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Abstract 

Functional connectivity (FC) in the brain has been shown to exhibit subtle but reliable 

modulations within a session. One way of estimating time-varying FC is by using state-based 

models that describe fMRI time series as temporal sequences of states, each with an 

associated, characteristic pattern of FC. However, the estimation of these models from data 

sometimes fails to capture changes in a meaningful way, such that the model estimation 

assigns entire sessions (or the largest part of them) to a single state, therefore failing to 

capture within-session state modulations effectively; we refer to this phenomenon as the 

model becoming static, or model stasis. Here, we aim to quantify how the nature of the data 

and the choice of model parameters affect the model’s ability to detect temporal changes in 

FC using both simulated fMRI time courses and resting state fMRI data. We show that large 

between-subject FC differences can overwhelm subtler within-session modulations, causing 

the model to become static. Further, the choice of parcellation can also affect the model’s 

ability to detect temporal changes. We finally show that the model often becomes static when 

the number of free parameters that need to be estimated is high and the number of 

observations available for this estimation is low in comparison. Based on these findings, we 

derive a set of practical recommendations for time-varying FC studies, in terms of 

preprocessing, parcellation and complexity of the model. 

Highlights 

 Time-varying FC models sometimes fail to detect temporal changes in fMRI data 

 Between- and within-subject FC variability affect model stasis  

 The choice of parcellation affects model stasis in real fMRI data 

 The number of observations and free parameters critically affect model stasis 

Keywords: fMRI; time-varying FC; Hidden Markov Model (HMM); resting state  
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1 Introduction 

Neural circuits across multiple brain areas integrate into large-scale brain networks in order to 

accomplish complex cognitive functions. Just like smaller populations of neurons underlying 

these networks flexibly synchronise and desynchronise their oscillatory firing patters to 

communicate (Fries, 2005), large-scale brain networks must also be able to fluctuate 

dynamically and change over time (Breakspear, 2017; Calhoun et al., 2014), enabling flexible 

neuronal communication and functioning across the entire brain. Arguably, this is reflected in 

the data as some form of synchrony in the activity across areas, which is typically referred to 

as functional connectivity (FC). In fMRI, FC can be derived by measuring how different areas 

coactivate in their blood oxygen level dependent (BOLD) signal. Understanding these 

temporal changes in FC (i.e. time-varying FC) in fMRI can help to address a range of 

questions, from the theoretical study of human cognition to a better characterisation of different 

neurological and psychiatric diseases.  

There are several approaches to modelling time-varying FC in fMRI; for a recent review, see 

Lurie et al. (2019). One avenue is the use of state-based models that estimate time-varying 

FC as a temporal sequence of brain “states”. However, in fMRI these models are not always 

effective to detect changes in FC over time. Sometimes, the estimation leads to entire 

sessions collapsing into one single state, with no changes within session —so that the model 

becomes static; that is, all the explanatory power of the model is focussed on explaining 

differences between subjects or sessions, instead of within-session modulations. The reason 

behind this behaviour is an open question: it could be because there are no temporal changes 

in the data; or it could be because, even if there are temporal changes, the estimation is unable 

to detect them. While some studies have claimed that there is insufficient evidence that BOLD 

FC is dynamic (Hindriks et al., 2016; Liégeois et al., 2017; Lindquist et al., 2014), several 

studies have shown that dynamic aspects of FC are relevant for behaviour (Cabral et al., 2017; 

Fornito and Bullmore, 2010; Gonzalez-Castillo and Bandettini, 2018; Liegeois et al., 2019; 

Vidaurre et al., 2017; Voytek and Knight, 2015; Xie et al., 2018) and that they can add 
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important information not contained in time-averaged FC (Vidaurre et al., 2021). These 

findings suggest that temporal variation is present in BOLD FC and that it carries meaningful 

information. We here address the question of how to quantify this variability effectively, and 

under which conditions the models become static (i.e. when “model stasis” occurs), since a 

deeper understanding of the issue can help us to configure these models to work more 

optimally.  

Assuming temporal FC changes exist in the data, why would a time-varying FC model fail to 

detect them? One possible explanation is in the nature of the data. We here refer to factors 

that affect the data as the data hypothesis. In particular, since unsupervised, data-driven 

time-varying FC models aim at describing the most salient patterns in the data, within-session 

fluctuations might just be too subtle, with overall differences between subjects being more 

dominant (Lehmann et al., 2017). That is, if between-subjects differences are larger than 

within-session FC modulations (i.e. changes over time within a subject’s scanning session), a 

data-driven model will naturally prefer to focus on the between-subjects variability instead of 

the temporal variability. As we will show, the balance between these two aspects of variability 

(between-subjects and within-session) depends on the preprocessing pipeline, in particular on 

the choice of a parcellation (Eickhoff et al., 2018; Pervaiz et al., 2020; Popovych et al., 2021), 

and how fine-grained it is. Another explanation relates to challenges in estimating the model; 

i.e. if the model inference has problems in finding within-session modulations. We refer to this 

explanation as the estimation hypothesis, which, in particular, might occur when the number 

of free parameters to estimate in the model is too large in comparison to the available number 

of volumes or time points (across subjects).  

In the present study, we simulated data with varying amounts of variability between and within 

subjects, and we fitted models to a real dataset in different parcellations. We hypothesise that 

large between-subject variability and small within-subject (temporal) variability cause the time-

varying FC model to become static and that this effect depends on the parcellation (data 

hypothesis). We further hypothesise that fewer observations and more free parameters, in fact 
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a small ratio of number of observations to free parameters, cause the time-varying FC model 

to become static (estimation hypothesis). We finally provide some recommendations for the 

estimation of time-varying FC based on these points. 

