
Crocosphaera as a major consumer of fixed nitrogen despite its capability of nitrogen 1 
fixation 2 

 3 

Takako Masuda1,2*#, Keisuke Inomura3#, Taketoshi Kodama1,4, Takuhei Shiozaki1,5, 4 

Satoshi Kitajima1,6, Gabrielle Armin3, Takato Matsui7, Koji Suzuki7, Shigenobu Takeda1,8, 5 

Ondřej Prášil2, Ken Furuya1,9 6 

 7 

1Department of Aquatic Bioscience, The University of Tokyo, Yayoi, Bunkyo, Tokyo 113-8 

8657 Japan 9 

2Institute of Microbiology, The Czech Academy of Sciences, Opatovický mlýn, 379 01 Třeboň, 10 

Czech Republic 11 

3Graduate School of Oceanography, University of Rhode Island, Narragansett, Rhode Island, 12 

02882, USA 13 

4Present address: Fisheries Resources Institute, Japan Fisheries Research and Education 14 

Agency, Fukuura, Yokohama, 236-8648, Japan 15 

5Present address: Atmosphere and Ocean Research Institute, The University of Tokyo, 16 

Kashiwanoha, Kashiwa, Chiba, 277-8564, Japan 17 

6Fisheries Resources Institute, Japan Fisheries Research and Education Agency, Taira-machi, 18 

Nagasaki, 851-2213, Japan 19 

7Graduate School of Environmental Science/Faculty of Environmental Earth Science, 20 

Hokkaido University, Kita-ku, Sapporo, 060-0810, Japan 21 

8Present address: Graduate School of Fisheries and Environmental Sciences, Nagasaki 22 

University, Bunkyo, Nagasaki, 852-8521, Japan 23 

9Present address: Graduate School of Science and Engineering, Soka University, Tangi, 24 

Hachioji, Tokyo, 192-8577, Japan 25 

 26 

(which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprintthis version posted July 30, 2021. ; https://doi.org/10.1101/2021.07.28.454264doi: bioRxiv preprint 

https://doi.org/10.1101/2021.07.28.454264


Running title: Marine N2 fixer Crocosphaera may be a combined N consumer 27 
 28 

 29 
#Authors contributed equally to the study 30 
*Corresponding author:  31 
Email address: takako@alga.cz (T. Masuda) 32 
  33 

(which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprintthis version posted July 30, 2021. ; https://doi.org/10.1101/2021.07.28.454264doi: bioRxiv preprint 

https://doi.org/10.1101/2021.07.28.454264


Abstract 34 

Crocosphaera watsonii (hereafter Crocosphaera) is a key nitrogen (N) fixer in the ocean, but 35 

its ability to consume combined N sources is still unclear. Using in situ microcosm incubations 36 

with an ecological model, we show that Crocosphaera has high competitive capability both 37 

under low and moderately high combined N concentrations. In field incubations, Crocosphaera 38 

accounted for the highest consumption of ammonium and nitrate, followed by pico-eukaryotes. 39 

The model analysis shows that cells have a high ammonium uptake rate (~7 mol N (mol N)-1 40 

d-1 at the maximum), which allows them to compete against pico-eukaryotes and non-41 

diazotrophic cyanobacteria when combined N is sufficiently available. Even when combined 42 

N is depleted, their capability of nitrogen fixation allows higher growth rates compared to 43 

potential competitors. These results suggest the high fitness of Crocosphaera in combined N 44 

limiting, oligotrophic oceans, and thus heightens its potential significance in its ecosystem and 45 

in biogeochemical cycling.   46 
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Introduction 47 

Marine phytoplankton contribute about one half of the global net primary production and play 48 

a key role in regulating global biogeochemical cycles (1). Since phytoplankton are 49 

biochemically, metabolically, and ecologically diverse (2-4), understanding the contribution of 50 

different phytoplankton groups to ecosystem functioning is central to the precise estimation of 51 

the global carbon (C) and nitrogen (N) budget and in predicting the biogeochemical impact of 52 

future environmental changes (5).  53 

In the oligotrophic subtropical gyres, combined N (defined as N covalently bonded to 54 

one or more elements other than N (6)) limits primary production and controls planktonic 55 

community composition (7-10). Therefore, N2 fixing microorganisms (diazotrophs) are 56 

important as a source of combined N in oligotrophic ecosystems (11, 12). In the subtropic 57 

