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Symmetry and simplicity spontaneously emerge from the algorithmic nature of

evolution
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Engineers routinely design systems to be modular and symmetric in order to increase robustness to pertur-
bations and to facilitate alterations at a later date. Biological structures also frequently exhibit modularity and
symmetry, but the origin of such trends is much less well understood. It can be tempting to assume — by anal-
ogy to engineering design — that symmetry and modularity arise from natural selection. But evolution, unlike
engineers, cannot plan ahead, and so these traits must also afford some immediate selective advantage which
is hard to reconcile with the breadth of systems where symmetry is observed. Here we introduce an alternative
non-adaptive hypothesis based on an algorithmic picture of evolution. It suggests that symmetric structures
preferentially arise not just due to natural selection, but also because they require less specific information to
encode, and are therefore much more likely to appear as phenotypic variation through random mutations. Ar-
guments from algorithmic information theory can formalise this intuition, leading to the prediction that many
genotype-phenotype maps are exponentially biased towards phenotypes with low descriptional complexity. A
preference for symmetry is a special case of this bias towards compressible descriptions. We test these pre-
dictions with extensive biological data, showing that that protein complexes, RNA secondary structures, and a
model gene-regulatory network all exhibit the expected exponential bias towards simpler (and more symmetric)
phenotypes. Lower descriptional complexity also correlates with higher mutational robustness, which may aid
the evolution of complex modular assemblies of multiple components.

Evolution proceeds through genetic mutations which gen-
erate the novel phenotypic variation upon which natural se-
lection can act. The relationship between the space of geno-
types and the space of phenotypes can be encapsulated as a
genotype-phenotype (GP) map [1-3]. These can be viewed
algorithmically, where random genetic mutations search in the
space of (developmental) algorithms encoded by the GP map,
arelationship that has been highlighted, for example, in plants
[4], in Dawkins’ ‘biomorphs’ [5] and in molecules [6].

Genetic mutations are random in the sense that they oc-
cur independently of the phenotypic variation they produce.
This does not, however, mean that the probability P(p) that
a GP map produces a phenotype p upon random sampling of
genotypes will be anything like a uniformly random distribu-
tion. Instead, highly general (but rather abstract) arguments
based on the coding theorem of algorithmic information the-
ory (AIT) [7], predict that the P(p) of many GP maps should
be highly biased towards phenotypes with low Kolmogorov
complexity K (p) [8]. High symmetry can, in turn, be linked
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to low K(p) [6, 9—11]. An intuitive explanation for this algo-
ritmic bias towards symmetry proceeds in two steps: 1.) Sym-
metric phenotypes typically need less information to encode
algorithmically, due to repetition of subunits. This higher
compressibility reduces constraints on genotypes, implying
that more genotypes will map to simpler, more symmetric
phenotypes than to more complex asymmetric ones [2, 3].
2.) Upon random mutations these symmetric phenotypes are
much more likely to arise as potential variation [12, 13], so
that a strong bias towards symmetry may emerge even with-
out natural selection for symmetry.

Symmetry in protein quaternary structure and polyomi-
noes

We first explore evidence for this algorithmic hypothesis
by studying protein quaternary structure, which describes
the multimeric complexes into which many proteins self-
assemble in order to perform key cellular functions (Fig. 1A
and Supporting Information (SI) Fig S1 and section S1).
These complexes can form in the cell if proteins evolve at-
tractive interfaces allowing them to bind to each other [14—
16]. We analysed a curated set of 34,287 protein complexes
extracted from the Protein Data Bank (PDB) that were cate-
gorised into 120 different bonding topologies [16]. In Fig. 1B,
we plot, for all complexes involving 6 subunits (6-mers), the
frequency with which a protein complex of topology p ap-
pears against the descriptional complexity K (p), an approx-
imate measure of its true Kolmogorov assembly complexity
K(p), defined here as the minimal number of distinct in-
terfaces required to assemble the given structure under gen-
eral self-assembly rules (Methods). Here K (p) can also be
thought of as a measure of the minimal number of evolu-
tionary innovations needed to make a self-assembling com-
plex. The highest probability structures all have relatively low
K(p). Since structures with higher symmetry need less in-
formation to describe [6, 9-11], the most frequently observed
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FIG. 1. (A) Protein complexes self-assemble from individual units. (B) Frequency of 6-mer protein-complex topologies found in the PDB
versus the number of interface types, a measure of complexity K (p). Symmetry groups are in standard Schoenflies notation: Cs, D3, C3, Ca,
C:. There is a strong preference for low complexity/high symmetry structures. (C) Histograms of the frequencies of symmetries for 6-mer
topologies found in the PDB (dark red) versus the frequencies by symmetry of the morphospace of all possible 6-mers illustrate that symmetric
structures are hugely over-represented in the PDB database. (D) Polyomino complexes (here a binds to A) self-assemble from individual
units just as the proteins do. (E) The frequency of polyominoes that fix in evolutionary simulations with a fitness maximum at 16-mers versus
the number of interface types (a measure of complexity K (p)) exhibits a strong bias towards high symmetry structures, similar to protein
complexes. (F) Histograms of the frequency of symmetry groups for all 16-ominoes (light) and for 16-ominoes appearing in the evolutionary
runs (dark), quantify how strongly biased variation drives a pronounced preference for high symmetry structures.

