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Abstract 

 A large proportion of non-coding variants are present within binding sites of transcription 
factors(TFs), which play a significant role in gene regulation. Thus, deriving the impact of non-
coding variants on TF binding is the first step towards unravelling their regulatory roles within 
their associated disease traits. Most of the modern algorithms used for this purpose are based on 
convolutional neural network(CNN) architectures. However, these models are incapable of 
capturing the positional effect of different sub-sequences within the TF binding sites on the 
binding affinity. In this paper, we utilize the attentive gated neural network(AGNet) architecture 
to build a set of TF-AGNet models for predicting in vivo TF binding intensities in the GM12878 
lymphoblastoid cells. These models have novel layers capable of deriving the impact of relative 
positions of different DNA sub-sequences, within a binding site, on TF binding affinity, and of 
extracting the most relevant prediction features.  We show that the TF-AGNet models are able to 
outperform conventional CNNs for predicting continuous values of TF binding affinity. We also 
train additional TF-AGNet models for 20 TFs using data from 4 other cell-lines to assess the 
generalizability of their prediction accuracy. Lastly, we show that the TF-AGNet based models 
more accurately classify non-coding variants that significantly affect TF binding compared to 
models based on 7 variant annotation tools. This accuracy can be leveraged to derive gene 
regulatory roles of millions of non-coding variants across the genome to further examine their 
mechanistic associations with complex disease traits.  

Introduction 

About 70% of all the variants associated with complex disease traits are present within 
the non-coding portion of the genome1–4. Functional relationships between such variants and the 
disease traits, which are otherwise very difficult to establish, can be derived from capturing their 
gene regulatory context. As non-coding variants are more often than not found within regulatory 
elements, such as promoters and enhancers, characterizing their gene regulatory roles can lead to 
mechanistic understanding of the associated disease traits3–5. Furthermore, the aforementioned 
regulatory elements harbor binding sites for transcription factors(TFs), which drive gene 
expression regulation by significantly influencing the process of transcription.6 Thus, TFs and 
their binding sites (TFBS) provide essential mechanistic markers to compute the influence of 
non-coding variants on gene expression regulation and ultimately on disease traits. 

Several machine learning methods exist to predict the impact of non-coding variants on 
TF binding affinity or on TFBS disruption. Such predictive algorithms mostly use TF binding 
preference, in the form of position weight matrices(PWMs), to compare the probability of a TF 
binding a given DNA sequence containing the alternate allele to that of the one containing the 
reference allele corresponding to a non-coding variant7. These algorithms either use pre-existing 
sets of PWMs or train models using ChIP-seq data from resourses like the Encyclopedia of DNA 
Regulatory Elements(ENCODE)8 to learn de novo PWMs9. Methods such as FIMO(Find 
Individual Motif Occurrence)10, RSAT(Regulatory Sequence Analysis Tools)11, Clover12 and 
QBiC-PRED13 score DNA sequences containing reference and alternate alleles based on the 
modifications to the TF motif. However, since these methods must be pre-trained on a reference 
panel of variants, they cannot be used to annotate novel TFBS altering variants. To overcome 
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this limitation, modern TFBS variant annotation algorithms use deep learning neural networks to 
generate predictions. Convolutional neural networks(CNNs) are used in DeepSEA14, 
DeepBIND15, DANQ16 and DeFine17 to predict impact of regulatory variants on TF binding. 
CNNs process input DNA sequences using kernel filters to scan for TF motifs, and to predict the 
probability of a TF binding to them. Additionally, both DANQ and DeFine include recurrent 
neural network (RNN) layers, which process the features extracted by the CNNs to capture the 
long-distance dependencies within the TFBS sequences. While DeepSEA, DeepBIND and 
DANQ produce binary predictions for TF binding/non-binding, DeFine predicts continuous TF 
binding intensities. While the former type of output can help deduce the absolute influence of 
variants on TFBS, more information regarding the changes in TF binding preference, brought 
about by the variants, can be gleaned by utilizing the latter type of output.  

