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Abstract 
 

Introduction: A computationally fast machine learning method is introduced for uncovering the whole-

brain voxel-level connectomic spectra that differentiates different status of Alzheimer’s disease (AD). 

The method is applied to the Alzheimer's Disease Neuroimaging Initiative (ADNI) Fluorine-

fluorodeoxyglucose Positron Emission Tomography (FDG-PET) imaging and clinical data and identified 

novel AD/MCI differentiating connectomic neuroimaging biomarkers. 

Methods: A divide-and-conquer algorithm is introduced for detect informative local brain networks at 

voxel level and whole-brain scale. The connection information within the local networks is integrated 

into the node voxels, which makes detection of the marginally weak signals possible. Prediction 

accuracy is significantly improved by incorporating the local brain networks and marginally weak signals.  

Results: Brain connectomic structures differentiating AD and mild cognitive impairment (MCI), AD and 

healthy, and MIC and healthy were discovered. We identified novel AD/MCI-associated neuroimaging 

biomarkers by integrating local brain networks and marginally weak signals. For example, network-

based signals in paracentral lobule (p-value=6.1e-5), olfactory cortex (p-value=4.6e-5), caudate nucleus 

(1.8e-3) and precentral gyrus (1.8e-3) are informative in differentiating AD and MCI.  Connections 

between calcarine sulcus and lingual gyrus (p-value=0.049), between parahippocampal gyrus and 

Amygdala (p-value=0.025), between rolandic opercula and insula lobes (p-values=0.0028 and 0.0026). 

An overall prediction accuracy of 95.3% was achieved by integrating the selected local brain networks 

and marginally weak signals, compared to 84.0% by not considering the inter-voxel connections and 

using marginally strong signals only. 

Conclusion: (i) The connectomic structures differentiating AD and MCI are significantly different to that 

differentiating MCI and healthy, which may indicate different neuronal etiology for AD and MCI. (ii) Many 

neuroimaging biomarkers exert their effects on the outcome diseases through their connections to other 

markers. Integrating such connections can help identify novel neuroimaging biomarkers and improve 

disease prediction accuracy.  
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1. Introduction 

Alzheimer’s disease (AD) ranks the third as a cause of death for people 75 and older1,2. Every 65 

seconds, someone in the US develops AD3 and it afflicted around 5.8 million Americans in 20204. 

Overall, AD is considered the most expensive disease5 in US, with the overall cost of the disease being 

$305 billion in the U.S. in the year 20204. Before the onset of AD, individuals may experience an 

intermediate cognitive deterioration known as mild cognitive impairment (MCI) that are not severe 

enough to interfere with their daily activities. As the earliest detectable clinical stage toward AD, MCI 

provides an attractive checkpoint of disease-modifying intervention6,7. Compared to AD, MCI is more 

subtle and difficult to prognosis8,9. Early and accurate prediction of MCI and differentiating 

neuropathology of MCI and that of AD is crucially important for successful treatment development and 

precision prevention10,11,12,13. 

 

Many cognitive tests have been developed for AD diagnosis14. However, these tests have certain 

limitations. For example, cognitive tests are often powerless in discriminating subtle differences between 

AD and MCI and between MCI and healthy. Also, cognitive tests cannot be used for novel neuroimaging 

biomarker discovery that may provide insights on underlying neuropathology.  

 

High-resolution neuroimaging scans nowadays provide unparallel precision for discovering AD (MCI) 

associated neuroimaging biomarkers. For example, Positron Emission Tomography (PET) images15,16,17 

have been successfully used to understand the neurodegenerative mechanisms18. Most of current 

methods focus on identifying the locales and individual values of imaging biomarkers, such as important 

voxels, hotspots or brain regions associated with a disease19,20,21, while ignoring the connectivity 

between markers. The number of potential connections between tens of thousands of voxels in a 

neuroimage is often of astronomical scales. For example, each ADNI PET scan used in our study 

consists of more than 185,000 voxels. Jointly inferring all potential connections between these voxels 

accounts to inverting a covariance matrix of dimension 185,000×185,000, which has a computational 
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complexity of O(185, 000 ଶ.ଷ଻ହ)22. Even with very powerful computing tools, it is infeasible to invert such 

a large-dimensional matrix.  

 

Even though extremely challenging, detection of voxel-level brain connectomes associated with AD has 

attracted much interest. First, both AD and MCI can be viewed as a connectomic disorder 

neuropathologically, in the sense that their onsite is often accompanied with not only the loss of brain 

matters itself, but also the reduction of inter-neuron fiber connectivity required for healthy cognitive 

functioning23,24. Brain connectomics, which models the whole brain as a spectrum of network circuits, 

provides a systematic view to AD neuropathology and have been increasingly used to link the diseases 

with structural and functional neuroimages25. Most existing brain connectomic networks are region-

based functional networks, which aggregate neurons into priori-defined functionally related or spatially 

circumscribed regions of interest (ROIs)26,27,28,29. While the current neuropathological theories, such as 

beta-amyloid initiated senile plagues and tau-protein initiated neurofibrillary tangles, indicate that 

developments of AD and MCI are more directly related to breaks-down of connectivity at neuronal level, 

other than at regional level. Such connectomic patterns are more reflected in the voxel-level 

connections30,31. Region-based methods often lead to a loss of information and inferior prediction 

performance. 