oligotrophic ocean, the unicellular diazotroph, Crocosphaera watsonii (2.5 – 6 µm), is widely 58 

distributed (10, 13-16) in addition to pico-sized (<3 µm) cyanobacteria (e.g., Prochlorococcus 59 

and Synechococcus) and pico-eukaryotes (17-19). Recent studies reveal Crocosphaera 60 

watsonii’s ability to assimilate dissolved inorganic nitrogen (DIN), such as ammonium (NH4+) 61 

and nitrate (NO3-), at a nanomolar level and keep fixing N2 (20, 21). Model results indicate 62 

using DIN enables Crocosphaera to increase their abundance and expand their niche (22). 63 

These studies proposed that unicellular diazotrophs can be competitors with non-diazotrophic 64 

phytoplankton for combined N. However, how Crocosphaera competes for combined N is 65 

poorly evaluated. In this study, we combine an in situ microcosm experiment with N addition 66 

at the nanomolar level and model (23) to evaluate the competitiveness of Crocosphaera in a N 67 

limiting environment.  68 

 69 

Results  70 
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Summary of the experiment. We carried out five nitrogen (N) and phosphorus (P)-addition 71 

bioassays (M1 to M5) at a station in the subtropical Northwestern Pacific (12ºN, 135ºE) from 72 

6 to 25 June 2008 during the MR08-02 cruise on the R/V MIRAI. Nutrient concentrations 73 

initially were less than 36 nM for ammonium (NH4+), 7 nM for nitrate plus nitrite (NO3- + 74 

NO2-) and 64 nM for phosphorus (PO43-) (24).  The physical and biological parameters at the 75 

initial condition of the experiments are described in (24). Hydrography and biochemistry at the 76 

station are described in (25). Although we performed pre-filtration with a 1 µm-filter to 77 

eliminate the effect of grazing, water samples contained plankton with up to ~5 µm in size.  78 

 79 

Nutrient uptake and fate of enriched DIN. For 3 days of incubation, the phytoplankton 80 

community consumed NH4+ entirely at the end, while NO3- was not always consumed 81 

completely (Fig. 1, Fig. S1). Estimated biomass explains about half of consumed combined N 82 

sources (Figs. 1, 2A), possibly due to luxury uptake (26, 27).  83 

 84 

 
Fig. 1  Temporal change in NH4+ and NO3- concentrations of Ex. M3. (A) NH4+ concentration 

in the NH4+ treatment exponentially decreased during the experiment down to the detection 

limit of 6 nM on day 3. (B) NO3- concentrations in the NO3- treatment exponentially 

decreased during the experiment, but enriched NO3- was not always entirely consumed. Error 
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bar shows a standard deviation of triplicate. Temporal change in Urea-N concentration is 

shown in Fig. S2.  

 85 

The greatest portion of estimated C and N in biomass were found in Crocosphaera (39-93% in 86 

all N addition incubations) followed by pico-eukaryotes (5-55% in N addition incubations) 87 

(Fig. 2A, Fig. S3). Although the origin of water mass changed from oligotrophic-water to 88 

mixed-water between experiments (Exs.) M1-M3 and M4-M5 (25), with more Crocosphaera 89 

in cell density at the latter environment (Table S1), the dominance of Crocosphaera as a C and 90 

N biomass was observed from all the experiments.  N derived from N2 fixation was not always 91 

sufficient to support the N demand of Crocosphaera, especially in N amendment (Fig. S4). 92 

Estimated N2 fixation supported 0.5 – 12.7% of N demand of Crocosphaera in control and 0.5 93 

– 11.6% in NH4+ treatment (Fig. S4), suggesting that Crocosphaera consumed amended N 94 

sources. Assimilation of combined nitrogen (NH4+ and NO3-), together with N2 fixation by 95 

Crocosphaera, has been reported earlier (20, 21). Although enriched 100 nM NH4+ was 96 

completely consumed (< 6 nM; detection limit, on day 3), increases in N-biomass of non-97 

diazotrophs for 3 days were limited to up to 58 nmol L-1, again suggesting Crocosphaera took 98 

up combined nitrogen. 99 
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Fig. 2  (A) N in biomass in each treatment and its contribution of each phytoplankton 

group of experiment M3. (B) Contribution to total carbon C in biomass as a function of the 

contribution of NH4+ - N biomass for each phytoplankton group. (C) Contribution to total 

carbon C in biomass as a function of the contribution of NO3- - N biomass for each 

phytoplankton group. Each circle shows data from a different day, and the size of the dots 

represents the total C in biomass (nmol C L-1). Pro; Prochlorococcus, Syn; Synechococcus, 

Cro; Crocosphaera, PicoE; pico-eukaryotes.  

