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Abstract 11 

Operon prediction in prokaryotes is critical not only for understanding the regulation of 12 

endogenous gene expression, but also for exogenous targeting of genes using newly developed 13 

tools such as CRISPR-based gene modulation. A number of methods have used transcriptomics 14 

data to predict operons, based on the premise that contiguous genes in an operon will be 15 

expressed at similar levels. While promising results have been observed using these methods, 16 

most of them do not address uncertainty caused by technical variability between experiments, 17 

which is especially relevant when the amount of data available is small. In addition, many existing 18 

methods do not provide the flexibility to determine whether the stringency with which genes 19 

should be evaluated for being in an operon pair. We present OperonSEQer, a set of machine 20 

learning algorithms that uses the statistic and p-value from a non-parametric analysis of variance 21 

test (Kruskal-Wallis) to determine the likelihood that two adjacent genes are expressed from the 22 

same RNA molecule. We implement a voting system to allow users to choose the stringency of 23 

operon calls depending on whether your priority is high coverage of operons or high accuracy of 24 

the calls. In addition, we provide the code so that users can retrain the algorithm and re-establish 25 

hyperparameters based on any data they choose, allowing for this method to be expanded on as 26 

additional data is generated and incorporated. We show that our approach detects operon pairs 27 

that are missed by current methods by comparing our predictions to publicly available long-read 28 

sequencing data. OperonSEQer therefore improves on existing methods in terms of accuracy, 29 

flexibility and adaptability.  30 
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Author Summary 31 

 Bacteria and archaea, single-cell organisms collectively known as prokaryotes, live in all 32 

imaginable environments and comprise the majority of living organisms on this planet. 33 

Prokaryotes play a critical role in the homeostasis of multicellular organisms (such as animals and 34 

plants) and ecosystems. In addition, bacteria can be pathogenic, and cause a variety of diseases 35 

in these same hosts and ecosystems. In short, understanding the biology and molecular functions 36 

of bacteria and archaea and devising mechanisms to engineer and optimize their properties are 37 

critical scientific endeavors with significant implications in healthcare, agriculture, manufacturing 38 

and climate science among others. One major molecular difference between unicellular and 39 

multicellular organisms is the way the express genes – rather than making individual RNA 40 

molecules like multicellular organisms, prokaryotes express genes in long contiguous RNA 41 

molecules known as operons, which are subsequently processed. Understanding which genes 42 

exist within operons is critical for elucidating basic biology and for engineering organisms. In this 43 

work, we use a combination of statistical and machine learning-based methods to use next-44 

generation sequencing data to predict operon structure across a range of prokaryotes. Our 45 

method provides a easily implemented, robust, accurate and flexible way to determine operon 46 

structure in an organism-agnosic manner using readily-available data. 47 

 48 

Introduction 49 

Bacteria often transcribe functionally related genes not as single units but as contiguous 50 

RNA molecules (i.e., operons) - these molecules are under the control of a single promoter, 51 

allowing them to be co-expressed when required1-6. While there are a number of well-52 

characterized operons and operon prediction methods in the literature, qPCR and more recently, 53 

deep sequencing technology, are revealing novel, previously uncharacterized operons in many 54 

bacterial species7,8.  55 

 56 

Existing operon predictions often show high precision and accuracy for well-annotated 57 

organisms, but many of them require information about gene function and conservation9-12. 58 

Newer methods include the use of visual representations of the genome to categorize operons13. 59 
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A drawback of some of these approaches is the challenge in incorporating empirical real-world 60 

data regarding operon structure, which is constantly being generated and evolving our 61 

understanding and cataloging of operons. It is therefore imperative to couple methods based on 62 

existing genomic information with data-based predictions.  63 

 64 

Recent work has shown that using RNA-sequencing (RNA-seq) data can significantly help 65 

increase the accuracy of operon prediction14-19. While this previous work is critical for the 66 

advancement of the understanding of operon biology as it demonstrates the usability of RNA-67 

seq data in this context, there is still a gap in the technology with respect to software that is both 68 

broadly-applicable across experimental conditions and species, but also flexible in allowing the 69 

user to decide whether catching the highest number of operon pairs (high recall) or being very 70 

discerning (high precision) is most important. We believe that an approach that leverages not 71 

raw signal in RNA-seq data (which is highly variable and prone to batch effects), but rather uses 72 

statistics to determine the distribution of signal across two genes and an intergenic region 73 

provides a broader approach to operon prediction that can be used across a range of data sets 74 

and species. In addition, using multiple methods, and tallying the results gives the opportunity 75 

for a voting system that can give the user flexibility in what they decide to call a relevant operon 76 

pair. It is also increasingly clear that careful characterization of the resulting predictions against 77 

long-read-confirmed operons is necessary to truly evaluate the performance of a model, which 78 

is an technological opportunity that has recently arisen. And since novel data will continue to be 79 

generated, both using long- and short-read sequencing, it is necessary to provide the code to re-80 

train and re-evaluate any method developed as this novel data emerges. To continue the work 81 

established by these studies and show that individual RNA-seq experiments can be sufficient for 82 

operon calls, we developed an operon prediction method, trained using a range of RNA-seq data 83 

from different organisms with a range of GC-content, to predict operon structure from a single 84 

set of RNA-seq data for two adjacent genes from data that has never been seen by the algorithm. 85 

