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Abstract

Approximate Bayesian Computation (ABC) is a likelihood-free parameter inference method

for complex stochastic models in systems biology and other research areas. While conceptually

simple, its practical performance relies on the ability to efficiently compare relevant features

in simulated and observed data via distance functions. Complications can arise particularly

from the presence of outliers in the data, which can severely impair the inference. Thus, robust

methods are required that provide reliable estimates also from outlier-corrupted data.

We illustrate how established ABC distance functions are highly sensitive to outliers, and

can in practice yield erroneous or highly uncertain parameter estimates and model predictions.

We introduce self-tuned outlier-insensitive distance functions, based on a popular adaptive dis-

tance weighting concept, complemented by a simulation-based online outlier detection and down-

weighting routine. We evaluate and compare the presented methods on six test models covering

different model types, problem features, and outlier scenarios. Our evaluation demonstrates sub-

stantial improvements on outlier-corrupted data, while giving at least comparable performance

on outlier-free data.

The developed methods have been made available as part of the open-source Python package

pyABC (https://github.com/icb-dcm/pyabc).

1 Introduction

Quantitative mathematical models are an indispensable tool in various research areas to describe

and understand dynamical systems. Typically, models depend on unknown parameters that need to

be inferred by calibration on experimentally observed data. The Bayesian paradigm allows to do so

by combining the likelihood of observing data under given model parameters with prior information

on the parameters, yielding a posterior distribution over parameters [Hines, 2015]. However, for

complex stochastic models, evaluating the likelihood function is often infeasible [Jagiella et al., 2017,
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Tavaré et al., 1997, Wilkinson, 2009]. Approximate Bayesian Computation (ABC) is a likelihood-free

method developed for such situations [Beaumont et al., 2002, Sisson et al., 2018, Tavaré et al., 1997].

In a nutshell, ABC compares summary statistics of simulated and observed data via a distance

function and accepts if these are sufficiently close via some threshold, thus generating samples

from an approximation to the posterior distribution. Due to its simplicity, scalability and broad

applicability, it has become increasingly popular in various research areas, including e.g. population

genetics, systems biology, ecology, epidemiology, and astronomy [Beaumont, 2010, Cameron and

Pettitt, 2012, Imle et al., 2019, Sottoriva and Tavaré, 2010, Sunn̊aker et al., 2013, Syga et al., 2020].

ABC is frequently combined with a sequential Monte-Carlo scheme (ABC-SMC) [Del Moral et al.,

2006, Sisson et al., 2007], which allows to efficiently iteratively reduce the acceptance threshold

while maintaining high acceptance rates.

ABC relies on the ability to efficiently compare relevant features in simulated and observed data,

via the combination of summary statistics and distance function. While both are in practice often

still application-specific, various schemes have been devised to find appropriate low-dimensional

summary statistics, e.g. via subset selection or regression [Blum et al., 2013, Fearnhead and Pran-

gle, 2012]. As distance function, often a simple Minkowski distance is used, alternative approaches

include e.g. Kullback-Leibler divergence [Jiang, 2018] or Wasserstein distances [Bernton et al., 2017]

avoiding the use of summary statistics altogether. A popular distance function introduced by Pran-

gle [2017] uses a weighted Euclidean distance that adjusts to the problem structure by iteratively

updating summary statistic weights to normalize contributions, exploiting the structure of ABC-

SMC algorithms.

The problem we tackle in this work is that errors can occur in the generation process of individual

measurements, resulting in outliers in the collected data [Ghosh and Vogt, 2012, Motulsky and

Christopoulos, 2003]. We informally denote by an outlier a data point corrupted by large errors

that cannot be expected under the given experimental setup, already accounting for measurement

noise. Reasons for outliers exist plenty, e.g. technical limitations, external perturbations, or human

errors such as missing or incorrect labels [Maier et al., 2017].

Outliers can be problematic in parameter inference, as they can result in erroneous or highly un-

certain parameter estimates. Consequently, methods have been developed that aim to detect and

remove outliers, prior to and independent of the inference method used [Ben-Gal, 2005, Hodge and

Austin, 2004, Niu et al., 2011]. However, for noise-corrupted high-dimensional or highly structured

data with few replicates, which are common in biological problems and also as applications of ABC

[Durso-Cain et al., 2021, Jagiella et al., 2017], such methods may be unreliable, and the complete

removal of points that are not actually outliers can increase uncertainty [Motulsky and Christopou-

los, 2003]. To circumvent this, estimators that are robust in the presence of outliers have been

developed, using heavy-tailed distributions [Berger et al., 1994, Fernández and Steel, 1999, Huber

et al., 1964, Tarantola, 2005] or pseudo-likelihoods with robust loss functions or divergences [Basu

et al., 1998, Chérief-Abdellatif and Alquier, 2020, Jewson et al., 2018]. For ordinary differential

equation (ODE) models of biochemical systems, the use of heavy-tailed likelihood functions such

as Laplace, Huber, or Student’s t, rather than the commonly used normal distribution, has proven
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Figure 1: Problem illustration on two test models using three distances, the established L2+Ada.+MAD

introduced in Prangle [2017], and two novel ones. Left: A model with 10 N (θ, 1) distributed data points, and

an uninformative N (5, 0.12) distributed one, whose observation however is an outlier. Right: A model with

10 N (θ, 0.22) distributed data points, the first two of which however are outliers. For both test problems,

on the respective left the obtained ABC posterior approximation is shown, and on the right the underlying

outlier-corrupted data, together with, for all three distances, light-colored lines of 30 exemplary accepted

simulations from the last ABC-SMC generation, and the respective sample means as darker lines. It can be

seen how the established distance yields highly uncertain (left) or biased (right) estimates, while the novel

methods give far more accurate estimates of the underlying true parameter. The distance functions and

models shown here are properly introduced in Sections 2 and 3.

considerably more robust against outliers, without explicit removal [Maier et al., 2017].

