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Abstract 1 

How microbes adapt to a novel environment is a central question in evolutionary biology. While 2 

adaptive evolution must be fueled by beneficial mutations, whether higher mutation rates facilitate 3 

the rate of adaptive evolution remains unclear. To address this question, we cultured Escherichia 4 

coli hypermutating populations, in which a defective methyl-directed mismatch repair pathway 5 

causes a 140-fold increase in single-nucleotide mutation rates. In parallel with wild-type E. coli, 6 

populations were cultured in tubes containing Luria-Bertani broth, a complex medium known to 7 

promote the evolution of subpopulation structure. After 900 days of evolution, in three transfer 8 

schemes with different population-size bottlenecks, hypermutators always exhibited similar levels 9 

of improved fitness as controls. Fluctuation tests revealed that the mutation rates of hypermutator 10 

lines converged evolutionarily on those of wild-type populations, which may have contributed to 11 

the absence of fitness differences. Further genome-sequence analysis revealed that, although 12 

hypermutator populations have higher rates of genomic evolution, this largely reflects the effects 13 

of genetic draft under strong linkage. Despite these linkage effects, the evolved populations exhibit 14 

parallelism in fixed mutations, including those potentially related to biofilm formation, 15 

transcription regulation, and mutation-rate evolution. Together, these results generally negate the 16 

presumed relationship between high mutation rates and high adaptive speed of evolution, 17 

providing insight into how clonal adaptation occurs in novel environments.  18 

Key words: adaptation; bottleneck effects; drift barrier; Escherichia coli; mutational load; 19 

mutation rate.   20 

.CC-BY-NC-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted July 29, 2021. ; https://doi.org/10.1101/2021.07.28.454222doi: bioRxiv preprint 

https://doi.org/10.1101/2021.07.28.454222
http://creativecommons.org/licenses/by-nc-nd/4.0/


 3 

Significance statement 21 

While mutations are critical source for the adaptation in a new environment, whether or not the 22 

elevated mutation rates can empirically lead to the elevated adaptation rates remains unclear, 23 

especially when the environment is more heterogenous. To answer this question, we evolved E. 24 

coli populations with different starting mutation rates in a complex medium for 900 days and 25 

then examined their fitness and genome profiles. In the populations that have a higher starting 26 

mutation rate, despite faster genome evolution, their fitness improvement is not significantly 27 

faster. Our results reveal that the effect of elevated mutation rates is only very limited, and the 28 

mutations accumulated in hypermutators are largely due to linkage effect.   29 
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Introduction 30 

Beneficial mutations are the ultimate source of adaptive evolution. Therefore, it is of 31 

interest to study how changes to mutational processes can influence an adaptive process. In terms 32 

of mutation rates, a theoretically complicated relationship with the rate of adaptation in asexual 33 

populations was proposed in the early studies on the evolution of sex (Muller 1932; Crow and 34 

Kimura 1965). These studies posit that, when mutation rates are low, such that the waiting time 35 

for a beneficial mutation to arise in a population remains long, increases in the mutation rate can 36 

result in linear increases in the adaptation rate. In contrast, when mutation rates are relatively high, 37 

such that multiple beneficial mutations frequently arise in different individuals within a population, 38 

beneficial mutations may interfere with each other’s opportunity to spread through the entire 39 

population. Thus, the facilitation effect of the mutation rate on the adaptation rate becomes 40 

diminished, a phenomenon later called clonal interference (Gerrish and Lenski 1998). More recent 41 

theoretical studies have suggested that the effective number of beneficial mutations per population 42 

is critical for the strength of clonal interference, and effective population sizes and effect-size 43 

distributions of mutations have also been proposed to be influential (Gerrish and Lenski 1998; 44 

Wilke 2004; Kim and Orr 2005; Bollback and Huelsenbeck 2007; Desai and Fisher 2007; Park 45 

and Krug 2007; Campos and Wahl 2010; Park et al. 2010; Good et al. 2012; Penisson et al. 2017).  46 

The relationship between mutation rates and rates of adaptation is further complicated 47 

because mutation rates can be plastically different in various environments (Williams and Foster 48 

2012; Long et al. 2016; Shewaramani et al. 2017) and evolve over time (Wielgoss et al. 2013; 49 

Swings et al. 2017). Given that most mutations are deleterious, high mutation rates create high 50 

mutational loads in the genome, potentially driving the spread of antimutator alleles and resulting 51 

in the evolution of lower mutation rates (Muller 1950; Kimura 1967; Lynch 2008). According to 52 
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the drift-barrier hypothesis, the reduction of the mutation rate should continue until the addition of 53 

new antimutator alleles no longer contributes to a significant enough reduction in mutational load 54 

to overcome genetic drift (Lynch 2010b; Sung et al. 2012; Lynch et al. 2016). Consequently, if 55 

two populations with initially different mutation rates adapt to the same constant environment, the 56 

resulting difference in fitness-improvement rates can be less than predicted if both populations 57 

converge evolutionarily to similar mutation rates.  58 

While ample theoretical discussion exists on the relationship between mutation rates and 59 

the rate of adaptation, the theory has been mostly focused on constant environments with a simple 60 

fitness landscape, neglecting the likely complexity of more natural environments. The limited 61 

empirical evidence in asexual populations suggests that adaptation rates are a concave-down 62 

function of the mutation rate (Arjan et al. 1999; Desai et al. 2007; Sprouffske et al. 2018). However, 63 

the experimental environments in these studies were generally simple and homogeneous (Arjan et 64 

al. 1999; Desai et al. 2007; Sprouffske et al. 2018), or the populations of interest were already 65 

well-adapted to the experimental environment (McDonald et al. 2012). How the relationship 66 

between mutation rates and adaptation rates evolves when the environmental setting becomes more 67 

complex and heterogeneous is less understood. For example, the modes of adaptation in complex 68 

environments may vary greatly due to the presence of a more rugged fitness landscape, additional 69 

paths available for fitness improvement, the presence of multiple spatial or nutritional niches, or 70 

more complicated genetic interactions. (Handel and Rozen 2009; Lynch 2010a; Ochs and Desai 71 

2015; Guo et al. 2019). Therefore, it is necessary to study adaptive processes in more complex and 72 

heterogeneous environments to determine whether the principles observed in simpler 73 

environments still apply. 74 
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To study how the mutation rate affects adaptation in a more complex setting, we performed 75 

long-term experimental evolution of Escherichia coli in culture tubes containing a complex 76 

medium, Luria-Bertani (LB) broth, which is comprised of a nutritionally-rich mixture of multiple 77 

amino-acid based carbon sources (Sezonov et al. 2007). In contrast to evolution in flasks 78 

containing glucose-limited media, such environments can facilitate the rapid emergence of stable 79 

subpopulations and clonal divergence based on spatial niche differentiation and amino-acid 80 

metabolism divergence (Behringer et al. 2018). To vary the mutation rate, we evolved both WT 81 

populations (MMR+) and hypermutator populations with an impaired methyl-directed mismatch 82 

repair pathway (MMR-, obtained by mutL knockout), for which the single-nucleotide mutation 83 

rate is 140-fold higher than that for the WT genetic background (Lee et al. 2012). Because the 84 

results of experimental evolution may be altered by different demographic settings (Vogwill et al. 85 