Our approach addresses the issue of variability between RNA-seq data sets without requiring two 86 

or more matched experimental conditions, or any information about gene function, thereby 87 

building on and advancing the current state of the art in operon prediction. Our method also 88 
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seeks to address the challenge of normalizing and featurizing the sequencing data to makes it 89 

generalizable across experiments without any prerequisites.  90 

 91 

Operon-SEQer uses a non-parametric statistical test (chosen since the data is not 92 

necessarily normally distributed) to obtain the likelihood that the RNA-seq signal coverage across 93 

two genes and the intergenic region come from the same distribution. Our hypothesis is that the 94 

result of this statistical test, along with intergenic distance, is accurately predictive of an operon 95 

pair from any short-read RNA-seq data set, and we demonstrate this using a set of machine 96 

learning algorithms trained on existing data. We also show that using this method to identify 97 

operons in previously unseen organisms and data sets does not significantly reduce the accuracy, 98 

while leaving open the possibility to train the models with additional data sets if necessary. We 99 

evaluate six different algorithms and show that while specificity and recall vary for each 100 

algorithm, they all perform on-par with existing operon prediction methods; By taking advantage 101 

of a mutli-algorithm method that uses a threshold voting system, we further improve on this 102 

performance. In addition, we show that Operon-SEQer identifies new operon pairs that are not 103 

found in previous standard predictions but are likely to be true operons based on empirical 104 

evidence from previously published long-read E.coli RNA-seq data7. Finally, we demonstrate that 105 

while Operon-SEQer can call operons based on a single data point (without replicates) of a gene 106 

pair and the intergenic region, having 2 or more replicates per gene pair greatly increases its 107 

performance. In summary, our operon calling method matches the state of the art in operon 108 

prediction by determining operon status of gene pairs with high precision and recall, and 109 

advances the state of the art by identifying new operon pairs, and by providing flexibility to the 110 

user to determine whether they want their results to favor higher recall (i.e. catch every single 111 

operon pair) or higher specificity (i.e. make sure anything called is a true positive).  112 

 113 

Results 114 
 115 
Statistical analysis of features from RNA-seq data for operon prediction 116 

 117 
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The main aims of Operon-SEQer are to predict operon status from individual data sets to produce 118 

a comprehensive list of potential operons, for these predictions to be statistically robust despite 119 

only having single data sets, and to be species-agnostic. While we acknowledge that there are 120 

species-specific differences that may affect the outcome of such an algorithm (e.g., intergenic 121 

distances are of different lengths in different organisms), our premise was that each two-way 122 

comparison of adjacent genes on the same DNA strand, regardless of any other features, was an 123 

individual data point, and that a range of algorithms could be trained on a compilation of such 124 

data points across species, conditions, and replicates. This also allowed us to have many more 125 

data points than if we had taken a gene-specific approach. To this end, we established a statistical 126 

method that determines whether the RNA-seq coverage signal across the intergene-flanking 127 

regions of two adjacent genes on the same strand is from a single distribution. Using RNA-seq 128 

signal from the gene regions directly flanking the intergenic region, as well as the intergenic 129 

region itself, a non-parametric rank test (Kruskal-Wallis) was applied to obtain both a statistic 130 

and p-value for the comparison of the coverage signal at the three regions – Gene A, Gene B and 131 

the intergenic region (Figure 1). Previous reports have shown that intergenic distance is an 132 

important factor in determining whether two genes belong to the same operon, so we used the 133 

intergenic distance as well as the Kruskal-Wallis statistic and p-value as features for calling operon 134 

gene pairs20,21. 135 

 136 

A challenge in using RNA-seq data to model operons, especially when users do not have the 137 

computational resoureces with bandwidth to train algorithms on enormous amounts of data, is 138 

having enough diversity in the input data to cover a wide range of conditions that might be 139 

relevant to your organisms of interest. Therefore, OperonSEQer was trained on a wide range of 140 

organisms and was designed to allow for user input of additional organism and RNA-seq data for 141 

customization and iterative improvement. We used publicly deposited RNA-seq data sets from 7 142 

different bacterial species (both Gram-positive and Gram-negative as well as heterotrophic and 143 

photoautotrophic): Burkholderia pseudomallei (B. pseu), Clostridium difficile (C. diff), Escherichia 144 

coli (E. coli), Synechococcus sp. PCC 7002 (Syn. 7002), Synechocystis sp. PCC 6803, Synechococcus 145 

elongatus PCC 7942 (S. elon), Staphylococcus aureus (S. aure) and Bacillus subtilis (B. subt)22-37. 146 
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The data were processed and annotated as outlined in the Methods, using standard pipelines 147 

and publicly available software. In addition, we downloaded standard operon predictions by 148 

finding common operon calls between MicrobesOnline and ProOpDB where available11,12. 149 

