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Abstract 

Oligonucleotide-conjugated antibodies1 have allowed for joint measurement of surface 

protein abundance and the transcriptome in single cells using high-throughput sequencing. 

Extending these measurements to gene regulatory proteins in the nucleus would provide a 

powerful means to link changes in abundance of trans-acting TFs to changes in activity of cis-

acting elements and expression of target genes. Here, we introduce Nuclear protein Epitope, 

chromatin Accessibility, and Transcriptome sequencing (NEAT-seq), a technique to 

simultaneously measure nuclear protein abundance, chromatin accessibility, and the 

transcriptome in single cells. We apply this technique to profile CD4 memory T cells using a panel 

of master transcription factors (TFs) that drive distinct helper T cell subsets and regulatory T cells 

(Tregs) and identify examples of TFs with regulatory activity gated by three distinct mechanisms: 

transcription, translation, and regulation of chromatin binding. Furthermore, we identify regulatory 

elements and target genes associated with each TF, which we use to link a non-coding GWAS 

SNP within a GATA motif to both strong allele-specific chromatin accessibility in cells expressing 

high levels of GATA3 protein, and a putative target gene.   

Main 

 Recent progress in diverse multimodal single cell technologies has revolutionized our 

ability to characterize cell states and identify gene regulatory programs across various cell types. 

For example, methods pairing ATAC-seq and RNA-seq in single cells have allowed association 

of epigenetic status with transcriptional output, enabling identification of putative target genes of 

regulatory elements and uncovering regulatory mechanisms controlling specific gene networks, 

such as epigenetic priming of genes during development2. Antibodies linked to barcoded 

oligonucleotides have enabled surface protein measurements using a sequencing read-out, 

which, when combined with RNA- or ATAC-seq in single cells, has been particularly informative 

for profiling immune populations traditionally isolated based on surface protein markers1,3. 
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Recently, this approach was extended to measuring intracellular proteins4–8. However, 

quantification of nuclear gene regulatory proteins along with chromatin accessibility profiling and 

RNA-seq has not been demonstrated.  

In particular, existing methods for linking single cell chromatin accessibility to transcription 

do not directly quantify the central driver of gene regulation: transcription factors. TFs bind directly 

to enhancer elements to drive target gene expression9, and therefore measuring their abundance 

is a critical factor in understanding gene regulatory processes. However, TF abundance is difficult 

to estimate via scRNA-seq due to the combination of low transcript abundance and relatively low 

capture rates10,11. Directly measuring single-cell protein levels of TFs, which are often much more 

abundant than their encoding transcripts12, can link individual TFs to regulated enhancers and 

target genes by correlating changes in TF protein levels to changes in regulatory element 

accessibility and expression of nearby genes. Such analyses incorporating TF protein 

measurements can help distinguish direct target genes from secondary effects, reveal 

cooperative and antagonistic effects of multiple TFs on gene regulation, and enable more 

accurate identification of TF-mediated gene regulatory networks that drive cell fate. 

Here, we develop NEAT-seq, a method that enables sensitive and specific quantification 

of nuclear proteins along with ATAC-seq and RNA-seq in single cells. We use NEAT-seq to profile 

CD4 memory T cells, a functionally diverse cell population regulated by several known master 

TFs. We illustrate the utility of NEAT-seq for interrogating the relationship between master TF 

abundance, chromatin accessibility changes, and gene expression, identifying regulatory 

elements and candidate target genes associated with TFs driving distinct CD4 T cell lineages and 

uncovering three distinct regulatory mechanisms controlling expression and activity of the master 

TFs themselves. Using these data, we also nominate a candidate target gene for a GWAS SNP 

associated with pulmonary disease that lies within a GATA motif, and show that the SNP alters 

chromatin accessibility in a GATA3 dosage-dependent manner.  
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 While multiple groups have demonstrated sequencing-based surface protein 

quantification using barcoded antibodies1,3,13,14, application to nuclear proteins has been 

challenging due to high levels of background oligo-antibody staining in the nucleus, potentially 

driven by the highly negatively charged conjugated single stranded DNA (ssDNA) oligo5,15. One 

approach to reduce non-specific staining is to saturate cells with single stranded nucleic acids or 

other negatively charged polymers in an attempt to block cellular components that bind non-

specifically to ssDNA5,6,8,15. However, we hypothesized that directly blocking the charge of the 

antibody oligo might dramatically improve signal over background. We tested this hypothesis by 

binding the conjugated ssDNA oligo with E.coli single-stranded DNA binding protein (EcoSSB). 

Several features of EcoSSB made it an attractive candidate for this application. First, EcoSSB 

binds with high affinity to ssDNA in a sequence non-specific manner, but has low affinity for 

dsDNA in the nucleus16, thereby minimizing background by neutralizing oligonucleotide charge 

while likely not influencing global chromatin accessibility within the nucleus. Second, EcoSSB has 

a slow dissociation rate,16,17 enhancing its ability to remain complexed with the conjugated oligo 

during staining. Finally, since one of the biological functions of EcoSSB in cells is to facilitate DNA 

replication18, we anticipated that EcoSSB bound to the conjugated oligo would not interfere with 

PCR amplification of the oligo during library generation.  

To test and optimize staining with EcoSSB-bound oligo-conjugated antibodies, we 

designed a system to easily and accurately assess the specificity and dynamic range of antibody 

signal produced under diverse staining conditions. We first conjugated an anti-GFP antibody with 

streptavidin and mixed the conjugated antibody with 80-bp ssDNA oligos modified with 5’ biotin 

and 3’ Cy5 fluorophore. This antibody allowed us to compare oligo-antibody staining levels (via 

Cy5 fluorescence) to GFP fluorescence levels within a cell. We used this antibody to stain 

HEK293 cells expressing a nuclear-localized GFP and measured GFP and Cy5 fluorescence 

using flow cytometry.   
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To test the effects of EcoSSB on the specificity of GFP staining using an oligo-antibody, 

we incubated nuclei expressing GFP with oligo-antibody that had been pre-incubated with or 

without EcoSSB. Using flow cytometry, we observed that pre-incubating the oligo-antibody with 

EcoSSB greatly reduced background staining and yielded a strong correlation between Cy5 

antibody signal and GFP levels within the nucleus that was not observed in the absence of 

EcoSSB (Fig. 1a). To confirm that our quantification of conjugated oligo reflected GFP protein 

levels within the nucleus, we sorted nuclei into 3 populations of increasing GFP expression for 

qPCR targeting the conjugated oligonucleotide (Supplementary Fig. 1a). The relative levels of 

conjugated oligo quantified from each population via qPCR corresponded to the differences in 

GFP abundance measured through flow cytometry (Supplementary Fig. 1b). To determine if these 

staining conditions would be sufficiently sensitive to detect endogenous levels of nuclear protein, 

we stained for the TF GATA1 in K562 cells, using embryonic stem cells (ESCs) as a negative 

control. Indeed, we observed a marked increase in GATA1 staining in K562 relative to ESCs using 

a GATA1 antibody linked to the Cy5-modified oligo (Supplementary Fig. 1c). 