2016; Wein and Dagan 2019), replicated populations were assigned to one of three different daily-86 

transfer size treatments: 1/10 (large, L), 1/104 (medium, M), and 1/107 (small, S) dilutions into 87 

fresh media. Here, we examined the differences in phenotypic and molecular evolution among 88 

these populations over the course of 900 days. 89 

 90 

Results 91 

Higher initial mutation rates do not translate into faster rates of fitness improvement.  When 92 

batch cultured, E. coli commonly adapt to their experimental environments and show fitness 93 

improvement compared to their ancestors (Van den Bergh et al. 2018; McDonald 2019). To 94 

compare adaptation rates in populations originating from genetic backgrounds with different initial 95 

mutation rates (MMR- and WT), we performed head-to-head competition assays between 96 

populations that had evolved for 900 days and their corresponding ancestor. For each of six 97 
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genetic-background/transfer-size combinations (2 × 3), four replicated populations were measured. 98 

Across all 21 populations with data available (three were aborted; see Materials and Methods), 99 

mean fitness significantly increased relative to the time-zero ancestor, by a ratio of 1.14 (SE = 100 

0.019; P = 5.8 x 10-7, two-tailed t-test), indicating the evolution of these populations shaped by 101 

adaptive processes.  102 

The amount of fitness improvement of MMR- populations was not significantly different 103 

from that for WT populations among any of the transfer sizes (Fig. 1A; L: P = 0.26; M: P = 0.46; 104 

S: P = 0.15, nested ANOVA). In particular, considering the ratio of mean fitness improvement 105 

(MMR- : WT), no transfer size produced a ratio significantly different from 1.0. For example, for 106 

the L transfer size, the mean fitness improvement for MMR- and WT backgrounds are respectively 107 

0.27 (SE = 0.043) and 0.21 (SE = 0.047), and therefore the ratio (MMR-: WT) is 1.28 (SE = 0.35). 108 

Similarly, in the M and S transfer sizes, the ratios are 0.69 (SE = 0.28) and 2.76 (SE = 1.98), 109 

respectively. Thus, starting evolution as a hypermutator does not necessarily translate into a faster 110 

fitness-improvement rate.  111 

Previous studies of E. coli in simpler, more homogeneous environments have shown that 112 

the most rapid increases in population fitness typically occur within 2500 generations, after which 113 

the rate of adaptation significantly slows (Barrick et al. 2009). At 900 days, the L populations, 114 

which due to their large transfer size experienced the least number of cell divisions, had 115 

experienced ~3000 generations, whereas the S populations had experienced ~21,000 generations. 116 

As such, the absence of significant differences in the cumulative amount of adaptation over this 117 

period – despite large differences in initial mutation rate – might be a consequence of both genetic 118 

backgrounds having exited an initial period of rapid fitness evolution. Thus, to better survey any 119 

temporal heterogeneity in the rate of adaptation, we further assessed fitness after 90-, 300-, and 120 
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600-days of evolution in response to L and S transfer sizes. The results of nested ANOVA again 121 

demonstrate a lack of evidence for an increase in initial mutation rates leading to an increase in 122 

the amount of fitness improvement (Fig. 1B-D). The results are not qualitatively changed even 123 

when the natural-logarithmic transformed fitness is used in the analysis (Fig. S1). Thus, high 124 

mutation rates did not result in accelerated fitness improvement in these asexual populations even 125 

in the early stages of adaptation.  126 

 127 

Mutation rates evolve to be more similar throughout experimental evolution. The indifference 128 

of adaptation rates to initial mutation rates might be explained if the mutation rates of hypermutator 129 

and WT populations became more similar during the evolution experiment, either due to a 130 

reduction in the mutation rate in initially hypermutating populations or to an increase of the rate 131 

in WT populations. To test this possibility, we performed fluctuation tests, which indirectly 132 

measure mutation rates at a resistance locus (Foster 2006), on different clones isolated from 133 

evolved populations after 900 days. Although the ratio of rifampicin-resistance mutation rates for 134 

the two ancestral lines (MMR- : WT) was 250 (Fig. S2), after 900 days of evolution, the mean 135 

difference in mutation rates between MMR- and WT backgrounds greatly decreased across all 136 

transfer sizes (Fig. 2). For example, in the L transfer size, the mean mutation rate is 5.0 x 10-7 (SE 137 

= 2.7 x 10-7) and 1.6 x 10-8 (SE = 1.2 x 10-8) for MMR- and WT evolved populations, respectively. 138 

Therefore, the ratio of mean mutation rates (MMR- : WT) was reduced to 32 (SE = 29). This 139 

reduction, however, seems mostly attributed to the occasional emergence of higher mutation rates 140 

in the WT background as only one population (115) among four tested WT, L populations shows 141 

a significant increase of the mutation rate in both tested clones. In the M and S transfer size, the 142 

ratio of mean mutation rates (MMR- : WT) was also reduced to 32 (SE = 15) and 12 (SE = 3.9), 143 
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respectively. However, the repeated evolution of lower mutation rates in clones isolated from 144 

MMR- background plays a more important role in the reduction as all of the tested clones from 145 

MMR-, M or S populations show a significant decrease of the mutation rate. Thus, the evolutionary 146 

convergence of mutation rates likely contributes to the difference in adaptation rates being less 147 

than what might be expected based on initial differences in mutation rates, but interestingly, the 148 

specific evolutionary mechanisms underlying these similarities are different. These observations 149 

demonstrate how transfer schemes can affect the evolutionary dynamics of mutation rates in 150 

asexual populations. 151 

 152 

Genome evolution rates are less different than predicted by initial mutation rates. To enhance 153 

our understanding of how the tempo and mode of genomic evolution relate to fitness and 154 

phenotypic evolution, we performed metapopulation sequencing of each experimental population 155 

roughly every 100 days to acquire mutation profiles of associated derived allele frequencies 156 

(DAFs). For each combination of genetic background and transfer size, we estimated the rate of 157 

genomic evolution by regressing the number of mutations per clone (i.e., the sum of DAFs of all 158 

observed SNPs) of all populations against the number of generations at each sampled time point. 159 

Because a quadratic regression model did not significantly outperform the linear regression (P = 160 

0.028 for MMR-/L; P > 0.10 for the others, nested ANOVA), we will focus on the results of the 161 

linear regression below. 162 

As with the rate of adaptation, for all three transfer sizes, the ratio of the rate of genomic 163 

evolution between the two backgrounds (MMR-: WT) was much smaller than the initial difference 164 

in mutation rates (Fig. 3A). For example, under the L transfer size, the rate of genomic evolution 165 

is 115 (SE = 5.3) and 30 (SE = 4.3) mutations per clone per 1000 generations for MMR- and WT 166 
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populations, respectively. Therefore, the ratio of the genomic-evolution rates is only 3.8 (SE = 167 

0.58). Similarly, in the M and S transfer sizes, the ratio is 20 (SE = 1.3) and 23 (SE = 1.6), 168 

respectively. This observation remained qualitatively similar even when different kinds of 169 

measurements for genomic divergence were used, e.g., the number of detected mutations (Fig. 170 

S3A), nucleotide diversity (Fig. S3B), or when genomic divergence was estimated only by 171 

synonymous SNPs (Fig. S4). 172 

           To further survey how genomic evolution rates vary across experimental populations and 173 

to determine if the mean rates accurately represent the majority of experimental populations, we 174 

separately measured the rate of genomic evolution for each experimental population (Fig. S5). 175 

This revealed that the distribution of rates in the WT populations under the L transfer size is wider 176 

than the distributions of rates in all other combinations of genetic background and transfer sizes. 177 