Operon predictions from these online tools agreed to a high degree (83% agreement), and 150 

therefore, we chose the MicrobesOnline prediction as ground truth for operon structure, as this 151 

database had the largest number of organisms. We chose not to combine existing operon calls 152 

for E. coli since that would skew the accuracy of E.coli over other organisms and therefore the 153 

skew the trained models.  154 

 155 

 We performed a correlation analysis between pairs of genes in an operon (gene A and 156 

gene B with intermediate region I) and a number of important features from Kruskal-Wallis (KW) 157 

analysis of the RNA-seq data (Figure 2). The features used were: Kruskal-Wallis statistic and 158 

Kruskal-Wallis p-value (all 2-way comparisons plus the 3-way comparison) and intergenic 159 

distance. A large KW statistic represents a large difference in signal between the groups being 160 

compared, and a small p-value indicates that this difference is significant. Using the 2-way and 3-161 

way comparisons, we get 8 dimensions of information, and while it is possible that each of these 162 

is uniquely impactful in defining an operon, we acknowledge that some of them may be related 163 

(eg. the 3-way comparison is likely to correlate with individual 2-way comparisons). Nevertheless, 164 

we include all these parameters in our analysis to maximize information use. We used a log10 165 

transformation for the KW p-values to improve resolution. As expected, the length of genes A 166 

and B do not correlate with operon structure, and as previously reported20,21,38,39, intergenic 167 

distance correlates negatively with likelihood of an operon pair (Figure 2). In terms of gene 168 

expression, the KW statistic correlates negatively with operon pair likelihood, and the log value 169 

of the KW p-value correlates positively (Figure 2). Despite RNA-seq data coming from different 170 

organisms and disparate sources, we find that the KW statistic and p-value have a higher 171 

correlation with operon pairs than intergenic distance, highlighting the importance of the 172 

information coming from RNA-seq across species. In addition, metrics that assay RNA-seq 173 

coverage of the intergenic region are the most predictive of operon pairs as expected. However, 174 

no single data point had a higher than 50% correlation, suggesting that inferring a direct linear 175 
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relationship between any features and the outcome of being in an operon would be too 176 

simplistic, therefore requiring a more complex model.  177 

 178 

Operon-SEQer improves recall and specificity for operon prediction 179 

 180 

To improve operon prediction from RNA-seq data, we used intergenic length, KW statistics, and 181 

KW p-values as features for machine learning. We tested a range of classification algorithms that 182 

have previously been used in similar applications: logistic regression (LR), support vector machine 183 

(SVM, using the radial basis function which we determined to perform better than the linear, 184 

sigmoid or polynomial kernels), random forest (RF), XGBoost (XGB) and Gaussian Naïve Bayes 185 

(GNB). We used all of the data sets outlined in the methods and initially validated the various 186 

models using 50 random bootstraps of 75% of the data for training and 25% of the data for 187 

validation40-43. Recall and specificity served as measures of success to match previous reports10,14. 188 

As we are aiming for a species- and gene-agnostic method, these results are an aggregate of all 189 

the species and data sets that we included in our analysis.  190 

 191 

While there was some trade-off between recall and specificity, all algorithms performed with 192 

both recall and specificity of at least 80% (Figure 2b). In particular, the tree-based methods (i.e. 193 

RF and XGB) had the best performance, with XGBoost having almost perfect recall and specificity 194 

in this validation set. We then conducted an independent test of our program to truly understand 195 

the broad applicability of our algorithms. We downloaded new RNA-seq data sets from E.coli and 196 

B. subtilis, organisms that were represented in the training data (but this new data is unseen by 197 

the algorithm), as well as RNA-seq data sets from Mycobacterium tuberculosis (M. tuberculosis) 198 

and Pseudomonas syringiae (P. syringiae), organisms (and data) absent from the training data40-199 
43. We compared operon calls from our algorithms using these new, unseen data sets against 200 

operon annotations from MicrobesOnline. To get a confidence interval for our calls, we sub-201 

sampled 10% of the data with replacement over 100 iterations for each algorithm. These results 202 

are plotted along with 95% confidence intervals in Figure 3. There was a range of performance 203 

depending on the algorithm used. The GNB and MLP algorithms, for the most part, had higher 204 
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specificity compared with recall, which suggests that these methods are preferable for 205 

conservative operon calls. Ideally, however, we want to capture the largest number of operons. 206 