Although the CNN based algorithms have been shown to outperform most other variant 
annotation tools, they suffer from two main limitations. First, models based on CNNs alone 
(such as DeepSEA and DeepBIND) only capture the local features from the input TFBS 
sequences, and ignore the long distance relationships within them. Second, the input layers of 
these CNN based models only accept one-hot coded matrices of fixed length DNA sequences, 
which could lead to a sparse representation of these sequences. To overcome these limitations, 
recent neural network architectures, such as C-LSTM(CNNs with long short-term memory 
units)18 and AGNet(attentive gated neural networks)19, have used novel properties such as k-mer 
vector representations for the input DNA sequences and gated convolutional and recurrent 
networks(GCNs and GRNs). The C-LSTM architecture uses k-mer vector embeddings normally 
associated with natural language processing to represent input DNA sequences in the form of 
continuous multi-dimensional vectors corresponding to their constituent sub-sequences/k-mers18. 
The AGNet architecture further extend this model to include attention layers along with GCNs 
and GRNs to control the flow of features being passed between the layers and to extract the most 
informative local and global features from the input sequences19. Both of these models have been 
shown to perform more accurately than conventional CNNs and the CNN-RNN hybrid models 
for predicting chromatin accessibility based on DNA sequence inputs18,19. However, the AGNet 
model outperforms the C-LSTM in this prediction task due to additional layers that aid in their 
prediction performance. Despite its success, the AGNet model architecture has not been used for 
predicting TF binding affinity and annotating the variants that significantly impact it.   

 In this paper, we have adapted the AGNet architecture to build neural networks, called 
TF-AGNet, for predicting in vivo continuous TF binding intensities utilizing the ENCODE ChIP-
Seq datasets corresponding to 149 different TFs(build37) and 144 TFs(build38) for the 
GM12878 immortalized lymphoblastoid cell line(LCL). We compare the prediction performance 
of these models to that obtained from the CNN-RNN hybrid models corresponding to the DeFine 
approach for GM12878 LCL. Additionally, we also train TF-AGNet models for 4 other 
ENCODE tier-1 and tier-2 cell lines for 20 TFs whose ChIP-Seq data was available across all of 
these cell lines. Lastly, we assess the accuracy of TF-AGNet models for correctly classifying 
variants significantly influencing TFBS and compare it to 7 other popular non-coding variant 
annotation algorithms. Annotating TFBS altering variants, using TF-AGNet models, is the first 
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step towards deriving their gene regulatory functions, which can be used downstream to 
characterize their mechanistic relationships with complex disease traits. 

Results 

TF-AGNet models were more accurate at predicting TF binding intensity compared to 
conventional deep learning models.  

The AGNet model architecture, proposed by Guo et. al.19, has been shown to perform 
better than conventional CNN-RNN hybrid architecture for predicting chromatin accessibility 
using DNA sequence information in form of k-mer embeddings. It has several novel properties 
such as :1) Position embedding to capture the relative importance of each k-mer within a TFBS 
sequence 2) Dual attention layers capable of extracting important information from the sequence 
and feature based inputs 3) GCN and GRNs for deriving informative local features within and 
global relatedness among the input k-mers respectively. Here, we have adapted the architecture 
in order to build TF-AGNet models for predicting in vivo ChIP-Seq TF binding intensity values. 
We trained TF-AGNet models for each one of the 149 TFs(build37/GRCh37 reference assembly) 
and 144 TFs(build38/GRCh38 reference assembly) using the ChIP-Seq data from the GM12878 
immortalized lymphoblastoid cell-line(see Training the TF-AGNet neural network models 

and Figure 1). We tested the accuracy of each TF model by calculating Pearson’s Correlation 
Coefficient (PCC) between observed and predicted scaled log normalized intensity values for a 
test set of peak regions, which containined 15% of the total regions, selected at random, for each 
model. The median PCC for all the build37 TF-AGNet models was 0.768, while that for the 
build38 models was 0.733. Both sets of models had 5 TF models with PCC less than 0.5, out of 
which 4 low predictive models were common between them (CBX3, CHD4, KDM1A and 
NFXL1). On the other hand, build37 TF-AGNet models corresponding to 28 TFs were highly 
accurate (PCC > 0.85), some of which have been shown in Figure 2A. For build38, only 12 TF-
AGNet models were highly predictive at this threshold of PCC perhaps due to the poorer quality 