Specifically, in the L transfer size, although five of the eight WT populations exhibit a genomic 178 

evolution rate of ~10 mutations per clone per 1000 generations, one WT population (115) has a 179 

rate about 2× higher, and two WT populations (101 and 113) have a rate close to 100, similar to 180 

MMR- populations. Consistent with the results of fluctuation tests noted above, these results 181 

suggest that some, but not all, WT populations under the L transfer size evolved a higher mutation 182 

rate (see Discussion).  183 

 184 

Mutations arising in hypermutators are more likely to be fixed. Using longitudinal 185 

metagenomics-sequencing data allows one to observe evolutionary dynamics at the level of single 186 

mutations and thus better understand the entire adaptive process. Here, we will focus on fixed 187 

mutations because they are more likely to contribute to adaptive processes than polymorphic 188 

mutations or other mutations that are transient in a population. Because our experimental-189 
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environment setting facilitates the development of subpopulation structure, we applied clade-190 

aware hidden Markov chain (caHMM) analysis. Assuming coexistence of two clades (major and 191 

minor) in the population, caHMM considers each mutation’s DAFs found in different sequencing 192 

time-points and then infers which clade each mutation belongs to, whether each mutation reaches 193 

within-clade fixation, and when a fixed mutation reaches fixation (Good et al. 2017).  194 

One characteristic parameter in an adaptive process is the probability that mutations reach 195 

fixation in a population. With the observed numbers of both detected and fixed mutations, we first 196 

tested whether hypermutator populations have a different probability of mutation fixation within 197 

clades compared to WT populations. Different mutation types have a different potential to impact 198 

populational fitness. For example, compared to synonymous SNPs, nonsynonymous SNPs have a 199 

greater potential to change protein functions, intergenic SNPs have a greater potential to change 200 

protein expression, and structural variations (SVs; including indels and mobile-element insertions) 201 

have a greater potential to disrupt a protein. Therefore, we performed separate tests on the 202 

conditional fixation probability for these four functional categories of mutations.  203 

While not always significant, the fixation probability in the MMR- populations is generally 204 

higher than in WT populations across different transfer sizes and different categories of mutations 205 

(Fig. 4A). The fixation probability is similar across different categories of mutations, regardless 206 

of their perceived potential to affect fitness, suggesting that the fixation of most mutations is a 207 

consequence of genetic hitchhiking as opposed to intrinsic beneficial effects. 208 

Another critical factor determining the temporal dynamics of a mutation is the underlying 209 

fitness effect. With the temporal data of allele frequencies for a mutation, we can quantify the net 210 

selection coefficient, which reflects its own fitness effects but can be potentially affected by the 211 

effects of linked mutations. We did not find a significant difference between the selection 212 
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coefficients of fixed mutations in the two genetic backgrounds (Fig. 4B). More importantly, we 213 

also found that different categories of mutations show similar mean selection coefficient estimates, 214 

which again suggests a pivotal contribution of hitchhiking effects to the mutational dynamics of 215 

genome evolution these in asexual populations.  216 

 217 

Neutrality tests reveal partial evidence for positive selection. In theory, comparing the number 218 

of fixed mutations in functional categories of sites with different potential effects on fitness can 219 

summarize general patterns in the mode of genome evolution (McDonald and Kreitman 1991; 220 

Rand and Kann 1996). If a population has experienced strong positive selection on protein function 221 

or expression, it is expected that there will be more fixed mutations with a greater potential to 222 

change protein function or expression than mutations with smaller such potential. If a population 223 

has experienced purifying selection on protein function or expression, it is expected that there will 224 

be less fixed mutations with a greater potential to change protein function or expression than 225 

mutations with smaller such potential. Therefore, the ratio of the number of fixed nonsynonymous 226 

synonymous SNPs (FN) to the number of fixed synonymous SNPs (FS) or the ratio of the number 227 

of fixed intergenic SNPs (FI) to FS is predicted to be large with a strong positive selection. 228 

Similarly, FN/FS or FI/FS are predicted to be small with a strong purifying selection. However, 229 

these ratios are not directly comparable in MMR- and WT backgrounds, because the two genetic 230 

backgrounds have varied mutational spectra and different relative rates of nonsynonymous and 231 

synonymous mutations (Lee et al. 2012). To address this issue, we normalized the observed FN/FS 232 

by the ratio of nonsynonymous and synonymous mutations (UN/US) previously observed in a 233 

mutation accumulation experiment which utilized our exact ancestral genotypes (Lee et al. 2012). 234 

The ratio of these ratios, (FN/FS)/(UN/US), will be referred to as the neutrality index of 235 
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nonsynonymous SNPs, since being significantly > 1.0 or < 1.0 implies a predominance of positive 236 

selection in driving mutation fixation or a predominance of purifying selection in driving mutation 237 

extinction. It is analogous to Tachida’s index for neutrality (Tachida 2000) but with a different 238 

normalizing approach – via results from mutation-accumulation experiment instead of 239 

polymorphism. This definition of the neutrality index can be applied to any kind of mutations. For 240 

example, we also define the neutrality index of intergenic SNPs as (FI/FS)/(UI/US), where UI is the 241 

number of intergenic mutations observed in mutation accumulation (Lee et al. 2012).    242 

The neutrality index of nonsynonymous SNPs in MMR- populations under the L transfer 243 

size is significantly larger than one, consistent with the model of strong positive selection (Fig. 244 

4C). Moreover, the neutrality index of intergenic SNPs in MMR- populations under all transfer 245 

sizes is significantly smaller than one, suggesting overall strong purifying selection on intergenic 246 

SNPs (Fig. 4D). On the contrary, the neutrality index in WT populations is never significantly 247 

different from one. While this can indicate a weaker strength of selection in WT populations, it 248 

may also be the result of insufficient statistical power due to an overall smaller number of fixed 249 

SNPs in WT populations, evident by their large confidence intervals associated with the point 250 

estimation.   251 

 252 

Parallel evolution of fixed mutations at the genic and nucleotide level. As the previous analysis 253 

suggests that the statistical power of the neutrality index to reveal positive selection may be 254 

insufficient, we also considered parallelism of fixed mutations to examine the action of positive 255 

selection, using two different metrics. First, we utilized a sum of G-scores to measure the excess 256 

parallelism across fixed nonsynonymous mutations relative to the expectation based on gene 257 

lengths (Tenaillon et al. 2016). For each gene, a higher G-score implies that the gene is more 258 
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enriched for fixed nonsynonymous mutations than expected by gene length. We then summed the 259 

G-scores of all genes for each combination of genetic background and transfer size and found 260 

statistical significance in all cases (z-test, Fig. 5A). Second, we calculated the mean Bray-Curtis 261 

similarity of the number of fixed nonsynonymous mutations across all genes (Turner et al. 2018) 262 

for all pairwise comparisons of evolved populations in each combination of genetic background 263 

and transfer size. The results again show statistical significance for similarity in all cases (z-test, 264 

Fig. S6). Therefore, both findings suggest that positive selection has shaped the genomic evolution 265 

of populations in all genetic-background / transfer-size combinations. 266 

The analysis of parallelism also helps reveal which mutations are most likely to be drivers 267 

of adaptation. Using the same G-score analysis, in each genetic-background/transfer-size 268 

combination, we identified genes that were overrepresented for fixed nonsynonymous mutations 269 