 

Another advantage of detecting inter-voxel connections is about prediction. As we will demonstrate 

shortly, a large portion of the predictiveness for AD is embedded in the connections between voxels. In 

fact, AD-risk imaging biomarkers currently identified explain only a small proportion of the disease 

variation32,33,34. More novel neuroimaging biomarkers are yet to be discovered. Integrating connections 

between voxels into the disease prediction makes the detection of marginally weak signals possible. 

The marginally weak signals have small power in differentiating the disease status and are not 

detectable by themselves. They are, therefore, usually ignored in contemporary neuroimaging 
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association studies. However, when taken into consideration their connections with other signals, 

marginally weak signals could exude strong predictive effects35,36. 

 

Such a case is illustrated in Figure 1. The left panel depicts a local brain-network in cerebellum crus on 

the left hemisphere consisting of twelve voxels. The network contains two marginally detectable voxels 

“vox 94316” and “vox 98031”. All other ten voxels are marginally weak and undetectable. The right-panel 

table in Figure 1 gives the marginal and local-network-adjusted mean differences between the AD and 

MCI groups. The first column lists the marginal mean differences (divided by the marginal standard 

deviations) without considering the connections between the voxels. The second column lists the local-

network-adjusted mean differences. The local-network-adjusted mean difference for a voxel integrates 

its connective information with other voxels, such as the number of edges connected to it, the strength 

of these connections and marginal differentiating power of its connected voxels. The discriminant power 

of most of the ten marginally undetectable signals are significantly boosted up by incorporating their 

connective information. All the ten marginally weak voxels become more powerful in differentiating AD 

and MCI than the two marginally strong signals after adjusting for the local network structure. 

 

[Figure 1 about here] 

 

In this work, we analyzed the ADNI Fluorine-fluorodeoxyglucose (FDG)-PET imaging and clinical data 

by detecting local brain networks and marginally weak signals36. To the best of our knowledge, this is 

the first whole-brain voxel-level connectivity study in the literature. The identified connectomic signatures 

were then integrated into AD/MCI prediction. Our approach avoids ultrahigh-dimensional precision 

matrix calculation by disassembling the whole brain connectome into disjoint local brain networks. It is 

highly efficient in computation. By integrating the voxel-level connectivity and marginally weak signals, 

the prediction accuracy has been significantly improved. Moreover, meaningful biological interpretation 
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about identified network-based signatures can be made based on our findings, which might help to 

advance our understanding on the mechanisms of MCI and AD. 

 

The rest of the paper is organized as following. Section 2 introduces the methods for detection of 

predictive local brain networks and marginally weak signals, and prediction rules for classifying the 

diseases. Section 3 introduces the ADNI PET imaging datasets. Section 4 gives the analysis results and 

biological annotations for our findings. The paper is concluded by Section 5, where a brief discussion of 

relevant issues is provided. 

 

2. Methods 

Figure 2 depicts the major steps of our analysis pipeline. Details for the methods used are elaborated 

next.  

 

[Figure 2 about here] 

 

2.1. Notations 

Let 𝑋 = ൫𝑋ଵ, . . . , 𝑋௣൯
ᇱ
be the stacked vector for the intensity scores of all 𝑝 voxels in an imaging scan. 

Denote by 𝑋௜ = ൫𝑋௜,ଵ, . . . , 𝑋௜,௣൯
ᇱ
 the observed 𝑋 vector from subject 𝑖. Let 𝑌௜ be the class indicator (coded 

as 0, 1, 2 for healthy, MCI and AD, respectively) for subject 𝑖, 𝑖 = 1, . . . , 𝑛, where 𝑛 is the total number of 

subjects. Denote by 𝑋 = (𝑋ଵ
ᇱ , . . . , 𝑋௡

ᇱ )ᇱ the 𝑛 × 𝑝 data matrix. Denote by 𝑛௞ the size of class k, k = 0, 1, 2. 

Denote by 𝐺 = (𝑉, 𝐸) the whole brain connectomic network, with a vertex set 𝑉 ≡ {1, . . . , 𝑝} and an edge 

set 𝐸. A connection (or an edge) (𝑗, 𝑗଴) exists between two voxels 𝑗 and 𝑗଴ if and only if voxels 𝑋௝ and 

𝑋௝బ
are conditionally dependent given all other voxels. Note that connection (or an edge) between two 

voxels is essentially different than the correlation between them. The former is a joint concept depending 
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on all the other voxels, while the latter is a marginal concept depending only on the pair of voxels under 

consideration. 