Figure 1: Training the TF-AGNet models for predicting TFBS intensities. We utilized the AGNet architecture to build neural networks for 
predicting in vivo ChIP-Seq intensities for 149 TFs(GRCh37/build37) and 144 TFs(GRCh38/build38) corresponding to the GM12878 LCL. 
We downloaded the corresponding processed ChIP-Seq datasets from ENCODE(accession IDs are provided in Supplementary Tables S1A 
and S1B) 
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of the ChIP-Seq data aligned to GRCh38 reference build. We have provided the ENCODE 
accession IDs for all the ChIP-Seq experiments for the two reference builds, along with their 
evaluation results and the total number of peak regions used to train the models in 
Supplementary table S1. All the analyses and results presented henceforth will correspond to 
build37 TF-AGNet models   

A 

B 

Figure 2: The TF-AGNet  models were very accurate at predicting TF binding intensity. A) Scatterplots showing the prediction accuracy for the 
most accurate TF models B) PCC for the 20 TF models trained using the cross-cell type data. C) Boxplots showing the comparison between TF-
AGNet and DeFine models from predicting intensity values for TF-AGNet and DeFine peak sets. (****-p-value < 10-5) 

C 
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We also trained models for 4 other cell-lines(K562, H1, HepG2 and HeLa-S3) for 20 
TFs, that had data for available for all of  these cell-lines in ENCODE using a cross-cell type 
training strategy described in Cross- cell type TF-AGNet model training. As shown in Figure 
2B, these cross-cell type models were largely accurate(Median-PCCK562=0.88, Median-
PCCH1=0.89, Median-PCCHepG2=0.91, Median-PCCHeLa=0.85) with the exception being BRCA1-
K562 (PCC = 0.422). The detailed evaluation results for these TF-AGNet models have been 
provided in Supplementary table S2. 

We compared the performance of the build37 TF-AGNet models to those built using the 
DeFine architecture, consisting of a pair of identical conventional CNN layers reading the input 
DNA sequence for a TFBS in the forward and reverse directions to produce features passed on to 
a set of fully connected layers for predicting in vivo ChIP-Seq intensity17. We hypothesized that 
the capability of TF-AGNet models to capture positional k-mer information along with increased 
attention on predictive features would result in more accurate prediction of TF binding intensity 
compared to that obtained from the DeFine models. In order to test this hypothesis, we predicted 
intensity values using both models for a set of peak regions used to train DeFine models and a set 
of regions used to train the TF-AGNet models for 67 GM12878 TFs. As shown in Figure 2C, 
both set of models perform statistically similarly on the DeFine peak regions(Median-PCCTF-

AGNet = 0.736; Median-PCCDeFine = 0.701, Wilcoxon p-value = 0.07). However, the TF-AGNet 
models outperformed the DeFine models significantly(Median-PCCTF-AGNet = 0.806; Median-
PCCDeFine = 0.449, Wilcoxon p-value = 6.9e-12), when predictions were made on the peak 
regions used for training TF-AGNet models. Thus, the TF-AGNet TF models were very accurate 
at predicting in vivo TF binding intensity values, while outperforming the conventional CNN 
based DeFine models.  