The logistic regression, SVM and tree-based methods (RF and XGB) have higher recall compared 207 

with specificity, which allows for a more complete annotation of operons but raises the concern 208 

of potential false-positive results. All results were confirmed by plotting receiver operating 209 

characteristics (ROC) curves (Sup. Figure 1). The higher recall and slightly lower specificity brings 210 

up the question of whether there may be some operons called by Operon-SEQer that are not 211 

annotated in MicrobesOnline, which is used as the standard. The question is whether these truly 212 

are false-positives or whether we are discovering new operon pairs that have not yet been 213 

annotated. To determine if there was a bias in recall and specificity related to the depth and 214 

coverage of the sequencing data, we analyzed the M. tuberculosis data since the various 215 

experiments had a large range of sequencing depth (Sup. Figure 2). We found no correlation of 216 

total reads, total mapped reads and percent mapped reads, with recall or specificity, suggesting 217 

that depth of sequencing is not limiting when using Operon-SEQer.  218 

 219 

 We compared the Operon-SEQer results for E. coli and B. subtilis with two state-of-the-220 

art methods for operon detection, DOOR and Rockhopper, to ensure that the flexibility of our 221 

method did not affect the performance relative to other methods10,14. For Operon-SEQer, we 222 

calculated the recall and specificity for operon calls that were confirmed by 1 – 6 of the algorithms 223 

in our method. In other words, we set cutoffs ranging from 1 to 6 for how many algorithms had 224 

to call an operon pair before it was considered a true result (Sup Figure 3). We found that overall, 225 

Operon-SEQer performs on-par or better than the state-of-the art methods. The heat map in Sup 226 

Figure 3 shows that with just one of the six algorithms required for calling an operon pair, 227 

Operon-SEQer has perfect recall for both organisms. There is an expected trade-off between 228 

recall and specificity, however, with the compromise point somewhere between 2 and 4 229 

algorithms, depending on the organism. This suggests that using 3 algorithms to call an operon 230 

pair is likely a good starting point.  231 

 232 

Operon-SEQer enables prediction of new operons  233 
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 234 

 Prior calculations of specificity assume that the operon structure provided by the 235 

standard, MicrobesOnline, is ground truth12. However, it is possible that the application of RNA-236 

seq data enables prediction of new operons, previously missed by the standard. To address this 237 

issue of lower specificity versus novel operons, we sought to corroborate operon calls from 238 

Operon-SEQer using long-read PacBio SMRTseq transcriptomic data from E. coli7. In this prior 239 

study, a new set of previously unreported operons were discovered based on direct evidence of 240 

individual molecules of RNA spanning two genes. We separated the operon calls made by 241 

Operon-SEQer (using the different algorithms) in E. coli into four categories: (i) operon pairs 242 

called by neither SMRTseq nor the standard, (ii) operon pairs called by the standard only, (iii) 243 

operon pairs called by SMRTseq only, and (iv) operon pairs called by both. We then examined 244 

what proportion of the calls in these various groups were confirmed by Operon-SEQer. We used 245 

a threshold voting method by which cutoffs were designed based on how many Operon-SEQer 246 

algorithms identified an operon pair (1-6). When the SMRTseq data and standard agree, Operon-247 

SEQer can identify a vast majority (>80%) of these operon pairs while requiring that 5/6 248 

algorithms call the operon pair, suggesting a high level of three-way agreement between the 249 

methods (Figure 4a). When both SMRTseq and the standard do not find an operon pair, no more 250 

than 10% of those get called as an operon pair by Operon-SEQer, even when that is only by 1/6 251 

algorithms. If we require a higher number of algorithms to call an operon pair, that percentage 252 

is in the single digits. Of note, when SMRTseq calls an operon pair not identified by the standard, 253 

at least one of our algorithms calls almost half of those operon pairs, suggesting that there are in 254 

fact operon pairs missed by the standard that can be predicted by Operon-SEQer (Figure 4a). We 255 

confirm this increase in specificity for each individual algorithm when looking at operon pairs 256 

with or without SMRTseq calls (Figure 4B). We note the lower recall (Figure 4b) and attribute this 257 

to lowly expressed gene pairs being called as operons in the SMRTseq experiment that our 258 

reliability cutoffs for short-read RNA-seq data likely miss.  259 

Next, we looked at the specificity and recall of our method for operons that are called by 260 

the standard, by SMRTseq, or by either one. As expected, we see a trade-off between the 261 

specificity and the recall of all operon pairs as we increase the number of algorithms required to 262 
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call an operon pair in E. coli (Figure 4c), and this tradeoff exists with data sets for other organisms 263 

as well (Sup. Figure 3). Since the SMRTseq data represents only one experimental condition, we 264 

do not expect that all operon pairs will be detected with this data set, which is why our method 265 

shows lower specificity with SMRTseq-called pairs than with standard-called pairs (Figure 4c). 266 