Most such methods are however not applicable in ABC, as they require a tractable likelihood

function. In this work, we propose a novel robust adaptive method for ABC, based on the adaptive

distance function concept by Prangle [2017]. It can easily be shown that the original algorithm

formulation is sensitive to outliers and can lead to biased or uncertain estimates (see Figure 1 for an

illustration of possible problems on simple test models). We suggest the use of an outlier-insensitive

norm, and additionally present a scheme for simulation-based active online outlier detection and

correction.

Existing robust inference approaches in ABC (not necessarily tailored to outliers) include notably

Hellinger or Cramér-von-Mises distances as robust distances between probability distributions [Fra-

zier, 2020], operating on high-dimensional data circumventing the definition of summary statistics,

and approaches using distances based on M -estimating functions [Ruli et al., 2020] and γ-divergence

estimators [Fujisawa et al., 2021]. The latter are however tailored to data with many i.i.d. repli-

cates, which are not commonly available e.g. in systems biology applications. Another approach

is presented in Frazier et al. [2020], who suggest to address model misspecification by parameter-

ized adjustments of either the summary statistics or distance function weights. This approach is

similar to ours in allowing the detection and down-weighting of inconsistent data points, and could

in principle be combined with a scale adaptation scheme as done here. However, it augments the

parameter vector by the number of summary statistics, thus appearing to require an appropriate,

sufficiently low-dimensional, choice thereof. Lastly, a reformulation of the acceptance step as in

Schälte and Hasenauer [2020] would allow for the use of heavy-tailed noise models similarly to

Maier et al. [2017]. Yet, as in ABC the model must usually be regarded as a black box, such an

approach is not generally applicable.
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Our approach makes no assumptions on the type or dimension of data and is easy to adopt, allows

for the interpretation of generated weights, and yields efficient inference by combination of robust

measures with scale adaptation. This work focusing on the robust extension of the adaptive dis-

tance concept to outlier-corrupted data, a comparison to alternative ABC model misspecification

approaches as mentioned above, in situations where several are applicable, would be of interest, but

is beyond the scope of this work. We evaluate and compare the presented methods on various test

examples covering various model types and features, and an application example of an agent-based

model of tumor growth, on both outlier-free and outlier-corrupted data.

2 Methods

2.1 Background

2.1.1 Approximate Bayesian Computation

Suppose we have measured data yobs ∈ Rny , and have a descriptive model encompassing the under-

lying system dynamics, inherent stochasticity, and measurement noise. Bayesian inference combines

the likelihood π(y|θ) of observing data y ∈ Rny under the model, given model parameters θ ∈ Rnθ ,
with prior information π(θ) on the parameters, to form a posterior distribution

π(θ|yobs) =
π(yobs|θ)π(θ)

π(yobs)
∝ π(yobs|θ)π(θ).

ABC deals with the situation that the model is generative, i.e. data y ∼ π(y|θ) can be simulated,

but evaluating the (non-normalized) likelihood is infeasible. Classical ABC consists of the following

three steps:

1. Sample parameters θ ∼ π(θ).

2. Simulate data y ∼ π(y|θ).

3. Accept (θ, y) if d(s(y), s(yobs)) ≤ ε.

Here, summary statistics s : Rny → Rns map the raw data to a typically lower-dimensional

representation, d : Rns × Rns → R≥0 is a distance function measuring the “proximity” of sim-

ulated and observed data, and ε ≥ 0 is an acceptance threshold. This is repeated until suffi-

ciently many, say N ∈ N, particles have been accepted. Denoting s = s(y), sobs = s(yobs), and

π(s|θ) ∝
∫
Rny I[s(y) = s]π(y|θ) dy the intractable summary statistics likelihood, with I the indicator

function, the population of accepted particles constitutes a sample from the approximate posterior

distribution

πABC(θ|sobs) ∝
∫
Rns

I[d(s, sobs) ≤ ε]π(s|θ) ds ·π(θ),
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where
∫
Rns I[d(s, sobs) ≤ ε]π(s|θ) ds =: p(sobs|θ) can be interpreted as an approximate likelihood

function averaging over simulations proximate to sobs.

The uniform acceptance criterion I[d(·, sobs) ≤ ε] used throughout this work can be generalized to

acceptance kernels Kε(d(·, sobs)) that do not only take a binary decision, but in the above third step

accept with probability Kε(d(s, sobs))/Kε,0 [Sisson et al., 2018]. As we only deal with the choice

of distance function, the methods presented in this work generalize to such kernels. If the ABC

formulation does not employ an explicit distance function (such as Schälte and Hasenauer [2020]),

the methods presented here do not apply. The methods presented here are moreover independent

of the summary statistics method used.