complexes are also highly symmetric. Figs. 1C and Figs S2A
& S3A further demonstrate that structures found in the PDB
are significantly more symmetric than the set of all possible 6-
mers (Methods). Similar biases towards high symmetry struc-
tures obtain for other sizes (Fig S2B).

In order to understand the evolutionary origins of this bias
towards symmetry we turn to a tractable GP map for pro-

tein quaternary structure. In the Polyomino GP map, two-
dimensional tiles self-assemble into polyomino structures [17]
that model protein-complex topologies [18] (Fig. 1D). The
sides represent the interfaces that bind proteins together.
Within the Polyomino GP map, the genomes are bit strings
used to describe a set of the tiles and their interactions. The
phenotypes are polyomino shapes p that emerge from the self-
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assembly process. Although this model is highly simplified, it
has successfully explained evolutionary trends in protein qua-
ternary structure such as the preference of dihedral over cyclic
symmetry in homomeric tetramers [15, 17], or the propensity
of proteins to form larger aggregates such as haemoglobin ag-
gregation in sickle-cell anaemia [18].

To explore the strong preference for simple structures, we
performed evolutionary simulations where fitness is max-
imised for polyominoes made of 16 blocks (Methods). With
16 tile types and 64 interface types, the GP map denoted
as Si6,64 allows all 13,079,255 possible 16-mer polyomino
topologies (SI Table I) to be made. Fig 1E demonstrates that
evolutionary outcomes are exponentially biased towards 16-
mer structures with low K (p) (using the same complexity
measure as for the proteins (Methods)), even though every 16-
mer has the same fitness.

The extraordinary strength of the bias towards high sym-
metry can be further illustrated by examining the prevalence
of the two highest symmetry groups in the outcomes of evo-
lutionary simulations. For 16-mers, there are 5 possible struc-
tures in class D, (all symmetries of the square) and 12 in Cy
(4-fold rotational symmetry). Even though these 17 structures
represent just over a millionth of all 16-mer phenotypes, they
make up about 30% of the structures that fix in the evolution-
ary runs, demonstrating an extraordinarily strong preference
for high symmetry (See also Fig S3B). Comparing the his-
tograms in Fig. 1C and Fig. 1F shows that the polyominoes
exhibit a qualitatively similar bias towards high symmetry as
seen for the proteins. We checked that this strong bias towards
high symmetry/low K (p) holds for a range of other evolu-
tionary parameters (such as mutation rate) and for other poly-
omino sizes, see Fig S6 and SI section S3C. Natural selection
explains why 16-mers are selected for (as opposed to other
sizes). But, since every 16-mer is equally fit, natural selection
does not explain the remarkable preference for symmetry ob-
served here, which is instead caused by bias in the arrival of
variation.

Evolutionary simulations compared to sampling

In order to further understand the mechanisms that deliver the
evolutionary preference for high symmetry, we calculated the
probability P(p) of obtaining phenotype (polyomino shape) p
by uniformly sampling 10% genomes for the Si¢ 64 GP map,
and counting each time a particular structure p (which can be
any size) appears. Fig. 2 shows that P(p) varies over many
orders of magnitude for different p. High P(p) only occurs
for low K (p) structures while high K (p) structures have low
P(p). The inset of Fig. 2 shows that the P(p) from an evolu-
tionary run from Fig. 1 closely follows the P(p) for 16-mers
from random sampling. We tested this correlation for a range
of different evolutionary parameters, and also for both ran-
domly assigned and fixed fitness functions, and always ob-
serve relationships between P(p) and K (p) that are strikingly
similar to those found for random sampling (Fig. S6).