2 Material and Methods 

2.1 Data and parameters 

2.1.1 HCP dataset and preprocessing 

We used resting state EPI scans of the first 200 participants from the Human Connectome 

Project S1200 (HCP, (Smith et al., 2013b; Van Essen et al., 2013)), an open-access dataset 

of MRI data. Time-varying FC has previously been demonstrated in this dataset using a wide 

array of different approaches (Battaglia et al., 2020; Casorso et al., 2019; Choe et al., 2017; 

Dai et al., 2019; Liegeois et al., 2019; Riccelli et al., 2017; Sporns et al., 2021; Vidaurre et al., 

2017; Zalesky et al., 2014; Zamani Esfahlani et al., 2020), making it a suitable example to 

evaluate model stasis. The dataset consists of structural and functional MRI data of 1200 

healthy, young adults (age 22-35). Each participant completed four resting state scans. We 

here only used data from the first resting state scanning session of each participant. Data were 

acquired as described in the HCP public protocols, which can be found in Van Essen et al. 

(2012). Briefly, scans were acquired in a 3T MRI scanner, using multiband echo planar 

imaging sequences with an acceleration factor of 8 at 0.73 seconds repetition time (TR) and 

a spatial resolution of 2x2x2 mm for functional scans. Resting state scans lasted 15 minutes.  

Data were preprocessed following the HCP preprocessing pipelines for resting-state fMRI 

(Glasser et al., 2013; Smith et al., 2013a). In brief, after “minimal” spatial preprocessing and 

surface projection to transform data into grayordinate space, the data were temporally 

preprocessed using single-session Independent Component Analysis (ICA, using FSL’s 

MELODIC; (Beckmann, 2012)), as well as classification and removal of noise components 

using FSL’s FIX (Griffanti et al., 2014; Salimi-Khorshidi et al., 2014).  
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2.1.2 Parcellations and time course extraction 

Group ICA parcellations estimate a data-driven functional parcellation on the group level, 

which are subsequently regressed onto each subject’s individual functional scans to obtain 

subject-specific versions of group ICs and their time courses. Group ICA parcellations were 

created for a varying number of parcels (we here used the variants created for 50 and 100 

parcels, GroupICA50 and GroupICA100) using multi-session spatial ICA on the temporally 

concatenated data. The time series for each participant were extracted using dual regression 

(Beckmann et al., 2009). The Group ICA parcellations and corresponding time series are 

publicly available from the HCP repository (https://db.humanconnectome.org).  

PROFUMO (Harrison et al., 2015) is a similar approach to Group ICA, but it estimates group- 

as well as subject-level maps simultaneously, allowing it to better capture individual variability 

in FC (Bijsterbosch et al., 2018). In PROFUMO, between-subject differences in (time-

averaged) FC are therefore expected to be higher compared to the group ICA approach. We 

used a PROFUMO parcellation of 50 parcels, PROFUMO50. 

As a priori defined functional parcellation, we used the Yeo parcellation (Schaefer et al., 2018). 

This parcellation was created using a gradient-weighted Markov Random Field on a separate 

dataset of resting-state fMRI recordings of 1489 participants. This approach produces parcels 

which are similar in terms of function and connectivity. We here used the grayordinate version 

of this parcellation consisting of 100 parcels (Yeo100 parcellation).  

As an anatomical parcellation, we used the Desikan-Killiany atlas (Desikan et al., 2006). This 

atlas originally consists of 62 anatomically delineated cortical regions. The atlas was projected 

into grayordinate space and 18 subcortical regions were added, as described in Deco et al. 

(2021). This resulted in 80 parcels (DK80 parcellation). Time courses in this parcellation were 

extracted as the mean across grayordinates belonging to each parcel. 

Beside runs that use the full parcellations, we also ran the models on subsets of each 

parcellation to vary the number of free parameters in the model (as described under Section 
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2.3). In these reduced runs, we randomly chose a subset of 10, 25, or 50 parcels from a 

parcellation, which time series were subsequently fed to the model. As an alternative strategy 

to reduce the number of free parameters in the model, we also tested the effects of reducing 

the original data dimensionality using Principal Component Analysis (PCA) or by modelling 

each HMM-state as probabilistic PCA model (“HMM-PCA”) (Vidaurre, 2021).  

To mimic properties of more ordinary datasets, we also varied the number of subjects (𝑆) 

between 50, 100, and 200, the number of time points (𝑇) per subject between 200, 500, and 

1200 time points, and the fraction 𝑅 of the sampling rate at 1.37 Hz (original rate 𝑅 ൌ 1, 

equivalent to TR of 0.73 s), 0.68 Hz (half of the original rate 𝑅 ൌ
ଵ

ଶ
, equivalent to TR of 1.46 s), 

and 0.46 Hz (one third of the original rate 𝑅 ൌ
ଵ

ଷ
, equivalent to TR of 2.19 s). The number of 

observations 𝑂 used in the model is the total amount of time points: 𝑂 ൌ 𝑆 ∗ 𝑇 ∗ 𝑅. In our 

analysis, we modelled only the effect of the number of observations 𝑂, rather than the effects 

of the number of subjects, of time points, and of the sampling rate separately. 

Time course extraction results in one matrix of dimensions 𝑇 x 𝑁 per subject, where 𝑁 is the 

number of parcels. To compute time-varying FC, we concatenated the time series across 

subjects, resulting in a matrix of (𝑆 x 𝑇) x 𝑁. The input and size at this step varies with the 

parcellation, i.e. 𝑁 ൌ 50 for the GroupICA50 and PROFUMO50 parcellations, 𝑁 ൌ 80 for the 

anatomical DK80 parcellation, and 𝑁 ൌ 100 for the GroupICA100 and Yeo100 parcellations in 

the full runs (i.e. with all regions or components). In the reduced runs, 𝑁 corresponds to the 

number of randomly chosen parcels from each parcellation (10, 25, or 50 parcels). We then 

standardised these time series row-wise by rescaling them so that the time course of each 

parcel has a mean of 0 and a standard deviation of 1.   