 

2.2. Detection of marginally strong signals 

Marginal two sample t-tests are used to select marginally strong signals, which each differentiates a pair 

of classes by itself. Specifically, for each feature 𝑗, 𝑗 = 1, . . . , 𝑝,we calculate 

𝑇෠௝(𝑘, 𝑘′) = ቀ𝑋ത௝
[௞]

− 𝑋ത௝
[௞ᇱ]

ቁ 𝑠௱ൗ                    (1) 

for a class pair (𝑘, 𝑘′), 𝑘 ≠ 𝑘′, in {0,1,2}. Here  𝑋ത௝
[௞]

= (1 𝑛௞⁄ ) ∑ 𝑋௜,௝௒೔ୀ௞  and 𝑠௱ =

ට∑ ∑ ቀ𝑋௜,௝ −  𝑋ത௝
[௟]

ቁ
ଶ

(𝑛௞ + 𝑛௞ᇱ)ൗ . The first 𝜏 ≤ 𝑛 features with the highest ห𝑇෠௝(𝑘, 𝑘′)ห values are selected as 

the marginally strong signals. Here 𝜏 is a tuning parameter and can be selected by data-driven 

procedures such as cross-validation. 

 

2.3. Detection of predictive local brain networks 

Under the assumption that the 𝑝 voxels follow a multivariate normal distribution with a mean vector 𝜇 

and a covariance matrix 𝛴, The network 𝐺 can be characterized by the precision matrix 𝛺 = 𝛴ିଵ. An 

edge (𝑗, 𝑗′) exists if and only if the (𝑗, 𝑗′)th entry of 𝛺, denoted by 𝛺௝௝ᇱ, is nonzero and the strength of the 

edge equals to the magnitude of 𝛺௝௝ . As stated before, jointly estimating the whole 𝛺 matrix of all 

185,000 voxels is computationally prohibitive. Here we employed a “divide-and-conquer” algorithm 

introduced in Li et al.36, to detect the local brain networks. The local networks are much smaller in size 

and thus their corresponding precision matrices are much easier to calculate. Assume that each local 

brain network contains at least one marginally strong voxel. These marginally strong voxels serve as 

hubs in the local networks. For each marginally strong signal detected, we look for the set of voxels 

connected to it, either directly through an edge or indirectly through a path consisting of a series of 

edges. That is, to find the connected component in 𝛺 containing it. However, it is impossible to detect 
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such connected components without knowing 𝛺. Utilizing a statistical property which states that the 

connected component structure of 𝛺 can be asymptotically recovered by that of the thresholded sample 

correlation matrix, 𝑅෨ ≡ 𝑅෠ 1൫ห𝑅෠௝௝ᇱห > 𝛼൯37,38, we can detect the connected components in 𝑅෨ instead. Here 

𝑅෠ is the estimated sample correlation matrix and 𝑅෠௝௝ᇱ is its (𝑗, 𝑗′)th entry and 1 is the indicator function. 

The thresholding parameter 0 < 𝛼 < 1 controls the sparsity of 𝑅෨. The computational complexity of 𝑅෨ is 

orders of magnitude lighter than that of estimating 𝛺. Moreover, since the correlations can be estimated 

pairwise, they can be calculated in a parallel way on multi-core computer clusters. 

Recursive labeling algorithm39 is employed in detecting the connected component in 𝑅෨ for each 

marginally strong signal. Denote by 𝐶௟, 𝑙 = 1, . . . , 𝐵, the 𝐵 connected components identified. Each 𝐶௟ 

indexes a local brain network. Let ∑෡஼೗
 be the sub-sample covariance matrix corresponding to the set 𝐶௟. 

The precision matrices Ω෡஼೗
= ∑෡஼೗

ିଵ  characterize the topology for the corresponding local networks. Sizes 

of 𝐶௟s can be controlled by carefully choosing the thresholding parameter 𝛼. 