2.1.2 Sequential importance sampling

The above vanilla ABC algorithm, also called Rejection ABC, exhibits a trade-off between decreasing

the acceptance threshold ε to obtain a better posterior approximation, and maintaining high-enough

acceptance rates. To reconcile both, it is frequently combined with a Sequential Monte-Carlo

(SMC) importance sampling scheme (Algorithm 1). In ABC-SMC, a series of particle populations

Pt = {((θit, sit), rit)}i≤N with acceptance thresholds ε1 > . . . > εnt , t = 1, . . . , nt, are generated,

constituting samples from successively better posterior approximations. Particles for generation t

are sampled from a proposal distribution gt(θ)� π(θ) based on the previous generation’s accepted

particles Pt−1, e.g. via a kernel density estimate, only initially g1(θ) = π(θ). The importance weights

rit are the corresponding non-normalized Radon-Nikodym derivatives, rt(θ) = π(θ)/gt(θ).

An acceptance threshold scheme that has been shown to perform well and is also employed here, is

to adaptively set εt to the quantile of the previous generation’s accepted distances {d(sit−1, sobs)}i≤N
[Drovandi and Pettitt, 2011]. In addition, we automatically base the initial threshold on a calibration

sample of size N that was also used to calibrate any other adaptive components, such as initial

distance weights. A common form of the proposal distribution, which we also employed here, is

gt(θ) ∝
∑N

i=1N (θ|θit−1,Σt−1) with covariance matrix Σt−1 ∝ Σ({(θit−1, rit−1)}i≤N ) based on the

sample covariance matrix. For details on the underlying ABC-SMC implementation used here see

Klinger and Hasenauer [2017], Klinger et al. [2018].

For a test function f : Rnθ → R, i.e. a statistic of interest, such as the mean or variance, the expected

value under the approximate posterior is then approximated via the self-normalized importance

estimator

EπABC(θ|yobs)[f ] ≈ f̂ :=
N∑
i=1

rintf(θint)/
N∑
i=1

rint ,

which is asymptotically unbiased as N →∞ [Sisson et al., 2018].
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Algorithm 1 ABC-SMC algorithm

for t = 1, . . . , nt do

while less than N acceptances do

sample parameter θ ∼ gt(θ)
simulate data y ∼ π(y|θ)
accept θ if d(s(y), s(yobs)) ≤ εt

end while

compute weights r
(i)
t =

π(θti)

gt(θti)
, for accepted parameters {θti}i≤N

update gt+1 and εt+1

end for

2.1.3 Adaptive distances

A common choice of distance function d is a weighted Minkowski distance

d(s, sobs) =

 ns∑
j=1

|wj(sj − sobs,j)|p
1/p

, (1)

with p ≥ 1, where the summation is over the summary statistic coordinates j, and the wj are

summary statistic specific weights. It has been empirically argued that among similar distance

functions, the exact form does not matter [McKinley et al., 2009, Owen et al., 2015]. Also theoret-

ically, the approximate limit as ε → 0 is independent of the exact distance used (Section 2.2.3), if

the data generation model is specified correctly [Schälte and Hasenauer, 2020].

However, as demonstrated in particular in Prangle [2017], adjusting the distance function to the

problem structure can more efficiently yield substantially better parameter estimates, as more rele-

vant information can be extracted from the data given a limited budget of simulations. The precise

problem Prangle [2017] tackle is that summary statistics can vary on different scales. Thus, it

can easily be that some statistics dominate the distance value, although the scale of a statistic is

generally not informative of its relevance. This can be corrected for by the choice of the weights

wj in (1). A common choice is as inversely proportional to measures of variability of the respective

statistics, i.e. wj = 1/σj with σj e.g. given via empirical standard deviations σj = Var({sij}i≥1)1/2,
where {si}i≥1 are a calibration sample of summary statistics. An alternative measure suggested by

Csilléry et al. [2012] for being more robust to sample outliers, and used in Prangle [2017] and also

throughout this work, is the median absolute deviation (MAD) to the sample median,

σj = MADj := median({|sij −median({si′j }i′≥1)|}i≥1). (2)

It is straightforward to base the weights on a calibration sample from the prior distribution, prior

to the actual ABC analysis. However, while applicable to Rejection ABC, Prangle [2017] demon-

strate that in an ABC-SMC framework, the distribution of summary statistics in later generations

can differ considerably from prior samples. Their relative variability may change as the proposal
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distribution focuses on high-density regions in parameter space, such that weights obtained in cal-

ibration may no longer yield a similar contribution of each statistic to the distance value. Thus,

they suggest the introduction of a sequentially updated generation-specific distance function dt, by

updating the weights wj = wtj in distance (1) anew for each generation. The calibration sample for

generation t consists of the particles generated in generation t−1, including not only accepted ones

but also rejected ones, in order to be representative of the sampling process and to allow greater

flexibility of adaptation. This serves as an approximation to the expected summary statistic scale

distribution under the proposal distribution gt of generation t, without additional simulation costs.

In order to ensure nested acceptance regions, Prangle [2017] then define the acceptance criterion

for generation t as dt′(s, sobs) ≤ εt′ for all t′ ≤ t. When e.g. using an adaptive scheme for εt, as

mentioned in Section 2.1.2, it must be based on distance values recalculated with the new distance

function, {dt(sit−1, sobs)}i≤N .

While the above algorithm bases the weights for generation t on samples from generation t− 1 with

a different proposal distribution, Prangle [2017] further propose a second algorithm that bases the

weights on the current generation, by delaying the acceptance criterion definition. As this algorithm

was found to not substantially improve results over the above introduced one, which is easier to

integrate into existing ABC-SMC frameworks, we did not pursue this second formulation further.