2.1.3 Simulations 

To be able to test the different levels of between-subject and within-session variability, we 

simulated new datasets based on the HCP data, where we introduced differing amounts of 

between-subject and within-session variability into the generating model. This was done by 
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generating new time series from a combination of synthetic covariance matrices, representing 

either time-invariant (subject-specific) FC matrices or time-varying FC matrices that activate 

or deactivate at different time points: 

𝑋 ൌ 0.5𝑌௕௦ ൅ 0.5𝑍௪௦  𝑋,𝑌௕௦ ,𝑍௪௦ ∈ ℝே௫ሺௌ௫்ሻ 

Here, 𝑋 is the synthetic time series containing variability both between subjects and within 

sessions, 𝑌௕௦ is the synthetic time series containing only variability between subjects, and 𝑍௪௦ 

is the synthetic time series containing only variability within sessions. In this notation, 𝑋, 𝑌௕௦, 

and 𝑍௪௦ all represent subjects’ individual time series that have been concatenated.  

The time series 𝑌௕௦, containing only variability between subjects, was generated by randomly 

sampling from a Gaussian distribution with mean 0 and a different synthetic covariance matrix 

per subject: 

𝑌௕௦
௦  ~𝑁ሺ0,𝛴෠௕௦

௦ ሻ   𝑌௕௦
௦ ∈ ℝே௫் ,𝛴෠௕௦

௦ ∈ ℝே௫ே 

where 𝑌௕௦
௦  is the time series for subject 𝑠 , and 𝛴෠௕௦

௦  is the (symmetric, positive-definite) 

covariance matrix of subject 𝑠, i.e. containing FC information specific for this subject and 

different from the others.  

The time series 𝑍௪௦, with only variability within a session, was obtained by sampling from an 

HMM distribution: 

𝑍௪௦௦  ~𝐻𝑀𝑀ሺΘሻ   𝑍௪௦௦ ∈ ℝே௫் 

where 𝑍௪௦௦  is the time series for subject 𝑠 . Critically, 𝑍௪௦௦  contains only within-session 

variability, since the HMM parameters Θ are at the group level (i.e. equal for all subjects). More 

specifically, when a given state 𝑘 is active, 𝑍௪௦௦  is sampled from a Gaussian distribution with 

mean 0 and a state-specific synthetic covariance 𝛴෠௪௦௞ :  

𝑧௧
௦|𝑞௧

௦ ൌ 𝑘 ~𝑁ሺ0,𝛴෠௪௦௞ ሻ  𝑧௧
௦ ∈ ℝே௫ଵ, 𝑞௧

௦, 𝑘 ∈ ℝ ሼ1, …𝐾ሽ,𝛴෠௪௦௞ ∈ ℝே௫ே 
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Therefore, 𝛴෠௪௦௞  accounts for state-specific variability, which depends on the currently active 

state 𝑞௧
௦. The currently active state 𝑞௧

௦ depends on which state was active at the previous time 

point 𝑞௧ିଵ
௦ . The states are sampled from a categorical distribution with the parameters A, which 

are the transition probabilities of the HMM ( A௞  indicating the k -th row of the transition 

probability matrix): 

𝑞௧
௦|𝑞௧ିଵ

௦ ൌ 𝑘~𝐶𝑎𝑡ሺA௞ሻ  𝑞௧ିଵ
௦ ∈ ℝ ሼ1, …𝐾ሽ, A ∈ ℝ௄௫௄ 

To create the covariance matrices 𝛴෠௕௦
௦  and 𝛴෠௪௦௞ , we first decomposed the real covariance 

matrix of the first subject of the HCP dataset into its singular values: 

𝛴 ൌ 𝑈𝐷𝑈ᇱ   𝛴,𝑈,𝐷 ∈ ℝே௫ே 

where 𝛴 is the covariance matrix of the first subject of the real dataset (HCP resting-state fMRI 

dataset) in GroupICA50 parcellation, 𝑈 are the singular vectors of the covariance matrix and 

𝐷 contains the singular values of the covariance matrix.  

We created synthetic covariance matrices 𝛴෠௕௦
௦  for all subjects 𝑆 by multiplying the original 

singular values 𝐷 with subject-specific singular vectors 𝑈෡௕௦
௦ , which we created by randomly 

perturbing 𝑈.  

𝛴෠௕௦
௦ ൌ 𝑈෡௕௦

௦ 𝐷𝑈෡௕௦
௦ ′  𝑈෡௕௦

௦ ∈ ℝே௫ே 

Similarly, to create the covariance matrices 𝛴෠௪௦௞  for all states 𝐾, we multiplied the original 

singular values 𝐷 with state-specific singular vectors 𝑈෡௪௦௞ : 

𝛴෠௪௦௞ ൌ 𝑈෡௪௦௞ 𝐷𝑈෡௪௦௞ ′  𝑈෡௪௦௞ ∈ ℝே௫ே 

For each subject 𝑠, the noisy singular vectors 𝑈෡௕௦
௦  were generated by multiplying the original 

singular vectors 𝑈 element-wise with a subject-specific Gaussian noise matrix 𝛹௦ and adding 

this product to the original vectors 𝑈:  

𝑈෡௕௦
௦ ൌ 𝑈 ൅ 𝑈 ∘ 𝛿௕௦𝛹௦   𝛹௦ ∈ ℝே௫ே , 𝛿௕௦ ∈ ℝ ሾ0.1,1ሿ 
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The Gaussian noise matrix 𝛹௦ is scaled by the parameter 𝛿௕௦, which defines the final amount 

of between-subject variability contained in the synthetic time series 𝑌௕௦. 

