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Abstract 

 Background and Aims 

Functional-structural plant models are increasingly being used by plant scientists to address a wide 

variety of questions. However, the calibration of these complex models is often challenging, 

mainly because of their high computational cost. In this paper, we applied an automatic method to 

the calibration of WALTer: a functional-structural wheat model that simulates the plasticity of 

tillering in response to competition for light. 

 Methods 

We used a Bayesian calibration method to estimate the values of 5 parameters of the WALTer 

model by fitting the model outputs to tillering dynamics data. The method presented in this paper 

is based on the Efficient Global Optimisation algorithm. It involves the use of Gaussian process 

metamodels to generate fast approximations of the model outputs. To account for the uncertainty 

associated with the metamodels approximations, an adaptive design was used. The efficacy of the 

method was first assessed using simulated data. The calibration was then applied to experimental 

data. 

 Key Results 

The method presented here performed well on both simulated and experimental data. In particular, 

the use of an adaptive design proved to be a very efficient method to improve the quality of the 

metamodels predictions, especially by reducing the uncertainty in areas of the parameter space that 

were of interest for the fitting. Moreover, we showed the necessity to have a diversity of field data 

in order to be able to calibrate the parameters. 

 Conclusions 

The method presented in this paper, based on an adaptive design and Gaussian process 

metamodels, is an efficient approach for the calibration of WALTer and could be of interest for 

the calibration of other functional-structural plant models. 
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INTRODUCTION 
 

Modelling is a powerful tool to study complex systems. Numerical experiments are often used 

when real experiments are too difficult or too expensive to carry out. Furthermore, computer 

models allow to strictly control the conditions of the experiments and to explore conditions 

beyond what can be covered experimentally. The advantages of computer models have made 

them essential tools in many disciplines. For example, modelling is widely used in plant 

sciences and agronomy and has been identified as a promising tool to tackle some of the 

challenges associated with major issues such as food security (Christensen et al., 2018). In 

particular, functional-structural plant models (FSPM; Godin and Sinoquet, 2005; Vos et al., 

2010) have been more and more used since the 1990s, and they have become a major research 

subject (Guo et al., 2011; Sievänen et al., 2014; Evers et al., 2018). These individual-based 

models explicitly represent the plant architecture in 3D and integrate knowledge in 

ecophysiology and developmental biology. Thus, FSPM take into account the complex 

interactions between environmental factors, plant development, plant architecture and the 

underlying physiological processes. These models allow the integration of different scales 

(from gene to community) to study complex systems in plant science (Louarn and Song, 

2020). Thereby, FSPM have been used to study a wide variety of species (both wild and 

cultivated) and a broad range of questions. Examples of application include prediction of fire 

behaviour in tree crowns (Parsons et al., 2011); study of the evolutionary emergence of life 

history strategies along gradients of stress intensity and disturbance frequency (Bornhofen et 

al., 2011); and study of the impact of plant height on the control of rain-borne diseases in 

wheat cultivar mixtures (Vidal et al., 2018). 

In order to obtain reliable results from FSPM, or from any model, their input parameters must 

be accurately set. Indeed, the quality of the parameter estimation is critical for the quality of 
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the model predictions. Some parameters are known biological traits that can be directly fixed 

based on the literature or on experimental data. However, some other parameters cannot be 

directly measured and are not available in the literature. The values of these parameters have 

to be indirectly estimated via calibration, which means that the overall model has to be fitted 

to experimental data. Calibration can be done either manually or automatically. The latter 

method relies on the use of a search algorithm to identify the “optimal” values of the specified 

parameters based on the minimization of the distance between the model outputs and the 

observed data. Automatic calibration has a number of advantages over manual calibration. 