2.2 Robust adaptive distances functions for outlier-corrupted data

We assume the data yobs to be a realization of the model π(y|θ), except for single outliers that deviate

from the actual trajectories and are due to another mechanism, as motivated in the introduction.

In this section, we describe distance functions that build upon the adaptive distance functions

introduced in Section 2.1.3, but are robust to outliers in the data, or can even correct for such.

2.2.1 Outlier-insensitive absolute distances

While using MAD as a robust measure of sample variability for weight definition, Prangle [2017]

base the overall distance on an L2 norm (p = 2 in (1)). Squared residuals emphasize large errors,

which may be desirable, however makes the analysis highly sensitive to outliers, which typically

result in large residuals that can dominate the distance and reduce the relative importance of other

summary statistics, leading to an overall worse performance.

In regression analysis, robust approaches have been developed that are less sensitive to outliers

than standard least squares. The arguably most common alternative are absolute deviations, cor-

responding to an L1 distance (p = 1 in (1)). For ODE models, it was shown in Maier et al. [2017]

that replacing the most common assumption of a normal noise model, corresponding in a way to

a weighted L2 distance, by heavy-tailed distributions such as Laplace, corresponding to an L1 dis-

tance, Huber, Cauchy or Student’s t, renders the analysis considerably more robust to outliers,

while performing roughly comparably on outlier-free data. In ABC, if the noise assumption can be

decoupled from the dynamics description, similar approaches can be employed, either by simulating

e.g. Laplace measurement noise, or using an appropriate acceptance kernel [Schälte and Hasenauer,
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2020]. However, in general, in ABC the model must be regarded as a black box that does not allow

for decoupling of e.g. noise components. In that case, robustification and error correction must

happen on the level of the distance function, which quantifies the impact of different data points.

Here, based on the above motivation, we propose to replace the L2 distance in the adaptive distance

formulation by an L1 distance, yielding a distance function both robust to outliers and adaptive to

the problem structure. In the following, we shortly motivate why this change of distance renders the

analysis more robust to outliers. Consider the distribution of a single summary statistic given via a

random variable S ∈ R with variance E[S2] = σ2 <∞, with observed value sobs. We are interested

in the variability of the corresponding distance component in (1) around its average value, as similar

levels of variability of different summary statistics yield similar impacts on the acceptance decision.

For the variance of an L1 distance component |S − sobs| holds

0 ≤ Var[|S − sobs|] = E[(S − sobs)2]− E[|S − sobs|]2

= Var[S] + E[S − sobs]2 − E[|S − sobs|]2 ≤ Var[S] = σ2,

further Var[|S − sobs|] → σ2 in the limit |sobs| → ∞ of extreme outliers, with smaller variance for

observed values closer to E[S]. Thus, for simplicity assuming that in (1) normalization is by the

distribution standard deviation, it follows for the variability of the corresponding component of

the weighted L1 distance 0 ≤ Var[|S − sobs|/σ] ≤ 1. Note that the absolute value of the distance

component may and will be larger for large outliers, however it only acts as an offset, while the

variability is constrained. A similar boundedness does not generally apply to L2 distances. For

example, assuming S ∼ N (0, σ2), it is Var[(S − sobs)
2] = 2σ4(1 + 2s2obs/σ

2), and thus for the

weighted distance component Var[((S − sobs)/σ)2] = 2(1 + 2s2obs/σ
2), diverging for |sobs| → ∞.

2.2.2 Online outlier detection and down-weighting via bias correction

Even when using an outlier-insensitive distance such as L1, large outliers can still impact the

analysis, rendering it desirable to further detect and down-weight them. Here, we propose an online

simulation-based approach to do so in ABC-SMC by complementing the MAD (2), as a measure of

sample variability, by a measure of deviation from the observed value, such as the median absolute

deviation to observation (MADO) for summary statistic j,

MADOj := median({|sij − siobs,j |}i≥1).

Accounting for both in-sample variability and deviation to observed value, we propose to then define

the weight in (1) via the combined median absolute deviation (CMAD) as

wj = 1/CMADj := 1/(MADj + MADOj).

Outliers will typically have large deviation terms, which thus down-weight the statistic, such that

the outliers impact the distance value and thus the analysis less. Conversely, if the model describes

a data point well, one would expect the simulations to be close to the observed data, roughly on

the same order as the in-sample variation of simulations, such that the additional term does not
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substantially hinder the purpose of variance normalization. Note that here we only down-weight

data points while not removing them entirely as long as wj 6= 0, which conceptually permits the

recovery from badly assigned weights at least in the approximate limit as t→∞, i.e. no information

is lost. Using an additive formulation instead of a multiplicative one, MADj ·MADOj , ensures that

the weights stay bounded in the presence of outliers even for MADj → 0.

Especially in early iterations and for uninformative priors, model simulations may deviate from the

observed data substantially, as may the relative variability of different summary statistics. In order

to not “punish” summary statistics that happen to deviate more from the observed data initially

than others, we propose to apply the bias correction only if no more than a small fraction of the data

points exhibit a substantial bias. Concretely, here we only used CMAD for weighting in a generation

if #{j : MADOj > 2 ·MADj}/ns ≤ 1/3, resorting to MAD otherwise. These hyperparameters are

clearly heuristics and may require tuning on some problems, however e.g. having more than one in

three outliers in an analysis should in practice hardly occur, while only counting as outliers points

with sufficiently high deviation compared to the in-sample variability focuses on large deviations

that could otherwise considerably impact the analysis, while small outliers are less problematic (see

also Section 3.7). We denote this weighting scheme, which perhaps uses CMAD and otherwise only

MAD, as PCMAD.