We next sought to combine nuclear protein quantification with scATAC-seq and scRNA-

seq using the 10X Genomics Multiome kit. Because cell fixation increases the doublet rate in 

droplet-based single cell technologies4, we performed a species mixing experiment with hashtag 

oligos14 (HTOs) to assess doublet identification while also evaluating the ability of our protocol to 

accurately measure nuclear protein abundance. We assayed a 1:1 mixture of 1,013 human K562 

cells and mouse ESCs stained for mutually exclusive TFs (GATA1 for K562, and SOX2 and OCT4 

for ESCs) and a nuclear pore complex (NPC) antibody linked to distinct HTOs (Fig. 1b). Clear 

separation between positive and negative staining for HTOs allowed us to set stringent cutoffs for 

positive staining and remove droplets that were positive for more than one hashing oligo and thus 

likely contained a doublet (Fig. 1c). Though the doublet rate was higher than for unfixed cells, the 

use of HTOs allowed for in silico removal of almost 50% of these doublets (Fig. 1d, Supplementary 
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Fig. 1d, e). This hashing procedure also allows for straightforward sample multiplexing, enabling 

independent samples to be labeled with distinct hashing oligos, then mixed into the same 

experiment for hash-based downstream deconvolution. 

 For human and mouse singlets, we detected a median of 13,496 and 16,883 RNA UMIs; 

4,732 and 5,086 genes; and 26,762 and 26,929 ATAC fragments per cell, respectively (Fig. 1e). 

The fragment length distribution and average TSS enrichment were also comparable to bulk 

ATAC-seq libraries (Supplementary Fig. 1f, g). Importantly, we observed considerable enrichment 

of GATA1 and OCT4 antibody-derived tag (ADT) counts and moderate enrichment of SOX2 ADT 

counts in their respective cell types (Fig. 1f). Together, these results show that we can 

simultaneously quantify endogenous nuclear protein abundance, chromatin accessibility, and 

gene expression in fixed single cells. We refer to this method as NEAT-seq (Nuclear protein 

Epitope, chromatin Accessibility, and Transcriptome sequencing).  

 We next applied NEAT-seq to profile primary human CD4 memory T cells. This population 

of cells comprises distinct memory helper T cell subsets driven by known master TFs, providing 

a diverse system for dissecting the regulatory mechanisms upstream and downstream of these 

TFs to control cell state. Our antibody panel targeted TFs that drive Th1 (Tbet), Th2 (GATA3), 

Th17 (RORγT), and Treg (FOXP3 and Helios) cell fate19. After filtering for high quality cells and 

removing HTO doublets, we identified contaminating CD8 memory T cells in our sample by 

projecting our cells onto a UMAP of peripheral blood mononuclear cells20 and removed these from 

analysis. The resulting 8,472 cells had a median TSS enrichment of 19.0 and we detected a 

median of 4,704 ATAC-seq fragments, 1,144 genes, and 1,999 RNA UMIs per cell.  

We identified seven clusters in the population using either scATAC-seq or scRNA-seq 

data (Fig. 2a, Supplementary fig. 2a). Of these, we identified four clusters that contained strong 

enrichment for TF protein measurements, suggesting correspondence to Th1, Th2, and Th17 

memory cells as well as Tregs (Fig. 2c, Supplementary fig. 2c). In most cases, these clusters also 
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had the highest RNA levels for the respective ADT-targeted TFs, and the highest chromatin 

accessibility around these TF gene loci (Fig. 2c, Supplementary Fig. 2b). These clusters also 

showed greater accessibility at the gene loci of cytokines produced by the corresponding T cell 

subsets, while expressing low or undetectable levels of RNA for these cytokines (Supplementary 

Fig. 2g, h). This observed epigenetic priming of cytokine genes is consistent with the primed 

status of memory T cells21.  

In addition to these four T cell subtypes we identified using ADT TF measurements, we 

identified a cluster with increased motif accessibility for the naïve and central memory (CM) TFs, 

Lef1 and Tcf722 (Fig. 2b, Supplementary Fig. 2d), and higher expression of the CM surface 

marker, CCR723 (Supplementary Fig. 2e). We annotated this cluster as CM cells, although the 

surrounding Th1, Th2, and Th17 clusters likely also include both CM and effector memory (EM) 

cells, forming a continuous “effectorness gradient” that branches out from the CM cluster into EM 

cells of each helper T cell subtype24.  We also identified a small cluster of cells expressing higher 

levels of various activated T cell markers, including CCL5, a marker of late activation25, and 

IFIT226, IFIH127, and OASL28 – genes induced during an immune response (Supplementary Fig. 

2f). We therefore concluded that these cells were likely recently activated cells. Lastly, we 

observed a cluster lacking significant motif enrichment for any TFs. We hypothesized that these 

cells could represent uncommitted or virtual memory cells, a previously described memory cell 

type that arises without being stimulated by foreign antigen29,30 However, it remains possible that 

these cells could belong to other known T cell subsets that are unidentified here, such as Th9 or 

follicular helper T cells.  

The use of ADTs greatly improved detection of the target TFs in a cell compared to RNA 

data. While smoothing the RNA signal across cells was sufficient for identification of cell types 

(Fig. 2c), when we plotted unsmoothed RNA-seq and ADT counts we found that only the 

unsmoothed ADT data were sufficient to clearly label the appropriate cell cluster while, with the 
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exception of Helios, the RNA counts were too sparse to do so (Supplementary Fig. 2j). We 

observed zero RNA transcripts for the TF in over 90% of cells in the corresponding cell type for 

RORγT, Tbet, and Foxp3, and no transcript in over 20% of cells for GATA3 and Helios (Fig. 2d). 

By contrast, we observed under 0.5% dropout for the corresponding ADT counts and appropriate 

ADT signals were strongly enriched in the relevant cell types (Fig. 2d, Supplementary Fig. 2c). 