The observed similarity in all these different evolutionary
regimes is predicted by the arrival of the frequent population
dynamics framework of ref [12] (SI section S2). For highly
biased GP maps, it predicts that, for a wide range of mutation
rates and population sizes, the rate at which variation (phe-
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FIG. 2. The frequency that a particular protein quaternary structure
topology p (black circles) appears in the PDB versus complexity
K (p)=number of interface types, closely resembles the frequency
distribution of all possible polyomino structures, obtained by ran-
domly sampling 10® genotypes for the S16,64 Space (green cirles).
Simpler (more compressible) phenotypes are much more likely to
occur. An illustrative AIT upper bound from Eq. (1) is shown with
a = 0.75,b = 0 (dashed red line). Inset. The frequency with which
particular 16-mers are found to fix in evolutionary runs from Fig. 1E
is predicted by the frequency with which they arise on random sam-
pling of genotypes; the solid line denotes x = y.

notype p) arises in an evolving population is, to first order,
directly proportional to the probability P(p) of it appearing
upon uniform random sampling over genotypes. Strong bias
in the arrival of variation can overcome fitness differences,
and so control evolutionary outcomes [12, 19]. Interestingly,
recent results for deep learning support this evolution dynam-
ics picture. Deep neural nets show a strong Occam’s razor
like bias towards simple outputs [20] upon random sampling
of parameters, and these frequent (and simple) outputs appear
with similar probability under training with stochastic gradi-
ent descent [21]. This similarity between random sampling
and the outcome of a stochastic optimiser strengthens the case
for extending the applicability of the arrival of the frequent
framework for highly biased to maps to a wide range of fit-
ness landscapes (see SI section S2 for fuller discussion).

Fig. 2 also illustrates a striking similarity between the prob-
ability/complexity scaling for polyominoes and that of pro-
tein complex structures. Note that finite sampling effects lead
to a widening of the lowest frequency outputs [8] (see also
Fig. S5) suggesting that as more structures are deposited in
the 3DComplex database [14] the agreement with the poly-
omino distribution may improve further. Given the simplicity
of the polyomino model, this near quantitative agreement is
probably somewhat fortuitous. Nevertheless, the arrival of the
frequent mechanism, which for polyominoes explains the re-
markably close similarity of the P(p) v.s. K(p) relationships
across different evolutionary scenarios (see e.g. Figs S4-S9).
predicts that the probability-complexity relationships for the
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protein complexes will be robust, on average, to the many dif-
ferent evolutionary histories that generated these complexes.
Taken together, the data and arguments above strongly favour
our hypothesis that bias in the arrival of variation, and not
some as yet undiscovered adaptive process, is the first order
explanation of the prevalence of high symmetries in protein
complexes.

Algorithmic information theory and GP maps

These results beg another question: Is the bias towards sim-
plicity (low K (p)) observed for protein clusters and polyomi-
noes a more general property of GP maps? Some intuition can
be gleaned from the famous trope of monkeys typing at ran-
dom on typewriters. If each typewriter has M keys, then every
output of length N has equal probability 1/M . By contrast,
if the monkeys’ keyboards are connected to a computer pro-
gramming language then, for example, accidentally hitting the
21 characters of the program print ”01” 500 times; will gen-
erate the N = 1000 digit string 010101 ... with probability
1/M?! instead of 1/M'°%, In other words, when searching
in the space of algorithms, outputs that can be generated by
short programs are exponentially more likely to be produced
than outputs that can only generated by long programs.

This intuition that simpler outputs are more likely to appear
upon random inputs into a computer programming language
can be precisely quantified in the field of AIT [7], where the
Kolmogorov complexity K (p) of a string p is formally de-
fined as the shortest program that generates p on a suitably
chosen universal Turing machine (UTM). While GP maps are
typically not UTMs, and strictly speaking Kolmogorov com-
plexity is uncomputable, a relationship between the proba-
bility P(p) and a computable descriptional complexity K (p)
(typically based on compression) which approximates the true
K(p) has recently been derived [8] for (non-UTM) input-
output maps f : I — O between N; inputs and N out-
puts. For a fairly general set of conditions, including that
N; > No, and that the maps are asymptotically simple (see
ST section S5), the probability P(p) that a map f generates
output p upon random inputs can be bounded as:

P(p) < 27K®=b (1)

where K (p) is an appropriate approximation to the true Kol-
mogorov complexity K (p), and a and b are constants that de-
pend on the map, but not on p. While Eq. (1) is only an upper
bound, it can be shown [22] that outputs generated by uni-
form random sampling of inputs are likely to be close to the
bound. In extensive tests, Eq. (1) provided accurate bounds
on the P(p) for systems ranging from from coupled differ-
ential equations to the RNA SS GP map [8] to deep neural
networks [20], suggesting widespread applicability.