Variants altering TF binding sites in vivo were more accurately classified by the TF-
AGNet models compared to other variant annotation algorithms 
 We next assessed the ability of the TF-AGNet models to classify variants that 
significantly influence binding of TFs leading to an allele specific binding (ASB) event. Such 
ASB events can correspond to either increase (Gain-of-Binding variants) or a decrease (Loss-of-
Binding variants) in the binding affinity. We used previously published in vivo differential TF 
binding changes based on allele specific binding analyses20. Furthermore, we compared the 
performance of the TF-AGNet models to 7 TFBS altering variant annotation tools using data 
compiled by Wagih et. al.20 
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 We identified 10 TFs for which models were available for all the algorithms and used 
pre-compiled scores (except for the QBiC-Pred method) to classify Gain-of-Binding(GOB) and 
Loss-of-Binding(LOB) ASB events(see Determining the accuracy of the TF-AGNet models 
for predicting allele specific binding(ASB) TF binding events). We applied three different 
thresholds(25%, 20%, and 15%) on both ends of the distribution of these scores to  call Gain-of-
Binding and Loss-of-Binding events for each algorithm. As shown in Figure 3, the average 
AUROC for the TF-AGNet models was the highest among all the 8 algorithms, for the three 
thresholds for both GOB (AUROC15 = 0.647, AUROC20 = 0.745, AUROC25 = 0.737) and LOB 
(AUROC15 = 0.702, AUROC20 = 0.738, AUROC25 = 0.732) ASB events. Additionally, while 
methods such as DeepSEA14(LOB-AUROC20 = 0.659; GOB-AUROC20 =0.674) 
0.704),DeepBind15(LOB-AUROC20 = 0.68; GOB-AUROC20 = 0.704), deltaSVM21(LOB-
AUROC20 = 0.702; GOB-AUROC20 = 0.714)and QBiC-Pred13(LOB-AUROC20 = 0.693; GOB-
AUROC20 = 0.684) were not as accurate as the TF-AGNet models, they still outperformed 
models based on JASPAR(LOB-AUROC20 = 0.634; GOB-AUROC20 = 0.630) and 
MEME(LOB-AUROC20 = 0.615; GOB-AUROC20 = 0.599) based PWM scores and those based 
on GERV22(LOB-AUROC20 = 0.552; GOB-AUROC20 = 0.417).  

A 

B 

Figure 3: TF-AGNet models were more accurate than other methods for classifying ASB events: Barplots showing the  accuracy 
obtained from classifying ASB events, by the means of average AUROC calculated over 10 different TF models, using different 
methods for A) 947 Loss-of-Binding events and B) 968 Gain-of-Binding events.  
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 Thus, the TF-AGNet models were superior at predicting ASB specific binding events 
brought about by the presence of variants within the TFBS in comparison to other variant 
annotation tools. 

Discussion 

In this paper, we trained TF-AGNet models to predict in vivo TF binding intensities for 
the two human genome reference assemblies (build37 and build38) and subsequently used them 
to quantify the influence of non-coding variants on TF binding in the GM12878 LCL. The 
observation that the poorly performing TF-AGNet models for the two reference builds 
corresponded to mostly the same set of TFs, could point towards poor quality of their ChIP-Seq 
data or could mean that these TFs act as co-factors which don’t directly bind the DNA 
sequences. Our models were more accurate at predicting TF binding intensity, compared to the 
CNN-RNN hybrid DeFine models. This improved performance of the TF-AGNet models is 
mainly due to their capability to capture local and global features from the input k-mers using 
GCNs and GRNs. The positional k-mer embeddings used in the TF-AGNet models also further 
add to their improvement by capturing the importance of the k-mers within each TFBS sequence 
with respect to their relative position. Thus, information beyond motif composition, usually not 
captured by traditional TFBS prediction models, could also prove to be useful for generating 
more accurate predictions. Additionally, we observed that the DeFine models, although highly 
predictive of the intensity values for the TFBS used to originally train them, were not very 
accurate at predicting intensities for the ones used in this paper. This could potentially be due to 
overfitting of these models for the specific regions used to train them; a phenomenon not 
observed for the TF-AGNet models.  

We note that TF-AGNet model accuracy comes at a cost of interpretability. Due to the 
complicated architecture of these models, deriving motif information from them is extremely 
difficult. CNN models such as DeepSEA, DeepBind and DeFine are better suited for motif 
discovery analysis due to their simpler and more interpretable architectures. Here, our main 
focus was to develop accurate TF-variant annotation models, therefore the limited ability to 
estimate TF binding motifs from TF-AGNet models was not seen as a drawback. 

The primary cell-line of focus for training the models was the blood derived GM12878 
LCL. However, ENCODE also contains a large number of ChIP-Seq datasets corresponding to 
other commonly used cell lines. Leveraging this data is extremely useful for building more 
generalizable prediction models capable of capturing TF binding patterns across different cell-
lines/tissues. Furthermore, such generalizable models can be pivotal to examine the functional 
gene regulatory roles of the non-coding variants in different cell-line/tissue contexts. To facilitate 
these studies, we have trained models corresponding to 4 other tier-1 and tier-2 ENCODE cell 
lines for 20 TFs. Our cross-cell type training strategy can be used to generate even more models 
across different cell lines.  