 By integrating these quantitative measurements of TF abundance with our ATAC-seq or 

RNA-seq data, we can identify distinct modes of TF regulatory activity. One long-standing 

hypothesis in the field has been that TF binding at target enhancers can lead to nucleosome 

eviction and creation of accessible chromatin9. Computational methods such as transcription 

factor footprint analysis and ChromVAR seek to infer this TF activity by examining global changes 

in accessibility patterns at TF binding sites31,32, but it has not been shown whether these 

inferences actually correspond to TF protein abundance at a single cell level. NEAT-seq revealed 

clear correspondence between TF abundance and ChromVAR motif accessibility scores for 

RORγT, GATA3, and Tbet across cells (Fig. 2c). In contrast, Helios and FOXP3 motif accessibility 

did not correlate with protein expression. In the case of Helios, we believe that this is due to a 

“collision” of binding motifs: “GGAA” is the core motif for Helios, which is highly similar to the 

NFAT motif, a previously described binding partner for Helios33. We hypothesized that this Helios 

motif denotes Helios binding driven by interactions with NFAT in GM12878 where the two TFs 

are co-expressed and from which the ChIP-seq motif is derived, and is therefore not 

representative of the binding motif in Tregs. Supporting this hypothesis, we found that NFAT 

expression and NFAT motif accessibility were highly overlapping with accessibility of the B cell-

derived Helios motif in CD4 memory cells, and that NFAT expression was low in Tregs 

(Supplementary Fig. 2i). In contrast, the lack of concordance between FOXP3 expression and 

motif accessibility is consistent with previous studies showing that FOXP3 binds to pre-existing 

enhancers to drive Treg fate34, indicating that FOXP3 binding relies on the chromatin remodeling 
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activity of other TFs. These observations suggest that, while three of the TFs in our panel appear 

to promote accessibility at their binding sites, FOXP3, and possibly Helios, appear unable to 

directly influence the chromatin accessibility landscape at their putative binding sites.  

TF protein abundance measurements also enable us to identify post-transcriptional 

regulatory processes that would not be observable through scRNA-seq alone. With GATA3, we 

detected clear discordance between protein levels and RNA expression across cells, with high 

GATA3 RNA expression observed across several memory T cell subsets and high GATA3 ADT 

levels observed only in the Th2 cluster (Fig. 2c). These ADT differences, but not RNA differences, 

were correlated with global changes in GATA3 motif accessibility, suggesting that ADTs faithfully 

report on chromatin modulating potential of this TF. Conversely, accessibility proximal to the 

GATA3 gene was increased in a range of cells in a pattern similar to GATA3 RNA expression. 

These observations are consistent with post-transcriptional regulatory mechanisms restricting 

GATA3 protein expression in memory T cells.  

To identify genes that may be involved in post-transcriptional GATA3 regulation, we first 

identified cells expressing high levels of GATA3 RNA, then performed differential expression 

analysis between cells with high vs low levels of GATA3 ADT using Seurat (Fig. 2e). Among the 

top upregulated genes (FDR < 0.05) were several core translation regulators, including the 

elongation factor EEF1G, large ribosome subunit RPL18, and poly-A binding protein PABPC4, as 

well as more indirect regulators such as NIBAN1, which promotes translation by regulating 

phosphorylation of the initiation factors EIF2A and EIF4EBP135 (Fig. 2f). GATA3 translation is 

regulated by PI3K signaling through mTOR36 which, like NIBAN1, phosphorylates EIF4EBP1 to 

allow assembly of the initiation complex37. We also observed upregulation of a direct activator of 

PI3K, GAB2, in cells with high GATA3 protein levels. These results suggest that upregulation of 

genes that promote translation may play a role in driving GATA3 protein production in the Th2 

subset of memory T cells. Together, our results show that the TFs in our panel can be separated 
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into three categories based on the primary mechanism used to modulate their activity: those 

regulated at the level of transcription and show concordant RNA, protein, and motif accessibility 

patterns (RORγT, and Tbet), those regulated transcriptionally but that require other TFs to bind 

chromatin (Helios and FOXP3), and those regulated post-transcriptionally (GATA3). 

Simultaneous measurement of nuclear TF protein abundance, chromatin accessibility, 

and gene expression also enables the correlation of each of these data types to uncover 

regulatory links between trans-acting factors, the cis-acting elements they bind, and resulting 

changes in expression. Such an analysis is challenging with only RNA-seq data, as low TF 

transcript counts and post-transcriptional regulation of TF abundance make correlation both 

technically and biologically problematic. We found hundreds of cis-regulatory elements with 

accessibility significantly correlated with the protein levels of RORγT, Tbet, and GATA3 (FDR < 

0.05). As expected, the corresponding TF motif was significantly enriched in these peaks 

(Supplementary Fig. 3a). We observed no significant enrichment for the FOXP3 and Helios motifs 

in correlated peaks, consistent with our earlier observations that these TFs are not correlated with 

global accessibility changes (Fig. 2c). 

We similarly searched for genes associated with each TF and identified dozens of genes 

with RNA expression significantly correlated with protein levels of each TF (Supplementary Fig. 

3b). Within these correlated gene sets were genes known to be enriched or functionally important 

in the memory T cell subset driven by the TF in question, such as IL4R for GATA3 and CTLA4 for 

both Helios and FOXP338. We also explored how differences in TF protein abundance within a 

cluster might reveal heterogeneity in cell state and detected a modest difference in RORγT motif 

accessibility between cells containing high and low RORγT protein levels within the annotated 

Th17 cluster (Supplementary Fig. 3d). RORγT protein levels within this cluster were significantly 

correlated with a number of genes known to function in Th17 cells (RORA39, PTPN1340, 

ZBTB1640,41; Supplementary Fig. 3e), while genes anti-correlated with RORγT levels included 
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genes enriched in naïve CD4 cells (NELL2, MAML2)42 and genes that promote cell cycle (YPEL5, 

CCND3)43,44, suggesting that cells with low RORγT in the Th17 cluster may represent a more 

proliferative precursor in memory cell differentiation.  

To identify candidate genes directly regulated by each TF through a TF-associated 

enhancer, we overlapped the top TF ADT-correlated genes with top TF ADT-correlated peaks 

containing the corresponding TF motif that were within 100 kb of the gene promoter and filtered 

for significant peak-gene linkages (Fig. 3a). We performed this analysis for the TFs that showed 

correlation between TF abundance and motif accessibility and identified 167 candidate TF-peak-

gene linkages for GATA3, 345 for RORT, and 81 for Tbet (Fig. 3b). Included in these candidate 

TF targets were canonical surface markers for the corresponding cell type: Among the GATA3 

targets were Th2 markers CCR4, CCR8, and IL4R, and among RORT targets was the Th17 

marker, CCR6 (Fig. 3c, Supplementary Fig. 3c). 

We also reasoned that the TF-peak-gene linkages we identified could be used to interpret 

the effects of non-coding GWAS SNPs on TF activity and connect them to putative target genes. 

We overlapped peaks in our TF-peak-gene linkages with candidate causal GWAS SNPs45 and 

identified a SNP, rs62088464, located within a GATA motif sequence in a GATA3 ADT-associated 

peak. The risk allele, which preserves the GATA motif, is associated with decreased pulmonary 

function as measured by decreased forced vital capacity46, which can result from pulmonary 

fibrosis and several other inflammatory lung diseases associated with Th2 immune responses47. 