Indeed, automatic calibration is less subjective than manual calibration, as its success is less 

dependent on the experience of the modeller (Muleta and Nicklow, 2005). Furthermore, 

automatic calibration may allow the modeller to look for a distribution of likely values of the 

parameters instead of looking for an optimal parameter value. Bayesian calibration (Kennedy 

and O’Hagan, 2001; Higdon et al., 2004; Bayarri et al., 2007) is an automatic calibration 

method which also provides the modeller with a distribution of values of the parameters that 

are likely to reproduce the experimental data. The experimental data and the FSPM are linked 

in a statistical model from which a likelihood is then derived. A prior distribution, which may 

encode some expert or literature information on the parameter values, is chosen. Since the 

corresponding posterior distribution is not tractable, MCMC algorithms are run to obtain a 

sample in the posterior distribution. However, these algorithms resort to many runs of the 

model, which is why, for complex models, including FSPM, calibration is often done 

manually (see Lecarpentier et al., 2019 and Gauthier et al., 2020 for example). Indeed, FSPM 

runs are usually time-consuming and parallel computing of each simulation is complicated 

because of the interactions between plants in these individual-based models. The solution 

proposed in the context of Bayesian calibration is to make recourse to a Gaussian Process 

(Currin et al., 1991; Sacks et al., 1989) metamodel, also known as Kriging metamodel, which 
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provides not only a fast approximation of the FSPM but also a measure of uncertainty 

concerning the quality of the approximation of the FSPM. Metamodels are widely used to 

approximate complex models and have sometimes been used with FSPM to allow analyses 

that would require an important number of simulations (Perez et al., 2018; Da Silva et al., 

2014). However, as metamodels are an approximation of the model, the calibration can be less 

precise and less efficient than with the actual FSPM. To address this problem, a sequential 

method aiming at improving the Kriging metamodel precision and based on the EGO 

algorithm (Jones et al., 1998) can be implemented with respect to the calibration goal, as 

proposed in Damblin et al. (2018). This method has been used for the calibration of complex 

models (see Carmassi et al., 2019 for example) but has not yet, to the extent of our 

knowledge, been applied to FSPM. Moreover, the application of this type of method to the 

FSPM context is particular since it can require to fit several metamodels in parallel to take 

into account the complex and / or dynamic outputs of the model. 

Here, we present how Kriging metamodels and an adaptive design can be used for the 

calibration of the WALTer FSPM. 

 

MATERIALS AND METHODS 

 

The efficiency of an automated calibration algorithm to estimate 5 critical parameters of the 

FSPM WALTer was assessed on both simulated and experimental datasets. 

All the analyses were done using the R software (R Core Team, 2017). 
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WALTer: a 3D wheat model 

 

WALTer (Lecarpentier et al., 2019) is a functional structural plant model (FSPM) (Vos et al., 

2010; Godin & Sinoquet, 2005). This individual-based model simulates the development of 

the aerial architecture of winter wheat (Triticum aestivum L.) from sowing to maturity with a 

daily time step. In the model, the vegetative development of the plants follows a thermal time 

schedule and is based on a formalism derived from ADEL-Wheat (Fournier et al., 2003). 

Thanks to a radiative model (CARIBU: Chelle et al., 1998), WALTer simulates the 

competition for light between plants and the resulting plasticity of tillering (i.e. the branching 

ability of grasses). The regulation of tillering in the model is based on three simple rules. (i) 

Tillers emerge according to empirically fixed probabilities. Then, (ii) an early neighbour 

perception controls the cessation of tillering: plants stop emitting tillers when the surrounding 

Green Area Index (GAI: ratio of photosynthetic surface to ground area) reaches a critical 

value (GAIc). Finally, (iii) some of the tillers that were emitted regress: a tiller regresses if the 

amount of photosynthetically active radiation (PAR) it intercepts falls below a threshold 

(PARt). During tiller regression, there is a protection period (Δprot) between the deaths of two 

successive tillers on a plant. 

Based on this formalism, WALTer produces useful outputs, such as the tillering dynamics of 

each plant (i.e. the number of axes on a plant for each day of the simulation). The model has 

shown its ability to accurately simulate the different patterns of tillering dynamics resulting 

from variations in sowing density (Lecarpentier et al., 2019). 

WALTer is not a completely deterministic model, as several elements in the model integrate 

some stochasticity. Indeed, the position of the plants, the orientation of the organs, the 

duration before plant emergence and the emergence of tillers are partly random. Furthermore, 
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the final number of leaves on the main stem ( N
B

MS
) is defined at the scale of the field: it is a 

decimal number and the decimal part indicates the proportion of plants carrying round 

( N
B

MS
+ 0.5) leaves on the main stem. For example, a field with = 11.6 would have 40% of 

plants with 11 leaves on their main stem and 60% of plants with 12 leaves. 