(P < 0.05, Bonferroni correction; Fig. 5B). Gene Ontology (GO) analysis on these gene subsets 270 

revealed that significantly enriched GO terms were often related to transcription regulation and 271 

biofilm formation (Table S1). Using similar methods, we also identified subsets of genes enriched 272 

for fixed mutations in intergenic regions (Fig. 5C) and for structural mutations, including indels 273 

and IS-element insertions (Fig. 5D). Together, the genes in these lists serve as good candidates for 274 

revealing the various mechanisms important to adaptation in complex environments (see 275 

Discussion). 276 

In addition to genic-level parallelism, we also identified nucleotide-level parallelism. In 277 

particular, 197 cases of parallel fixed nonsynonymous mutations were identified in at least two 278 

experimental populations within the same combination of transfer size and genetic background 279 

(Table S2). Because the probability that fixed mutations would occur by chance at a given 280 

nonsynonymous site in at least two experimental populations is very low, the observed parallelism 281 

.CC-BY-NC-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted July 29, 2021. ; https://doi.org/10.1101/2021.07.28.454222doi: bioRxiv preprint 

https://doi.org/10.1101/2021.07.28.454222
http://creativecommons.org/licenses/by-nc-nd/4.0/


 15 

at the nucleotide-level again suggests positive selection and identifies important candidates for 282 

studying the molecular mechanisms associated with adaptation in complex media. For example, 283 

three instances of parallel mutation within fimH were located in its mannose-binding domain, and 284 

therefore may be good candidates for future functional studies of cell-adhesion (Schembri et al. 285 

2001). Furthermore, three instances of parallel-fixed nonsynonymous mutations were found in 286 

genes with GO terms associated DNA repair or DNA replication, including dnaE (DNA pol III 287 

subunit α), yajL (protein/nucleic acid deglycase 3), and nrdA (ribonucleoside-diphosphate 288 

reductase 1, α subunit dimer). As all three of these cases arose in M and S transfer sizes with 289 

MMR- backgrounds, they may be good candidates for studying the molecular mechanisms 290 

associated with lowering mutation rates. 291 

 292 

Discussion 293 

Here, we describe the effect of the initial mutation rate on the rate of fitness improvement and 294 

genomic evolution by experimentally evolving E. coli with two distinct mutation-rate backgrounds. 295 

While the initial difference in mutation rates of these two genetic backgrounds is >100×, after 900 296 

days of evolution, the differences in the net rates of fitness improvement (0.7-2.7 fold), in the 297 

mutation rates (12-32 fold), and in level of genome evolution (4-23 fold) are much smaller. At the 298 

resolution of single mutations, we found that mutations arising in MMR- populations exhibit 299 

higher fixation probabilities than mutations in WT populations, while mutations in different 300 

categories with presumably different fitness effects show similar fixation probabilities within each 301 

genetic-background treatment, suggesting the strong influence of hitchhiking effects in genome 302 

evolution in these populations. Despite the strong linkage and pervasive genetic draft, there is still 303 

evidence, in the form of a high degree of parallelism in mutations arising in particular genes and 304 
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nucleotides, that positive selection shapes genome evolution in all transfer-size/genetic-305 

background combinations. The observed mutations with high parallelism also serve as excellent 306 

candidates for understanding the mechanisms of adaption to the complex conditions provided by 307 

the experimental environment.    308 

 309 

Effects of high mutation rates on evolution. Our experiments reveal that, even for 900 days of 310 

evolution in a complex medium, hypermutating E. coli does not necessarily exhibit a faster rate of 311 

adaptation than wild-type E. coli. This observation is consistent with previous experimental-312 

evolution results over a shorter period and in simpler media, such as glucose medium DM25 for 313 

1000 generations (Arjan et al. 1999) and glucose medium DM1000 for 3000 generations 314 

(Sprouffske et al. 2018). Our experiments further demonstrate that populations with initially 315 

hypermutator backgrounds can rapidly evolve lower mutation rates. Together with other empirical 316 

work on prokaryotic (Sprouffske et al. 2018) and eukaryotic hypermutators (McDonald et al. 2012), 317 

these results suggest that the strong genetic load due to deleterious mutations remains a pivotal 318 

factor in the evolution of mutation rates, consistent with the drift-barrier hypothesis (Lynch 2010b; 319 

Sung et al. 2012). Even when some new hypermutator alleles can spread in a population by linkage 320 

with other beneficial mutations during the adaptive process and thus briefly improve the rate of 321 

adaptation (Sniegowski et al. 1997; Tenaillon et al. 1999; Tenaillon et al. 2001), such events are 322 

usually transitory (Giraud et al. 2001; Desai and Fisher 2007; Wielgoss et al. 2013). Moreover, the 323 

fact that lowering the mutation rate could not have involved a reversion of deleted MMR in our 324 

experiments implies that there is excess capacity for improving replication fidelity through other 325 

parts of E. coli genome. As mutation-rate evolution occurred over a relatively short period in our 326 

.CC-BY-NC-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted July 29, 2021. ; https://doi.org/10.1101/2021.07.28.454222doi: bioRxiv preprint 

https://doi.org/10.1101/2021.07.28.454222
http://creativecommons.org/licenses/by-nc-nd/4.0/


 17 

study, the results bear on several critical questions for future studies, including the rapidity of the 327 

dynamics of the evolution of mutation rates and the consequences for the mutational spectrum.  328 

 329 

Effect of genetic linkage in evolution. In asexual populations with reduced recombination, the 330 

fate of a mutation is largely affected by its association with other mutations due to strong genetic 331 

linkage (Gillespie 2000; Neher 2013; Couce et al. 2017). Extensive hitch-hiking is a feature of our 332 

evolving E. coli populations, as we observe similar fixation probabilities and net associated fitness 333 

effects for fixed mutations across different functional categories of mutations. To better illustrate 334 

this effect of genetic linkage, we showed that the temporal DAF changes of any two SNPs in the 335 

same genome are highly correlated (i.e., a rightly-skewed distribution of correlation coefficients) 336 

and result in more largely positive correlation coefficients than for a random expectation of non-337 

linked mutations (Fig. S7). Accordingly, pre-existing non-beneficial mutations can become fixed 338 

by hitchhiking with newly-arising beneficial mutations, and these linkage effects can limit the rate 339 

of adaptation (Schiffels et al. 2011; Kosheleva and Desai 2013). Therefore, even though MMR- 340 

populations show a range of genome-evolution rates 4 - 23× higher than WT populations, the 341 

excess of fixed mutations does not directly contribute to adaptation rates.  342 

 343 

Effects of transfer sizes in evolution. The three different transfer sizes (L, M, and S) implemented 344 

in our evolution experiment allow us to compare adaptive processes in different population-genetic 345 

environments. In theory, when the transfer size is large, reduced genetic drift renders a higher 346 

efficiency of promotion of beneficial mutations in a population. Consistent with this theoretical 347 

prediction, the populations cultured with the L-transfer size show highest rates of fitness gain (Fig. 348 

1), for nonsynonymous mutations, the observed neutrality index of MMR- populations under L 349 
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transfer size is lowest and < 1.0 (Fig. 4C). Compared to L-transfer treatment, the populations 350 

cultured with the S-transfer size may have accumulated more deleterious mutations and thus show 351 

less fitness improvement. 352 

We also found that the populations under the L-transfer size tend to evolve higher mutation 353 

rates (Fig. 2), as hypermutator alleles may hitchhike with more selective sweeps of beneficial 354 

mutations. Previous research has also demonstrated that the spread of hypermutator alleles tends 355 

to be found in populations with a larger population size or weaker bottleneck effects (Raynes et al. 356 