 100 

Model analysis of the data. To quantitatively interpret the observed data, we used a simple 101 

model of the cellular growth, which is based on the uptake of NH4+ and NO3- (see Methods). 102 
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We used the data from experiment M3 since it shows the clearest trends with low initial nutrient 103 

concentrations. The model captured the overall trend of the transition of cellular N (Fig. 3) 104 

based on the available nutrient (Fig. S5). The parameterization of the model reveals high rates 105 

of N uptake by Crocosphaera. Especially, we used about 7 (mol N (mol N)-1 d-1) for maximum 106 

NH4+ uptake to represent the data, which shows high combined-N uptake compared to other 107 

phytoplankton. Specifically, such parameterization was needed to reproduce the rapid growth 108 

of Crocosphaera under NH4+ added case between day 0 and day 1. The predicted maximum 109 

NO3- uptake rate for Crocosphaera is also higher than for other phytoplankton, which is 110 

supported by Crocosphaera’s faster growth with NO3- addition.  111 

 112 

 113 

 
Fig. 3  Simulated transition of cellular N with nutrient addition compared with data. (A)(B) 
NH4+ added case. (C)(D) NO3- added case. Croco: Crocosphaera. Other: other 
phytoplankton. Data are from experiment M3. 

 114 
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To test the competitiveness of Crocosphaera, we simulated a simple ecological 115 

situation. Here, we simulate zooplankton with Kill the Winner Theory (KTW) (28), which is 116 

based on a commonly observed active prey-switching behavior of zooplankton (29-31). The 117 

result shows the high competitiveness of Crocosphaera both under high and low nutrient 118 

concentrations. Under high nutrient concentration, Crocosphaera may dominate other 119 

phytoplankton due to the high rate of nutrient uptake (Fig. 4A, S6B). However, under 120 

extremely low nutrient conditions (NH4+ and NO3- are both at 1 nmol L-1), Crocosphaera is 121 

slightly outcompeted (Fig. 4B, S6B). This is due to the relatively high half-saturation constant 122 

for NH4+, which is manifested by the sudden decrease in growth rate with a drop in NH4+ under 123 

NH4+ addition (Fig. 3A, S5A). However, this relationship flips if we consider the effect of N2 124 

fixation, which maintains their growth rates at a higher level rather than relying on external N 125 

under N depletion (Fig. 4C, S6C). These results suggest that possession of nitrogenase (an 126 

enzyme complex involved in N2 fixation) allows for Crocosphaera’s survival under low 127 

nutrient environments.   128 

 129 

 
Fig. 4  Simulated transition of cellular N in a simple ecosystem model for three different 
scenarios. (A) The concentrations for NH4+ and NO3- are both 100 nmol L-1 (B)(C) The 
concentrations for NH4+ and NO3- are both 1 nmol L-1. In only (C) Crocosphaera may 
acquire N via N2 fixation; in (A) and (B) the effect of N2 fixation is neglected. Croco: 
Crocosphaera. Other: other phytoplankton. Parameters are based on NH4+ added case.  

 130 

Discussion 131 
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Our study shows high uptake of N by Crocosphaera under relatively high N concentration. 132 

The results counter the general image of Crocosphaera since it is mostly known as a diazotroph 133 

and is considered to be a provider of N to the environment. Rather, our result supports more 134 

recent studies, where Crocosphaera does not increase the productivity of other phytoplankton 135 

(32) or even compete with other species over combined N (22). Surprisingly, our study even 136 

shows higher maximum uptake rates of NH4+ and NO3-, which allow its dominance just by 137 

uptake of combined N. When nitrogen concentration is extremely low, they could be 138 

outcompeted in N uptake, but their N2 fixation allows maintaining Crocosphaera biomass at a 139 

certain level, which can still be higher than those of non-diazotrophic phytoplankton. This high 140 

consumption of NO3- may differ from UCYN-A (15, 33-35), which keeps fixing nitrogen under 141 

high NO3- availability (36, 37), leading to their unique niche acquisition. These results suggest 142 

that Crocosphaera has high competitiveness under both low and high nutrients.   143 