The gene linked to the peak containing this SNP encodes the tRNA splicing endonuclease, 

TSEN54, a gene with significantly enriched expression in the sputum of patients with type-2 

airway inflammation48,49 (Fig. 3d). Since our T cell donor was heterozygous for this SNP, we 

examined whether the risk allele was more accessible than the protective allele in cells with high 

GATA3 protein levels. Indeed, we observed that almost all ATAC-seq reads in the top 10% of 

cells ranked by GATA3 ADT levels mapped to the risk allele, while this difference was far less 
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pronounced in cells with lower levels of GATA3 ADT (Fig. 3d, p = 7.81⨉10-4). Together, these 

results suggest that GATA3 binds the risk allele sequence to activate the regulatory element and 

drive expression of TSEN54 and that this binding is disrupted with the protective allele.  

 NEAT-seq provides a new avenue for studying the quantitative effects of epigenetic 

regulator abundance on both chromatin and gene expression state in primary human samples. 

Whereas previous studies investigating dosage-dependent effects of TFs often required building 

cell lines with a combination of hypomorphic and null alleles50,51 or inducible expression systems52, 

we demonstrate that NEAT-seq can measure the molecular consequences of continuous changes 

in TF levels in a biologically relevant setting for a panel of proteins simultaneously. Measuring 

nuclear protein levels using ADTs is more sensitive and accurate than RNA measurements for 

both technical and biological reasons. Since nuclear proteins encompass many proteins involved 

in gene regulation including TFs and chromatin modifiers, the capacity to link nuclear protein 

levels to epigenetic and transcriptional status provides a powerful approach for studying gene 

regulation. While oligo-antibodies against nuclear proteins are currently limited, we anticipate that 

these will become more readily available as demand increases. Incorporating additional 

modalities such as cytoplasmic and cell surface proteins, CRISPR gRNA sequencing, and TCR 

sequencing will enable measurement of the effects of cellular perturbations and signaling 

pathways on cell state, providing an even more comprehensive picture of cellular programs. By 

measuring how these modalities change in relation to each other in dynamic processes such as 

cellular differentiation, reprogramming, transformation, and activation, we will be able to dissect 

the molecular regulatory mechanisms that drive cell fate determination and disease states in a 

variety of systems.  
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Experimental methods 

Cell culture 

Mouse V6.5 ESCs were cultured on gelatin-coated plates in Knockout DMEM (Thermo Fisher 

#10829018) supplemented with 7.5% ES-qualified serum (Applied Stem Cell #ASM-5017), 7.5% 

Knockout Serum replacement (Thermo Fisher #10828-028), 2mM L-glutamine (Gibco 

#35050061), 10mM HEPES (Gibco #15630080), 100 units/mL penicillin/streptomycin (Gibco 

#151401222), 0.1mM non-essential amino acids (Gibco #11140050), 0.1mM beta-

mercaptoethanol (Gibco #21985023), and LIF. The human chronic myeloid leukemia cell line, 

K562, was purchased from ATCC and cultured in RPMI 1640 medium (Gibco #11875119) 

containing 15% FBS and 100 units/mL penicillin/streptomycin. HEK 293T cells were cultured in 

DMEM with GlutaMAX (Gibco #10566024) containing 10% FBS and 100 units/mL 

penicillin/streptomycin. Frozen vials of primary human CD4+CD45RO+ memory T cells were 

purchased from STEMCELL Technologies (Cat #70031).   

GFP transfection, staining, and sorting 

On day 0, HEK 293T cells were seeded at 4 million cells per 10cm plate. On day 1, cells were 

transfected with 6ug nuclear-localized GFP construct (Addgene #67652) using Fugene HD 

transfection reagent (Promega). Cells were harvested and stained using anti-GFP antibody 

(Biolegend 338002) linked to an 80 bp ssDNA oligo with 3’ Cy5 fluorophore as described in the 

oligo-antibody staining methods section, except without RNase inhibitor or DTT. A control stain 

was performed with the oligo-antibody in the absence of SSB. Stained cells were resuspended in 

PBS and analyzed on an LSRII flow cytometer or sorted on a BD FACS Aria II.  

Antibody conjugation 

Antibodies were conjugated with streptavidin using the Lightning-Link Streptavidin Conjugation 

Kit from Abcam (ab102921) according to manufacturer’s instructions. NaCl and Tween were 
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added to the conjugated antibody mixture to a final concentration of 0.5M NaCl and 0.01% Tween 

and mixed with biotinylated oligos (purchased from IDT) at equimolar ratio. The mixture was 

incubated overnight at room temperature and unbound oligo was removed using Amicon 100KDa 

centrifugal filters (UFC510008). Antibody conjugates were eluted and stored in PBS. Antibodies 

conjugated with streptavidin were GATA1 (Abcam ab241393), OCT4 (R&D AF1759), SOX2 (R&D 

MAB2018), nuclear pore complex antibody (Biolegend 902901), and GFP (Biolegend 338002). 

Antibodies in the TF panel for CD4 memory T cells were directly conjugated to oligos by BD 

Biosciences. The antibodies in the panel were the following clones from BD Biosciences: GATA3 

(L50-823), Tbet (4B10), RORγT (Q21-559), FOXP3 (259D/C7), and Helios (22F6).  

Binding of single stranded DNA binding protein to oligo-antibodies 

To bind EcoSSB (Promega M3011) to the antibody-oligos, we incubated the antibody and 

EcoSSB in 50ul of 1X NEBuffer 4 for 30 min at 37 degrees Celsius. We then added a final 

concentration of 3% BSA, 1X PBS, and 1U/ul RNase inhibitor to the antibody mix in a final volume 

of 100ul for staining cells. To calculate the amount of EcoSSB needed to saturate binding sites 

on the antibody oligos, we estimated that each antibody was conjugated to an average of 2 oligos 

of 95bp, and each EcoSSB tetramer would bind with a ~35bp footprint53,54, requiring 6 EcoSSB 

tetramers per antibody. Based on the concentration of antibody being used and reported Kd of 

EcoSSB (in the ~2nM range)17, we can then estimate the amount of EcoSSB necessary to bind a 

given fraction of oligos (aiming for > 0.9) using the following equation: 

𝑑𝑒𝑠𝑖𝑟𝑒𝑑 𝑓𝑟𝑎𝑐𝑡𝑖𝑜𝑛 𝑜𝑓 𝑜𝑙𝑖𝑔𝑜 𝑏𝑜𝑢𝑛𝑑

=  
([𝐸𝑐𝑜𝑆𝑆𝐵]𝑡𝑜𝑡 + [𝑜𝑙𝑖𝑔𝑜]𝑡𝑜𝑡 + 𝐾𝑑) −  √([𝐸𝑐𝑜𝑆𝑆𝐵]𝑡𝑜𝑡 + [𝑜𝑙𝑖𝑔𝑜]𝑡𝑜𝑡 + 𝐾𝑑)2 − 4 ∗ [𝐸𝑐𝑜𝑆𝑆𝐵]𝑡𝑜𝑡 ∗ [𝑜𝑙𝑖𝑔𝑜]𝑡𝑜𝑡

2 ∗ [𝑜𝑙𝑖𝑔𝑜]𝑡𝑜𝑡
  

where [oligo]tot = antibody concentration * 2 oligos * 3 EcoSSB binding sites per oligo.  