Since the number of genotypes is typically much greater
than the number of phenotypes [1-3], and their relationship
is encoded in a set of biophysical rules that typically depend
weakly on system size, many GP maps satisfy the condi-
tions [8] for Eq. (1) to apply (see also SI section S5). In
Fig. 2, we we show an example of how Eq. (1) can act as
an upper bound to P(p) for the polyominoes and the protein
complexes. In SI section S5C, we demonstrate that this AIT

formalism also works well for other choices of the complex-
ity K(p), so that our results do not depend on the particular
choices we make here. The AIT formalism also suggests that
related systems should have similar probability-complexity
relationships, which helps explain why the polyominoes and
proteins have similar P(p) v.s. K(p) plots.

Since many GP maps satisfy the conditions for simplicity
bias, including those where symmetry may be harder to de-
fine, we therefore hypothesised that a bias towards simplic-
ity may also strongly affect evolutionary outcomes for many
other GP maps in nature. We tested this hypothesis for RNA
secondary structure and a model GRN.

Simplicity bias in RNA secondary structure

Because it can fold into well-defined structures, RNA is a
versatile molecule that performs many biologically functional
roles besides encoding information. While sequence to 3D
structure prediction is hard to solve computationally, a sim-
pler problem of predicting secondary structure (SS), which
describes the bonding pattern of the bases, can be both ac-
curately and efficiently calculated [24]. The map from se-
quences to SS is perhaps the best-studied GP map, and has
provided many conceptual insights into the role of structured
variation in evolution [1-3, 12, 25-27]. It has already been
shown, see e.g. [26-28], that the highly biased RNA GP map
strongly determines the distributions of RNA shape proper-
ties in the fRNAdb database [23] of naturally occurring non-
coding RNA (ncRNA). Although natural selection still plays
arole (see [26, 27] for further discussions), the dominant de-
terminant of these structural properties is strong bias in the ar-
rival of variation [12]. It was recently shown [8] that the RNA
SS GP map is well described by Eq. (1). Combining these
observations leads to the hypothesis that functional ncRNA
in nature should also be exponentially biased towards more
compressible low K (p) structures.

_ To test this hypothesis, we first, for length L = 30, calculate
K (p) with a standard Lempel-Ziv compression technique [8]
to directly measure the descriptional complexity of the dot-
bracket notation of a SS (Methods and SI section S4). Fig. 3A
shows that there is a strong inverse correlation between fre-
quency and complexity for both naturally occurring and ran-
domly sampled phenotypes (note that L = 30 is quite short
so that finite size effects are expected [8] to affect the cor-
relation with Eq. (1)). For longer RNA, the agreement with
Eq. (1) is better (see e.g. ref [8], and Figs. S10, and S11. For
L = 30 there are about 3 x 10° possible SS [26], but only
17,603 are found in the fRNAdb database [23], and these are
much more likely to be more compressible low K (p) struc-
tures. Fig. 3C shows that randomly sampling of sequences
provides a good predictor for the frequency with which these
structures are found in the database, consistent with previous
observations [26, 27] and the arrival of the frequent frame-
work [12].

For lengths longer than L = 30, the databases of natural
RNAs show little to no repeated SS, so individual frequencies
cannot be extracted. To make progress, we apply a well es-
tablished coarse-graining strategy that recursively groups to-
gether RNA structures by basic properties of their shapes [29],
which was applied to naturally occurring RNA SS in ref. [27].
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FIG. 3. Frequency/probability versus complexity K (p) for (A) L = 30 RNA full SS and (B) L = 100 SS coarse-grained to level 5 (Methods).
Probabilities for structures taken from random sampling of sequences (light red) compare well to the frequency found in the fRNA database [23]
(green dots) for 40,554 functional L = 30 RNA sequences with 17,603 unique dot-bracket SS and for 932 natural L = 100 RNA sequences
mapping to 16 unique coarse-grained level 5 structures. The dashed lines show a possible upper bound from Eq. (1). Examples of high
probability/low complexity and low probability/high complexity SS are also shown. In (C) and (D) we directly compare the frequency of RNA
structures in the fRNAdb database to the frequency of structures upon uniform random sampling of genotypes for L = 30 SS and L = 100
coarse-grained structures respectively. The lines are y = x. Correlation coefficients are 0.71 and 0.92, for L=30 and L=100 respectively, with

p-value< 10~° for both. Sampling errors are larger at low frequencies.

At the highest level of coarse-graining (level 5) there are many
repeat structures in the fRNAdb database, allowing for fre-
quencies to be directly measured (Methods). For L = 100
we compare the empirical frequencies to P(p) estimated by
random sampling. Fig. 3B shows that there is again a strong
negative correlation between frequency and complexity. (see
also SI Tables II and III and Figs. S10 & S11 for fRNAdb and
Rfam database data). Fig. 3D shows that natural frequencies
are well predicted by the random sampling, as seen in ref. [27]
for other lengths. Again, only a tiny fraction (=~ 1/10%) of
all possible phenotypes is explored by nature [27]. The RNA
SS GP map exhibits simplicity bias phenomenology similar
to the protein complexes and the polyomino GP map. While
the simpler group-theory based symmetries discussed for pro-
tein complexes and polyominoes do not apply here, the bias
towards lower K (p) reflects the more generalised symmetries
in the RNA SS structures.