 

2.4. Detection of marginally weak signals 

Local-network-adjusted effects are then calculated for voxels within each 𝐶௟. Specifically, for each 𝐶௟, 

the following network-adjusted statistics vector is calculated: 

𝑇෠஼೗

௡௘௧(𝑘, 𝑘′) = Ω෡஼೗
(𝑋ത௝

[௞]
− 𝑋ത௝

ൣ௞ᇲ൧
).                      (2) 

For each voxel 𝑗 in 𝐶௟, its network-adjusted statistic is the corresponding entry in 𝑇෠஼೗

௡௘௧(𝑘, 𝑘′). Specifically,  

𝑇෠௝
௡௘௧(𝑘, 𝑘′) = ∑ [Ω෢஼೗

]௝௝ᇱ(𝑋ത௝
[௞]

− 𝑋ത௝

ൣ௞ᇲ൧
)௝ᇱ∈஼೗
.                   (3) 

Compared to the marginal statistics 𝑇෠௝(𝑘, 𝑘′) in (1), instead of standardizing by the marginal variation 

(measured in 𝑠௱),  𝑇෠௝
௡௘௧(𝑘, 𝑘′) also adjusts for the local network connections for feature 𝑗 (estimated in 

[Ω෢஼೗
]௝௝ᇱs) and the marginal differential effects of voxels connected to feature 𝑗 (measured in 𝑋ത௝

[௞]
− 𝑋ത௝

ൣ௞ᇲ൧
 

for 𝑗ᇱ ≠ 𝑗 in 𝐶௟).   
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Not all the voxels in 𝐶௟s are necessarily predictive. To reduce false positives, we further select predictive 

marginally weak signals within ⋃௟ୀଵ
஻ 𝐶௟. The top ranked 𝜈 voxels with the greatest |𝑇෡௝

௡௘௧(𝑘, 𝑘′)| are 

selected, beside of the marginally strong signals. Here 𝜈 is a tuning parameter controlling the size of 

marginally weak signal set. The predictive signals (both marginally strong and marginally weak), 

together with the local brain networks they are residing in, form the AD (or MCI) predictive brain 

connectome. Figure 3 gives a toy example about incorporating a local brain network into marginally 

weak signal detection. 

 

[Figure 3 about here] 

 

2.5. Assigning p-values to selected signals and local brain networks 

A non-parametric permutation test is used to evaluate significance of selected signals40,41. Specifically, 

the p-value for a selected voxel 𝑗 is calculated through the following procedure: 

1. Calculate 𝑇෠௝ and 𝑇෠௝
௡௘௧ using the original data. If voxel 𝑗 was not selected, then 𝑇෠௝

௡௘௧ = 0. 

2. Randomly permute the class label vector (𝑌ଵ, . . . , 𝑌௡)ᇱ 𝑀 times for some large number 𝑀 and 

generate 𝑀 permuted datasets.  

3. For each feature 𝑗, calculate (2) using the 𝑚th permuted dataset, denoted by 𝑇෠௝
௡௘௧,(௠), 𝑚 =

1, . . . , 𝑀. 

4. Assign p-value to a selected voxel 𝑗 to be 

𝑝௝ =
1

𝑀
 ෍ 1 ቀ| 𝑇෠௝

௡௘௧,(௠)
| > |𝑇෠௝

௡௘௧|ቁ

ெ

௠ୀଵ

. 

To access significance of the network-based signatures identified, we assign network p-values to the 

selected local brain networks using the following Hotelling's T-squared distribution 

𝑛 − 𝑐

𝑐(𝑛 − 1)
ቀ𝑋ത஼೗

[௞]
− 𝑋ത஼೗

ൣ௞ᇲ൧
ቁ

ᇱ

Ω෡஼೗
ቀ𝑋ത஼೗

[௞]
− 𝑋ത஼೗

ൣ௞ᇲ൧
ቁ ~𝐹௖,௡ೖା௡ೖᇲି௖ , 

where, 𝑐 is the number of voxels in 𝐶௟ and 𝐹௖,௡ೖା௡ೖᇲି௖ is the F-distribution with parameters 𝑐 and   𝑛௞ +

𝑛௞ᇱ − 𝑐. 
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2.6 Disease status prediction 

Let 𝑋௡௘௪ and 𝑍௡௘௪ be the predictor vector and adjusting covariate vector for a new subject in the test 

dataset, respectively, then the class of the new subject can be predicted by the following rule.  

𝑌෠௡௘௪ = argmax
௞∈{଴,ଵ,ଶ}

൝(𝑍௡௘௪ − 𝑍̅[௞]/2)′∑෡௓
ିଵ𝑍̅[௞] +  ෍(𝑋௡௘௪,஼೗  − 𝑋ത஼೗

[௞]
/2)′Ω෡஼೗

𝑋ത஼೗

[௞]

஻

௟ୀଵ

ൡ , 

where 𝑋௡௘௪,஼೗   is the subvector of 𝑋௡௘௪ indexed by 𝐶௟.  

 

3. ADNI datasets 

During the last two decades, large amount of neuroimaging, genetic and clinical data have been 

acquired in ADNI studies42,43,44. In this study, we used the ADNI phase-I FDG-PET baseline scans with 

54 AD patients, 131 MCI patients and 72 healthy subjects to detect brain connectomic structures for AD 

and MCI prediction. 