Since its publication in 2019 (Lecarpentier et al.), WALTer has undergone some changes 

aiming at reducing the computational cost of the simulations, enhancing its realism and 

improving its ability to simulate mixtures of varieties (Blanc et al., in prep). In particular, the 

new version of WALTer integrates: a representation of curved leaves (Dornbusch et al., 2009; 

Fournier and Pradal, 2012; Perez et al., 2016); (ii) an improved discretization of the sky (den 

Dulk, 1989; Alinea.ASTK, version 2.1.0, 2019); (iii) the possibility to simulate an infinite 

periodic canopy allowing to discard border effects; (iv) removal of non-visible organs from 

the 3D representation of plants. 

WALTer is available as an open source Python package on the OpenAlea platform 

(https://github.com/openalea/walter). 

 

Parameter estimation 

 

Five parameters of the model (Table 1) were estimated by fitting the tillering dynamics. These 

five parameters were selected based on the results of a global sensitivity analysis of WALTer 

[Supplementary Information] because they had an important impact on the variance of the 

tillering dynamics and/or because they could not be measured or estimated otherwise. 

The parameters that were not estimated here were set according to the bibliography and the 

manual calibration described in Lecarpentier et al., 2019 for the winter wheat cultivar 
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'Maxwell'. For meteorological data, the original sequence of PAR available in Darwinkel 

(1978) for Lelystad (The Netherlands) and a sequence of daily temperatures obtained by 

averaging Lelystad data from 2004 to 2014 were used for the simulations. 

In order to perform the calibration of WALTer, we assumed a statistical model linking 

WALTer to the observed data. We denote by y(d,t) an observation of the number of axes per m² 

for density d at time t and by )(
),(

xf
td

 the evaluation of WALTer for the same density and 

time with the input parameters set to x. Thus, the assumed statistical model is: 

),(

),(

),(
)(

td

td

td
xfy   (Equation 1) 

where the distribution of the noise is given by ε(d,t)~N(0,σ²(d,t)) and all the ε are assumed to be 

independent. 

 

The proposed calibration method is based on the Efficient Global Optimisation (EGO) 

algorithm (Jones et al., 1998) and involves the following six steps: 

(1) First, an initial numerical design Dinit must be selected to sample the multidimensional 

parameter space. To ensure a good exploration of the parameter space, a five dimensions 

maximin Latin Hypercube (LH) design (McKay et al., 1979; Johnson et al., 1990) of 100 

parameter-sets was generated with the DiceDesign package (Dupuy et al., 2015) using the 

ranges detailed in Table 1. 

(2) The model must then be run over the initial design. All the simulations of the LHD were 

run with WALTer for nd = 6 contrasted sowing densities (25, 50, 100, 200, 400 and 800 

plants/m²), leading to a total of 600 simulations. For each simulation, the mean tillering 
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dynamics of the field was computed by WALTer and a subset of nt = 13 dates spread across 

the dynamics was extracted. 

(3) The initial design must then be used to build a Kriging metamodel which approximates 

WALTer in the parameter space. For each sowing density and for each of the 13 dates (78 

states), a specific metamodel was fitted by using the DiceKriging package (Roustant et al., 

2012). For each metamodel, the homogeneous nugget effect was set to WALTer's variance for 

the corresponding date and sowing density. WALTer's variance was computed thanks to 10 

replicates of a reference simulation (Table 1). The accuracy of each Kriging metamodel was 

tested through cross validation by leave-one-out. We denote for a sowing density d and a date 

t given the design of numerical experiments Dinit, f
td

D init

),(

 the corresponding Kriging 

metamodel, the mean of which is denoted by k
td

Dm init

),(

,
 and the variance of which is denoted by 

k
td

Dv init

),(

,
. 