Again, the lower recall with SMRTseq data suggests that some operon pairs with very low 267 

expression are detected with long-read sequencing but are difficult to detect with short-read 268 

sequencing. The specificity of Operon-SEQer is higher (especially at lower algorithm number 269 

cutoffs) when we consider all operon pairs called by either SMRTseq or the standard (Figure 4c). 270 

This suggests that Operon-SEQer is likely detecting operon pairs that are missed by traditional 271 

operon callers, which rely on sequence and conservation information, and that these operon 272 

pairs can be identified using RNA-seq data. A similar result was demonstrated by the authors of 273 

Rockhopper, where they show that some of the operons Rockhopper detects that are not called 274 

by the standard can be confirmed by RT-qPCR14. Here, we show this on a global scale using long-275 

read sequencing data, and we only require a single experimental condition to achieve this (as 276 

opposed to a comparison of two experimental conditions).  277 

 278 

While Operon-SEQer allows for calls from a single experiment, and all our data until now 279 

is representative of operon pair calls based on a single RNA-seq result for each gene pair, we 280 

tested whether we could use the incidence of RNA-seq replicates (either biological replicates of 281 

a single condition or multiple experimental conditions) to strengthen our predictions. We 282 

therefore focused only on gene pairs that had data in at least 2 instances of data (i.e. crossed 283 

expression thresholds at least twice) and required agreement between the two replicates to 284 

make a final call. Replicate agreement was defined as the operon call made for each replicate 285 

being the same within an algorithm. We see that requiring two or more calls in agreement 286 

drastically improves the recall and specificity for all our comparisons (Figure 4d. Specifically, 287 

when we look at operon pairs that are called by either the standard or SMRTseq (solid line in 288 

Figure 4d), having even a single algorithm in our set of algorithms call the operon pair ensures a 289 

specificity of 96% and a recall of almost 90%, demonstrating that replicates significantly improved 290 

the performance of our program without requiring more training.  291 
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 292 

Discussion 293 

The emergence of long-read sequencing data has shown us that the discovery of operons 294 

in prokaryotes is far from complete. In fact, there are many nuances to operon structure, 295 

including modular transcription terminators, that lead to combinations of operons that are 296 

difficult to predict based solely on sequence and conservation7. While long-read RNA-sequencing 297 

is an effective way to address this gap, the limitation with this approach is the need for a wide 298 

range of experimental conditions to ensure capture of all operon pairs, which can be time-299 

consuming and costly. As an alternative, we have demonstrated here that the abundance of 300 

short-read RNA-sequencing data that has been accumulated of these past decades can be used 301 

to discover operon pairs. We show that by using an set of algorithms, we can call operon pairs 302 

using short-read sequencing data from a range of organisms with high recall and specificity. In 303 

addition, we demonstrate that it is likely that we are identifying non-annotated operon pairs 304 

using this method, based on confirmation by long-read sequencing data (ref).  305 

 306 

Our approach uses a set of algorithms and a threshold voting system, as we found the 307 

results both more robust and more flexible compared to individual algorithms. While there are 308 

advantages and disadvantages to each approach, the threshold voting system can provide some 309 

level of confidence in the call and allows the user to decide whether recall or specificity is more 310 

important for their particular needs. An example of an ensemble operon caller is CONDOP, which 311 

also uses RNA-seq for determining operon gene pairs18. The main distinction with our method is 312 

that CONDOP requires annotated operons from the DOOR database and outputs a list of 313 

condition-specific operons using RNA-seq data based on this previous annotation, while Operon-314 

SEQer does de novo operon detection using only RNA-seq data and intergenic distance as 315 

inputs18. We also improve on the methods used by rSeqTU by incorporating a statistical front-316 

end to allow for more variability across organisms and data sets, and we also use a wide range of 317 

training data, as well as multiple ML models and a voting system15. We also provide the code 318 

required to re-train our models as data acquisition evolves and novel sequencing data types 319 

emerge, which given the statistical front-end transformation, should be broadly applicable. Other 320 
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applications in genomics where ensemble methods have proven very useful include annotation 321 

of genomic islands, detection of genomic mutations, and gene expression-based phenotype 322 

prediction44-47. The development of these flexible methods is critical for weathering the natural 323 

and technical variation between organisms and data sets, which we can see even between the 324 

data sets that we chose to analyze in this study. In addition to flexibility, generalizability has long 325 

been an issue with operon calling, with training data often dictating the subset of organisms that 326 

can be tested using an algorithm. Our approach circumvents this by taking a gene-agnostic, 327 