As outliers usually get apparent merely in later generations, where simulations resemble the observed

data more, applying such outlier correction methods only makes sense in an adaptive framework,

as done here.

Instead of the robust measures MAD and MADO employed throughout this work, in principle also

other measures of variability and deviation can be used, such as the common standard deviation

and bias. We may thence statistically interpret the here introduced modifications as, informally,

replacing the in-sample standard deviation by the root mean square error E[(sj − sobs,j)2]1/2, or

robust alternatives thereof, treating the simulations as estimators of the observed value.

2.2.3 Convergence

As noted in Prangle [2017] and also applicable here, convergence πABC(θ|sobs) → π(θ|sobs) ∝
π(sobs|θ)π(θ) of the ABC-SMC posterior approximation as t → ∞ and ε → 0 is guaranteed if

the adaptive distance metrics dt are in particular of bounded eccentricity, i.e. the weight ratios

bounded (note that generally only if π(θ|sobs) ≡ π(θ|yobs), i.e. the summary statistics are sufficient,

is the original posterior recovered in the approximate limit). Practically, this can be achieved by

constraining the relative weight range to a compact interval in (0,∞), or e.g. by updating the

distance function only a finite number of iterations. In the results presented in this work, we did

not employ any such restrictions, as we focused on the ability of the methods to retrieve informa-

tion under a limited budget of simulations. Yet, reliable strategies to set such constraints may be

practically of relevance and may require further studies.

A further condition for convergence is naturally π(sobs) > 0, i.e. that the observed data can be

simulated under the model, which may be impossible in the presence of outliers. The here-used
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down-weighting schemes however help to mitigate that problem, by focusing the analysis on reliable

data points.

2.3 Implementation

The methods presented in this work have been implemented and made available in the open-source

Python package pyABC (https://github.com/icb-dcm/pyabc), which implements a distributed

ABC-SMC algorithm [Klinger et al., 2018]. Supplementary code of this study can be found at

https://github.com/yannikschaelte/study abc rad, a snapshot of code and data is on ZEN-

ODO at http://doi.org/10.5281/zenodo.5136475. All simulations were performed on the GCS

Supercomputer JUWELS at Jülich Supercomputing Center (JSC), using up to 384 cores in parallel,

with parallelization via dynamic scheduling [Klinger et al., 2018].

If not stated otherwise, like in Prangle [2017], we defined the acceptance criterion in generation t

as dt′(s, sobs) ≤ εt′ for all t′ ≤ t, including previous acceptance criteria, to ensure nested acceptance

regions. As transition kernel, we used a multivariate normal distribution with covariance kernel

proportional to the previous generation’s weighted sample covariance matrix by Silverman’s rule of

thumb. Acceptance thresholds were automatically selected as the median of the updated distance

values {dt(sit−1, sobs)}i≤N of the previous generation’s accepted particles. The distance weights

were calculated based on all samples generated in the previous generation, including accepted and

rejected ones.

3 Results

We tested the proposed methods on five test problems covering different problem features and

model types, and a more realistic application problem, evaluating performance and robustness on

both outlier-free and outlier-corrupted data, and comparing to established calibrated and adaptive

distance functions as introduced in Prangle [2017].

3.1 Test models

An overview of the core problem features is given in Table 1. Details on all test problems can be

found in the Supplementary Information, Section 1.

M1 consists of 10 observables sj ∼ N (θ, 1), j = 1, . . . , 10 for a parameter θ with prior θ ∼ U [0, 10]

and true value θ = 5, and one uninformative variable of low variance s11 ∼ N (5, 0.12). As outlier,

we considered s11 = 7.

M2 consists of 10 observables sj ∼ N (θ, 0.22), j = 1, . . . , 10, with prior θ ∼ U [0, 10] and true

parameter θ = 6. While all observables are informative of the parameters, we set two to sj = 0 to

simulate conflicting information in the data due to outliers.

M3 is an ODE model of a conversion reaction A
θ1→ B, B

θ2→ A, assuming species B to be observed
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Table 1: Test model properties: Identifier, short description, number of parameters nθ and data points or

summary statistics ns, population size N and maximum number of model simulation after which an analysis

was terminated.

ID Description nθ ns N Max. sim.

M1 Informative and uninformative Gaussian variables 1 11 1000 100000

M2 Independent Gaussian replicates 1 10 1000 100000

M3 Conversion reaction ODE model 2 10 1000 100000

M4 g-and-k distribution order statistics 4 7 1000 100000

M5 Lotka-Volterra Markov jump process model 3 32 200 50000

M6 Tumor spheroid growth agent-based model 7 150 500 150000

at 10 evenly spaced time-points. We assumed additive noise N (0, 0.022). True parameters are

(log θ1, log θ2) = (−1.5,−1.5), estimated on log-scale, with prior U [−3.5, 1]⊗2. Initial conditions

were assumed to be known at (A0, B0) = (1, 0). As outlier, we randomly set one data point to zero,

which could in practice e.g. occur as a wrongly assigned missing value. This model is identical to

the first test model in Maier et al. [2017].