Similarly, for each state 𝑘, we generated the noisy singular vectors 𝑈෡௪௦௞  by multiplying the 

original singular vector 𝑈 element-wise with a state-specific Gaussian noise matrix 𝛹௞:  

𝑈෡௪௦௞ ൌ 𝑈 ൅ 𝑈 ∘ 𝛿௪௦𝛹௞  𝛹௞ ∈ ℝே௫ே , 𝛿௪௦ ∈ ℝ ሾ0.1,1ሿ 

This Gaussian noise matrix 𝛹௞ is scaled by the parameter 𝛿௪௦, which defines the amount of 

within-session variability contained in the synthetic time series 𝑍௪௦. 

We varied the parameters 𝛿௕௦ and 𝛿௪௦ between 0.1 and 1 in steps of 0.1. A small value for 𝛿௕௦ 

results in a time series 𝑌௕௦, in which all subjects’ time-averaged FC are similar. A large value 

for 𝛿௕௦, on the other hand, results in a time series 𝑌௕௦, in which subjects’ FC matrices are very 

different from each other. A small value for 𝛿௪௦ results in a time series 𝑍௪௦, in which FC almost 

does not vary over time (i.e. FC is essentially static). A large value for 𝛿௪௦, on the other hand, 

results in a time series 𝑍௪௦, in which FC varies greatly over time.  

We generated time series from all combinations 𝑋 of 𝑌௕௦ and 𝑍௪௦, resulting in 100 simulated 

time series. We then used these time series as input to compute time-averaged FC, as 

described under 2.2, and to the time-varying FC model to evaluate the model’s stasis, as 

described under 2.3.  

2.2 Time-averaged functional connectivity and FC similarity 

To compute time-averaged functional connectivity, Pearson’s correlation was computed for 

each pair of regions (Smith et al., 2013c). The resulting 𝑁 x 𝑁 matrices represent the time-

averaged FC of each scanning session within each parcellation. In order to assess how 

consistent these FC networks were for each of the parcellations, we estimated the network 

similarity across scanning sessions. This was done by first calculating the group average of 

the time-averaged FC in each parcellation, then unwrapping the upper triangular elements of 

this group average FC matrix into a ሾ
ேమିே

ଶ
ሿ x 1 vector, and correlating this group-level vector 
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with the corresponding vectors of the session-specific FC matrices. For each parcellation, FC 

similarity was thus defined as the correlation between the group mean FC, and the FC of all 

individual scanning sessions.  

2.3 Time-varying functional connectivity: Hidden Markov Model (HMM) and model 

stasis 

We used the Hidden Markov Model (HMM; Vidaurre et al. (2016); Vidaurre et al. (2017)) to 

describe time-varying FC. The HMM is a type of state-based model that estimates a sequence 

of states and a probability distribution for each state, such that each time point in the time 

series is assumed to have been generated from its assigned state distribution. The HMM has 

been used to estimate time-varying FC on fMRI and MEG data in previous work (Quinn et al., 

2018; Stevner et al., 2019; Vidaurre et al., 2016; Vidaurre et al., 2017).  

We used a version of the HMM that assumes a multivariate Gaussian distribution per state, 

with 𝐾 ൌ 6 states for the simulated data and 𝐾 ൌ 12 for the HCP data. In order to focus on FC, 

each state was here defined in terms of its covariance only (Vidaurre, 2021), i.e. without 

explicitly modelling the mean (or amplitude). Once the model was estimated, we computed 

the fractional occupancy (FO), defined as the proportion that each state occupies in the time 

series of a particular subject. We used FO as indicator of the model becoming static. This is 

illustrated in Figure 1B. In the example, different states are assigned to portions of the time 

series of Subject 3, resulting in a small FO percentage for each of the states. For Subject 4, 

however, a single state (#1) is assigned to all time points of this subject, i.e. the FO of state 

#1 in Subject 4 is 100%. This means that the model effectively fails in finding any temporal 

changes in functional connectivity for this subject, describing only the more salient difference 

between all time points of this subject compared to the other subjects. To evaluate the model’s 

overall stasis, we then used the maximum FO value of each subject and computed the 

average across the group. In practice, this means that a model that assigns states only to 

entire subjects, such as in the example with Subject 4, will have a mean maxFO of 100%. On 
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the other hand, a model that finds recurring states over time that are perfectly equally 

distributed across time points of all subjects will have a mean maxFO of approximately 
ଵ

௄
 (i.e. 

each of the 𝐾 states occupies on average the same amount of each subject’s time series). We 

here used stasis, as measured by the model’s mean maxFO, as an indicator of how well a 

time-varying FC model is able to estimate temporally recurring states. 

To test our estimation hypothesis, we calculated the number of free parameters of each model. 

If this number is too large in comparison to the number of observations 𝑂, the estimation may 

become statistically challenging. The number of free parameters 𝐷𝐹 in a HMM with 𝐾  states, 

each defined by a full covariance matrix but without modelling the mean, and 𝑁 parcels can 

be computed as 

𝐷𝐹 ൌ 𝐾 ∗ ሺ𝐾 െ 1ሻ ൅ ሺ𝐾 െ 1ሻ ൅
௄∗ே∗ሺேାଵሻ

ଶ
. 