function-agnostic approach, while simultaneously transforming the data into a statistic and p-328 

value. This allowed Operon-SEQer to make calls on organisms and data sets that were unseen 329 

during testing with high recall and specificity. In addition, the algorithm can be trained with 330 

additional data sets as RNA-seq technology evolves, highlighting the longevity of such an 331 

approach.  332 

 333 

Operon-SEQer has the potential to identify unannotated operon gene pairs that are 334 

confirmed by long-read RNA-seq data. This suggests that there are still a number of design rules 335 

for operon structure in bacteria that remain unknown, and Operon-SEQer can be used as a tool 336 

to discover these rules by marking novel operon pairs that are detected through RNA-sequencing 337 

but had not previously been identified. We can also ask which of these rules are organism-specific 338 

and which are general based on the results of our prediction. There has been a significant amount 339 

of work demonstrating that there are a number of dynamic and ever-evolving forces at play when 340 

it comes to operon structure, including RNA decay, overlapping transcription and previously 341 

uncharacterized functional relationships2,3,5,48. Using Operon-SEQer, we can survey the large 342 

amounts of RNA-seq data that are currently available through public repositories, and we can 343 

identify novel operons that can point to new or understudied functions of genes in any 344 

prokaryotic organism. Furthermore, since Operon-SEQer only requires a single experiment for 345 

operon calling, we can compare operon calls between conditions to see whether there are any 346 

changes in operon structure based on the state of the cells.  347 

 348 
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A future goal for Operon-SEQer is to incorporate long-read RNA-sequencing as the data 349 

becomes available. In fact, Operon-SEQer can be consolidated into a larger, modular algorithm 350 

that incorporates data from many information streams. It may also be interesting to adapt 351 

Operon-SEQer for transfer learning for this purpose, as it has been demonstrated that transfer 352 

learning can be useful in the generalizability of operon calling13. Importantly, our approach of 353 

using a statistical method to determine the similarity in expression of different regions of the 354 

genome in RNA-seq data, and then using the outputs of this method for machine learning can be 355 

applied broadly not only to prokaryotes, but also in understanding regulation of gene expression 356 

in higher organisms. Such an endeavor would complement the plethora of work that is currently 357 

ongoing in the field of machine learning for understanding gene regulation49-54. Ultimately, the 358 

key to fully unlocking the potential of machine learning in understanding gene regulation is likely 359 

to arise from a combination of computational approaches, with carefully curated and processed 360 

data, and methods such as Operon-SEQer can be used, adapted, and expanded upon to achieve 361 

this goal.  362 

 363 

Materials and Methods 364 

 365 

Data sets 366 

For training Operon-SEQer, publicly available RNA-seq data were downloaded from 367 

Sequence Read Archive (SRA) for Escherichia coli (PRJNA274573, PRJNA436580 and 368 

PRJNA473128), Bacillus subtilis (PRJNA511580 and PRJNA555096), Clostridium difficile 369 

(PRJNA244679, PRJNA283975, PRJNA338449 and PRJNA217778), Burkholderia pseudomallei 370 

(PRJNA413621 and PRJNA312225), Staphylococcus aureus (PRJNA514046, PRJNA541911 and 371 

PRJNA546264), Synechococcus elongatus PCC 7942 (PRJNA315938), Synechocystis sp. PCC 6803 372 

(PRJNA361291) and Synechococcus sp. PCC 7002 (PRJNA310120, PRJNA361291 and 373 

PRJNA212552).   374 

 For testing Operon-SEQer, publicly available RNA-seq data were downloaded from SRA 375 

for Escherichia coli (PRJNA274573, PRJNA436580 and PRJNA473128), Bacillus subtilis 376 
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(PRJNA511580 and PRJNA555096), Clostridium difficile (PRJNA244679, PRJNA283975, 377 

PRJNA338449 and PRJNA217778), Burkholderia pseudomallei (PRJNA413621 and PRJNA312225) 378 

 379 

Preparing, aligning, quantifying and annotating RNA-seq data  380 

RNA-seq data was aligned with Hisat2, and bedtools genomecov was used to extract 381 

coverage across the genome55,56. A gff3 file corresponding to each organism being surveyed was 382 

downloaded from Ensembl Bacteria (https://bacteria.ensembl.org/) and filtered for genes only. 383 

Importantly, we next filtered the data for where the mean coverage across at least one gene 384 

from the pair of genes being compared is 10 reads, thereby eliminating gene pairs that are not 385 

expressed or where no conclusion can be reached. This is an important step in training the 386 

algorithm so that it recognizes true negatives and positives and is not side-tracked by regions 387 

that are not expressed and therefore cannot be used as predictors.  388 

Following this, we collected pairwise coverage data for adjacent genes, as well as the 389 

intergenic region between these genes. With the 5’ most gene referred to as gene A and the 3’ 390 

most gene referred to as gene B, we extract coverage from the 3’ 50 bp of gene A (or the whole 391 

gene if it is shorter than 50 bp), the central 50 bp of the intergenic region (or the whole intergenic 392 

region if it is shorter than 50bp), and the 5’ 50bp of gene B (or the whole gene if it is shorter than 393 