 Despite that, we generally do not observe the oligotrophic ocean completely dominated 144 

by Crocosphaera. One reason might be the grazing selection. Crocosphaera is a unicellular 145 

cyanobacterium a few microns to 6 µm in diameter (38), and its tight coupling with predators 146 

is reported recently (39). The new production of Crocosphaera is estimated to support up to 147 

400% of C demand of the main grazers, and the grazing rates of the main predator 148 

Protoperidinium were found to be nearly equivalent to growth rates of Crocosphaera (39). On 149 

the other hand, its potential competitor, Trichodesmium, a major N2 fixer in the ocean, is 150 

reported to produce a toxin (40-42), and creates large colonies of ~104 cells (43), potentially 151 

protecting themselves from grazing. Another reason might be the growth limitation by other 152 

nutrients such as P and Fe. Although there are some reports that Crocosphaera shows 153 

adaptation for low P and low Fe, their relative fitness to such low P or low Fe environments 154 

compared to other organisms has not been quantified. Since having nitrogenase enzymes 155 

require a high concentration of Fe, non-nitrogen fixers, such as Prochlorococcus and 156 
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Synechococcus, may have lower Fe requirements and are more adapted to Fe depletion. Also, 157 

Crocosphaera does not seem to fully utilize sulpholipid, which would save P use, as opposed 158 

to other cyanobacteria, such as Synechococcus (44, 45), and thus may not compete strongly 159 

under P limitation.  160 

 At the same time, it is largely possible that Crocosphaera dominates at some regions 161 

in the oligotrophic ocean given its high competitiveness under N limitation, which is the 162 

characteristic of the oligotrophic ocean (7, 46). For example, a study of flow cytometry shows 163 

a high abundance of Crocosphaera-like cells in a wide region of the North Pacific (47), where 164 

the abundance of Trichodesmium seems limited (48). Also, a recent study shows multiple gene 165 

copies of Trichodesmium (up to ~700 gene copied per cell) (49), which would overestimate 166 

their abundance (50). Given these factors and our analysis showing their high fitness to both 167 

low and high nitrogen concentration, it is possible that we are still underestimating the relative 168 

abundance and role of Crocosphaera in global biogeochemical cycling.     169 

 170 

Materials and methods 171 

Experimental setup and sample collection. The dataset presented herein originates from an 172 

experimental setup described in (24). Briefly, we carried out five macro-nutrient (N and P)-173 

addition bioassays (M1 to M5) using natural phytoplankton assemblages collected at a station 174 

in the subtropical Northwestern Pacific (12ºN, 135ºE) from 6-25 June 2008 during the MR08-175 

02 cruise on the R/V MIRAI. For macro-nutrient bioassays, we distributed pre-filtered seawater 176 

from 10 m depth into 4-liter polycarbonate bottles. We performed three treatments with 100 177 

nM addition of N as NaNO3, NH4Cl, or urea, and one treatment with 10 nM of NaH2PO4. Our 178 

control was without nutrient addition. Bottles were incubated on deck for three days with daily 179 

sample harvest in flow-through seawater tanks covered with a neutral density screen to 180 

attenuate light intensity to 50% of its corresponding surface value. 181 
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 182 

Macro-nutrient and iron concentrations. Concentrations of NO3-+NO2- (N + N), NH4+, 183 

Soluble Reactive Phosphorus (SRP), and urea were measured using a high-sensitivity 184 

colorimetric approach with an AutoAnalyzer II (Technicon) and Liquid Waveguide Capillary 185 

Cells (World Precision Instruments, USA) as outlined (51). We analyzed urea concentrations 186 

using the diacetyl monoxime method (52). Detection limits of NO3- + NO2-, NH4+, and SRP 187 

were 3, 6, and 3 nM, respectively. 188 

 189 

Flow cytometry. Flow-cytometry (FCM) identified Prochlorococcus, Synechococcus, pico-190 

eukaryotes, and Crocosphaera based on cell size and chlorophyll- or phycoerythrin-191 

fluorescence. Aliquots of 4.5 mL were preserved in glutaraldehyde (1% final concentration), 192 

flash-frozen in liquid N2, and stored at -80 ºC until analysis on land by flow cytometry (PAS-193 