M4 and M5 are common ABC test problems, adopted directly from the application examples

in Prangle [2017]. M4 is based on the g-and-k distribution, which is defined via its quantile

function but does not have a closed-form likelihood function. We used as summary statistics

seven order statistics at indices (1250, 2500, ..., 8750) out of 10, 000 independent samples. We used

independent U [0, 10] priors on the model’s four parameters A,B, g, k, and ground truth values

(A,B, g, k) = (3, 1, 1.5, 0.5). As outlier we considered randomly setting one observable to zero. M5

is a Markov jump process model of a Lotka-Volterra predator-prey population model, simulated via

Gillespie’s direct algorithm [Gillespie, 1977]. We assumed both species to be observed under addi-

tive N (0, exp(2.3)) distributed noise, at 16 evenly spaced time-points over a span of roughly four

periods. The model has three conversion rate parameters, which were estimated on log-scale, with

wide independent U [−6, 2] priors and ground-truth values (θ1, θ2, θ3) = (1, 0.005, 0.6). As outliers

we considered multiplying 6 observables at 3 random time-points by a factor of 10, which can in

practice occur e.g. due to a wrong exponent.

M6, a more realistic application example, is a multi-scale agent-based model of tumor spheroid

growth on a two-dimensional plane, as introduced in Jagiella et al. [2017]. Single cells are modeled

as stochastically interacting agents, coupled to the dynamics of extracellular substances modeled

via partial differential equations. The model describes three observables: The spheroid radius over

time, and the extra-cellular matrix (ECM) density and the fraction of proliferating cells, at different

distances from the rim, observed at a single time-point. On top of the agent-based model, we

assumed independent normal measurement noise. The model possesses seven unknown parameters.

As outliers we considered interchanging in total 20 data points in the observables’ dynamic regimes.

Agent-based models describing biological processes such as pathogen spread or tissue growth have

recently been frequently analyzed using ABC methods [Durso-Cain et al., 2021, Imle et al., 2019].
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3.2 Experimental setup

To assess the performance of the various described distance functions, we ran the first five test

models 20 times on outlier-free data, each for a separate data set randomly sampled from the

model under ground truth parameters θGT, and additionally 20 times on outlier-corrupted data

sets derived from the outlier-free ones. Each run was performed with a fixed population size N

and given a budget of model evaluations, evaluated after each generation, as given in Table 1. The

evaluation budgets were chosen rather low, in order to assess the ability of the distance functions

to extract information from simulations under a limited budget.

We evaluated the performance of a distance function by its ability to yield accurate point estimates

with low uncertainties. Thus, we used, as a metric combining both aims, the root mean square

error (RMSE) of the weighted posterior samples from the last ABC-SMC iteration with respect to

the ground truth parameters, i.e. the square root of E[(θ − θGT)2] = Var[θ] + Bias[θ, θGT]2 under

the obtained posterior approximation. While the actual posterior mean may not be unbiased for a

given data set, one may expect it to be on average.

As distance functions, we considered L2 and L1 distances (“L2” or “L1”), only pre-calibrated in

the first iteration or adapted in each generation (“Cal.” or “Ada.”), and using MAD, CMAD,

or PCMAD for distance weight calculation. In the following, e.g. “L2+Ada.+MAD” denotes an

adaptive L2 distance with MAD-based weights. While we also explore other combinations, we focus

the analysis on the established pre-calibrated L2+Cal.+MAD and adaptive L2+Ada.+MAD, and

the here newly introduced robust L1+Ada.+MAD and L1+Ada.+PCMAD.

3.3 L1 comparable to L2 on outlier-free data, and clearly outperforming on

outlier-corrupted data

Comparing the performance of L2- and L1-based distances (Figure 2, upper half vs. lower half)

on outlier-free data (Figure 2, light bars), e.g. for L2+Ada.+MAD vs. L1+Ada.+MAD, shows no

substantial differences for most models and parameters, indicating that L1 works similarly well on

outlier-free data.

On outlier-corrupted data (Figure 2, dark bars), using an L2 distance (L2+Ada.+MAD) yielded sub-

stantially higher RMSE values compared to outlier-free data. Using an L1 distance (L1+Ada.+MAD)

drastically reduced the RMSE in all cases by up to orders of magnitude, in many cases to only slightly

higher levels than obtained by the same distance for outlier-free data.

Comparing pre-calibrated L2+Cal.+MAD and adaptive L2+Ada.+MAD (as well as the L1 variants)

on outlier-free data confirms the finding in Prangle [2017] that the adaptive weighting scheme can

better adjust to the problem and thus outperforms pre-calibrated weighting. However, e.g. the com-

parison of L2+Cal.+MAD and L2+Ada.+MAD on outlier-corrupted data shows that there, in some

cases, an adaptive weighting scheme with L2 distances can give worse results than pre-calibrated

weights, arguably due to decreasing in-sample variability with large impact on the distance function,

as outlined in Section 2.2.1. For the corresponding L1 distances, conversely in the majority of cases,
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0.341
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Figure 2: Mean RMSE for the parameters of 5 test models (columns) obtained for 8 distance functions (rows),

using L2 or L1 distances, calibrated only in the first (“Cal.”) or every (“Ada.”) generation, and using MAD,

CMAD, and PCMAD for distance weight calculation. Each RMSE is averaged over 20 data sets, grey lines

indicate standard deviations. For each distance, the upper, lighter bar is based on outlier-free data, while the

lower, darker bar is based on outlier-corrupted data. Distances of interest are colored, alternative distance

combinations are shown in grey for reference.

an adaptive distance function improved results over pre-calibration.