The TF-AGNet models classified variant impact  on TF binding better than many 
commonly used non-coding variant annotation algorithms. The improved performance is likely 
due to the novel layers used in the AGNet architecture which are capable of capturing the 
influence of variants over sequential and spatial aspects of TF binding which are not often jointly 
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analyzed by other algorithms. Additionally, we noted that the machine learning-based variant 
annotation methods significantly outperformed those using PWMs derived from MEME or 
JASPAR. This was not surprising as the PWMs capture a very limited number of TF binding 
features13.   

 There are several downstream analyses which could be performed using the highly 
accurate TF-AGNet based TFBS disruption scores for variants. The most straightforward of 
which is identifying the pathogenicity of the TFBS altering variants by using the annotation 
scores to distinguish between variants associated with pathogenic conditions and the neutral 
variants. Large-scale sequencing studies such as the trans-omics for precision 
medicine(TopMED)23 and the UK-BioBank24 have collected whole genome sequences for 
thousands of individuals. The TF-AGNet models presented in this paper could be used to 
leverage these rich data sources to derive the functional relationship between millions of non-
coding regulatory variants and complex phenotypic traits. To that end, we have built a docker 
container(https://hub.docker.com/repository/docker/bushlab/tfagnet), which can be used to 
compute the influence of non-coding variants on the binding sites of the GM12878 TFs based on 
GRCh37 and GRCh38 TF-AGNet models.   

 

Methods 

Training the TF-AGNet neural network models 
 In order to predict the variant effects on TF binding, we trained neural network models, 
utilizing the attentive gated neural network (AGNet) architecture described by Guo et. al19, that 
predict the TF binding intensity using DNA sequence information. We used processed ChIP-Seq 
data downloaded from ENCODE, described in Supplementary tables S1A and S1B, 
corresponding to the GM12878 LCL in order to train the models as shown in Figure 1. We used 
data corresponding to autosomes (chromosomes 1-22) and aligned to either the build 
GRCh37/hg19 or build GRCh38/hg38 human genome reference assemblies for training the 
models. Following steps were involved in pre-processing the data before training the models: 

1) For each TF, we first removed the peak regions corresponding to top 1% intensity values, as 
they represent binding regions with low complexity17. We further applied Log10 
normalization to the intensity values and scaled them in the range (0,1).  

2) Furthermore, we set the maximum length of the peak regions at 2000bp and trimmed the 
longer regions, on both ends, to bring them to this length.    

3) We then downloaded the 1x normalized DNAase-seq tracks for GM12878 trimmed down to 
the first nucleotide from the 5’ used in the ENCODE dream challenge. Using this data, we 
filtered out the low accessibility peak regions corresponding to the bottom 10% with respect 
to DNAase-seq intensity.  

4) The above step gave us a positive set of peak regions for training the models pruned by their 
DNA accessibility. In addition to these, we created a negative set of genomic regions not 
bound by any TF, which followed the same length and chromosome distribution as that of 
the positive set for each TF. The ratio of the positive and negative regions was kept at 1.0.  

5) Lastly, we downloaded build 37 sequences for each peak region and corrected them for the 
presence of NA12878 genomic variants using the “FastaAlternateReferenceMaker” tool of 
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GATK(version: 4.1.9) and corresponding VCF file (https://ftp-
trace.ncbi.nlm.nih.gov/ReferenceSamples/giab/release/NA12878_HG001/latest/GRCh37/H
G001_GRCh37_GIAB_highconf_CG-IllFB-IllGATKHC-Ion-10X-SOLID_CHROM1-
X_v.3.3.2_highconf_PGandRTGphasetransfer.vcf.gz). This corrected for the NA12878 
specific variants present within each peak region. 

6) The set of sequences generated above were then used to train the GloVe model25 in order to 
learn vector embeddings for each sub-sequence/k-mer. In order to accomplish this, we 
divided each TFBS sequence into k-mers of length 6 and stride 2, which were then 
aggregated into a big corpus of k-mers containing sequence information regarding all the 
TFBS for 149 TFs. This corpus contained 4,258 unique k-mers. We trained the GloVe model 
using the github code(https://github.com/stanfordnlp/GloVe) using the vector size of 100 for 
100 iterations`.  