Ⅲ, Partec, GmbH, Münster, Germany) equipped with a 488 nm argon-ion excitation laser (100 194 

mW). We recorded forward- and side-angle scatter (FSC and SSC), red fluorescence (>630 nm, 195 

FL3), and orange fluorescence (570–610 nm, FL2). FloMax® (Partec, GmbH, Münster, 196 

Germany) distinguished Synechococcus, Prochlorococcus, Crocosphaera, and pico-197 

eukaryotes based on their auto-fluorescence properties and their size. 198 

 199 

Gene analysis. We collected DNA samples from each treatment of the Fe addition bioassay 200 

and collected aliquots of 0.5 to 1.0 L of sample on 0.2 µm SUPOR® polyethersulfone 201 

membrane filters, which we then placed in sterile tubes containing glass beads, frozen in liquid 202 

N2, and stored at -80ºC until further analysis. DNA was extracted according to (53) to 203 

determine the abundance of Crocosphaera watsonii by quantitative PCR (qPCR) using a 5’ 204 

nuclease assay as described in (54).  205 
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Quantitative PCR showed that cell densities of FCM-identified Crocosphaera were 206 

significantly, positively correlated with nifH gene copies used to quantify the proportion of 207 

Crocosphaera, indicating that nifH abundance accounted for 68% of the variation in FCM-208 

identified Crocosphaera (r2 = 0.463, n = 48, p=0.001, Pearson Product Moment correlation). 209 

Therefore, this study treated FCM-identified Crocosphaera as diazotroph Crocosphaera. Cell 210 

abundance estimated by qPCR was 0.63 ± 0.23 fold lower than those measured by FCM.  211 

 212 

Nitrogen fixation. To measure in situ N2 fixation activity, we used the acetylene reduction 213 

assay of (55, 56).  We dispensed a total of 550 milliliter bioassay samples into 1200 mL HCl–214 

rinsed glass PETG bottles with 6 replicates and sealed with butyl rubber stoppers.  Aliquots of 215 

120 mL of acetylene (99.9999% (v:v), Kouatsu Gas Kogyo, Japan) were injected through the 216 

stopper by replacing the same volume of headspace.  After 24 h in the on-deck flow-through 217 

seawater tanks, we analyzed ethylene concentrations by converting the ethylene to fixed 218 

nitrogen with a molar ratio of 4:1 (57). 219 

 220 

Cellular C and N estimation. We used a conversion factor of 235 fg Cµm-3 for 221 

Prochlorococcus, Synechococcus and Crocosphaera (58) to estimate cellular carbon content. 222 

For picoeukaryotes, we represented cell volume by converting it into carbon per cell, using a 223 

modified Strathmann equation (58, 59): 224 

 𝑙𝑜𝑔𝐶(𝑝𝑔 𝑐𝑒𝑙𝑙⁄ ) = 	0.94 × 𝑙𝑜𝑔𝑉𝑜𝑙(𝜇𝑚5) − 0.6.  225 

Then, using an earlier reported C:N ratio (C:N ratio = 9.1 for Prochlorococcus, 8.6 for 226 

Synechococcus, 8.7 for Crocosphaera, 6.6 for picoeukaryotes), we converted the cellular C 227 

content into cellular N (21, 60, 61). 228 

 229 
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Statistical analysis. Phytoplankton cell densities of each bioassay were first compared 230 

between treatments using repeated measurements Analysis of Variance (RM-ANOVA) with 231 

nutrient treatments as a between-subjects factor (5 levels) and time (4 levels) as the within-232 

subjects factor. Treatment effects were considered significant if p < 0.05. Then, means between 233 

five treatments were compared by post hoc Turkey test (n = 3 replicates per treatment 234 

throughout, degrees of freedom = 40). 235 

 236 

Quantitative model of microbial growth. To quantitatively analyze the fitness of 237 

Crocosphaera under N limiting conditions, we ran two simulations. One was to represent the 238 

incubation experiment to extract parameters manually and the other was the simple ecosystem 239 

model to simulate their competitiveness under different nutrient concentrations and scenarios. 240 

The list of parameters and used values are in Table S2 and S3, respectively.  241 

 242 

Simulation of the incubation experiment. We used the following equations for the growth of 243 

phytoplankton to represent the field incubation experiment:  244 

 
𝑑𝑁:
𝑑𝑡 = 𝜇:𝑁: − 𝑚:𝑁: [eq. 1] 

where 𝑁: (nmol L-1) is the cellular nitrogen concentration of phytoplankton i (i = Cro, Oth: 245 