Model gene regulatory network

The protein and RNA phenotypes both describe shapes. Can
a similar strong preference for simplicity be found for other
classes of phenotypes? To answer this question, we also stud-
ied a celebrated model for the budding yeast cell-cycle [30],
where the interactions between the biomolecules that regu-
late the cell-cycle are modelled by 60 coupled ordinary dif-
ferential equations (ODEs) As a proxy for the genotypes,
we randomly sample the 156 biochemical parameters of the
ODEs (Methods). For each set of parameters, we calculate
the complexity of the concentration versus time curve of the
CLB2/SIC1 complex (a key part of the cycle) using the up-
down method [31]. Fig. 4 shows that P(p) exhibits an expo-
nential bias towards low complexity time curves, as hypothe-
sised. Of course many of these phenotypes may not supply the
biological function needed for the budding yeast cell-cycle.
But interestingly, the wild-type phenotype has the lowest com-
plexity of all the phenotypes we found, and is also the most
likely to arise by random mutations. While the evolutionary
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FIG. 4. P(p) v.s. complexity K (p) for the budding yeast ODE cell
cycle model [30]. Phenotypes are grouped by complexity of the time-
output of the key CLB2/SIC1 complex concentration. Higher P(p)
means a larger fraction of parameters generate this time-curve. The
red circle denotes the wild-type phenotype, which is one of the sim-
plest and most likely phenotypes to appear. The dashed show a pos-
sible upper bound from Eq. (1). There is a clear bias towards low
complexity outputs.

origins of this GRN are complex, we again suggest that a bias
towards simplicity in the arrival of variation played a key role
in its emergence.

Discussion

Our two main hypotheses are: 1.) GP maps are, under random
mutations, exponentially biased towards phenotypic variation
with low descriptional complexity, as predicted by AIT [8].
2.) Such strong bias in the arrival of variation can affect adap-
tive evolutionary dynamics, leading to a much higher preva-
lence of low complexity (high symmetry) phenotypes than can
be explained by natural selection alone.

The arguments above are general enough to suggest that
many biological systems, beyond the examples we provided,
may favour simplicity and, where relevant, high symmetry,
without requiring selective advantages for these features. For
example, there are claims that HP lattice proteins with larger
P(p) are typically more symmetric [32], and similar pat-
terns have been suggested for protein tertiary structure in
the PDB [33]. In SI section S6 we present further evidence
that protein tertiary structure, signalling networks [34] and
Boolean threshold models for GRNs [35] also exhibit bias in
the arrival of variation. At a more macroscopic level, a model
of tooth development [36] suggests that simpler phenotypes
evolved earlier, consistent with a high encounter probability
in evolutionary search. Similarly, for both teeth [37] and leaf
shape [38], mutations to more simpler tooth phenotypes are
more likely than mutations to more complex phenotypes, an
effect our theory also predicts. A recent theoretical study [39]
of the development of morphology, which also found that sim-
ple morphologies were more likely to appear than complex
ones upon random parameter choices. The L-systems used
to model plant development [4] show simplity bias [8], and

Azevedo et al. [40] showed that developmental pathways for
cell lineages are significantly simpler (in a Kolmogorov com-
plexity sense) than would be expected by chance.

On the other hand, for complex phenotypic traits affected
by many loci, variation may be more isotropic so that bias is
weak. For such traits, where classical population genetics —
which focuses on shifting allele frequencies in a gene pool
where standing variation is abundant — typically works well,
our arguments may no longer hold. The phenotype bias we
discuss here is fundamentally about the origin of novel varia-
tion [19, 41], and so is most relevant on longer time-scales.

Finally, simple systems have a larger P(p) and are therefore
more mutationally robust [1-3, 26, 42] (see also SI section
S4B). A correlation between low complexity and robustness
is also found in the engineering literature [42, 43]. Biological
complexity often arises from connecting existing components
together into modular wholes. If the individual components
are more robust, then it is easier for them to evolve additional
function, for example a patch to bind to another protein, with-
out compromising their core function. Similarly, a larger ro-
bustness may also enhance the ability of a system to encode
cryptic variation, facilitating access to new phenotypes [44].
A natural tendency towards simpler and more robust struc-
tures may therefore facilitate the emergence of modularity,
where individual components can evolve independently [45],
and so make living systems more globally evolvable.