 

3.1 Data processing  

Standard preprocessing steps including co-registration, normalization and spatial smoothing (8 mm full 

width at half maximum) were applied to the PET dataset. Each image is registered to a template with 

185,405 active voxels embedded in a 91 x 109 x 91 3D-array. We further grouped the 185,405 voxels 

into 116 regions of interest (ROI) segmented by the automated anatomical labeling atlas45. ROI names 

and numbers are listed in the Table A1 in the Appendix. 

 

4. Analysis and results 

Pairwise correlations and covariances between all voxels were first calculated on parallel threads using 

a Hewlett-Packard workstation with 16 core Intel Xeon processors and a 256GB memory size. 
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Correlation matrix was then thresholded at 0.8 to retain only highly correlated voxels. To further reduce 

the computational burden, we set all entries within a thresholded correlation block between two ROIs to 

zeros if the average 𝐿ଶ norm (𝐿ଶ norm divided by the number of nonzero entries in the block) of that 

block is ≤ 0.4. Thus, only highly correlated ROIs were be considered. For example, For ROI 5, only its 

closely connected ROIs: ROI 6, 9, 15, 25, 26, 27 and 28, were considered in our analysis (see Figure 

4-a). This correlation block structure represents an overarching region-level connectivity structure 

(Figure 4-b).   

 

[Figure 4 about here] 

 

Variable selection was performed separately within each highly correlated ROI clusters. Parallel 

computing was implemented for this step. We used 𝜏 = 5, 𝛼 = 0.8 and 𝜈 = 20 on each ROI cluster to 

select local-brain networks, and marginally strong and weak signals that differentiated a pair of classes. 

When searching for the connected component of a marginally strong signal, we focused on the voxels 

that are connected to a marginally strong signal with a connection path less than 10 in length. We used 

𝑀 = 10,000 in the non-parametric permutation tests. In total, 2,686 informative voxels were selected. 

Among them, 836 are marginally strong and 1,850 are marginally weak. There were 661 (302), 695 

(306) and 610 (309) were marginally weak (marginally strong) signals for differentiating AD and MCI, 

AD and Healthy, and MCI and Healthy, respectively. There were 47 (61) marginally weak (marginally 

strong) signals that differentiate both AD-to-MCI and AD-to Healthy, 3 (0) marginally weak (marginally 

strong) signals that differentiate both AD-to-MCI and MCI-to-Healthy, 67 (20) marginally weak 

(marginally strong) signals that differentiate both AD-to Healthy and MCI-to-Healthy, and 1 marginally 

weak signal that differentiate all three pairs. The selected informative signals differentiating AD and MCI, 

AD and healthy, and MCI and healthy are sitting in 168, 129 and 122 local brain networks, respectively. 

Table 1 lists the top selected voxel signals that are informative in differentiating at least one pair of 

disease status. Figure 5 shows the top selected marginally weak signals, along with their marginal and 
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network-adjusted effects. Note that some regions identified containing mostly marginally weak signals 

have either not been reported to be associated with AD or MCI, or just been discovered recently, such 

as middle temporal gyrus46, olfactory bulbs47, lingual gyrus48 and amygdala69. These novel findings 

demonstrate the power of our method in identifying novel neuroimaging biomarkers. Table 2 lists the top 

selected brain networks with a significant unadjusted p-values. Most of selected voxels would still be 

significant after adjusting for multiple tests. The topologies of these networks are depicted in Figure 6. 

For the sake of presentation, we only included 12 the most closely connected voxels to a marginally 

strong signal in each depicted network. The whole brain connectomic structure that differentiate AD and 

MCI is presented in Figures 7 and 8. Each cluster of arcs in Figure 7 represent connections within an 

ROI. Arcs run across different clusters represent connections between different ROIs. Figure 8 shows, 

on the other hand, the positions and overarching topologies of the detected connectome. The 

corresponding figures for connectomes that differentiate AD and healthy, MCI and healthy are provided 

in the Appendix. 

 

[Figure 5 about here] 

[Table 2 about here] 

[Figure 6 about here] 

[Figure 7 about here] 

[Figure 8 about here] 

 

For many of the local networks identified, associations between their residing ROI and AD status are 

supported by literature evidence. These threads of evidence are listed in the last column of Table 2. 

Our analysis showed that connections within paracentral lobule (p-value=6.1e-5), olfactory cortex (p-

value=4.6e-5), caudate nucleus (1.8e-3) and precentral gyrus (1.8e-3) are informative in differentiating 

AD and MCI; Connections within cerebellum crus (p-value=0.03), lingual gyrus and calcarine sulcus 
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(p-value=3.8e-6) and amygdala (p-value=1.6e-8) are informative in differentiating AD and the healthy; 

Connections within precuneus gyrus (p-value=2.7e-7), middle temporal gyrus (p-value=1.6e-3), middle 

orbitofrontal cortex (p-value=0.014) and inferior parietal lobule (p-value=0.038) are informative in 

differentiating MCI and the healthy. 