We implemented the model using the HMM-MAR toolbox available at 

https://github.com/OHBA-analysis/HMM-MAR in MATLAB (Mathworks, 2016). Although the 

HMM is only one example of a time-varying FC model, the concepts discussed here are likely 

to apply also to other models of time-varying FC.  
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Figure 1 Between-subject variability in time-averaged FC may affect stasis in a time-varying FC model. A) 
Time-averaged FC (regions by regions) matrices for each subject were obtained by pairwise correlating time 
courses of all parcels from each subject. Subjects are represented in the time series as different colours. As 
observed, the time-averaged FC matrix from Subject 4 is very different from the time-averaged FC matrices of the 
other subjects. B) Given a prespecified number of states 𝐾, the Hidden Markov Model (HMM) estimates both the 
state-specific FC matrices and when the states become active. In the example for Subject 3, all states transiently 
occur and recur over time. In opposition to this temporal recurrence in Subject 3, the HMM time course for the time 
points corresponding to Subject 4 stays stable at a high probability for state 1. The temporal recurrence of states 
can be measured by their fractional occupancy (FO), indicating the proportion of the entire time series that a given 
state occupies. In this example, state FOs for Subject 3 indicate that all states take up a similar amount of the time 
series with certain states being relatively more prevalent than others. In Subject 4, however, the FO of state 1 is at 
100% while all others are at 0%, since state 1 occupies the entire time series of this subject. This is summarised 
by the term “stasis”: The model is static when one state’s FO approaches 100% and all others are close to 0%.  

2.4 Structural Equation Modelling (SEM) 

To provide a synthesis of the hypothesised relationships, we modelled all effects in a structural 

equation model (SEM). SEM characterises the causal links between variables, which are 

combined in a network of structural equations. In these structural equations, the relationships 

between variables are explicitly declared. Each variable can be declared to have a direct effect 
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on an outcome variable or an indirect effect by declaring this variable simultaneously as an 

outcome and a predictor variable. A single variable can also have both a direct and an indirect 

effect on an outcome variable. Here, we combined a series of linear models and linear mixed 

effects models in a piecewise SEM, also called confirmatory path analysis (Shipley, 2000). 

Rather than estimating coefficients in a single variance-covariance matrix as in traditional 

SEM, piecewise SEM first estimates each part of the model independently before evaluating 

them at the level of the full model. This allows increased flexibility on the level of the 

constituting parts of the SEM in terms of their distributions, making it possible e.g. to include 

random effects in parts of the model.  

We fitted two separate SEMs: one to the outcomes of HMMs run on simulated data and one 

to the outcomes of HMMs run on the real (HCP) data. In both SEMs, there are two parts. The 

first part constitutes the effect of the observed variables on FC similarity, and the second part 

links the observed variables and FC similarity to mean maxFO as an indicator of the HMM’s 

model stasis. In the SEM on simulated data, the first part modelled the effects on FC similarity 

of the number of observations 𝑂 (which here depends only on the number of subjects 𝑆) and 

of between-subject variability (the value of the parameter 𝛿௕௦, described under 2.1.3). The 

second part modelled the effects on model stasis of the number of observations 𝑂, of FC 

similarity, of within-session variability (the value of the parameter 𝛿௪௦, described under 2.1.3) 

and of the inverse of the number of free parameters 𝐷𝐹 (which varies based on the number 

of parcels 𝑁 from each parcellation). The number of observations 𝑂 has therefore both a direct 

effect on model stasis and an indirect effect via FC similarity. In the SEM on real data, the first 

part modelled the effect on FC similarity of the number of observations 𝑂 (which here varies 

based on the number of subjects 𝑆, the number of time points 𝑇, and the sampling rate 𝑅). We 

additionally included a random intercept for the different parcellations in this model. In the 

second part, we modelled the effects on model stasis of the number of observations 𝑂, of the 

inverse of the number of free parameters 𝐷𝐹 (which varies based on the number of parcels 𝑁 

from each parcellation), of their interaction, and of FC similarity. In this SEM, we included both 
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a random intercept and random slope of the effect of FC similarity for each parcellation. The 

number of observations 𝑂 has again both a direct and an indirect (via FC similarity) effect on 

model stasis.  

We used the piecewiseSEM-package (Lefcheck, 2016) in R (R Core Team, 2020) to fit the 

SEM models as a combination of linear and linear mixed effects models.  

3 Results 

We address the factors from the two hypotheses (3.1 Data hypothesis, Error! Reference 

source not found. Estimation hypothesis) one by one, distinguishing between results from 

simulated data and real data (HCP data). Statistics from the full structural equation models 

(SEM) are summarised under 3.3. 

3.1 Data hypothesis 

We first investigated which aspects of the data influence the ability of a time-varying FC model 

to detect temporal changes in FC (data hypothesis). Namely, we tested the effects of between-

subject variability and of within-session variability on FC similarity and on model stasis in 

simulated time series (3.1.1). We then focussed on the effect of the parcellation used to extract 

time series from the HCP resting state data on FC similarity, on model stasis, and on the 

relationship between them (3.1.2).  

3.1.1 Between-subject and within-session variability in simulated time series affect 

model stasis 

Here, we show on synthetic data that large differences between subjects or small differences 

over time can cause the time-varying FC model to become static. 

In order to address the question of variability in the data, we simulated new data with different 

degrees of between-subject and within-session variability (described under 2.1.3). First, we 

calculated FC similarity of these new FC matrices, which confirmed that this measure robustly 
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reflects between-subject variability 𝛿௕௦ , independently of within-session variability 𝛿௪௦  (see 

Figure 2A, top panel). In the full structural equation model (SEM), FC similarity is near 

perfectly explained (standardised coefficient of -0.97, p<0.0001) by between-subject variability 

𝛿௕௦ . We can therefore assume that, in the real data, FC similarity is a reliable proxy for 

between-subject variability.  

FC similarity was not significantly affected by the number of observations 𝑂 (i.e. by varying 

the number of subjects 𝑆) (coefficient: -0.02, p=0.99). As hypothesised, model stasis depends 

on both between-subject and within-session variability, where high between-subject and low 

within-session variability cause the model to become static. Decreasing differences between 

subjects and increasing temporal variability in the data lead to a lower rate of model stasis. 