(4) The initial design Dinit could then be enriched by the addition of new points. The 

additional points are selected based on the Expected Improvement (EI) criterion adapted to 

the calibration goal as in Damblin et al., 2018. This criterion aims to improve the precision of 

the surrogate model, especially for values of the input parameters which are likely to make a 

good fit of WALTer to the available experimental data. The difference with Damblin et al., 

2018 lies in the fact that several Kriging metamodelds (one for each combination of sowing 

density and date) are combined. For this step, we decided to enrich the design by the addition 

of a single point at a time, corresponding to the highest EI criterion among a set of 10 000 

points selected from the parameter space by an LH sampling. We denote by Dk the current 

design of numerical experiments after that k points were already added (with the notation D0 

= Dinit). The EI criterion before adding the k+1th point is: 

(which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprintthis version posted July 30, 2021. ; https://doi.org/10.1101/2021.07.29.454328doi: bioRxiv preprint 

https://doi.org/10.1101/2021.07.29.454328


9 
 

  







 

 

0,)(max
2

),,(

2),(

),(

),(

1 1

 tdobs

td

td

td

k

d t

x
D

y

n n

Fs
k

d t

 (Equation 2) 

where the expectations are computed with respect to the distributions of the Kriging 

metamodels ( F
td

D k

),(

) given the current design of experiments (Dk) and s
td

k

),(

 is the current 

minimal value of the function   
2
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tdobs
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xfyx   over the current design Dk. 

(5) A Bayesian calibration method can then be applied to the model. For each input 

parameter, the posterior distribution was estimated using a Markov Chain Monte Carlo 

(MCMC) sampling. More precisely, a random walk Metropolis algorithm was used, as 

implemented in the MCMCpack package (Martin et al., 2011). From Eq.1, the log-likelihood 

is then computed for any value of the parameters x as: 
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(Equation 3) 

where we denote by  
td ntndtd

y



1,1),(

y  the vector of all observations and D the numerical 

design of experiments that is finally used for performing the Bayesian calibration. 

The observational variance of each output and the uncertainty of the Kriging metamodel were 

taken into account to avoid overfitting of the model. 

(6) The goodness of fit can then be evaluated through cross-validation. For this step, we 

calibrated the model using only the data from one (200 plants/m²) sowing density and used 

the whole data set for the validation. 

 

(which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprintthis version posted July 30, 2021. ; https://doi.org/10.1101/2021.07.29.454328doi: bioRxiv preprint 

https://doi.org/10.1101/2021.07.29.454328


10 
 

Application to synthetic data 
 

At first, we applied our methodology to a simulated dataset. Using WALTer, we simulated 

tillering dynamics at six contrasted sowing densities (25, 50, 100, 200, 400 and 800 plants/m²) 

with a fixed set of parameters (Table 1). To build the synthetic dataset, we then extracted 13 

dates spread across the tillering dynamics, in accordance with the experimental data described 

hereafter. Finally, a Gaussian white noise was added to the resulting tillering dynamics. For 

each date and at each sowing density, the noise had a standard deviation corresponding to 

WALTer's standard deviation between replicates at the same date and for the same sowing 

density. For each sowing density, the observational variance of each date was set to the value 

of WALTer's variance for the corresponding date at the same sowing density. 

 

Application to experimental data 
 

The same methodology was then applied to estimate the five parameter values that would 

allow the best fitting to experimental data. We used data from an experiment described by 

Darwinkel (1978), in which the winter wheat cultivar 'Lely' was sown in plots of 1 m² at 

seven contrasted sowing densities (5, 25, 50, 100, 200, 400 and 800 plants/m²) in Lelystad 

(The Netherlands). For each density, the number of shoots per m² was measured at 13 dates 

spread across the development period of the crop, thus giving a good estimation of the total 

tillering dynamics. 

We decided not to use the data for the lowest sowing density (5 plants/m²) because 

simulations with WALTer for this sowing density would take a very long time. Furthermore, 

this sowing density represents extreme conditions that would rarely be observed and is thus 
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not the most interesting density to study. Therefore, we focused our calibration on the 6 other 

sowing densities (25, 50, 100, 200, 400 and 800 plants/m²). 

For each sowing density, the observational variance, necessary to compute the likelihood (Eq. 

1), was set to achieve a coefficient of variation of 20% for the first two dates, of 5% for the 

last two dates and of 10% for the other dates. These coefficients of variation were chosen to 

take into account the uncertainty associated with the experimental measurements. A more 

important coefficient of variation was selected for the first two dates to account for the 

relatively higher difficulty of measurement at the beginning of the tillering dynamics and for a 

possible temporal shift due to the discrepancy between the approximated temperature 

sequence used for the simulations and the real experimental one, not available. The coefficient 

of variation for the last two dates of the tillering dynamics was set to a smaller value to 

account for the relative simplicity of measurement on mature plants and for the importance of 

the fit for these dates as they represent an important component of the yield (number of 

spikes/m²). 