2014). As a result, even though the mutation rates of lines in two genetic backgrounds (WT and 357 

MMR-) evolved to be closer during the experiments with all three transfer sizes, the driving 358 

mechanisms are different between populations under the L transfer size and those under M or S 359 

transfer sizes (Fig. 2).  360 

In theory, the evolved populations under larger transfer sizes experienced a relatively 361 

longer duration of stationary phase between transfers as the number of divisions needed to reach 362 

the stationary phase are smaller. Given that the physiological features of E. coli can be different in 363 

different growth phases (Pletnev et al. 2015), the evolutionary pressure under different transfer-364 

sizes may also be different. Therefore, interpreting any results based on the comparison across 365 

transfer-size treatments needs more caution. In our case, however, such differences are likely 366 

limited, as we still found significant parallelism in the fixed enriched mutations across different 367 

transfer sizes (Fig. S8). Whether there is any adaptation specific to the different growth phases or 368 

different combinations of growth phases is a subject for future studies. 369 

 370 

The possible role of biofilm formation in adaptation. With respect to the specific genes and 371 

biological processes that appear to be targets for adaptation, our analysis of candidate genes 372 
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suggests that biofilm formation is an important characteristic in adapting to the complex setting 373 

imposed by the experimental environment. In particular, the formation of type I fimbriae is critical 374 

for biofilm formation in E. coli (Pratt and Kolter 1998). Consistently, several genes enriched for 375 

fixed nonsynonymous mutations are related to formation of type I fimbriae (Fig. 5B), including  376 

fimH and fimG, which account for components the type I fimbriae (Waksman and Hultgren 2009; 377 

Le Trong et al. 2010), fimB and fimE, which regulate the expression of fimAICDFGH operon 378 

(Olsen et al. 1998), and proQ (RNA chaperone) and lsrK (autoinducer-2 kinase), which also 379 

facilitate biofilm formation (Li et al. 2007; Sheidy and Zielke 2013). We additionally observed an 380 

enrichment of mutations in the intergenic region of fimE/fimA (Fig. 5C) which contains a phase-381 

variable promoter for regulating the expression of the fimAICDFGH operon (Abraham et al. 1985; 382 

Spears et al. 1986). Lastly, the list of genes enriched with structural mutations (Fig. 5D) also 383 

include fimE, which primarily turns off the expression of fimAICDFGH operon, and several genes 384 

related to gatYZABCD operon, including gatZ, gatB, and gatA, whose deletions can increase 385 

biofilm formation (Domka et al. 2007). Many of these candidate genes related to type I fimbriae 386 

contributed to the adaptation in an earlier experimental environment of a similar nature (Behringer 387 

et al. 2018). Moreover, structural mutations in gatZ and gatA genes have been found to contribute 388 

to the initial adaptation of E. coli in a mouse gut, another example of a complex environment 389 

(Barroso-Batista et al. 2014).  Studying the genetic variants promoting the evolution of biofilm in 390 

complex environments may be of particular interests in the field of public health, as the evolution 391 

of biofilm has been considered to be related to the evolution of microbial social behaviors (Tarnita 392 

2017), the evolution of pathogenicity (Kaper et al. 2004; Naves et al. 2008; Rossi et al. 2018), and 393 

the evolution of antibiotic resistance (Avalos Vizcarra et al. 2016; Sharma et al. 2016). Thus, 394 
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understanding the evolution of biofilm formation may be key to increasing the efficiency of 395 

treatments in patients to combat the fast emergence of antibiotic resistance and pathogenicity. 396 

 397 

Candidate transcriptional regulators involved in adaptation. Because we have provided fresh 398 

media every day during the experimental evolution, a fast switch from stationary phase to 399 

exponential growth phase may bring benefits to the evolving populations (Monod 1949; Navarro 400 

Llorens et al. 2010). Interestingly, several genes enriched in fixed nonsynonymous mutations in 401 

our study are transcription regulators, including arcA, cadC, cytR, rbsR, rseB, and sspA (Fig. 5B). 402 

The genes enriched in structured variations also include transcription regulators, such as arcB, 403 

cadC, rpoS, and nlpD (Fig. 5C). The mutations on these genes may contribute to the transcriptomic 404 

reprogramming for the fast switch from stationary phase to exponential phase. For example, rseB 405 

is a negative regulator of the stationary phase effector, sigma factor E (Missiakas et al. 1997); and 406 

both cytR and rbsR are repressors to the carbon limitation effector, cAMP-CRP (Bell et al. 1986; 407 

Mauzy and Hermodson 1992; Kristensen et al. 1996). Therefore, gain-of-function mutations on 408 

these three genes can theoretically reduce the chance that cells stay in stationary phase. In addition, 409 

arcA, arcB, cadC, rpoS, and sspA are known as stress-responding activators (Iuchi et al. 1989; 410 

Lange and Hengge-Aronis 1991; Watson et al. 1992; Williams et al. 1994; Rolfe et al. 2011). 411 

Therefore, loss-of-function mutations on these genes are presumably beneficial in the experimental 412 

environment involving a frequent supply of fresh media and presumably imposing low stress. 413 

Further investigation will be needed to determine whether any of these mutations can bring such 414 

benefits to our experimentally evolved populations.   415 

 416 
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Concluding Remarks. To sum up, our results reveal that high mutation rates in E. coli have only 417 

a very limited influence on the rate of adaptation. Our findings may provide useful insights for 418 

clinically relevant processes involving asexual populations, such as the evolution of improved 419 

growth rates in pathogens and the emergence of antibiotic resistance in natural or host environment. 420 

In particular, our experimental evolution results in complex media are likely to be more 421 

representative, as natural or host environments are usually highly heterogeneous. For example, a 422 

combination of the occasional emergence of hypermutators under weaker bottlenecks and the 423 

consistent evolution of antimutators under stronger bottlenecks may explain why a low to 424 

intermediate frequency of hypermutators is usually found in pathogen populations (Couce et al. 425 

2016; Veschetti et al. 2020). Whether the elevated mutation rates affect adaptation rates and the 426 

pattern of genome evolution in these populations under natural or host environments should be 427 

subject to future research. For example, hypermutators may be critical for a founding population 428 

in a new environment, especially with epistasis in the fitness landscape, but such effect of 429 

hypermutation can diminish after a long time (Mehta et al. 2019).  430 

 431 

Materials and Methods 432 

Strains. The ancestral strains used in experimental evolution are descendants of PMF2 and 433 

PMF5, provided by the Foster Lab (Lee et al. 2012). PMF2 is a prototrophic derivative of E. coli 434 

K-12 str. MG1655, and its genetic background is called by WT in the paper. PMF5 is derived 435 

from PMF2 with mutL deletion, providing the MMR- genetic background. For both kinds of 436 

strains, a 3513 bp deletion to the araBAD operon is further introduced by lambda red 437 

recombineering as a neutral marker. Plates with TA agar (1% Arabinose, 1%Tryptone, 0.5% 438 

NaCl, 0.1% Yeast Extract, 0.005% TTC (Sigma T8877)) is used for examining the deletion of 439 
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araBAD operon. The colonies with deletion (ara-) appear to be pink; otherwise, the colonies 440 