METHODS

Protein-complex topologies

Our analysis of protein quaternary structure builds upon the techniques and
data presented in ref. [16], where a curated set of 30,469 monomers, 28,860
homomers, and 5,527 heteromers were extracted from the Protein Data Bank
(PDB), and classified into 120 distinct topologies. These were then used
to make a periodic table of possible topologies. Protein complexes are de-
scribed in terms of a weighted subunit interaction graph. An illustration
of the topologies, and how they are generated is shown in Fig S1, for two
heteromeric complexes, and their final graph topologies. Further exam-
ples of topologies and the PDB structures they describe can be found at
http://www.periodicproteincomplexes.org/. The nodes of the graph are la-
belled according to their protein identities and the weights of the connections
are the interface sizes in A2. The procedure for enumerating possible topolo-
gies, and for classifying existing and potential topologies is described more
fully in ref. [16]. This approach only considers the largest interfaces, which
if cut would disconnect the complex. The reason is that small interfaces that
can be cut without disconnecting the complex are likely to be circumstan-
tial, and unlikely to play an important role in the assembly and evolution of
the complex. After constructing the weighted subunit interaction graphs in
this manner we identify the topologically distinct interaction graph of sub-
unit types (see for example Fig. S1C, with the additional distinction between
symmetric and asymmetric self-interactions of a subunit type, corresponding
to homomeric interfaces.

We take the number of interface types of protein complex p to be the com-
plexity measure K (p). This choice is proportional to the number of individ-
ual mutations needed to generate the self-assembled complex. See SI sec-
tion S5C for a longer discussion of different possible complexity measures.
Unlike the polyomino case, where the building block is a square tile, the
geometry of an individual protein is highly variable. For example, a cyclic
homomeric 6-ring and a cyclic homomeric 10-ring will have the same topo-
logically distinct interface configuration (which is just the two parts of the
same asymmetric interface on a single subunit). This will be distinct from a
heteromeric 6-ring in which we have two halves of two different symmetric
interfaces on a subunit, and also distinct from a simple heterodimer. All three
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of these however have the same number of interface types (2) and so appear
at K (p) = 2 in the distribution of Figs. 1 and 2 in the main text. The single
point that appears at K(p) = 1 for Fig. 2 is a homodimer and the single
point at K (p) = 0 is a monomer. The symmetries of all protein complexes
presented here are taken directly from the PDB.

To calculate the symmetries of all hypothetical protein complexes of size
six in Fig. 1C, we used the following procedure. We first consider all topo-
logically distinct graphs of size six with up to six different subunit types and
symmetric or asymmetric homomeric interfaces between subunits of the same
type. By comparing all 6! possible permutations of the adjacency matrix and
the associated node labels we then calculate the permutation symmetries of
the node types on these graphs as a proxy for the spatial symmetry of the hy-
pothetical protein complexes that they represent. This collapses D3 and C6
into one category, but allows us to distinguish this category from C3, C2, and
C1 (and these from each other). Further discussion of the protein complexes
can be found in SI section S1.

Polyominoes

The polyomino model was implemented as described in refs. [6, 17, 18]. The
genome encodes a ruleset consisting of 4n numbers which describe the in-
teractions on each edge of n square tiles. Each number is represented as a
length b binary string, so that the whole genome is a binary string of length
L = 4nb. The interactions bond irreversibly and with equal strength in
unique pairs (1 <+ 2, 3 <> 4, ...), with types 0 and 2° — 1 being neutral,
not bonding to any other types. We label a given polyomino GP map with up
to n possible tiles and 4n possible colors as Sy, 4r; in this paper we usually
work with 816,64-

The assembly process is initiated by placing a single copy of the first-
encoded subunit tile on an infinite grid. A different protocol where any tile
may be used to seed the assembly is also possible and does not significantly
affect the results presented here. Assembly then proceeds as follows. 1)
Available moves are identified, consisting of an empty grid site, a particular
tile and a particular orientation, such that placing that tile in that orientation
in the site will form a bond to an adjacent tile that has already been placed.
2) If there are no available moves, terminate assembly. 3) Choose a random
available move and place the given tile in that orientation at that site. 4) If the
current structure has exceeded a given cutoff size, terminate assembly. 5) Go
to step 1.

This process is repeated 20 times to ensure that assembly is deterministic
— that is, that the same structure is produced each time. If different structures
are produced, or the structure exceeds a cutoff size (here taken to be larger
than a 16 x 16 grid), the structure is placed in the category ‘UND’ (unbounded
or non-deterministic). For the calculation of probabilities/frequencies P(p)
we ignore genotypes that produce the UND phenotype. This choice mimics
the intuition that unbounded protein assemblies, or else proteins that do not
robustly self-assemble into the same shape, are highly deleterious.