 

RESULTS 

Application to synthetic data 
 

The accuracy of the calibration is low when it is performed using the Kriging metamodel 

constructed from the initial design of 100 simulations (Fig 2, top row). Indeed, the posterior 

distributions of Δprot and L
B

max
 do not include the actual values used to generate the synthetic 

data. The posterior density for PARt has a small variance but is shifted from the actual 

parameter value and the posterior densities of GAIc and N
B

MS
 include the actual parameter 

values but have rather important variances. On the other hand, the accuracy of the calibration 
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is greatly improved by the use of the sequential design, even with an addition of only 15 

points. Using this enriched design, the posterior distributions of all input parameters have 

small variances and include the values used to generate the synthetic data (Fig 2, bottom row). 

Thus, as shown in Figure 3, the enriched design allows to select a set of parameters that 

reproduces accurately the simulated tillering dynamics for all sowing densities. 

However, even when using the design enriched with 15 simulations, the accuracy of the 

calibration is greatly deteriorated when it is carried out only with the data of a single sowing 

density (Fig 4). Indeed, the posterior distributions obtained using only the data at 200 

plants/m² all include the actual parameter values but their variances are very large. This 

resulted in some of the simulated data (especially the end of the tillering dynamics at densities 

50 and 100 plants/m²) being outside the 95% credibility range of the Kriging metamodel when 

using this single density to select the 'optimal' set of parameters (Fig 5). However, the fit to 

the synthetic data still seems reasonably good, as the 95% credibility range includes the vast 

majority of the data. 

 

Application to experimental data 

 

When the enriched design is used to calibrate WALTer on the experimental data from 

Darwinkel (1978), the posterior distributions (Fig 6) show contrasting results depending on 

the input parameter considered. The posterior density for N
B

MS
 and GAIc, which are the 2 

parameters with the most influence on the tillering dynamics according to the global 

sensitivity analysis [Supplementary Information], only include intermediate values of the 

parameters and have a rather low variance. On the other hand, the posterior density for Δprot 

has a very large variance and includes almost all the range of values explored. As for the 
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posterior density of PARt, its variance is low, but it only includes values that are close to the 

lower bound of the variation range. Similarly, the posterior density of L
B

max
 is clearly shifted 

towards the upper bound of the variation range, even though its variance is quite large. 

With the 'optimal' set of parameters selected by MCMC, there is a rather good fit between the 

simulated tillering dynamics and the experimental dynamics of Darwinkel (1978) (Fig 7). 

However, some of the experimental data is outside the 95% credibility range of the Kriging 

metamodel, even when the observational variance is considered. In particular, for all sowing 

densities except 800 plants/m², the model fails to reproduce the number of axes per m² 

observed experimentally for the first 2 dates of the dynamics. 

 

DISCUSSION 

 

The calibration of complex models, such as FSPM, involves several challenges, due in part to 

the high computational cost of the simulations, as well as the numerous parameters to 

consider. This study illustrates the interest of using a sequential design with a metamodelling 

approach to calibrate the WALTer FSPM for 5 critical parameters, based on data from the 

tillering dynamics. The method presented here performed well, especially when applied to 

synthetic data. The Kriging metamodel efficiently approximated the mean number of axes per 

m² simulated by WALTer for 13 dates in pure stands. This highlights the interest of using a 

Kriging metamodel with WALTer to limit the computational cost and thus allow to use 

methods that require a large number of runs, such as the MCMC. Importantly, a set of 100 

simulations was not sufficient to ensure a quality of the metamodel that was high enough for 

the calibration. However, an enriched design with only 15 additional simulations (115 

simulations total), obtained by the sequential method, allowed for a satisfactory fit of the 
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metamodel outputs to both synthetic and experimental data. The use of an adaptive design 

thus proved to be a very efficient method to improve the quality of the metamodel, reducing 

the uncertainty in areas of the parameter space that are of interest for the fitting. Contrary to 

the manual calibration previously applied to WALTer (Lecarpentier et al., 2019), the method 

presented here provides the practitioner with a distribution of likely values for each parameter 

considered. Moreover, the Bayesian method presented allows for a more rigorous exploration 

of the parameter space than the previous manual calibration. However, the method presented 

here could be improved. For example, the choice of a maximin Latin Hypercube Sampling 

(LHS) as the initial design for the sequential method can be discussed. Indeed, Zhang et al. 