Oligo-antibody staining  
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Cells were fixed in 1.6% formaldehyde in PBS for 2 min at room temperature, then quenched with 

0.25M glycine for 5 min on ice and spun down at 600g for 5 min. Cells were washed twice with 

PBS and then resuspended in lysis/permeabilization buffer (20mM Tris-HCl pH 7.5, 150mM NaCl, 

3mM MgCl2, 0.5% NP40, 0.1% Tween-20, 0.01% digitonin, 1U/ul RNase inhibitor, 1mM DTT). 

Cells were incubated on ice for 10 mins, pelleted at 600g for 5 mins, and washed twice with wash 

buffer (20mM Tris-HCl pH 7.5, 150mM NaCl, 3mM MgCl2, 0.1% Tween-20, 1U/ul RNase inhibitor, 

1mM DTT). Cells were incubated in staining buffer (PBS with 3% BSA, 1U/ul RNase inhibitor) 

with 1mM DTT and 1mg/ml of single stranded DNA (ssDNA) for 30 mins at room temperature, 

pipetting often to resuspend cells. For the flow cytometry experiments involving GFP staining, 

salmon sperm DNA was used for the ssDNA block. However, due to significant amounts of 

annealing to form double stranded DNA that would result in contaminating reads in ATAC-seq 

data, we switched to using either a mixture of random 30-mers or a 30bp ssDNA oligo sequence 

with no complementarity to the mouse or human genome for multiome experiments. To ensure 

no priming would occur with these oligos, they were modified with a terminal dideoxy cytosine.  

After blocking with ssDNA, Tween was added to a final concentration of 0.1% and cells were 

pelleted and washed once with staining buffer + 0.1% Tween. Cells were then split into 5 tubes 

and each tube of cells was incubated with an anti-NPC antibody linked to a distinct HTO (pre-

bound with SSB) for 30 min at room temperature. Cells were washed twice with staining buffer + 

0.1% Tween, re-pooled, and incubated with TF antibody mix for 30 min at room temperature. For 

the CD4 memory T cell experiment, cells were split into two tubes prior to incubating with two 

concentrations of the TF antibody mix. A distinct hashing antibody was also added to the two TF 

antibody mixes to identify the concentration of antibody that each cell was stained with. Cells were 

then washed twice with staining buffer + 0.1% Tween, and cells incubated with different 

concentrations of TF antibody were pooled. Cells were washed once more with PBS containing 

1% BSA and 1U/ul RNase inhibitor, then resuspended in 1X Nuclei buffer containing 1U/ul RNase 
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inhibitor from the 10X Genomics Multiome kit. The cell suspension was then filtered through a 

40um Flowmi strainer 2-3 times until nuclei clusters were removed. 

Antibody concentrations 

The NPC, GATA1, SOX2, and OCT4 antibodies were all used at 0.3ug in 100ul of staining buffer 

(3ug/mL). The two antibody concentrations for TF antibodies used in the CD4 memory T cell 

experiment are indicated below: 

Antibody Conc. 1  (ug/mL; marked by 

NPC1) 

Conc. 2 (ug/mL; marked by 

NPC2) 

RORT 0.39075 1.95375 

Foxp3 2.5 5 

GATA3 3.125 15.625 

Helios 0.39075 1.95375 

Tbet 3.125 15.625 

 

Single cell library preparation and sequencing 

Antibody-stained cells in 1X Nuclei buffer were processed using the 10X Genomics Multiome kit 

as indicated in the standard protocol (Rev A) to generate ATAC-seq and RNA-seq libraries. For 

the barnyard experiment, 1,500 cells were targeted in one lane of the chip. For the CD4 memory 

T cell experiment, 6,000 cells were targeted per lane and 2 lanes were used. During the pre-

amplification step, Truseq read 2 (CAGACGTGTGCTCTTCCGATC) and Nextera read 2 

(GGCTCGGAGATGTGTATAAGAGACAG) primers were spiked in at 0.2uM final concentration 

to amplify ADT and HTO oligos. To generate ADT and HTO libraries, 35ul of pre-amplification 

product from step 4.3p was amplified with indexing primers using 2X NEB Next High-Fidelity PCR 
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Master Mix (M0541). A double-sided SPRI bead clean up was performed using 0.6X SPRI beads 

(retaining supernatant) and then adding additional SPRI beads to a final concentration of 1.2X, 

washing with 80% ethanol, and eluting ADT or HTO libraries from beads using EB buffer. Libraries 

were quantified by PCR using a PhiX control v3 (Illumina FC-110–3001) standard curve. scATAC-

seq libraries were sequenced alone on a NextSeq 550 sequencer and ADT libraries were either 

sequenced alone on a MiSeq (for the barnyard experiment) or together with scRNA-seq libraries 

on a NextSeq 550 (for the CD4 memory T cell experiment). Recommended sequencing read 

configurations for 10X Multiome libraries were used for scATAC- and scRNA-seq libraries. For 

sequencing of the ADT libraries from the barnyard experiment, the read configuration was 28bp 

Read 1, 48bp Read 2, and 8bp for Index 1 and 2. We sequenced approximately 300,000 read 

pairs per cell for both scATAC-seq and scRNA-seq libraries and 7,000 read pairs per cell for ADT 

libraries in the barnyard experiment. We sequenced approximately 40,000 read pairs per cell for 

scATAC-seq, 35,000 read pairs per cell for scRNA-seq libraries, and 5,000 read pairs per cell for 

both the ADT and HTO libraries in the CD4 memory T cell experiment. 

Antibody oligo sequences 

ADT oligos and HTO oligos from the barnyard experiment had a partial Truseq read 2 sequence 

followed by 12bp UMI, 36bp antibody-specific barcode, and 25bp poly A tail as follows: 

CAGACGTGTGCTCTTCCGATCT[12bp UMI][36bp 

Barcode]AAAAAAAAAAAAAAAAAAAAAAAAA 

HTOs for the CD4 memory T cell experiment were similarly designed, except they instead had a 

partial Nextera read 2 sequence to allow separate amplification of TF antibody oligos from HTOs, 

which often stain at higher levels: 

GGCTCGGAGATGTGTATAAGAGACAG[12bp UMI][36bp 

Barcode]AAAAAAAAAAAAAAAAAAAAAAAAA 
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Note that the hashing antibody used together with the TF antibody panel for marking the two 

antibody concentrations tested in CD4 memory T cells was linked to an ADT oligo with a partial 

Truseq read 2 sequence so that it would be amplified with the TF ADTs and could be used to 

normalize TF ADT counts. All antibody barcode sequences are provided in Supplementary Table 

1.    