(ara+) appear to be purple. 441 

 442 

Experimental evolution. When we established the experimental populations, the ancestral 443 

strains were first cultivated overnight at 37 °C on LB agar plates, and then their single-isolated 444 

progenitor colonies were inoculated in a 16- × 100-mm glass tube with 10 mL of LB-Miller 445 

broth (BD Difco). The tubes were cultured at 175 rpm shaking at 37 °C. Every day, cultures are 446 

thoroughly-vortexed and transferred into a new tube with 10 mL of fresh LB broth. Three 447 

different transfer sizes are used: 1 mL(large), 1uL(medium), and 1nL(small), which correspond 448 

to different dilution factors: 10-1, 10-4, and 10-7. Initially, for each combination of genetic 449 

background and transfer sizes, we set up eight replicate tubes in three groups with different 450 

transfer sizes.  For preventing cross-contamination, four replicates are ara- and four replicates 451 

are ara+. During the experimental evolution, experimental populations at day 90, 200, 300, 400, 452 

500, 600, 700, 800, 900 were frozen in -80 °C freezers for analysis. 453 

 454 

Competition assay. When evaluating the fitness of an evolved population (ara-), we inoculated 455 

the corresponding frozen sample in a tube with 10 mL of fresh LB broth at 37 °C shaking at 175 456 

rpm overnight. We also inoculated the corresponding ancestral population in a tube with 10 mL 457 

of fresh LB broth at 37 °C shaking at 175 rpm overnight. We then put 50 uL aliquot from 458 

evolved populations and 50 uL aliquot from evolved populations to into a new tube with 10 mL 459 

of LB broth at 37 °C shaking at 175 rpm for 24-hr competition. Immediately after inoculation 460 

(day 0) and after 24-hr competition (day 1), we used plate-counting to determine the colony-461 

forming units (CFU) of both ancestral and evolved strains. Specifically, we serially diluted 462 
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100uL aliquot in 900 uL phosphate buffered saline. To distinguish the evolved population from 463 

the ancestors, we plated serially diluted aliquots on TA agar because ara- colonies will appear to 464 

be pink, while the ancestral (ara+) will appear to be purple. The TA plates were then incubated 465 

at 37 °C overnight. We then identified the plate with total colonies 30-300 and counted the 466 

number of colonies for the evolved population and the ancestors. Based on the colony numbers 467 

and the dilution factor during the serial dilution, we then calculated the CFU of ancestors before 468 

the competition (A0), the CFU of ancestors after the competition (A1), the CFU of the evolved 469 

population before the competition (E0), and the CFU of the evolved population after the 470 

competition (E1). The fitness of the evolved population (w) relative to the ancestor was then 471 

calculated by the following formula:  472 

w = ln(E1/E0) / ln(A1/A0), 473 

which is the ratio of two Malthusian parameters (Lenski et al. 1991).  474 

 At day 0, we also serially diluted and plated 100uL aliquot of evolved population as a 475 

control. For an evolved population, if both purple and pink colonies in the countable control 476 

plates (30-300 colonies per plate), its data will be discarded from the analysis because we are 477 

not sure about the source of the pink colonies in the experimental plates. 478 

 479 

Fluctuation test and mutation rate estimation. We quantified mutation rates of evolved 480 

populations (at day 900) and ancestors by fluctuation tests (Foster 2006). Briefly, fluctuation 481 

tests measure the rate of resistance to the antimicrobial rifampicin which is conferred by 482 

mutations to rpoB. For each combination of genetic background and transfer size, the four ara- 483 

populations were assayed. For each population, two biological replicates with different starting 484 

clones were assayed. For each of the WT or MMR- ancestor, we also run replicate experiments 485 
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in different starting clones. For each clone, 40 replicate experiments were performed. Number of 486 

mutants as determined by CFU/mL were converted to an estimated mutation rate and a 487 

corresponding 95% confidence interval by the function “newton.LD” function in the R package 488 

“rSalvador”(Zheng 2017). 489 

 490 

DNA isolation and high-throughput sequencing. We conducted high resolution population 491 

tracking by collecting 1 mL of culture at day 90, 200, 300, 400, 500, 600, 700, 800, and 900 of 492 

experimental evolution. We used the DNeasy UltraClean Microbial Kit (Qiagen 12224; formerly 493 

MO BIO UltraClean Microbial DNA Kit) to extract DNA. For library preparation and 494 

sequencing, we submitted DNA to either the Hubbard Center for Genomic Analysis at the 495 

University of New Hampshire, the Center for Genomics and Bioinformatics at Indiana 496 

University, or the CLAS Genomics Facility at Arizona State University for library preparation 497 

and sequencing. Library preparation was done by the Nextera DNA Library Preparation Kit 498 

(Illumina, FC-121-1030) following an augmented protocol for optimization of reagent use 499 

(Baym et al. 2015) before being pooled and sequenced as paired-end reads on an Illumina HiSeq 500 

2500 (UNH) or an Illumina NextSeq 500 (Indiana; ASU). The target depth is 100X. 501 

 502 

Sequencing analysis. We performed Sequencing analysis on the Mason and Carbonate high-503 

performance computing clusters at Indiana University. The quality control of sequencing reads 504 

were performed by Cutadapt v.1.9.1 (Martin 2011), which removes residual adapters and trims 505 

low quality sequences. The qualified sequencing reads were then mapped to the Escherichia coli 506 

K-12 substr. MG1655 reference genome (NC_000913.3). All mutations and their derived allele 507 

frequencies (DAFs) were identified using Breseq v.0.30.2 with the predict-polymorphisms 508 
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parameter setting (Deatherage and Barrick 2014). Furthermore, several criteria of further quality 509 

checks were applied to the samples which we will only include in the following analysis: (1) 510 

mean sequencing depths > 10; (2) any WT sample identified to contain the 1,830 bp deletion in 511 

mutL from the PMF5 progenitor strain was discarded; (3) regions lacking sequencing coverage 512 

(i.e. depth = 0) must be smaller than 5% of the genome; and (4) the sequencing result should 513 

reflect the correct genetic background in terms of ara markers, including a nonsynonymous SNP 514 

at position 66528, an intergenic SNP at position 70289, and a multiple base substitution mutation 515 

(SUB) at position 66533. For an ara+ population, we required either of two SNPs showing DAF 516 

< 0.2. For an ara- population, we required either of two SNPs showing DAF > 0.8 or the SUB is 517 

detected.  518 

In the end, 396 genomic profiles passed QC and were included in the following analysis 519 

(Table S3). In the case of M transfer size under WT background, only six out of eight replicates 520 

of evolved populations are left for the following analysis because the other two were potentially 521 

contaminated by MMR- strains. In the other five combinations of transfer size and genetic 522 

background, there are still eight replicates of evolved populations for the following analysis. For 523 

every evolved population subject to the following analysis, its sequencing profiles are available 524 

in at least seven different time points. 525 

To make sure that we do not use the mutations that originated from the starting clone 526 

before experimental evolution in the analysis, we discarded any mutations with a DAF = 1.0 at 527 

one time point for at least 11 experimental populations with the same genetic background from 528 

the analysis. Furthermore, the highly repetitive sequences in rsx genes are known to cause errors 529 

in SNP calling (McCloskey et al. 2018), so they were also discarded from the analysis.  530 

 531 
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Number of guaranteed generations. Given the observation that carrying capacity of 532 

experimental populations can be recovered within a transfer period (i.e. one day), the 533 

guaranteed generation numbers in 900 days for dilution factors = 10-1, 10-4, and 10-7 were 534 

respectively estimated as 900 times of log2(10), log2(104), and log2(107), which is equal to ~ 535 