3.4 Outlier correction further improves estimates and identifies outliers

Applying active outlier detection and down-weighting by PCMAD on top of using an L1 distance

(L1+Ada.+PCMAD) generally further reduced RMSE values over MAD (L1+Ada.+MAD) on M1-

4, and substantially so e.g. for the A and g parameters of problem M4, giving a total reduction of

up to nearly 50 times compared to the established L2+Ada.+MAD. On M1-4, the use of CMAD

throughout (L1+Ada.+CMAD) and not only if outliers were detected in less than one in three

data points (PCMAD), yielded low RMSE values as well. However, the inverse was true for M5,

where L1+Ada.+CMAD gave large RMSE values on both outlier-free and outlier-corrupted data.

This is likely due to the fact that M5 exhibits highly flexible dynamics, with trajectories under

the prior predictive distribution being considerably different from the posterior. In that situation,

blindly applying bias correction may wrongly down-weight data points that just happen to not have

converged yet, while PCMAD reliably only does so in case of strong indication of few outliers.

Overall, in many cases L1+Ada.+MAD already gave substantially better results than the refer-

ence method L2+Ada.+MAD, which could be further improved by outlier detection, such as here

L1+Ada.+PCMAD, which consistently yielded small RMSE values for all parameters of all test

problems.
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Figure 3: Fits and weights for models M1-5 on outlier-corrupted data, for three distances. Upper row:

Observed data (black) and, for each distance, 30 accepted simulated data sets (lighter lines) as well as the

sample means (darker lines) from the last ABC-SMC generation. Note that these are accepted simulations,

not predictions; for ε → 0, the accepted simulations should exactly match the observed (non-outlier) data.

Lower row: The corresponding weights assigned to each summary statistic by the three shown distance

functions in the last generation, normalized to sum 1. For each problem, one exemplary run out of the 20

runs on outlier-corrupted data is shown.

3.5 Nested acceptance regions improve performance slightly

In order to assess the effect on robustness of nested acceptance regions via checking previous accep-

tance criteria, dt′(s, sobs) ≤ εt′ , t′ ≤ t, and not only the current criterion, we ran the same analyses

as shown here, but only taking into account the current generation’s acceptance criterion, i.e. ac-

cepting if dt(s, sobs) ≤ εt (Supplementary Information, Section 2). Overall, we found no major or

structured differences between using previous acceptance criteria or not, especially for L1 distances,

on both outlier-free and outlier-corrupted data, with slightly better results when using previous

acceptance criteria. An exception, where the use of previous acceptance criteria performed sub-

stantially better, was M5, which especially for L2 showed a larger RMSE for the adaptive distance

compared to the pre-calibrated distance when not doing so. A reason for this may be the highly

flexible model dynamics under the wide prior, for which a more conservative acceptance criterion

may be more robust. Both using and discarding previous acceptance criteria may have their advan-

tages – using them may be more conservative and thus preferable on highly variable models, while

not using them gives more flexibility and may allow to escape from bad initial choices.

3.6 Robust distances yield better fits of the data

Not only in terms of parameter estimates, but also in terms of fits of simulated data to the observed

data, and thus ultimately in terms of predictions, did the advantage of the robust adaptive distance

functions L1+Ada.+MAD and L1+Ada.+PCMAD over L2+Ada.+MAD become apparent (shown
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in Figure 3 exemplarily for selected data sets). For M1, the variability of simulated data for

L2+Ada.+MAD was considerably higher than for the other distances. For M2, L2+Ada.+MAD

tried to balance between the eight accurate measurements and the two outliers, fitting no point well,

while L1+Ada.+MAD showed considerably less bias, only slightly more than L1+Ada.+PCMAD.

This held similarly for M3 and M4, where the analysis for L2+Ada.+MAD converged to curves

visibly differently shaped than the observed data, corresponding to different parameter vectors. For

M5, extremes of the dynamics were less well captured. Overall, L1+Ada.+PCMAD gave the best

fits in all these cases.

This was also reflected in the weights the respective distances assigned to data points in the last

ABC-SMC generation (Figure 3 bottom). For M1-4, PCMAD reliably detected outliers and assigned

them low weights, decreasing their impact on the analysis. Typically, bias correction was applied

only after a few iterations due to overall high initial variability, reliably converging to the actual

outliers in the later iterations in most cases. For M5, the PCMAD automatic outlier correction did

not generally identify all outliers. This is in line with the previous finding that here PCMAD does

not give an advantage over MAD alone, while blindly applying CMAD is detrimental. Likely, the

flexibility of the model does not allow to reliably detect outliers, as too many data points exhibit

deviations from the observed values.

3.7 Robust to outliers at large scale

To analyze the impact of the scale of outliers on the presented methods, we ran the test problems

M1 and M2 with outliers at different multiples of the corresponding statistics’ standard deviations

(Supplementary Information, Section 3). This revealed that the performance of L2+Ada.+MAD

considerably worsened with outliers at larger scales, while the L1-based distances gave substantially

more reliable results, with slight improvements for PCMAD over MAD. This is in line with the

argumentation of Section 2.2.1.