The ruleset S16,64 allows any 16-mer to be made, since it is always pos-
sible to use addressable assembly where each tile is unique to a specific lo-
cation. But many 16-mers can be made with significantly fewer than 16 tile
types, although there are examples that (to our knowledge) can only be made
with all 16 tiles, so that a space allowing up to 16 tiles is needed.

To assign complexity values for the polyominoes, a measure similar to
that used for the proteins was applied. First, the minimal complexity over the
different genomes that generate polyomino p is estimated by a sampling and
finding the shortest rule set and removing redundant information. The search
for a minimal complexity genome will be more accurate for high probability
polyominoes than for low probability polyominoes. We checked that for most
structures only a fairly limited amount of sampling provided an accurate esti-
mate of the minimal complexity; the minimal complexity genome is typically
the most likely to be found. The effects of finite sampling are illustrated fur-
ther in SI section S3 and Fig. S5. The complexity K (p) of polyomino p is
then given by the smallest number of unique edge labels (interface types) in
the minimal genomes — thus, twice the number of hetero-interactions, just as
in the protein system above. A longer discussion of different choices of com-
plexity measure, showing that the qualitative behaviour is not very sensitive
to details in the choice of approximate measure of algorithmic (Kolmogorov)
information, can be found in SI Section S3C.

Evolutionary simulations of polyomino structures are performed following
methods described in ref. [17]: A population of IV binary polyomino genomes
is maintained at each time-step. The assembly process is performed for each
genome and the resulting structure is recorded. UND genomes are assigned

zero fitness. Other structures are assigned a fitness value based on the ap-
plied fitness function. These fitness values are used to perform roulette wheel
selection, whereby a genome g; with fitness f(g;) is selected with probabil-
ity f(g:)/ 22 f(g;)- Selection is performed N times (with replacement) to
build the population for the next time-step. Selected genomes are cloned to
the next generation, then point mutations are applied with probability p at
each locus. A point mutation changes a 0 to a 1 and vice versa in the genome.
‘We do not employ crossover or elitism in these simulations.

We employ several different fitness functions. In the unit fitness proto-
col, all polyomino structures that are not UND are assigned fitness 1. In the
random fitness protocol, each polyomino structure is assigned a fitness value
uniformly randomly distributed on [0, 1], and these values are reassigned for
each individual evolutionary run. In the size fitness protocol, a polyomino of
size s has fitness 1/(]s — s*| + 1), so that polyominoes of size s* have unit
fitness and other sizes have fitness decreasing with distance from s*. The
simulations for Fig. 1E were done with N = 100 and x = 0.1 per genome,
per generation. A number of other evolutionary parameters are compared in
SI section 3C and Fig. S6, showing that our main result — that the outcome of
evolutionary dynamics exhibit an exponential bias towards simple structures
— is not very sensitive to details such as mutation rate or the choice of fitness
function.

RNA secondary structure GP map

For L = 30 RNA we randomly generated 32,000 sequences, and for
L = 100, we generated 100,000 random sequences. As in refs. [26, 27],
secondary structure (SS) is computationally predicted using the fold rou-
tine of the Vienna package [24] based on standard thermodynamics of fold-
ing. All folding was performed with parameters set to their default values (in
particular, the temperature is set at 7' = 37°C). We then calculated the neu-
tral set size (NSS(p)), the number of sequences mapping to a SS p, for each
SS found by random sampling, by using the neutral network size estimator
(NNSE) described in ref [28], which is known to be quite accurate for larger
NSS structures [26]. We used default settings except for the total number of
measurements (set with the -m option) which we set to 1 instead of the default
10, for the sake of speed, but this does not noticeably affect the outcomes we
present here.

RNA structures can be represented in standard dot-bracket notation, where
brackets denote bonds, and dots denote unbonded pairs. For example,
() e means that the first three bases are not bonded, the fourth and
fifth are bonded, the sixth through ninth are unboded, the tenth base is bonded
to the fifth base, the eleventh base is bonded to the fourth base, and the final
four bases are unbounded. For shorter strands such as L = 30, the same SS
can be found multiple times in the fRNAdb.