3.0k, 12k, and 21k. 536 

 537 

Rate of genomic evolution. The level of genomic divergence for each experimental population 538 

at each time point is defined by summing all DAFs of detected mutations. We then calculated the 539 

mean genomic divergence across all eligible experimental populations in each combination of 540 

transfer size and genetic background. We further performed the linear regression by the function 541 

“lm” in R with formula “mean genomic divergence ~ guaranteed generations + 0”, which 542 

enforces the y-intercept as 0. The slope of the regression is the estimated rate of genomic 543 

evolution. We also performed a nonlinear regression using the formula “mean genomic 544 

divergence ~ guaranteed generations + square root of guaranteed generations + 0”, which was 545 

previously proposed to catch the trend of diminishing returns (Tenaillon et al. 2016).  546 

  547 

Identification of fixed mutations by hidden Markov chain. For each population, clade-aware 548 

hidden Markov model (caHMM) was performed using a modified version (Behringer et al. 2020) 549 

of previously released code (Good et al. 2017). For the populations in which caHMM can not 550 

finish, we instead performed well-mixed hidden Markov chain (wmHMM) using a modified 551 

version (Behringer et al. 2020) of previously released code (Good et al. 2017). The single clade 552 

in wmHMM is defined as the basal clade. Fixed mutations are then defined as mutations that are 553 

inferred to be fixed in basal, major, or minor clade in the results of either analysis.  554 
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 555 

Estimation of selection coefficients. For each fixed mutation, we estimate its selection 556 

coefficients by its temporal data of DAFs. If a mutation is in the basal clade, no correction is 557 

needed. If caHMM infers a mutation belongs to the major or minor clade, its corrected allele 558 

frequency will be the DAF devided by the proportion of the population belonging to the major or 559 

minor clade (also inferred by caHMM). For each of two available consecutive time points i and j, 560 

if the corrected allele frequencies at both time points (pi and pj) are smaller than 0.95 and larger 561 

than 0.05, the selection coefficient is calculated as  562 

𝑙𝑛 !!(#$!")

!"&#$!!'
#𝑡( − 𝑡)&' , 563 

where ti and tj is the number of guaranteed generations at time point i and j, respectively. The 564 

negative values are discarded. The largest positive value across all pairs of time point are used as 565 

the final measurement. 566 

 567 

Calculation of neutrality index. As discussed in the main text, we defined (FN/FS)/(UN/US) as 568 

the neutrality index of nonsynonymous SNPs, where FN is the number of nonsynonymous SNPs 569 

fixed within a clade or fixed in an entire population, FS is the number of synonymous SNPs fixed 570 

within a clade or fixed in an entire population, UN is the number of nonsynonymous SNPs in the 571 

mutation- accumulation experiment, and US is the number of synonymous SNPs in the mutation 572 

accumulation-experiment. We also similarly defined (FI/FS)/(UI/US) as neutrality index of 573 

intergenic SNPs, where FI is the number of intergenic SNPs fixed within a clade or fixed in an 574 

entire population, and UI is the number of intergenic SNPs in the mutation-accumulation 575 

experiment. The values of UN, US, and UI are from a previously published mutation-576 

accumulation experiment of our ancestral lines (Lee et al. 2012). We calculated population-577 
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specific indexes and then acquired population-wise mean and SE. The populations with FN = 0 578 

and FI = 0 are discarded in the calculation of neutrality index of nonsynonymous and intergenic 579 

SNPs, respectively. 580 

 581 

Calculation of G-scores. For each combination of genetic background and transfer size, we 582 

quantified the parallelism of the fixed nonsynonymous mutations using the sum of G-scores 583 

across genes (Tenaillon et al. 2016). A larger G-score for a gene suggests that the fixed 584 

nonsynonymous mutations are more overrepresented in that gene. Specifically, to calculate a 585 

genic G-score (Gi), we first counted the observed number of fixed nonsynonymous mutations in 586 

gene i (Oi) per a combination of genetic background and transfer size. We then calculated the 587 

expected number for gene i (Ei) by Otot(Li/Ltot), where Otot = Σi Oi, Li is the number of 588 

nonsynonymous sites for gene i, and Ltot = Σi Li. In the end, Gi is defined by 2Oiln(Oi /Ei) or 589 

defined as zero when Oi = 0 or when 2Oiln(Oi /Ei) < 0.  590 

 It was noted that the null expectation of G-scores varies with total number of fixed 591 

nonsynonymous mutations (Behringer et al. 2020). Therefore, for each combination of genetic 592 

background and transfer size, we performed 20,000 simulations in each of which Otot hits are 593 

randomly distributed among all Ltot sites across all genes in the reference genome. Then the 594 

significance of the sum of G-scores was evaluated by the z score defined by (the observed sum - 595 

mean of simulated sums) / (standard deviation of simulated sums).  596 

 597 

Calculation of mean Bray-Curtis similarity. For each combination of genetic background and 598 

transfer size, we also quantified the parallelism of the fixed nonsynonymous mutations using the 599 

mean Bray-Curtis similarity across all pairs of experimental populations for a TP/GB 600 
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combination (Turner et al. 2018; Behringer et al. 2020). Specifically, for a pair of populations j 601 

and k, their Bray-Curtis similarity is defined by		602 

1 −
∑ "#!"$#!#"!
∑ %#!"&#!#'!

 , 603 

where oij and oik is the observed number of fixed nonsynonymous mutations in gene i for 604 

population j and k, respectively. 605 

For each combination of genetic background and transfer size, we also performed 1,000 606 

simulations to acquire the null distribution. In each simulation, we randomly sample the 607 

nonsynonymous sites up to the number of observed fixed nonsynonymous mutations for each 608 

population and calculated mean Bray-Curtis similarity as described above. After acquiring the 609 

null distribution, we evaluated the significance of the observed mean Bray-Curtis similarity by 610 

calculating the z score defined by (the observed value - mean of simulated values) / (standard 611 

deviation of simulated values). 612 

 613 

Overrepresentation of the genes affected by nonsynonymous mutations. To evaluate the 614 

significance of G-score for gene i, we directly compared the Gi to the distribution of 20,000 615 

simulated Gi, and the P-value was defined as the proportion of simulated Gi larger or equal to the 616 

observed Gi. For multiple test correction, we multiplied each gene’s P-value by the number of 617 

genes with at least one hit by the set of fixed nonsynonymous mutations (Bonferroni correction). 618 

The genes are called significant only if the genes show Bonferroni corrected P-value < 0.05.  619 

 620 

Enrichment test of GO terms and KEGG pathways. Using the set of significant genes, we 621 

performed the enrichment test of gene ontology terms using the function “enrichGO” in R 622 
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package “DOSE” (Yu et al. 2015) with q-value cut-off = 0.05 and the organismal database as 623 

org.EcK12.eg.db. We also performed the enrichment test of KEGG pathways using the function 624 

“enrichKEGG” in the same package but found no terms with q-value < 0.05. 625 

 626 

Overrepresentation of the intergenic regions affected by fixed mutations. The identification 627 

of the intergenic regions affected by mutations was also performed by the way similar to identify 628 

the genes affected by nonsynonymous fixed mutations in genic G-score approach (Tenaillon et 629 

al. 2016). Instead of focusing on genic regions, genome-wide intergenic regions are focused. For 630 

each combination of genetic background and transfer size, we first counted the observed number 631 

of intergenic mutations in intergenic region i (Oi), and the expected number for intergenic region 632 

i (Ei) was calculated by Otot(Li/Ltot), where Otot = Σi Oi, Li is the length for intergenic region i, and 633 