This is shown for an exemplary solution in Figure 2A, bottom panel. In the full model, the 

effects of between-subject and within-session variability are of a similar magnitude, with 

standardised coefficients of -0.53 (p<0.0001) for FC similarity and -0.54 (p<0.0001) for within-

session variability.  

In summary, this indicates that the between-subject vs. within-session variability balance is an 

important contributor to model stasis. That is, if subjects in the dataset are very dissimilar, 

differences across time points need to be large in order for a time-varying FC model to be able 

to identify dynamically changing states. In real datasets, it may therefore be important to work 

towards high similarity between subjects while retaining temporal variation as much as 

possible during preprocessing. One central factor in achieving this may be the choice of 

parcellation, which we tested next (3.1.2). 

3.1.2 The parcellation affects FC similarity, model stasis, and the relationship 

between them 

We next investigated the effect of the parcellation on FC similarity, on model stasis, and on 

the relationship between them. As we will see, FC similarity does not simply explain model 
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stasis, but the choice of parcellation can strongly affect FC similarity, model stasis, and the 

relationship between these two variables.  

Time courses were extracted from the HCP data in five different parcellations: We used three 

data-driven functional parcellations (GroupICA50, GroupICA100, and PROFUMO50 

(Beckmann et al., 2009; Harrison et al., 2015)), one a priori defined functional parcellation 

(Yeo100 (Schaefer et al., 2018)), and one anatomical parcellation (DK80 (Deco et al., 2021; 

Desikan et al., 2006)). As shown in Figure 2B, the choice of parcellation affects FC similarity, 

model stasis (as measured by mean maxFO), and the relationship between them. We included 

the parcellation as random intercept in the first part of the full SEM (predicting FC similarity) 

and as random intercept and slope in the second part of the full SEM (predicting model stasis). 

This increased the variance explained by the full SEM as compared to a model excluding the 

effect of parcellation by 32% (R2
reduced=0.40, R2

full=0.72). In the full SEM, the remaining effect of 

FC similarity on model stasis, i.e. the fixed effect not depending on parcellation, is not 

significant (coefficient -0.06, p=0.80). This indicates that the effect of FC similarity on model 

stasis is not as straightforward as we hypothesised, but strongly depends on the parcellation. 

The parcellations that, on average, created the most similar time-averaged FC matrices 

between subjects, increased model stasis the most.  

Besides the parcellation, FC similarity is also significantly explained by the number of 

observations 𝑂, yielding a coefficient of 0.23 (p<0.0001). Across all runs, the parcellations 

ranked from least to most model stasis are: 1. GroupICA50 (M: 0.36 ± 0.12 S.D.), 2. 

PROFUMO50 (M: 0.37 ± 0.12 S.D.), 3. GroupICA100 (M: 0.41 ± 0.20 S.D.), 4. Yeo100 (M: 

0.46 ± 0.17 S.D.), 5. DK80 (M: 0.55 ± 0.16 S.D.). On average, the three data-driven functional 

parcellations used here outperformed both the example of a functional and the example of an 

anatomical parcellation, in the model’s ability to detect dynamic changes in FC.  

.CC-BY-NC 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted July 28, 2021. ; https://doi.org/10.1101/2021.07.28.454017doi: bioRxiv preprint 

https://doi.org/10.1101/2021.07.28.454017
http://creativecommons.org/licenses/by-nc/4.0/


18 
 

 

Figure 2 Evidence for the data hypothesis. A) In the simulated data, between-subject variability but not within-
session variability affects FC similarity between subjects (top panel). The bottom panel shows how between-subject 
and within-session variability affect model stasis (as measured by mean maxFO) in a time-varying FC model. In 
the graph area where between-subject noise is high and within-subject noise is low, the model is static (yellow 
area). B) In the real data, FC similarity and model stasis depend on the parcellation. We here represent each 
parcellation with a different colour. In the top panel, we illustrate the linear regression line and corresponding 95% 
confidence interval between FC similarity and model stasis (represented by the mean maxFO statistic) within each 
of the parcellations. The graph shows how both the position and the slopes for these regression lines are different 
between parcellations. In the bottom panel, we show the distribution of mean maxFO values within each of the 
parcellations. The thick black line within each violin plot indicates the mean value of mean maxFO in the respective 
parcellation and the grey lines indicate their interquartile range. Dots within each parcellation correspond to runs 
with different dimensionality parameters as described under 2.1, i.e. different numbers of subjects 𝑆, time points 𝑇, 
sampling rates 𝑅, and (subsets of) parcels 𝑁. 

3.2 Estimation hypothesis 

Estimating a large number of free parameters from limited data poses a statistical challenge 

in the estimation of any model. We next quantified the influence of the number of free 
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parameters and the number of observations on model stasis. We show that a high number of 

free parameters and a low number of observations can cause the model to become static.  

In the simulated data, we found that both increasing the number of free parameters 𝐷𝐹 by 

including more parcels of the parcellation (i.e. increasing 𝑁) and decreasing the number of 

observations 𝑂 by simulating fewer subjects increase model stasis. This is illustrated in Figure 

3A where, compared to the models described above under 3.1.1 (plotted in the left panel), we 

increased the number of free parameters 𝐷𝐹 (middle panel), and additionally decreased the 

number of observations 𝑂 (right panel). The area where the model becomes static (i.e. where 

mean maxFO is high, here shown in yellow) increases for both steps. In the full model, the 

standardised coefficients for the inverse of the number of free parameters 𝐷𝐹  is -0.16 

(p=0.0001) and for the number of observations 𝑂 is -0.21 (p<0.0001). 