Crocosphaera and other phytoplankton, respectively) per volume water, t (d) is time, µi (d-1) is 246 

the growth rate of phytoplankton i, and mi (d-1) is a mortality rate of phytoplankton i.  247 

To represent the growth of Crocosphaera and other phytoplankton, we used simple 248 

growth equations based on the sum of Monod kinetics (62) for each nutrient: 249 

 𝜇: = 𝑉<=>,:@AB [𝑁𝐻BE]
[𝑁𝐻BE] + 𝐾:@AB

+ 𝑉<=>,:@I5 [𝑁𝑂5K]
[𝑁𝑂5K] + 𝐾:@I5

 [eq. 2] 

𝑉<=>,:@AB  and 𝑉<=>,:@I5  (d-1) are the maximum uptake rate of phytoplankton for NH4+ and NO3-250 

respectively, [j] (nmol L-1) is the concentration of nutrient j (j=𝑁𝑂5K, 𝑁𝐻BE), and 𝐾:@AB and 𝐾:@I5 251 
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(nmol L-1) are half-saturation constant of nutrient for phytoplankton i respectively. We used 252 

the data-fitted quadratic curve of nutrient concentrations (Fig. S5). 253 

 254 

Simple ecosystem simulation. To simulate the simple ecosystem situation, we introduced the 255 

grazing by zooplankton: 256 

 
𝑑𝑁:
𝑑𝑡 = 𝜇:𝑁: − 𝐺:𝑁: [eq. 3] 

 𝑑𝑁MNN
𝑑𝑡 = (𝐺OPN + 𝐺IQR)𝑁MNN −𝑚MNN𝑁MNNS  [eq. 4] 

where 𝐺: (d-1) is the grazing rate of phytoplankton i by zooplankton, 𝑁MNN	(nmol L-1) is the 257 

nitrogen concentration in zooplankton per volume water, and 𝑀MNN	(d-2) is a quadratic 258 

mortality rate of zooplankton. When we allow nitrogen fixation, we used µCro = 0.31 (d-1) (a 259 

typical growth rate under diazotrophic conditions (63), if the computation based on [eq.2] 260 

yields a value below 0.31 (d-1).    261 

 For 𝐺: we have applied the KTW method:  262 

 𝐺: = 𝐺U=> V
𝑁:S

𝑁OPNS + 𝑁IQRS
WV

(𝑋OPN + 𝑋IQR)S

(𝑋OPN + 𝑋IQR)S + 𝐾YS
W [eq. 5] 

where 𝐺U=>  (d-1) is the maximum grazing rate and 𝐾Y	(nmol L-1) is grazing half-saturation. 263 

This equation reflects the commonly observed prey-switching behavior of zooplankton (29-264 

31), which stabilizes ecosystems (64, 65). 265 

 266 

Code availability 267 

The model developed in this paper has been uploaded in GitHub/Zenodo and is freely available 268 

at https://zenodo.org/record/5095790 (DOI: 10.5281/zenodo.5095790). 269 
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  456 

Table S1. In situ nitrogen fixation rate at 10 m depth and cell density of 

Crocosphaera in the incubation bottle at initial.  For all data, means are shown 

with ± standard deviation for triplicate samples. 

Ex. Date 

In 2008 

In situ N2 fixation 

rate (nmolN L-1d-1) 

In situ N2 fixation rate 

<10µm (nmolN L-1d-1) 

Crocosphaera at 

initial (cells mL-1) 

M1 6 June 1.33 ± 1.81 2.75 ± 4.68 32 ± 62 

M2 10 June 2.37 ± 0.59 0.66 ± 0.96 270 ± 225 

M3 14 June 0.19 ± 2.06 0.28 ± 2.40 126 ± 32 

M4 18 June 6.65 ± 2.52 2.37 ± 0.77 1513 ± 684 

M5 22 June 4.94 ± 1.38 4.75 ± 1.72 306 ± 112 
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Table S2  Used symboles, units and definitions in the quantitative model 