 

Connections across different ROIs that contribute to differentiating a pair of disease status are of 

particular interest, as they may indicate the functional connection that contributes to AD etiology. The 

following cross-ROI connections were identified for differentiating AD and MCI: connections between 

calcarine sulcus and lingual gyrus (network p-value=0.049), connections between parahippocampal 

gyrus and amygdala (network p-value=0.025), connections between rolandic opercula and insula 

lobes (network p-values=0.0028 in the left hemisphere and =0.0026 in the right hemisphere). The 

connections between calcarine sulcus and lingual gyrus (network p-value=7.5e-6) and connections 

between parahippocampal gyrus and amygdala (network p-value=1.7e-4), were also identified to 

differentiate AD and the healthy. Other significant cross-ROI networks that differentiate AD and the 

healthy, MCI and the healthy are listed in Table S2 in the Appendix. 

 

The patterns of the selected connectomes differentiating the three disease pairs (AD-to-MCI, AD-to-

healthy, and MCI-to-healthy) are significantly different. See Figure 8 and Figures A3 and A6 in the 

Appendix. While connections between calcarine sulcus and lingual gyrus, between parahippocampal 

gyrus and amygdala are informative for differentiating both AD-to-MCI and AD-to-healthy; connections 

between cingulum posterior, left hemisphere and cingulum posterior, right hemisphere, between 

cingulum middle, left hemisphere and cingulum middle, right hemisphere are informative for 

differentiating both AD-to-healthy and MCI-to-healthy. Note that there is no selected local network that 

differentiates both AD-to-MCI and MCI-to-healthy, which indicates that the development of MCI and 

the progression from MCI to AD may have different neuropathology pathways. 
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For prediction, we used five-fold cross-validation to divide the whole dataset into five parts with about 

the same sample sizes. Each time, we combined four folds into a training set and set the rest fold as 

the test set. We applied our analysis procedure on the training dataset to select predictive voxels and 

networks. Same tuning parameters 𝜏 = 5, 𝛼 = 0.8 and 𝜈 = 20 were used on each ROI cluster. The 

selected voxels on 116 ROIs were then pooled together and used to predict the disease status on the 

test dataset, along with covariates age and sex. We repeated this procedure till each fold has been 

used as the test set once. The overall classification errors were then computed by summing over all 

five test sets. The prediction results are summarized in Table 3. For comparison, we also reported 

prediction results from (i) marginal linear discriminant analysis (LDA), which assumes all voxels are 

independent (unconnected), (ii) sure independent screening (SIS)49,50, and (iii) iterative sure 

independent screening (ISIS)50,51. For SIS and ISIS, logistic regressions were applied on each pair of 

classes. The class with the highest average predicted probability was assigned to be the final 

predicted class. Numbers of misclassification are given in Table 3. Our approach gives the smallest 

prediction errors overall and within each class. 

 

5. Discussion 

The computational burden of the proposed analysis pipeline is comparable to that from the marginal 

approaches49,50. The major computational cost comes from calculating the whole brain correlation 

matrix. However, this can be alleviated by parallel computing. The connected component searching 

could also be computation-intensive if the number of connected voxels to a marginally strong signal is 

large. In our application, we restricted the length of any connection path in a connected component to 

be less than 10. This way, only the most closely connected voxels were maintained in a large-sized 

connected component. The analysis source codes were packed into an R package and can be found at 

https://github.com/lyqglyqg/mLDA 
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Strengths and limitations 

The strengths of this study are two-fold. First, it integrates inter-voxel connectivity into neuroimaging 

signal selection, and makes it possible to select both network-based and marginally weak signals. 

Secondly, different to many principal component analyses in neuroimaging association studies, our 

approach can select neuropathologically meaningful biomarkers – the local brain networks, while 

achieving high prediction accuracy. 

Accurate estimation for the covariance structures requires greater sample sizes compared to for the 

mean structures. Breaking down the overall brain connectomic structures onto separate ROI clusters 

(see Figure 4) may cause loss of information. It is recognized that the inter-voxel connectivity may not 

fully reveal the connection pattern between neurons.   
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Table 1. Top selected voxel signals*. 