After generating the GloVe vector embeddings for the k-mers, we utilized the AGNet 
architecture with the keras package(v 2.3.1) and the tensorflow (v 1.14.0 ) backend to train the 
neural network models. We trained individual models for each TF using the k-mer vector 
embeddings corresponding to its peak regions as input and the normalized scaled ChIP-Seq 
intensities as the output. Below we have described the architecture of TF-AGNet briefly, and we 
refer the readers to the AGNet paper19 for further details. 

The first layer of the TF-AGNet models was an embedding layer receiving inputs in form of 
indexed k-mer vectors for each TF peak region. The embedding layer was followed by a layer of 
multi-scale CNN layer of three 1D CNNs all connected to the embedding layer and learning 
local informative features from the input k-mers in parallel. Each one of the convolutional layers 
contained 64 filters and the kernel size for them was 3,5 and 7. Each multi-scale CNN was 
followed by a max-pooling layer with a pooling size of 3.  

Apart from the multi-scale CNNs, the embedding layer was also connected to a position 
embedding layer that contained vector embeddings for the k-mers derived based on their 
positions within each input sequence. The position embeddings were of the similar size(100) to 
that of the GloVe based k-mer embeddings and the two were added to produce the output of the 
position embedding layer. The output of the position embedding is then passed on to a dual 
attention layer meant to extract important sequence features.  

The outputs from the multi-scale CNNs were concatenated and were passed on to gated 
convolutional network (GCN) layer. The GCN layer consisted of a conventional 1D CNN with a 
“sigmoid” activation function and a novel 1D CNN with a scaled exponential linear unit(SELU) 
activation function for improved gating and control of information flow in form of features to 
the next layer. Both the CNNs in the GCN layer contained 192 filters and the kernel size of 3. 
The outputs from these two CNNs were multiplied and a maxpooling of size 3 was applied to 
product.  

The GCNs were followed by two gated recurrent network(GRN) layers containing stacked 
bi-directional gated recurrent units(BIGRU). Each GRN layer contained 256 nodes and the 
output dimension was 128. The output from the GCN layer is directly passed on to both the 
GRNs, and it is also concatenated to their outputs.   

The GRN-GCN concatenated output is passed onto another dual attention layer to extract 
important abstract features. These features are then concatenated to the ones obtained from the 
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https://github.com/stanfordnlp/GloVe
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dual attention layer containing position embeddings. The concatenated sequence and abstract 
features are then passed on to a fully connected dense layer containing 128 nodes and the SELU 
activation function, which is then connected to an output node without any activation function to 
produce a continuous output corresponding to the TFBS intensity. 

The parameters for the TF-AGNet models are initialized using the Lecun normal initializer. 
Each TF-AGNet model was trained using the mean squared error(MSE) loss and optimized 
using the Adam optimizer for a maximum of 100 epochs. Furthermore, overfitting in each 
model was controlled using dropout layers, L2 regularization and early stopping after seeing no 
improvement in validation loss for 10 straight epochs.  

Each TF peak region set containing negative and positive sets was divided into 70%-15%-
15% training, validation and test set. After model training was finished, the TF binding 
intensities of the test set were predicted and were correlated with the actual binding intensities to 
evaluate the accuracy of the models. 