Analytical methods 

ADT and HTO processing 

Raw sequencing data were converted to fastq format using bcl2fastq (Illumina). ADTs and HTOs 

were then assigned to individual cells and antibodies using the matcha barcode matching tool55. 

Cell barcodes were matched based on exact matches, and up to 3 mismatches were allowed in 

antibody barcode sequences. Counts for each antibody were tabulated by counting UMIs. In the 

barnyard experiment, cells with fewer than 200 ADT+HTO UMIs were excluded from analysis. In 

the CD4 T cell experiment, cells with fewer than 75 HTO UMIs or 100 ADT UMIs were excluded. 

All HTO count data and TF ADT count data from the barnyard experiment were normalized using 

a centered log ratio (CLR) transformation as previously described1. For the CD4 memory T cell 

experiment, TF ADT counts were normalized to HTO counts from the anti-NPC HTO that was 

added to distinguish two different concentrations of the TF antibody panel used to stain cells, 

since we expected that levels of the nuclear pore complex should be relatively constant across 

cells. We then multiplied by 250 (i.e roughly the median number of NPC counts per cell), added 

one pseudocount, and log2-transformed counts. We chose the NPC normalization method 

because it was more robust than CLR transformation in cases where cells are primarily positive 

for only one antibody in the panel, as was the case for the CD4 memory T cells.  

Doublet detection using HTOs 
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For doublet detection in the barnyard experiment, we filtered for cells with at least 400 total ADT 

counts, and performed CLR-transformation on HTO counts only. CLR cutoffs for positive staining 

of each HTO was performed automatically in a similar manner to Seurat’s HTODemux function56. 

Cells were k-means clustered based on CLR-normalized HTO counts, with the k equal to the 

number of hashing oligos. This serves as a rough HTO assignment which can be used to infer 

background staining distributions. The cutoff value for each HTO was determined by taking the 

99th percentile of a normal distribution fit to the CLR-normalized HTO counts in the k-1 clusters 

with the lowest mean value for the given HTO. This differs from Seurat’s HTODemux by using a 

normal distribution on CLR-normalized counts rather than a negative binomial distribution on raw 

counts, and in using the bottom k-1 clusters to fit the background distribution rather than the 

bottom 1 cluster. After computing cutoffs for each HTO, we removed cells which were not positive 

for exactly 1 HTO, annotating the cells positive for >1 HTO as doublets. 

For doublet detection in the CD4 memory T cell experiment, we filtered for cells with at least 75 

HTO counts per cell and performed CLR-transformation on HTO counts only. We set CLR cutoffs 

for positive staining of each HTO individually based on the bimodal distribution for each HTO and 

only cells positive for exactly one HTO were retained. Since we also incorporated two hashing 

oligos in the TF staining step to distinguish between two antibody concentrations used, we also 

annotated doublets using these HTOs and removed them from analysis.  

Barnyard experiment species analysis 

Raw sequencing data were converted to fastq format, and aligned to a chimeric hg38 and mm10 

reference genome using cellranger-ARC v1.0.1 from 10x Genomics. First, we filtered droplets for 

high-quality cells based on >7,500 RNA UMIs, >10,000 unique ATAC fragments, and TSS 

enrichment > 10. TSS enrichment was calculated using the combined set of mouse + human TSS 

coordinates and the default parameters of ArchR’s TSS enrichment. Next, we annotated species 

based on the fraction of reads aligning to either the mouse genome or the human genome. For 
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ATAC-seq reads, this cutoff was manually set to >95% of reads aligning to a single species. For 

RNA-seq reads we observed greater cross-cell read contamination, particularly from mouse 

transcripts which had high abundance in non-cell droplets. As a result, we set a cutoff of >70% 

reads aligning to the human genome, or >95% reads aligning to the mouse genome. For our main 

doublet analysis, we considered cells to be mouse-human doublets if they did not pass the 

species cutoff for both their ATAC-seq and RNA-seq reads. 

Inferred doublet rates were calculated by dividing the observed doublet rate by the fraction of cell 

pairings expected to be between mouse and human cells (inferred doublet rate = 

𝑚𝑖𝑥

𝑚𝑜𝑢𝑠𝑒+ℎ𝑢𝑚𝑎𝑛+𝑚𝑖𝑥

(𝑚𝑜𝑢𝑠𝑒+ℎ𝑢𝑚𝑎𝑛)2

2𝑚𝑜𝑢𝑠𝑒⋅ℎ𝑢𝑚𝑎𝑛
). For perfectly even mixtures of mouse and human cells, the 

inferred doublet rate will be twice the observed doublet rate, and deviations from even mixtures 

will increase the inferred doublet rate relative to the observed doublet rate. 

scATAC-seq analysis 

Raw sequencing data were converted to fastq format and aligned to the hg38 reference genome 

using cellranger-ARC v.1.0.1 from 10X Genomics. Fragment files were then loaded into ArchR 

(v1.0.2) using the createArrowFiles function. Cells with a TSS enrichment < 10 or fewer than 1000 

unique fragments per cell were removed from analysis along with HTO-annotated doublets. 

Remaining cells were projected onto a reference dataset of hematopoietic cells20, using a liftover 

of the published hg19 peak coordinates to hg38 and the published LSI loadings for each peak. 

Cell type annotations were transferred as the most common cell type from the 10 nearest 

neighbors, and contaminating CD8 memory T cells were removed from further analysis. We next 

computed an iterative LSI dimensionality reduction using the addIterativeLSI function with the 

default tile matrix (insertion counts in 500bp bins across the genome) and 4 iterations. Clustering 

was then performed using the addClusters function and a UMAP was generated using addUMAP, 

both with default parameters.  
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To call peaks, we first generated insertion coverage files from pseudobulk replicates grouped by 

cluster using addGroupCoverages and then called peaks with macs2 using 

addReproduciblePeakSet with default parameters. We then generated a matrix of insertion counts 

for each peak across all cells using addPeakMatrix. To aid in cluster identification, we identified 

marker peaks unique to each cluster and identified TF motifs enriched in these peaks using 

getMarkerFeatures (useMatrix = “PeakMatrix”) and peakAnnoEnrichment. Results were plotted 

using plotEnrichHeatmap(enrichMotifs, n = 5, transpose = TRUE, cutOff = 5). We can also predict 

TF activity by measuring differences in TF motif accessibility across cells using chromVAR31. We 

first determined which peaks contain a motif of interest for motifs in the CISBP database57 using 

addMotifAnnotations with the option motifSet = “cisbp”. We then added a background peak set 

with similar GC content and number of fragments and computed motif deviations for all motifs 

using addBgdPeaks and addDeviationsMatrix, respectively.  

To further help with cluster identification using ATAC-seq data, we can predict gene expression 

or epigenetic priming of a locus by calculating gene activity scores for each gene based on 

accessibility in the region surrounding the gene locus. These scores were calculated in ArchR 

during Arrow file creation with the option addGeneScoreMat = TRUE.  