voxel ROI MW/MS† marginal 
MD‡ 

network 
MD‡ 

unadjusted 
p-value 

adjusted  
p-value 

AD-MCI 
vox_5555 Cerebelum_7b_R MW 0.27 352.34 0:036 NS** 
vox_5445 Cerebelum_7b_R MW 0.16 139.32 0:012 NS 
vox_9000 Cerebelum_Crus2_R MW 0.07 105.08 <1e-5 <0.05 
vox_168602 Paracentral_Lobule_L MW 2.78 105.01 <1e-5 <0.05 
vox_78272 Caudate_R MW 5.37 104.98 <1e-5 <0.05 
vox_5890 Cerebelum_7b_R MW 0.34 104.41 <1e-5 <0.05 
vox_173066 Paracentral_Lobule_L MW 4.62 101.00 <1e-5 <0.05 
vox_90518 Insula_L MS 7.85 82.57 <1e-5 <0.05 
vox_131355 Frontal_Sup_Medial_L MW 3.99 82.20 0:069 NS 
vox_90612 Insula_L MS 7.31 81.73 <1e-5 <0.05 

AD-Healthy 
vox_6027 Cerebelum_10_R MW 1.60 629.64 <1e-5 <0.05 
vox_6024 Cerebelum_10_R MW 1.73 291.60 <1e-5 <0.05 
vox_6079 Cerebelum_10_R MW 2.28 290.65 <1e-5 <0.05 
vox_5989 Cerebelum_10_R MW 1.33 216.92 <1e-5 <0.05 
vox_5890 Cerebelum_7b_R MW 1.28 135.39 0:056 NS 
vox_89146 Lingual_R MW -1.54 112.60 <1e-5 <0.05 
vox_43386 Temporal_Mid_R MW -7.89 105.10 <1e-5 <0.05 
vox_6058 Cerebelum_10_R MW 1.79 98.71 <1e-5 <0.05 
vox_127104 Precentral_L MW 3.70 97.61 <1e-5 <0.05 
vox_43299 Temporal_Mid_R MW -8.39 95.56 <1e-5 <0.05 

MCI-Healthy 
vox_138843 Precuneus_L MW -1.95 162.95 <1e-4 NS 
vox_145132 Precuneus_L MW -0.55 129.85 <1e-5 <0.05 
vox_64457 Frontal_Med_Orb_R MW -3.09 118.87 <1e-5 <0.05 
vox_141950 Parietal_Inf_L MW -1.89 107.41 <1e-5 <0.05 
vox_36045 Temporal_Mid_R MW -3.19 90.40 <1e-5 <0.05 
vox_151373 Precuneus_L MW 0.75 89.75 <1e-5 <0.05 
vox_132482 Precuneus_L MW -3.57 83.24 <1e-5 <0.05 
vox_68201 Frontal_Med_Orb_R MW -3.49 77.16 <1e-5 <0.05 
vox_180609 Paracentral_Lobule_L MW 1.97 76.12 <1e-5 <0.05 
vox_87702 Cingulum_Ant_L MW -3.60 68.75 <1e-5 <0.05 
 
* Selected voxels are ranked by its maximum absolute local-network-adjusted mean difference between a pair 
of classes in a decreasing order. 
† MW: Marginally weak signal. MS: Marginally strong signal. 
‡ marginal MD: marginal mean difference. network MD: local network adjusted mean difference. 
** NS: Non-significant. 
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Table 2: Top selected local brain networks*. 
 

top voxel(s) ROI(s) the network 
sitting in 

MW†  
# 

MS†  
# 

Hotelling  
t-
squared 
statistics 

unadjusted 
network 
p-value 

Adjusted** 
network 
p-value 

literature 
evidence 

AD-MCI 
vox_168602 Paracentral_Lobule_L 5 1 5.7 6.1e-5 0.01 52,53,54,55 
vox_78272 Caudate_R 4 3 3.7 1.8e-3 NS 56,57,58 
vox_90518 Olfactory_L 5 1 5.9 4.6e-5 0.008 59,60,53,61 
vox_152631 Precentral_R 5 1 4.0 0.0019 NS 52,62,63 

AD-Healthy 
vox_6027; 
vox_5989; 
vox_6024; 
vox_5987 

Cerebelum_10_L; 
Cerebelum_10_R 

5 3 3.5 0.03 NS 64 

vox_89146 Lingual_R; 
Calcarine_R 

5 1 7.5 3.8e-6 0.0005 52,65,66,67,68 

vox_32891 Amygdala_L 24 1 4.7 1.6e-8 2.1e-6 69 
MCI-Healthy 

vox_138843; 
vox_145132; 
vox_151373; 
vox_132482 

Precuneus_L 5 1 8.5 2.7e-7 3.5e-5 70,71,72,73 

vox_64457; 
vox_68201 

Frontal_Med_Orb_R 6 1 2.7 0.014 NS 52,74 

vox_141950 Parietal_Inf_L 4 3 2.3 0.038 NS 75,76 
vox_36045 Temporal_Mid_R 6 1 3.5 0.0016 NS 77,78 
 
* Local brain networks with a significant unadjusted network p-value and host selected informative 
voxels are listed. 
** Adjusted p-values are adjusted for the number of local networks selected that differentiate the pair 
of disease classes. 
† MW #: number of selected marginally weak signals in the network. 
‡ MS #: number of selected marginally strong signals in the network. 
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Table 3: Numbers of mis-classified subjects by different methods. 
 