(2019) argue that other designs outperform maximin LHS in both static and sequential 

settings. Furthermore, the good performance of the method for the calibration on the 

experimental data of Darwinkel (1978) relies on assumptions regarding the observational 

variance. Indeed, the experimental dataset consisted only of the mean tillering dynamics of 

the plots and no variance was provided. The uncertainty associated with the experimental 

measurements was thus assumed to be rather high, but a different observational variance may 

have impacted the results of the fitting. It is also important to mention the potential 

divergence between the sequence of daily temperature used in this work and the real one, not 

available, that has an impact on the quality of the fitting and on its robustness. This highlights 

the importance of the quality of the data used for the fitting. For FSPM, parameter estimation 

often requires a lot of data at various scales and the issue of the limited availability of such 

appropriate datasets is a concern (Louarn and Song, 2020). Interestingly, our study also 

provides information regarding the type of data necessary for the calibration of WALTer. 

First of all, our results suggest that data on the tillering dynamics are sufficient to estimate the 

value of parameters controlling the regulation of tillering (GAIc, PARt and Δprot), but also to 

estimate the final number of leaves on the main stem ( N
B

MS
) and the final length of the 
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longest blade ( L
B

max
). However, it is noteworthy that the two architectural parameters ( N

B

MS
 

and L
B

max
) can be measured experimentally. It might thus be possible to estimate the values of 

the parameters controlling the tillering dynamics (GAIc, PARt and Δprot) with a dataset 

containing fewer measurement dates, provided that N
B

MS
 and/or L

B

max
 are measured 

experimentally. Moreover, the value of the five parameters were estimated with a set of 13 

dates spread across the development period of the crop. However, since the parameters 

estimated here do not impact the rate of emission of the tillers, it is possible that the 

calibration could be done with a slightly lower measurement effort by reducing the number of 

dates at the beginning of the dynamics. In line with these last considerations, a second interest 

of the proposed approach is to allow the exploration of alternative experimental schemes at a 

low computational cost, thanks to the use of metamodels. Our study has for example 

illustrated the importance of collecting data for several sowing densities for the calibration of 

WALTer, as the estimation of the parameters is deteriorated when it is based only on data 

collected at a 200 plants/m² sowing density. Thanks to our simulations, it would thus be 

possible to identify more precisely the sowing densities that should be used to generate 

experimental data for the calibration of WALTer. In particular, it would be possible to 

identify which parameters require data at low or high sowing densities. In future work, we 

will explore these possibilities based on the synthetic data generated here, to identify the 

minimal dataset necessary to achieve a satisfactory calibration. 

The method presented here, based on an adaptive design and a Kriging metamodel, is an 

efficient approach for the calibration of WALTer and could be of interest for the calibration of 

other FSPM. Interestingly, by reducing the computational cost of parameter space 

exploration, this approach would make it possible to both calibrate FSPM for a large number 

(which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprintthis version posted July 30, 2021. ; https://doi.org/10.1101/2021.07.29.454328doi: bioRxiv preprint 

https://doi.org/10.1101/2021.07.29.454328


16 
 

of genotypes or conditions, and help design the experiments needed to collect the necessary 

data for a reliable parameter estimation. 

 

SUPPLEMENTARY INFORMATION 

 

Supplementary information consist of the following. SI1_WALTer_sensitivity_analysis: 

information regarding the sensitivity analysis of WALTer. 
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Table 1. List of the 5 WALTer parameters to be estimated, definition, ranges of variation 

explored for the calibration, values used to generate the simulated test-dataset and units. 