To compare RORT TF footprinting in Th17 cells with different levels of RORT ADT, we 

calculated imputed RORT ADT values using the ArchR implementation of the MAGIC algorithm58 

with the imputeMatrix function and selected cells within the Th17 cluster that contain the highest 

and lowest 30% of imputed RORT ADT counts. We then generated insertion coverage files from 

these cell subsets using addGroupCoverages and calculated the RORT TF footprint using 

getFootprints. Results were plotted using plotFootprints with normMethod = “Subtract”, although 

similar results were obtained using normMethod = “Divide”.  

scRNA-seq analysis 
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Raw sequencing data were converted to fastq format and aligned to the reference genome using 

cellranger-ARC v.1.0.1 from 10X Genomics. For each lane, the gene expression matrix from the 

filtered_feature_bc_matrix was used to create a Seurat object using Seurat v3.2.1. The two lanes 

of CD4 memory T cell data were then merged into one Seurat object and filtered for cells used in 

the scATAC-seq analysis. Data were normalized with NormalizeData (normalization.method = 

“LogNormalize” and scale.factor = 10000). For principal component analysis, we identified the top 

2000 variable genes using FindVariableFeatures (selection.method = “vst”) and RunPCA was 

performed on scaled data using these variable features. We then clustered cells using 

FindNeighbors with dimensions 1:15 and FindClusters with resolution 0.6. The RNA UMAP was 

generated with RunUMAP using dimensions 1:15. FindAllMarkers was used to identify marker 

genes enriched in each cluster. 

To identify candidate regulators of GATA3 translation, we added ADT data to our Seurat object 

using CreateAssayObject. We first filtered for cells expressing high GATA3 RNA (natural log-

normalized counts > 2.25) and then identified cells expressing high GATA3 ADT (log2 NPC-

normalized counts > 6.12) or low GATA3 ADT (log2 NPC-normalized counts < 4.9116 to match 

number of cells in high GATA3 ADT subset).  To identify differentially expressed genes between 

these two subsets, we ran FindMarkers. We converted the natural log-based fold change values 

output from Seurat v3 to log2 fold changes and calculated adjusted p values using Benjamini-

Hochberg correction.  

Data visualization 

Unless otherwise indicated in the text, visualization of TF motif deviation Z-scores, gene activity 

scores, RNA, and ADTs on the ATAC UMAP embedding was done by plotting imputed values 

using ArchR’s plotEmbedding function.  Ridge plots of normalized ADT counts and scatterplots 

with marginal histograms of normalized ADT vs RNA counts were generated using ArchR’s 

plotGroups (plotAs = “ridges”) and ggpubr’s ggscatterhist, respectively. Normalized ADT counts 
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were calculated as log2(250*(TF ADT counts/NPC HTO counts)+1). Normalized RNA counts 

were calculated as log2(10000*(TF RNA counts/total UMI counts)+1). 

Identifying peaks and genes correlated with TF abundance 

To identify peaks and genes with changes that correlate with TF ADT levels, Spearman 

correlation values were calculated between normalized ADT counts for each TF and either 

normalized Tn5 insertion counts or normalized RNA counts for all peaks and genes with >10 

observed reads across single cells. Raw p-values for correlations were calculated in the same 

manner as R cor.test, namely using a two-sided t-test with n-2 degrees of freedom where 𝑡 =

𝜌√
𝑛−2

1−𝜌2
 and n is the number of cells. P-values were multiple-hypothesis corrected for each ADT 

using the “BH” method of R’s p.adjust, and significant correlations were defined as adjusted p-

value < 0.05. TF motif enrichment in significantly correlated peaks was calculated using a 

hypergeometric test. 

Identification of correlated peaks and genes 

To identify peaks and genes where peak accessibility correlated with gene expression, we formed 

500 aggregates of 100 cells each using the 99 nearest neighbors of randomly selected cells in 

LSI coordinates. These aggregates were constrained to have a maximum pairwise overlap of 

80% of cells. Gene expression and peak accessibility for each aggregate was calculated by 

averaging the normalized accessibility or expression values across all cells in the aggregate. For 

all peak-gene pairs within 100kb of each other, we calculated Spearman correlation and 

significance using a two-sided t-test as for our peak-TF and gene-TF correlations. 

Identifying TF-peak-gene linkages  

To identify candidate direct target genes of a TF, we identified TF ADT-correlated genes that had 

a TF ADT-correlated peak nearby containing the TF sequence motif. Specifically, we overlapped 

the top 20% of ADT-correlated genes with the top 20% of ADT-correlated peaks containing the 
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corresponding TF motif, sorted by Spearman correlation calculated across single cells. For the 

overlap, we required that the peak-gene distance be less than 100kb and that accessibility of the 

peak and expression of the linked gene be significantly correlated (adjusted p-value < 0.05 for 

Spearman correlation, as described above).  

Analysis of fine-mapped GWAS variants 

To identify candidate causal SNPs regulated by a TF and link the SNP to a putative target gene, 

we obtained a comprehensive list of fine-mapped GWAS SNPs 

(https://pics2.ucsf.edu/PICS2.html) and overlapped these with peaks from our identified GATA3 

TF-peak-gene linkages. We focused on rs62088464, a SNP located within a GATA motif site and 

for which our donor was heterozygous for the risk allele. To determine allele-specific differences 

in accessibility at this SNP, we identified all reads overlapping this SNP with mapq > 30 using 

pysam’s pileup method59,60. To stratify cells by GATA3 expression, we z-score transformed the 

CLR-normalized GATA3 expression levels for each of the two antibody titration levels to ensure 

they were on comparable scales, then performed smoothing using the ArchR version of the 

MAGIC algorithm to reduce noise. Cells were divided based on their rank in the smoothed GATA3 

vector. Allele-specific accessibility was determined using a one-sided binomial test, comparing 

the allele frequency in the top 10% of GATA3 cells using the bottom 50% as a null hypothesis.  
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Fig. 1: An optimized intra-nuclear staining protocol using oligo-antibodies enables 

simultaneous profiling of nuclear protein, chromatin accessibility and RNA transcripts in 

single cells. a) Flow cytometry plot of HEK293T cells expressing nuclear-localized GFP and 

stained with an anti-GFP antibody linked to an 80 bp single stranded DNA oligo with 3’-Cy5 

modification. b) Schematic of NEAT-seq workflow. c) Distribution of centered log ratio (CLR) 

transformed counts of HTOs from anti-NPC antibodies (HTO5-9). d) Scatterplot of number of 

reads mapping to the human vs mouse genome in each cell after removing HTO doublets, with 

each cell colored by its classification as a human cell, mouse cell, or mixed species doublet. e) 