Cross-cell type TF-AGNet model training 
 In order to generate generalizable TF-AGNet models, which could be applied to TF 
binding data corresponding to multiple different cell-types, we trained them using a cross-cell 
type training strategy. Specifically, we downloaded ChIP-Seq data from the Tier-1 cell lines 
(K562 immortalized chronic myelogenous leukemia cell line and H1 human embryonic stem cell 
line) and Tier-2 cell lines( HeLa-S3 immortalized cervical cancer cell line and HepG2 liver 
carcinoma cell line). We identified 20 TFs, whose data was available for these 4 cell lines and 
processed it using the steps described in Training the TF-AGNet neural network models. We 
then used the processed data for cross-cell type training using the following procedure: We 
divided the total processed data for each TF for each one of the 4 cell lines into 70-15-15 
training-test-validation set. We then pooled the validation set for all the 4 cell-lines together. We 
began training the models for each cell-line for each TF using the corresponding pre-trained 
GM12878 TF-AGNet model. We used training data specific to each cell-line and the validation 
data from the other three cell-lines to train each TF model. Thus, we trained 4 different models, 
corresponding to the 4 cell-lines, for each TF, where the training data was cell-line specific and 
the validation data was obtained from the other 3 cell lines. The training parameters for the 
cross-cell type training were the same as that used for the GM12878 model training in Training 
the TF-AGNet neural network models. We assessed the accuracy for each TF cell line model 
using the test data specific to that cell line.  

Comparison of TF-AGNet models with the DeFine models.  
DeFine models are a set of CNNs trained using the ENCODE ChIP-Seq datasets to 

predict TF binding intensity17. We compared the accuracy of our TF-AGNet models for 
predicting TF binding intensity to that obtained from the DeFine models. We first downloaded 
DeFine models corresponding to 67 TFs, for which trained TF-AGNet models were available in 
our dataset, for the GM12878 cell line. We also downloaded the peak sequences and normalized 
TF binding intensity used to train the DeFine models. We then selected 15% of the peak regions 
used to train the DeFine models and predicted their intensity values using both DeFine and TF-
AGNet models. We did the same thing with the peak regions used to train the TF-AGNet 
models. We compared the prediction accuracy of the two types of models for each TF by 
calculating the PCC between the observed and the predicted intensities for the two different sets 
of peak regions.  
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Determining the accuracy of the TF-AGNet models for predicting allele specific 
binding(ASB) TF binding events 

In order to assess the accuracy of the TF-AGNet models for classifying allele 
specific(ASB) TF binding events, we downloaded the ASB data aggregated by Wagih et al.20 
based on differential TF binding identified by ChiP-Seq experiments for 81 TFs. In this dataset, 
there were 32,252 ASB events (Pbinomial < 0.01) and 79,827 non-ASB events(Pbinomial >  0.5). 
We compared the performance of TF-AGNet models to 7 other methods: QBiC-Pred13, 
DeepSEA14, DeepBind15, PWM(Meme)10, PWM(Jaspar)26, GERV22 and deltaSVM21. We 
identified 1,915 ASB events(968 Gain-of-Binding and 947 Loss-of-Binding) corresponding to 
613 single nucleotide polymorphisms(SNPs) variants and 10 TFs for which prediction models 
were present for all the algorithms. For these 10 TFs, we had 2,170 non-ASB events(1132 Gain-
of-Binding and 1038 Loss-of-Binding) corresponding to 1,001 SNPs. We scored both the ASB 
and non-ASB SNPs using the TF-AGNet models by first centering the variants within the TFBS 
identified for the 10 TFs in our original GM12878 based peak set. We then generate a pair of 
sequences for each variant containing an alternate allele(SALT) and a reference allele(SREF) and 
scored both the sequences. The variant influence on the TFBS(Sv) was then derived from the 
difference in the two scores as shown in equation (1).  

 𝐒𝐒𝐯𝐯 =  𝐒𝐒𝐀𝐀𝐀𝐀𝐀𝐀 − 𝐒𝐒𝐑𝐑𝐑𝐑𝐑𝐑 (1) 
   

We also scored the variants using the QBiC-Pred algorithm and used the z-scores as the ASB and 
non-ASB variant influence on TF binding. For the remaining 6 methods, we simply used the 
scores compiled by Wagih et. al.20 for each ASB and non-ASB variant for the 10 TFs. 
Furthermore, for each algorithm, we used thresholds of 25th , 20th  and 15th percentiles in order to 
classify the ASB events based on the scores such that events with scores in the top portion of that 
percentile were considered Gain-of-Binding ASB events, while the events in the bottom portion 
of the percentile were considered Loss-of-Binding ASB events. The remaining events were 
considered as non-ASB events. We then used AUROC to calculate the accuracy of each 
algorithm for correctly identifying an ASB event using the ground truths from the data compiled 
by Wagih et. al.20  
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