3.8 Robust methods clearly outperform established methods on complex appli-

cation example

Due to its computational complexity with model simulation times on the order of seconds, for

the tumor growth application problem M6 we only used single outlier-free and outlier-corrupted

data sets. Here, we compared a pre-calibrated distance L2+Cal.+MAD, an adaptive L2 distance

L2+Ada.+MAD, and the newly introduced L1 distances L1+Ada.+MAD and L1+Ada.+PCMAD.

The parameter estimates show that, remarkably, the L1 distances performed superior to L2 on

M6 also on outlier-free data (Figure 4 top). In particular L2+Ada.+MAD yielded substantially

wider uncertainty estimates, also compared to L2+Cal.+MAD. This is also reflected by the model

simulations being more dispersed (Figure 5 top). Arguably, this is due to the fact that for high-

dimensional data the chance of deviant data points is high, even if the model perfectly describes

the underlying data generation process. In that case, an outlier-sensitive adaptive L2 distance may

increasingly focus the analysis on points with large deviation, biasing the analysis, even if there are
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Figure 4: Posterior marginals for the 5 out of the 7 model parameters of model M6 showing interesting

dynamics. Top row: Without outliers. Bottom row: With outliers. The x-axis boundaries are the uniform

prior boundaries. The parameter values used to simulate the observed data are indicated by grey dotted

lines.

no systematic outliers in the data.

On outlier-corrupted data, both L2+Cal.+MAD and L2+Ada.+MAD performed badly, with highly

uncertain or unreasonable parameter estimates (Figure 4 bottom), and simulations that visually do

not fit to the observed data (Figure 5 bottom). In contrast, L1+Ada.+MAD and L1+Ada.+PCMAD

performed considerably better, with parameter estimates closer to those obtained on outlier-free

data, although generally with higher uncertainties as expectable given the high fraction of outliers,

and better data fits. Overall, L1+Ada.+PCMAD provided the smallest parameter uncertainties

on all parameters. Further, the outlier detection reliably identified and corrected for virtually all

outliers.

4 Discussion

ABC methods enable easily accessible likelihood-free inference for complex stochastic models. How-

ever, we have shown in this work how established approaches may be sensitive to outliers in the data.

An extension to a popular distance function with iteratively updated scale weights, we have intro-

duced a robust adaptive distance function based on an L1 norm, and further introduced a weighting

scheme that allows for the simulation-based online detection and down-weighting of outliers. We

evaluated and compared the novel methods on six test problems. This demonstrated firstly that

the use of an outlier-insensitive distance function such as L1 considerably improves performance in

the presence of outliers, while performing similarly well on outlier-free data. Secondly, the outlier

detection and correction generally further improved results, as outliers were correctly identified and

sufficiently down-weighted, allowing the analysis to extract information from the relevant data more

efficiently. Also against extreme outliers or model misspecification, which severely affected reference
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Figure 5: Fits and weights for four distance functions on problem M6 on outlier-free (top) and outlier-

corrupted (bottom) data. The respective upper rows show the observed data (black), and, for each distance,

30 accepted simulated data sets (light lines) as well as the sample means (darker lines) from the last ABC-SMC

generation. Note that these are accepted simulations, not predictions; for ε → 0, the accepted simulations

should exactly match the observed (non-outlier) data. The respective lower rows show the corresponding

weights assigned to each summary statistic by the four distance functions in the last generation, normalized

to sum 1.

methods, did the presented methods prove robust. As especially in high-dimensional complex data

sets, e.g. based on imaging techniques commonly used in ABC applications, outliers or highly de-

viant data points may be expected to exist, we recommend, given our results, the consistent use of

robust distance functions in practical applications, unless there are reasons against, e.g. if sensitivity

to large deviations is desirable. Further, also the here introduced outlier correction method appears

generally advisable, if only for detection, in order to inform early-on about potential problems in

data or model.

One possible path of future research would be the evaluation of distances that combine the sensitivity

17

.CC-BY 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted July 30, 2021. ; https://doi.org/10.1101/2021.07.29.454327doi: bioRxiv preprint 

https://doi.org/10.1101/2021.07.29.454327
http://creativecommons.org/licenses/by/4.0/


of L2 distances to small deviations with the robustness of L1 distances to large outliers, such as

a Huber distance, which however relies on the choice of hyperparameters. Also a comparison to

alternative robust distance functions as mentioned in the introduction is beyond the scope of this

work, however would definitely be of interest, wherever multiple approaches are applicable.

To ensure convergence, distance weights need to be either frozen after a number of generations,

or their eccentricity bounded. Devising reliable strategies of doing so while allowing for sufficient

weight adaptation would be practically relevant.

A further promising path becomes apparent in the last application example (Figure 5): One data

type, the fraction of proliferating cells, is constant over most of the observed data points. Thus,

these summary statistics are hardly informative of the parameters, yet are assigned high weights due

to their low variability. Thus, measuring the “informativeness” of summary statistics in combination

with scale adaptation and outlier correction might considerably improve the analysis in such cases.

In summary, we have presented a novel robust adaptive distance function with outlier down-

weighting, and demonstrated its broad applicability. The methods are easy to adopt and have

been implemented in an openly accessible tool allowing massive parallelization, facilitating the

straightforward use in application projects.
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Supercomputing Centre, 2019] at Jülich Supercomputing Centre (JSC).
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