Distribution of RNA UMIs, genes, and ATAC-seq fragments per cell.   f) CLR-transformed 

counts of ADTs corresponding to GATA1, OCT4, and SOX2 in cells classified as human or 

mouse cells based on mapping of ATAC-seq and RNA-seq reads to each genome. 
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Fig. 2: Profiling of CD4 memory T cells using NEAT-seq reveals translational regulation 

of GATA3. a) scATAC-seq UMAP of CD4 memory T cells with cell type classifications. TCM = 

central memory, Act. = recently activated cells, Uncom. = uncommitted memory cells. b) Top 

enriched motifs in peaks that are more accessible in each cluster. c) Plots on scATAC UMAP of 

TF chromVAR deviations (motif accessibility), accessibility surrounding the TF gene locus (gene 

accessibility), RNA levels, and protein levels as measured by ADTs for the indicated TFs. d) 

Scatterplots with marginal histograms of log2-transformed read-normalized RNA vs log2-

transformed NPC-normalized ADT counts for each TF. Colored data points represent cells 

belonging to the scATAC-seq cluster most enriched in expression of the indicated TF. e) 

Scatterplot of log2-transformed, normalized RNA vs ADT counts for GATA3 with cutoffs shown 

for high RNA, high protein, and low protein indicated. f) Differentially expressed genes between 

cells with high RNA and high protein vs high RNA and low protein for GATA3. Points in red 

represent genes with adjusted p-value < 0.05 and log2 fold change > 0.5.   
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Fig. 3: Identification of peak-gene linkages associated with master TF protein expression.  

a) Diagram showing criteria used to identify candidate TF-peak-gene linkages for each TF. b) 

Heatmaps of peak-gene linkages correlated with abundance of the indicated TF identified based 

on criteria in (a). Genes that are in the top 200 genes significantly enriched in the T cell subset 

driven by the corresponding TF based on data by Schmiedel et al.38 are labeled. c) Top: CCR6 

ATAC-seq tracks in CD4 memory cells separated into quintiles by RORT ADT levels, along 

with significant peak-gene linkages (adj. p < 0.05). Peaks containing a RORT motif are 

indicated. Bottom: CCR6 RNA expression and accessibility at the highlighted RORT motif-

containing peaks as a function of RORT ADT levels. Mean is shown with standard error of the 

mean. d) Top: TSEN54 ATAC-seq tracks as in (c), but for GATA3 ADT, with the indicated 

GWAS SNP location highlighted. Bottom left: TSEN54 RNA expression and accessibility at the 

highlighted SNP-containing peak as a function of GATA3 ADT levels.  Mean is shown with 

standard error of the mean. Bottom right: Read-normalized Tn5 insertions per cell per million 

reads mapping to the risk vs protective allele in cells above the 90th percentile vs cells below 

the 50th percentile of GATA3 ADT levels. P-value is calculated using a one-sided binomial test 

on T:C ratio of insertion counts. 
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Supplementary Fig. 1: NEAT-seq enables sensitive quantification of endogenous 

transcription factors in single cells while generating high quality ATAC-seq and RNA-seq 

data. a) Sorting of cells expressing low, mid, or high levels of nuclear GFP that have been 

stained with an anti-GFP oligo-conjugated antibody. b) Quantitative PCR for the conjugated 

oligo from equal cell numbers of sorted populations in (a) for n = 2 technical replicates. c) 

Staining of K562 cells and mouse ESCs for endogenous GATA1 protein using an anti-GATA1 

antibody linked to an 80bp oligo with 3’-Cy5. d) Cutoffs for annotating a cell as human, mouse, 

or mixed based on percentage of reads in a cell mapping to the human genome for ATAC-seq 

and RNA-seq data.  e) Scatterplot of number of reads mapping to the human vs mouse genome 

in each cell prior to removing HTO doublets, with each cell colored by its classification as a 

human cell, mouse cell, mixed species doublet, or an HTO doublet. f) Fragment length 

distribution of ATAC-seq data generated using NEAT-seq. g) TSS enrichment of ATAC-seq 

data generated using NEAT-seq. 
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Supplementary Fig. 2: Annotation of scATAC-seq and scRNA-seq clusters. a) scRNA-seq 

UMAP of CD4 memory T cells with cell type classifications. TCM = central memory, Act. = 

recently activated cells, Uncom. = uncommitted memory cells. b) Expression of master TF 

drivers of CD4 memory cell subsets in each scRNA-seq cluster. TBX21 = Tbet transcript, RORC 

= RORγT transcript, IKZF2 = Helios transcript. c) Log2-transformed, NPC-normalized ADT 

counts for each TF separated by scATAC-seq cluster. d) chromVAR deviation scores for the 

naïve and CM T cell TFs, LEF1 and TCF7, overlayed on scATAC-seq UMAP. e) RNA 

expression of the CM marker, CCR7, overlayed on the scATAC-seq UMAP. f) RNA expression 

of the indicated genes across clusters in the scRNA-seq UMAP. g) Gene accessibility for 

cytokines induced in different CD4 T cell subsets overlayed on the scATAC-UMAP. h) RNA 

levels for the cytokines in (g). i) NFATC1 RNA expression and chromVAR deviation scores 

overlayed on scATAC-seq UMAP. j) Overlay of unsmoothed ADT and RNA levels on the 

scATAC-seq UMAP.  
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Supplementary Fig. 3: Identification of DNA regulatory elements and genes correlated 

with master TF protein expression. a) Spearman correlations between ATAC-seq peak 

accessibility and NPC-normalized TF ADT counts across single cells. Cutoffs for significant 

correlations are indicated by dashed lines (see Methods). Points in red indicate peaks 

containing a binding motif for the TF. b) Spearman correlations between read-normalized RNA 

counts and NPC-normalized TF ADT counts across single cells. Cutoffs for significant 

correlations are indicated by dashed lines (see Methods). Significantly correlated genes known 

to be enriched or play a functional role in the relevant T cell subset are labeled. c) Top: CCR4 

ATAC-seq tracks in CD4 memory cells separated into quintiles by GATA3 ADT levels, along 

with significant peak-gene linkages (adj. p < 0.05). Peaks containing a GATA3 motif are 

indicated. Bottom: CCR4 RNA expression and accessibility at the highlighted GATA3 motif-

containing peaks as a function of GATA3 ADT levels.  Mean is shown with standard error of the 

mean. d) TF footprinting in ATAC-seq peaks containing the RORγT motif for cells within the 

annotated Th17 cluster having the highest vs lowest 30% of RORγT ADT levels. ADT counts 

were NPC-normalized and smoothed across cells with similar ATAC-seq profiles using MAGIC. 

e) Spearman correlations between read-normalized RNA counts and NPC-normalized, 

smoothed RORγT ADT counts across single cells in the Th17 cluster. Cutoffs for significant 

correlations are indicated by dashed lines (see Methods). Significantly correlated genes known 

to be enriched or play a functional role in Th17 cells are labeled. Top anti-correlated genes are 

also labeled. 
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