Symbol Unit Definition 
i n.a. i = Cro, Oth 
j n.a. j = 𝑁𝑂5K, 𝑁𝐻BE 
𝑁: nmol L-1 Cellular nitrogen concentration of phytoplankton i per volume water 
t d Time 
𝜇: d-1 Growth rate of phytoplankton i 
𝑚: d-1 Mortality rate of phytoplankton i 
𝑉<=>,:
Z  d-1 Maximum uptake rate of nutrient j by phytoplankton i 
[j] nmol L-1 Concentration of nutrient j 
𝐾:
Z nmol L-1 Half saturation constant of nutrient j 
𝐺: d-1 Grazing rate of phytoplankton i 
𝑁MNN nmol L-1 Nitrogen concentration in zooplankton per volume water 
𝑚MNN d-2 Quadratic mortality rate of zooplankton 
𝐺U=>  d-1 Maximum grazing rate 
𝐾Y  nmol L-1 Grazing half saturation 
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Table S3  Values used for parameters  
Parameter Unit Value 

𝑚: d-1 0.4 
For NH4+ added case 

𝑁OPN nmol L-1 2.50* 
𝑁IQR  nmol L-1 5.00* 

𝑉<=>,OPN@AB  d-1 6.6 
𝑉<=>,OPN@I5  d-1 2.8 
𝑉<=>,IQR@AB  d-1 1.1 
𝑉<=>,IQR@I5  d-1 1.8 
𝐾OPN@AB nmol L-1 140 
𝐾OPN@I5 nmol L-1 80 
𝐾IQR@AB nmol L-1 6 
𝐾IQR@I5 nmol L-1 500 

For NO3- added case 
𝑁OPN nmol L-1 4.36* 
𝑁IQR  nmol L-1 5.83*s 

𝑉<=>,OPN@AB  d-1 8 
𝑉<=>,OPN@I5  d-1 1.3 
𝑉<=>,IQR@AB  d-1 0.9 
𝑉<=>,IQR@I5  d-1 0.5 
𝐾OPN@AB nmol L-1 70 
𝐾OPN@I5 nmol L-1 90 
𝐾IQR@AB nmol L-1 2 
𝐾IQR@I5 nmol L-1 700 

Ecosystem simulation 
𝑁OPN nmol L-1 1000* 
𝑁IQR  nmol L-1 1000* 
𝑁MNN nmol L-1 1000* 
𝑚MNN d-2 0.01# 
𝐺U=>  d-1 7.5 
𝐾Y  d-1 500# 

* Initial value. #Value from Inomura et al (2019).  458 
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Fig. S1. Temporal change in NH4+ and NO3- concentrations of Ex. M1, M2, M4 and M5. 

(A) NH4+ concentration in the NH4+ treatment exponentially decreased during the 

experiment down to the detection limit of 6 nM on day 3. (B) NO3- concentrations in the 

NO3- treatment exponentially decreased during the experiment but enriched NO3- was not 

always entirely consumed. Error bar shows a standard deviation of triplicate. 
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 461 
 462 
Fig. S2 Temporal change in Urea-N concentration. Concentration in control was measured 463 
only at the initial. Error bar shows the standard deviation of triplicate samples. 464 
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Fig. S3 N in biomass in each treatment and its contribution of each phytoplankton group of 
experiment M1, M2, M4 and M5. Pro; Prochlorococcus, Syn; Synechococcus, Cro; 
Crocosphaera, PicoE; pico-eukaryotes. 
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 468 
Fig. S4 Nitrogen demand and N derived from N2 fixation in Control (A) and NH4+ treatment 469 

(B) for each experiment (M1-M5). Nitrogen demand is N in biomass in 3 days. N2 fixation 470 

rate was estimated from the reported maximum cellular N2 fixation rate 1.12 fmol N mol cell-471 
1 day-1 (valued obtained in day 3 in Fe + N treatment of Fe3 (Masuda et al Pre print)) and cell 472 

density. 473 
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Fig. S5  Measured NH4+ and NO3- concentrations for NH4+ and NO3- added cases. Dashed 
lines show quadratic interpolation. Data are from experiment M3. 
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Fig. S6  Simulated transition of cellular N in a simple ecosystem model for three different 
scenarios. (A) The concentrations for NH4+ and NO3- are both 100 nmol L-1. (B)(C) The 
concentrations for NH4+ and NO3- are both 1 nmol L-1. In only (C) Crocosphaera may 
acquire N via N2 fixation. Croco: Crocosphaera. Other: other phytoplankton. Parameters 
are based on NO3- added case. 
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