50 bp). We performed a Kruskal-Wallis test on pairwise comparisons of coverage or a three-way 394 

comparison, and recorded the statistic and p-value associated with each test. These, along with 395 

the intergenic distance were used as input features for machine learning. Operon calls referred 396 

to as ‘the standard’ were downloaded from MicrobesOnline (www.microbesonline.org/). Long-397 

read SMRT-seq Pacbio data was obtained from doi.org/10.1038/s41467-018-05997-67.  398 

 399 

Operon-SEQer 400 

Operon-SEQer is a set of models with a threshold voting system, and our code is publicly 401 

available at https://github.com/sandialabs/OperonSEQer. Briefly, we use the scikit-learn module 402 

of Python3 to implement the machine learning algorithms. Algorithms that were used include 403 

Logistic Regression with L2 ridge regularization (LR), Support Vector Machine with a RBF kernel 404 

.CC-BY-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted July 30, 2021. ; https://doi.org/10.1101/2021.07.29.454062doi: bioRxiv preprint 

https://doi.org/10.1101/2021.07.29.454062
http://creativecommons.org/licenses/by-nd/4.0/


 15  

(SVM), Random Forest (RF), XGBoost (XGB), Multi-Layer Perceptron (MLP) and Gaussian Naïve 405 

Bayes (GNB). Features were scaled for all algorithms except RF and XGB. 406 

The downloaded data was processed as outlined above, and the following features were 407 

used for machine learning: length of gene A, length of gene B, intergenic length, Kruskal-Wallis 408 

statistics and p-values for pairwise and three-way comparison of gene A, gene B and intergenic 409 

coverage (as outlined above), and strand match between gene A and B. The data were scaled (for 410 

all relevant algorithms) using MinMaxScalar. Each algorithm’s hyperparameters were optimized 411 

using Bayesian Optimization (using Gaussian Processes) from GPyOpt methods. The 412 

hyperparameters for each algorithm are as follows: 413 

 414 

 415 

Algorithm Categorical features  Continuous features  

Logistic regression Lasso vs ridge regularization - 

Random Forest - Minimum sample split, 

maximum depth, number of 

estimators (all integer) 

Support Vector 

Machine 

Kernel C (as applicable), gamma (as 

applicable) 

XGBoost - Gamma, learning rate, number 

of estimators (integer) 

Gaussian Naïve Bayes - Variance smoothing 

Multilayer Perceptron - Alpha, Maximum iterations 

(integer), number of hidden 

layers (integer), number of 

neurons per layer (integer) 

 

 416 

For the MLP, we used adam as the solver and relu as the activation function. We used 417 

only 10 iterations of optimization for all the methods (which we judged as sufficient given high 418 

accuracy during optimization) but we provide the code, which can be modified and used to re-419 
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optimize hyperparameters in parallel. For each iteration of the optimizer, the model with the 420 

current set of hyperparameters was cross-validated 10-fold and the average accuracy of these 421 

10 iterations was used as the metric to evaluate performance. Final validation recall and 422 

specificity shown in Table 1.  423 

The model was then saved with the optimized hyperparameters, and new, unseen data 424 

from four organisms (two from which we had used alternative data for training, and two from 425 

which we had used no data) were used for testing the algorithms. Individual precision and recall 426 

values were recorded across each run, with the comparison being made to the ‘standard’ operons 427 

called by MicrobesOnline12. Results were reported as an average of 100 runs, with 95% 428 

confidence intervals. ROC curves and AUC (area under the curve) were calculated using scikit-429 

learn. Calls for n (1-6) number of algorithms were made by tallying the number of times a gene 430 

pair got called.  431 

Additional details for Operon-SEQer are available at 432 

https://github.com/sandialabs/OperonSEQer. 433 

 434 

ROC (receiving operating characteristic) curve analysis 435 

The prediction probability for each Operon-SEQer algorithm was calculated in python using with 436 

predict_proba function in scikit-learn. False positive and true positive rates were determined 437 

using the roc_curve function across a range of probabilities from 0 to 1. AUC (area under the 438 

curve) score was determined using the roc_auc_score, with areas closer to 1 being closer to the 439 

ideal.  440 
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Figures 458 

 459 
 460 

Figure 1 – Schematic of our method for determining similarity of RNA-seq signal between two 461 

adjacent genes. (A) Identification of an operon pair requires at least one of the two genes to be 462 

detectably expressed, and significant signal in the intergenic space. Idealized data on the left, and 463 

hypothetical real-world data on the right. (B) Usage of the Kruskal-Wallis statistic and p-value for 464 

pairwise comparisons of genes A, B and the intergenic (I) region, as well as the 3-way comparison. 465 