Ltot = Σi Li. The G-score for intergenic region i (Gi) was then calculated by 2Oiln(Oi /Ei), 634 

following the methods described in the above section. We also performed 20,000 simulations 635 

and determined the Bonferroni corrected P-value for each gene i following the methods 636 

described in the above section.  637 

 638 

Overrepresentation of the genes affected by structural fixed mutations. The identification of 639 

the genes affected by structural fixed mutations was performed by the way similar to identify the 640 

genes affected by nonsynonymous fixed mutations in genic G-score approach (Tenaillon et al. 641 

2016). Structural mutations include indels and IS-element insertions. For each combination of 642 

genetic background and transfer size, we first counted the observed number of populations with 643 

any structural mutations in gene i (Oi), and the expected number for gene i (Ei) was calculated by 644 

Otot(Li/Ltot), where Otot = Σi Oi, Li is the gene length for gene i, and Ltot = Σi Li. The G-score for 645 
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gene i (Gi) was then calculated by 2Oiln(Oi /Ei), following the methods described in the above 646 

section.  647 

We also performed 20,000 simulations and determined the Bonferroni corrected P-value 648 

for each gene i following the methods described in the above section. As a result, we found all 649 

the genes with Oi ≥ 2 show Bonferroni corrected P-value < 0.05.  650 

 651 

Correlations between pairs of SNPs. For each evolved population, we focused on the 652 

nonsynonymous, synonymous, and intergenic SNPs in which at least two nonzero DAFs were 653 

found. For each pair of two such SNPs, we calculated the change of DAFs. Then we calculated 654 

Pearson’s correlation coefficients across only all the odd-numbered changes of DAFs to avoid 655 

non-independence (Lynch and Ho 2020). That is to say, if a population has sequencing profiles 656 

available for analysis at every sampling time points (days 90, 200, 300, 400, 500, 600, 700, 800, 657 

900), we will calculate Pearson’s correlation coefficients using the five changes of DAFs: the 658 

one between day 0 and day 90, between day 200 and day 300, between day 400 and day 500, 659 

between day 600 and day 700, and between day 800 and day 900. For another example of 660 

population, if its sequencing profile at day 90 is discard from analysis due to low quality, the 661 

Pearson’s correlation coefficients using only the four changes of DAFs: the one between day 0 662 

and day 200, between day 300 and day 400, between day 500 and day 600, between day 700 and 663 

day 800. Note that at least four changes of DAFs are used for each evolved population because 664 

no populations have more than two missing profiles. We then get the distribution of Pearson’s 665 

correlation coefficients for each evolved population. 666 

 To establish the baseline for comparison in each combination of transfer size and genetic 667 

background, we also generated the set of Pearson’s correlation coefficients using two random 668 
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mutations from two different random populations with all sequencing profiles available (i.e. they 669 

are unlinked for sure). We followed the same procedure above to calculate Pearson’s correlation 670 

coefficients for each pair of unlinked mutations. When simulating a distribution of Pearson’s 671 

correlation coefficients, we used 100 pair of unlinked mutations. We then repetitively performed 672 

100 rounds of simulation to get the mean and SE for the distribution.  673 

 674 

Data Availability 675 

Sequencing data generated during this study are available at NCBI’s Sequencing Read Archive: 676 

BioProject PRJNA532905 and PRJNA722381. 677 

 678 
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Figure 1. Fitness improvement during experimental evolution. For evolved populations under 
different transfer sizes (orange for L, blue for M, or green for S) and different genetic backgrounds 
(MMR- or WT), mean fitnesses relative to the ancestor at (A) day 900, (B) day 90, (C) day 300, 
or (D) day 600 are reported. Each open circle represents an estimated mean for an evolved 
population with at least three independent competition assays. The error bars represent SEs. Gray 
dashed lines represent no improvement from ancestral fitness. The means across all evolved lines 
for a combination of transfer size and genetic background are represented by colored horizontal 
lines; the numeric values of means and SEs are printed on the top. The P-values for nested ANOVA 
are also shown on the top.   
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Figure 2. Evolution of mutation rates after 900 days of experimental evolution. Each panel 
shows mutation rates of evolved populations in different combinations of transfer sizes (L, M, or 
S) and genetic background (MMR- for mismatch repair defective or WT for wild-type). In each 
combination, three or four evolved populations were tested. Two clones per evolved population 
were isolated and measured. The open circles and error bars represent the mean and the 95% 
confidence interval for each clone. The grey dashed line represents the mutation-rate measurement 
of the corresponding ancestor. The colored horizontal lines represent the mean mutation-rate 
measurement of each combination; the value of means and their SEs are also printed.  
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Figure 3. Rate of genomic evolution in evolved populations. Each panel shows the results of 
evolved populations in two genetic backgrounds (MMR- and WT) in a transfer size (L, M, or S). 
Each dot shows a mean number of SNPs per clone for MMR- (open circles) or WT (closed circles) 
populations at a sequencing time point. The error bars represent the associated standard errors. The 
dashed and solid lines are linear regressions against the time for MMR- and WT populations, 
respectively. The estimated slope (b) and associated standard error are also printed for each 
regression line. The grey dashed and solid lines represent how evolved populations are expected 
to accumulate mutations based on the initial mutation rates of MMR- and WT ancestors.   
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Figure 4. Analysis of strength of natural selection associated with fixed mutations in different 
categories in different treatments of experimental evolution. (A) Each symbol shows the 
population mean probability of nonsynonymous mutations (squares), intergenic mutations 
(diamonds), synonymous mutations (crosses), or structure variation mutations (SV; triangles) that 
reached within-clade fixation in each combination of transfer size (L, M, or S) and genetic 
background (MMR- or WT). The error bars show the 95% confidence intervals. (B) Each symbol 
shows the mean selection coefficient of nonsynonymous mutations (squares), intergenic mutations 
(diamonds), synonymous mutations (crosses), or SV (triangles) that are fixed in any clade in any 
population belonging in a combination of transfer size and genetic background. The error bars 
show the 95% confidence intervals. (C) Each square shows the population mean neutrality index 
of nonsynonymous mutations for a combination of transfer size and genetic background. The error 
bars show the 95% confidence intervals. The grey lines indicate where the value = 1.0. (D) Each 
square shows the population mean neutrality index of intergenic mutations for a combination of 
transfer size and genetic background. The error bars show the 95% confidence intervals. The 
horizontal grey lines denote the point of neutrality (1.0).   
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Figure 5. Evolutionary parallelism as evidence for positive selection. (A) The arrow and 
vertical dashed line show the observed sum of G-scores, representing the extent of parallel 
mutation for a particular combination of transfer size and genetic background. The histogram 
shows the distribution of 20,000 simulated sums of G-scores, representing the null distribution of 
evolutionary parallelism. The significance of the observed sums can be evaluated by z-scores (z 
> 1.65 for one-tailed P < 0.05). (B) List of genes with fixed nonsynonymous mutations. 
Significance levels (simulated P-values with Bonferroni correction) are shown by the different 
non-black colours of tiles. Genes with no such hits in a particular combination are shown by 
black tiles. (C) List of genes with fixed intergenic mutations. Significance levels (simulated P-
values with Bonferroni correction) are shown by the different non-black colours of tiles. 
Intergenic regions with no such hits in a particular combination are shown by black tiles. (D) List 
of genes significantly overrepresented for structural mutations that are likely under positive 
selection. Yellow tiles highlight genes observed in at least two populations and yielding 
simulated P-values < 0.05 after Bonferroni correction.
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