Parameter Description Range 
Value for the 

simulated data 
Unit 

GAIc 
Green Area Index threshold above which the 

emission of tillers stops 
0.25 - 1.25 0.75 - 

PARt 
PAR threshold below which a tiller does not 

survive 
10⁵ - 10⁶ 3x105 µmol.cm-2.°Cd-1 

Δprot 
Thermal time interval during which two 

tillers of the same plant cannot die 
10 - 100 25 °Cd 

N
B

MS
 Final number of leaves on the main stem 8 - 16 12.5 - 

L
B

max
 

Final length of the longest blade of the main 

stem 
8 - 35 16.6 cm 

 

(which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprintthis version posted July 30, 2021. ; https://doi.org/10.1101/2021.07.29.454328doi: bioRxiv preprint 

https://doi.org/10.1101/2021.07.29.454328


21 
 

 

 

Fig. 1. Diagrammatic representation of the proposed calibration method 
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Fig. 2. Calibration results using the complete simulated dataset: posterior distributions of 

WALTer parameters (GAIc, PARt, Δprot, N
B

MS
 and L

B

max
) using the simulated data from all 

densities and the initial LH design of 100 simulations (top row) or the enriched design after 

15 loops of EGO (bottom row). Parameter values used to simulate the data are shown with a 

red vertical line. 
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Fig 3. Validation of the calibration using the complete simulated dataset: number of axes per 

m² vs. time since sowing at six sowing densities (25, 50, 100, 200, 400 and 800 plants.m-²).  

Red dots represent the synthetic data and red segments are the associated observational 

variance; blue lines represent the mean Kriging prediction for the set of input parameters with 

the best loglikelihood and blue segments are the associated Kriging standard deviation. The 

grey area delimited by dotted lines is the 95% credibility interval taking into account the 

Kriging standard deviation and uncertainty on the calibration parameter. Red points and 

segments are shifted on the x-axis to avoid overlapping. The set with the best loglikelihood 

was selected by MCMC using the enriched design after 15 loops of EGO and simulated data 

from all sowing densities. 
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Fig. 4. Calibration results using a subset of the simulated dataset: posterior distributions of 

WALTer parameters (GAIc, PARt, Δprot, N
B

MS
 and L

B

max
) using the enriched design after 15 

loops of EGO and simulated data from density 200 plants/m². Parameter values used to 

simulate the data are shown with a red vertical line. 
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Fig 5. Validation of the calibration using a subset of the simulated dataset: number of axes per 

m² vs. time since sowing at six sowing densities (25, 50, 100, 200, 400 and 800 plants.m-²).  

Red dots represent the synthetic data and red segments are the associated observational 

variance; blue lines represent the mean Kriging prediction for the set of input parameters with 

the best loglikelihood and blue segments are the associated Kriging standard deviation. The 

grey area delimited by dotted lines is the 95% credibility interval taking into account the 

Kriging standard deviation and uncertainty on the calibration parameter. Red points and 

segments are shifted on the x-axis to avoid overlapping. The set with the best loglikelihood 

was selected by MCMC using the enriched design after 15 loops of EGO and simulated data 

from density 200 plants/m². 

 

(which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprintthis version posted July 30, 2021. ; https://doi.org/10.1101/2021.07.29.454328doi: bioRxiv preprint 

https://doi.org/10.1101/2021.07.29.454328


26 
 

 

Fig. 6. Calibration results using the experimental dataset: posterior distributions of WALTer 

parameters (GAIc, PARt, Δprot, N
B

MS
 and L

B

max
) using the experimental data from Darwinkel 

(1978) at all densities and the enriched design after 15 loops of EGO. 
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Fig 7. Validation of the calibration using the experimental dataset: number of axes per m² vs. 

time since sowing at six sowing densities (25, 50, 100, 200, 400 and 800 plants.m-²).  Red 

dots represent the experimental data from Darwinkel (1978) and red segments are the 

associated observational variance; blue lines represent the mean Kriging prediction for the set 

of input parameters with the best loglikelihood and blue segments are the associated Kriging 

standard deviation. The grey area delimited by dotted lines is the 95% credibility interval 

taking into account the Kriging standard deviation. Red points and segments are shifted on the 

x-axis to avoid overlapping. The set with the best loglikelihood was selected by MCMC using 

the enriched design after 15 loops of EGO and experimental data of Darwinkel (1978) from 

all sowing densities. 
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