In the real data, the number of free parameters 𝐷𝐹 was manipulated by changing the number 

of parcels 𝑁 as described under 2.1.2. As illustrated in Figure 3B, both decreasing the number 

of free parameters 𝐷𝐹 (left panel) and increasing the number of observations 𝑂 (middle panel) 

decreased model stasis in the HCP data. A low ratio of number of observations 𝑂 to free 

parameters 𝐷𝐹 (right panel) is a strong indicator of model stasis. Based on the finding that 

model stasis strongly depends on the parcellation, we here also plot these effects for each 

parcellation separately. Please note that we plot the inverse of the number of free parameters 

in the left panel, so that the values in the right panel are the product of the two previous plots. 

In the full SEM, the coefficient of the inverse of the number of free parameters 𝐷𝐹 is -0.50 

(p<0.0001), the coefficient of the number of observations 𝑂  is -0.30 (p<0.0001) and the 

coefficient of their interaction is -0.06 (p=0.02). As shown in the Supplementary Figures 1 and 

2, reducing the number of free parameters 𝑂 using the PCA- and HMM-PCA approaches 

similarly decreased model stasis. This effect was parcellation-dependent. 

In a dataset with few observations, reducing the number of free parameters may therefore be 

vital for a time-varying FC model to detect dynamic changes in FC. If more data is available, 
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it is possible to increase the number of free parameters and thus add detail to the model, e.g. 

by using a more fine-grained parcellation.  

 

Figure 3 Evidence for the estimation hypothesis. A) In the simulated data, we first increased the number of free 
parameters 𝐷𝐹  by manipulating the number of parcels 𝑁  included from the parcellation (middle panel). This 
increased the yellow area of the graph, i.e. the area where the time-varying FC model is static. In addition to 
increasing the number of free parameters 𝐷𝐹, we then also decreased the number of observations 𝑂 by simulating 
fewer subjects 𝑆 (right panel). This further increased the area where the time-varying FC model is static, so that it 
is now only possible for the model to detect dynamics (blue area) when between-subject variability is very low and 
within-session variability is very high. B) In the real data, both decreasing the number of free parameters 𝐷𝐹 (left 
panel, where we show the inverse of the number of free parameters) and increasing the number of observations 𝑂 
(middle panel) reduce model stasis, as indicated by lower values in mean maxFO. Finally, the ratio of observations 
to free parameters (right panel) is a strong negative indicator of model stasis. This ratio is small in all models that 
are mostly static (high values of mean maxFO) and high in all models that are mostly dynamic (low values of mean 
maxFO). Given the differences between parcellations established in 3.1.2, we distinguish between parcellations in 
these plots. This distinction is here only for illustrative purposes and not included as random effects in the full SEM.   

 

3.3 Synthesis of results 

In order to compare the directed effect of all variables on model stasis, we finally modelled the 

influence of all factors described under 3.1 and Error! Reference source not found. using 

SEMs. We estimated separate models with a similar structure for the simulated and the real 
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data, as described in 2.4. The structure and results of the SEM are summarised in Figure 4. 

The first part of each model uses FC similarity as the outcome measure, while the second part 

uses model stasis as the outcome. This structure allows differentiating for instance between 

a direct effect of the number of observations on model stasis and an indirect effect of the 

number of observations on model stasis via FC similarity.  

The full models explain 95% and 86% variance in FC similarity, and 68% and 72% in model 

stasis, respectively, for simulated and real data. Comparing the two hypotheses, in the 

simulated data we found more evidence for the data hypothesis than for the estimation 

hypothesis. In the real data, however, the evidence supporting the estimation hypothesis 

dominates the data hypothesis, particularly the number of free parameters. An apparent 

difference between the simulated data and the real data is the effect of FC similarity 

(standardised coefficients of -0.53*** in simulated data and of -0.06 N.S. in real data). It is also 

important to note that we use only one parcellation in the simulations, but five different 

parcellations in the real data. We show above that, in the real data, 32% of variance in model 

stasis is explained by the random effects of parcellations. This indicates that, rather than using 

overall FC similarity as a single indicator of model stasis, it is important to distinguish between 

different parcellations. Another important difference between simulated and real data is that 

the amount of between-subject and within-session variability can only be directly manipulated 

on the synthetic data. However, between-subject and within-session variability often differ to 

a large extent between real datasets and are therefore an important consideration when 

applying time-varying FC models.  

Overall, we found evidence for all hypothesised effects. At the level of the data hypothesis, 

we showed in the simulations that low between-subject and high within-session variability 

reduce model stasis. Additionally, on real data, we showed that the choice of parcellation 

strongly affects time-averaged FC, model stasis, and the relationship between them. At the 
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level of the estimation hypothesis, we presented evidence that a larger number of observations 

and fewer free parameters reduce model stasis, both on simulated and on real data. 

 

Figure 4 Full structural 
equation models (SEM). A) On 
simulated data, FC similarity 
(which is almost perfectly 
explained by between-subject 
variability) and within-session 
variability strongly affect model 
stasis, providing compelling 
evidence for the data 
hypothesis. Coefficients 
corresponding to the estimation 
hypothesis are smaller, but still 
both the number of free 
parameters and the number of 
observations significantly affect 
model stasis. B) On real data, 
the effect of the data hypothesis 
is less strong, as indicated by 
the smaller coefficients between 
FC similarity and model stasis. 
As explained in 3.1.2, variance 
in model stasis from the data 
hypothesis can be explained 
better by distinguishing 
between different parcellations. 
The number of free parameters 
and the number of 
observations, as well their 
interaction strongly affect model 
stasis. Here, grey boxes 
indicate variables that are not 
explicitly modelled in the SEM, 
but which are constituting parts 
of another variable. White 
boxes represent predictor 
variables. Green boxes are 
synthetically manipulated 
variables in the simulated data. 
Blue boxes specify random 

effects that affect the underlying link. The black box indicates the main outcome variable. Arrow thickness is scaled 
to the corresponding coefficient strength. Significance levels are indicated by asterisks: *** p < 0.001, ** p < 0.01, 
* p < 0.05.  