 AD MCI Healthy total 
localNet-LDA 2 7 3 12 
LDA 5 28 8 41 
SIS-logistic 11 46 26 83 
ISIS-logistic 7 48 10 65 
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Figure 1: Left panel: a local brain-network in cerebellum Crus on the left hemisphere of the brain. 
Red: marginally detectable (strong) signal. Yellow: marginally undetectable (weak) signals. Solid 
line: positive connections. Dashed line: negative connections. Line width represents strength of con-
nections. Right panel: Mean differences between the AD and MCI groups. First column: marginal 
mean differences (divided by the marginal variances). Second column: local network adjusted mean 
differences. Integers in the brackets are the ranks of the absolute mean differences for the 12 
voxels, ranked from the greatest to the smallest. 
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Figure 2. Flow chart of the proposed analysis pipeline. 
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Figure 3. A toy example of a local brain network with five voxels. (a) Topology of the network. numbers 
on each edge are for the edge strength. Negative numbers mean the two voxels are negatively 
connected. (b) The corresponding precision matrix Ω஼೗

. (c) Marginal differentiating effects between 

AD and MCI groups. Red: marginally strong signals. (d) Local network adjusted differentiating effects 
between AD and MCI groups. Yellow: marginally weak signals. 
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(a) 

 

(b) 

Figure 4. (a) ROI block-wise thresholded sample correlation matrix. A cell represents the 
weighted 𝐿ଶ norm of the correlation block between a pair of ROI's (weighted by 
1/√𝜈ଵ𝜈ଶ where 𝜈ଵ and 𝜈ଶ are the numbers of voxels in the two ROIs, respectively) in the 
voxel-level correlation matrix. Raw voxel-level correlations are thresholded at 0.8. The 
weighted 𝐿ଶ norms are further thresholded at 0.8, which is the median of the 6,670 off-
diagonal ROI block 𝐿ଶ norms. All blocks with 𝐿ଶ norm ≤ 0.4 are set to zero. The black 
squares represent the zero blocks. The lighted squares are for non-zero blocks. Lighter 
color indicates greater 𝐿ଶ norm values. (b) 3D ROI connection topology viewed from sagittal 
(left), axial (middle) and coronal (right) directions. Each dot represents a central point of an 
ROI. An edge exists between two ROIs if the corresponding thresholded correlation block is 
nonzero. 
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(a) Top five selected voxels differentiating AD and MCI. 

(b) Top five selected voxels differentiating AD and NC. 

(c) Top five selected voxels differentiating MCI and NC. 
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Figure 5: The symbol 𝑇෠ ௡௘௧, defined in equation (3), represents the local network adjusted 
mean difference between a pair of classes for a voxel. The symbol 𝑇෠ , defined in equation 
(1), represents the marginal mean difference between a pair of classes for a voxel. The tri-
plet (x, y, z) represents the coordinates of the top voxel signal highlighted in yellow circle. 
ROI gives the regions of interest for the top voxel signal. 
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(a) vox_5555 , vox_5445 
ROI: Cerebelum_7b_R 

(b) vox_9000 
ROI: Cerebelum_Crus2_R 

(c) vox_168602 , vox_173066 
ROIs: Paracentral_Lobule_L , 

Paracentral_Lobule_R 

 
(d) vox_78272 

ROIs: Thalamus_L , Thalamus_R 
(e) vox_5890 

ROI: Cerebelum_7b_R 
(f) vox_90518 
ROI: Insula_L 

(g) vox_131355 
ROI: Frontal_Sup_Medial_L 

(h) vox_152631 
ROI: Precentral_R 

(i) vox_63427 
ROI: Temporal_Pole_Sup_R 

Figure 6: Example local brain networks that differentiate AD and MCI groups. Yellow: marginally 
weak signals. Red: marginally strong signals. Blue: other selected connecting signals that differenti-
ate other pairs. Node sizes are proportional to the local-network-adjusted mean differences. Edge 
widths are proportional to the absolute partial correlations. The top selected voxels within each net-
work and the ROI(s) the network resided in are indexed. 
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Figure 7: Local brain network connectome differentiating AD and MCI. Each dot represents a voxel 
and each cluster of arcs represents a local network detected. Different colors represent different 
ROIs. A network connecting dots in different colors indicates that the network is crossing multiple 
ROIs. 
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Figure 8: Overlaying of the brain network connectome differentiating AD and MCI on the brain. All 
local networks are projected to a coronal slice of the brain at midline. Red voxel: marginally strong 
signal. Yellow voxel: marginally weak signal. Blue voxel: non-selected connecting voxel in a se-
lected local brain network (might differentiate other pair of classes). 
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