These values, along with the intergenic distance, serve as features for training our operon 466 

prediction model.  467 

  468 
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 469 
 470 

Figure 2 – Operon-SEQer features and performance across the various algorithms used. (A) 471 

Spearman’s correlation coefficients between the features considered for use in machine learning 472 

and operon pair calls made by MicrobesOnline across 7-species (see main text). KW = Kruskal 473 

Wallis statistic.  474 

  475 
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 476 
Figure 3 – Operon-SEQer can identify operon pairs in new, unseen data. Recall (blue) and 477 

specificity (red) for new data sets from (A) E. coli, (B) B. subtilis, (C) M. tuberculosis, and (D) P. 478 

syringiae. Mean numbers for 100 bootstrapped iterations are shown with 95% confidence 479 

intervals (central line in circle).  480 
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 482 
Figure 4 – Operon-SEQer is best used as an ensemble of methods and finds operons not 483 

annotated by the standard but detected by PACBIO SMRTseq. (A) Fraction of Operon-SEQer 484 

operon pair calls that are confirmed by SMRTseq, the standard, neither, or both. Cutoffs for 485 

Operon-SEQer operon calls are set at agreement of 1 – 6 algorithms within the ensemble. (B) 486 

Recall (blue) and specificity (red) of individual algorithms within Operon-SEQer for operon calls 487 

made only by the standard (circle) versus the standard plus SMRTseq calls (triangle). 95% 488 

confidence intervals of 100-fold bootstraps are shown as lines within the shape. (C and D) Recall 489 

(blue) and specificity (red) of the Operon-SEQer ensemble with algorithm agreement cutoffs of 490 

1-6 for operon pair calls made by the standard (dotted lines), SMRTseq (dashed line), or by the 491 

union of calls made by both (solid line); (C) represents all available operon pair data for the new 492 

E. coli data sets and (D) represents operon pairs that have agreement between two or more 493 

replicates.  494 
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 497 
 498 

Table 1- Recall and specificity for the validation set for Operon-SEQer across six different 499 

algorithms. Heat map colors range from yellow (lowest) to white (mid-point) to blue (highest).  500 

501 

Algorithm Recall Specificity
Gaussian Naïve Bayes 0.95 0.80
Logistic regression with ridge 0.93 0.83
Support Vector Machine - rbf 0.91 0.84
Multi-layer Perceptron (ANN) 0.93 0.85
Random Forest 0.95 0.94
XGBoost 0.99 0.99
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Supporting Information 655 

 656 
Sup Figure 1 – ROC curves for Operon-SEQer performance. ROC (receiver operating 657 

characteristics) curves, and AUC (area under the curve) for the 7 algorithms in Operon-SEQer for 658 

the (A) E. coli, (B) B. subtilis, (C) M. tuberculosis, and (D) P. syringiae data sets. 659 
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 661 

Sup Figure 2 – Number of reads in a data set does not correlate with outcome of Operon-SEQer. 662 

Relationship between recall (blue) and specificity (red) of the 6 algorithms of Operon-SEQer for 663 

(A) total reads, (B) total mapped reads, and (C) percent mapped reads in each data set from M. 664 

tuberculosis (see Materials and Methods for accession numbers). 665 
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 667 
Sup. Figure 3 – Operon-SEQer ensemble tested against new data sets. Recall (blue) and 668 

specificity (red) of the Operon-SEQer ensemble with algorithm agreement cutoffs of 1-6 for 669 

operon pair calls for the new data set from (A) B. subtilis, (B) M. tuberculosis, and (C) P. syringiae.  670 
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 672 
 673 

Sup Table 1 – Comparison of Operon-SEQer with DOOR and Rockhopper. Comparing the recall 674 

and specificity of DOOR and Rockhopper with the Operon-SEQer ensemble (with agreement of 675 

anywhere between 1 and 6 of the algorithms that make up Operon-SEQer being used to make 676 

operon pair calls). Heat map colors range from yellow (lowest) to white (mid-point) to blue 677 

(highest).  678 

Recall Specificity Recall Specificity
DOOR 0.85 0.80 0.84 0.95
Rockhopper 0.90 0.81 0.88 0.96
Operon-SEQer 1 1.00 0.85 1.00 0.64
Operon-SEQer 2 0.97 0.91 0.99 0.70
Operon-SEQer 3 0.95 0.94 0.98 0.75
Operon-SEQer 4 0.91 0.96 0.97 0.81
Operon-SEQer 5 0.85 0.99 0.95 0.88
Operon-SEQer 6 0.59 1.00 0.85 0.95

E. coli B. subtilis
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