 

4 Discussion 

The ability of a time-varying FC model to identify temporally changing states on fMRI data 

depends on numerous factors, and can be attributed both to aspects of the data and to aspects 

of the model. Our findings indicate that model stasis is affected by the actual variability in the 
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data, the parcellation used to extract time courses, and the ratio of the number of available 

observations to the number of free parameters in the model. To summarise when these 

models can be satisfactorily applied, we have compiled a short list of practical 

recommendations in Conclusions. 

We first showed that large differences between subjects and/or small within-session FC 

modulations can cause a time-varying FC model to become static. This can be explained by 

the data-driven, unsupervised nature of the model, which aims at describing the most salient 

features of a dataset without imposing specific constraints about the recurrence of states 

across subjects. We also showed that FC similarity, model stasis, and the relationship 

between them are affected by the parcellation. In the example parcellations we used here, the 

three data-driven parcellations on average resulted in lower model stasis (i.e. they were found 

to be better models from the specific point of view considered in this paper) than the examples 

of functional or anatomical parcellations. Although these conclusions might not necessarily 

generalise to all functional or anatomical parcellations, the effect was clear in this case. 

Understanding the reason behind these differences between parcellations is not 

straightforward, as there are several factors involved —such as differences in spatial 

distribution, cluster size, weighted vs. binary parcels, time course extraction, etc.— that may 

contribute to these differences, and these have not been explicitly tested here. Assuming the 

presence of “true” functional clusters in the data, data-driven functional parcellations are more 

likely to detect these clusters as parcels, resulting in a more efficient estimation of the temporal 

variance of these clusters. In theory, anatomical and a priori functional parcellations may, for 

example, split “true” functional clusters into several parcels, which could affect the balance 

between between-subject and within-session variability in an artefactual manner.   

Second, we showed that a high number of free parameters in the model can cause the model 

to become static, especially if too few observations are available to estimate these parameters. 

Here we showed that the model may become static when too many free parameters need to 

be estimated. This is because, if the data available for the estimation of time-varying FC is 
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insufficient, avoiding all state switches might be the most parsimonious solution in terms of 

the model inference. This implies that the estimation of time-varying FC is a trade-off between 

the level of detail in the spatial domain and the accuracy of the temporal estimation.  

Importantly, the factors we considered here are not exhaustive and therefore other variables 

related to overall data quality and model characteristics might also be relevant. In particular, 

a large dissonance between the model specification and the realities of the data could also be 

a reason why we could not detect time-varying FC. For instance, if temporal modulations in 

first-order statistics (the average pattern of activity within a state —i.e. the mean of the 

Gaussian distribution) were temporally independent from modulations in time-varying FC, this 

would violate the assumptions of the HMM and could potentially affect model stasis; in this 

case, modelling the mean as a separate temporal process would likely improve the estimation 

of time-varying FC (Pervaiz et al., 2021). 

It also remains to be seen how exactly model stasis may occur in other kinds of models (such 

as a mixture of Gaussian distributions (Bishop, 2006)), although the logic of our conclusions 

is likely to remain valid. It should also be noted that we here only focussed on model stasis, 

because it is among the most fundamental measures of performance of a time-varying FC 

model. However, other evaluative measures, such as the ability to predict individual traits and 

behaviour may be of interest when evaluating time-varying FC model performance, as shown 

in Pervaiz et al. (2021); Pervaiz et al. (2020); Vidaurre et al. (2021) and many other works. It 

is likely that some of the variables we here showed to reduce model stasis, such as higher 

similarity between subjects and fewer free parameters (as obtained, e.g., through a coarser 

parcellation), would indeed be disadvantageous when considering other evaluative measures 

or when conducting a time-averaged FC study. The assessment of this will be the object of 

future work.  
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5 Conclusion 

As we outlined in this article, the ability to estimate time-varying FC in fMRI data depends on 

several factors, which should be considered when planning and conducting a time-varying FC 

study. To avoid a time-varying FC model becoming static, we provide the following 

recommendations: 

1. Preprocessing: Special care should be taken in reducing artefactual between-subject 

differences, e.g. by optimising registration and removing subject-specific artefacts, and 

in preserving temporal variance by refraining from preprocessing steps that average 

over time points like motion scrubbing or other more “aggressive” clean-up strategies. 

Testing similarity in time-averaged FC between subjects may in some cases be useful 

as an indicator of problematic between-subject variability, but it can also be misleading 

in certain parcellations.  

2. Time course extraction: The choice of parcellation used to extract time courses should 

be considered when planning a time-varying FC study. The data-driven functional 

parcellations we used here, such as Group ICA approaches, perform better than the 

examples we used for functional or anatomical parcellations in detecting temporal 

changes in FC.  

3. Model complexity: The number of free parameters should ideally be not too large in 

relation to the number of observations, e.g. by using a parcellation with fewer parcels 

or components if necessary. Other options to reduce the number of free parameters 

include dimensionality reduction, e.g. using Principal Component Analysis (PCA), 

which however may affect the model in other ways (Vidaurre, 2021). Based on the 

HCP-dataset, we estimate as a rule of thumb that the ratio of observations to free 

parameters should not be inferior to 10.  

In summary, meeting these requirements may help improving the robustness and reliability of 

time-varying FC methods and eventually increase replicability (Choe et al., 2017).  
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Data and code availability statement 

The real dataset used in this study has been made publicly available by the WU-Minn 

Consortium in ConnectomeDB https://db.humanconnectome.org/. Code to reproduce the 

simulated dataset and to replicate the analyses of this study is available under 

https://github.com/ahrends/mixing. The HMM-MAR toolbox used to run the HMMs is available 

under https://github.com/OHBA-analysis/HMM-MAR.  
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