1

WP 142358714.1

AH
Z4

75
58

.1

M
23

63
4

CP000282

L09246

.CC-BY-NC-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted July 31, 2021. ; https://doi.org/10.1101/2021.07.30.454403doi: bioRxiv preprint 

https://doi.org/10.1101/2021.07.30.454403
http://creativecommons.org/licenses/by-nc-nd/4.0/