For longer strands, finding multiple examples of the same SS becomes
more rare, so that SS frequencies cannot be easily directly extracted from
the fRNAdb. However, it seems reasonable, especially for larger structures,
that fine details of the structures are not as important as certain more
gross structural features that are captured by a more coarse grained picture
of the structure. In this spirit, we make use of the well known RNA
abstract shape method [29] where the dot-bracket SS are abstracted to one
of five hierarchical levels, of increasing abstraction, by ignoring details
such as the length of loops, but including broad shape features. For the
L = 100 data we choose the fifth, or highest level of abstraction which
only measures the stem arrangement. This choice of level is needed to
achieve multiple examples of the same structure in the fRNAdb database,
so that a frequency can be directly determined with statistical significance.
The SS were converted to abstract shapes with the online tool available at
https://bibiserv.cebitec.uni-bielefeld.de/rnashapes.
Using these coarse-grained structures means that the theoretical probability
P(p) can be directly calculated from random sampling of sequences, where
Ng is the number of sequences, which for an RNA GP map for length L
RNA is given by Ng = 4. A similar calculation of the P(p) for RNA
structures for L from 40 to 126 at different levels of coarse-graining can be
found in [27].

To generate the distributions of natural RNA we took all available se-
quences of L = 30 and L =100 from the non-coding functional RNA
database (fRNAdb [23]). As in ref. [26], we removed a small fraction (~1%)
of the natural RNA sequences containing non-standard nucleotide letters, e.g.
‘N’ or ‘R’ because the standard folding packages cannot treat them. Sim-
ilarly, a small fraction (~2%) of sequences were also discarded due to the
neutral set size estimator (NSSE) failing to calculate the NSS (this is only
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relevant for L = 30). We have further checked that removing by hand any
sequences that were assigned putative roles, or are clear repeats, does not sig-
nificantly affect the strong correlation between the frequencies found in the
fRNA database and those obtained upon random sampling of genotypes. For
a further discussion of the question of how well frequency in the databases
tracks the frequency in nature, see also refs. [26, 27] and Fig. S10 where
a comparison with the Rfam database is also made. Note that the similar
behaviour we find across structure prediction methods, strand lengths, and
databases would be extremely odd if artificial biases were strong on average
in the fRNA database. We used 40, 554 unique RNA sequences of L = 30,
taken from the fRNAdb, corresponding to 17,603 unique dot-bracket struc-
tures. Similarly, we used 932 unique fRNAdb L = 100 RNA sequences,
corresponding to 17 unique level 5 abstract structures/shapes.

To estimate the complexity of an RNA SS, we first converted the dot-
bracket representation of the structure into a binary string p, and then used
the Lempel-Ziv based complexity measure from ref. [8] to estimate its com-
plexity. To convert to binary strings, we replaced each dot with the bits 00,
each left-bracket with the bits 10, and each right-bracket with 01. Thus an
RNA SS of length n becomes a bit-string of length 2n. Because level 5 ab-
straction only contains left and right brackets, i.e. [ and ], we simply convert
left-bracket to 0, and right to 1 before estimating the complexity of the result-
ing bit string via the Lempel-Ziv based complexity measure from ref. [8]. The
level 5 abstract trivial shape with no bonds is written as underscore, and this
we simply represented as a single O bit. SI section S4 provides more back-
ground on RNA structures, and section S5B more detail of the complexity
measure.

GRN of budding yeast cell-cycle

The budding yeast (S. cerevisiae) cell-cycle GRN system from ref. [30] con-
sists of 60 coupled ordinary differential equations (ODEs) relating 156 bio-
chemical parameters. The model parameter space (i.e. genotype space) was
sampled by picking random values for each of the parameters by multiplying
the wild-type value by one of {0.25, 0.50, . .., 1.75,2.00}, chosen with uni-

form probability. The ODEs generate concentration-time curves for different
biochemicals involved in cell-cycle regulations. All runs were first simulated
for 1000 time steps, with every time step corresponding to 1 minute. Next, we
identified the period of every run (usually on the order of 90 time steps), took
one full oscillation and coarse-grained it to 50 time steps. This way, if two
genotypes produce curves which are identical up to changes in period, they
should ultimately produce identical or nearly-identical time series and binary
string phenotypes. For every “genotype” or set of parameters, the curves for
the CLB2/SIC1 complex are then discretised into binary strings using the
“up-down” method [31]: for every discrete value of ¢t = dt, 2d¢, 36¢, . . ., we
calculate the slope dy/dt of the concentration curve, and if dy/d¢t > 0,a 1
gets assigned to the j-th bit of the output string, otherwise, a 0 is assigned to
it. All strings with the same up/down profile were classified as one phenotype.
To generate the P(p) in Fig. 4, 5 x 109 inputs were sampled. Complexity
K (p) is assigned by using the Lempel Ziv measure from ref. [8] (see also
SI section S5B) applied to binary output strings. As shown in ref. [8], this
methodology works well for coupled differential equations, and the choice of
input discretisation, sample size and initial conditions does not qualitatively
affect the probability-complexity relationships obtained. The wildtype curve
can be observed in in Fig. 2 of ref. [30] where it is labelled Clb27.
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