Nakanishi et al.

1 Title

- 2 Characterization of a Novel Plasmid in Serratia marcescens Harboring bla_{GES-5} Isolated from
- 3 a Nosocomial Outbreak in Japan
- 4 Running title
- 5 Plasmid in S. marcescens Confers Carbapenem Resistance
- 6 Noriko Nakanishi,^{a*} Shoko Komatsu,^a Tomotada Iwamoto,^a Ryohei Nomoto^{a*#}
- ⁷ ^aDepartment of Infectious Diseases, Kobe Institute of Health, 4-6-5 Minatojima-nakamachi,
- 8 Chuo-ku, Kobe, Hyogo, 650-0046, Japan.
- 9 [#]Corresponding author:

^{*} Noriko Nakanishi and Ryohei Nomoto contributed equally to this work. Author order was determined alphabetically.

Nakanishi et al.

- 10 R. Nomoto, Ph.D, E-mail: ryohei_nomoto@office.city.kobe.lg.jp
- 11 Department of Infectious Diseases, Kobe Institute of Health, Kobe, Japan, 4-6-5
- 12 Minatojima-nakamachi, Chuo-ku, Kobe, Hyogo, 650-0046, Japan.
- 13 Tel: +81-78-302-6251, Fax: +81-78-302-6402

Nakanishi et al.

15 Abstract

26

16	Serratia marcescens is a nosocomial pathogen with carbapenem resistance, limiting the
17	availability of effective treatment options. In this study, we performed molecular
18	characterization of GES-5 carbapenemase-producing S. marcescens isolated from an
19	outbreak in Japan. Comparative genetic analysis revealed that the bla_{GES-5} -encoding plasmid
20	p2020-O-9 is a unique plasmid contributing towards carbapenem resistance. Furthermore,
21	this study highlights the necessity of surveillance programs for monitoring novel, along with
22	commonly occurring carbapenemases in clinical settings.
23	
24	
25	

KEYWORDS: Serratia marcescens, crabapenemase, bla_{GES-5}, whole-genome sequencing

27 **Abbreviations:** WGS: whole-genome sequencing

Nakanishi et al.

28 Serratia marcescens is a major opportunistic pathogen known to cause nosocomial

29 infections associated with high morbidity and mortality (1, 2). As this bacterium shows

30 resistance towards widely used carbapenem class of antibiotics, treatment options available

31 for nosocomial infections becomes limited (3-5). Carbapenemases (a class of β -lactamases)

32 identified in Japan comprise KPC, GES, NDM, IMP, VIM, and OXA-48 variants, with IMP

33 being the most prevalent in the country (6). GES type Amber class A β -lactamases, in

34 addition to exhibiting β -lactam resistance, also confer carbapenemase activity, such as the

35 GES-5 variant (7, 8). In recent times, nosocomial outbreaks have largely been attributed to

36 GES-5 carbapenemase-producing bacterial strains in various countries including Japan,

37 wherein the first outbreak of *P. aeruginosa* harboring the *bla*_{GES-5} gene occurred in the year

38 2014 (9-13). This study reports the genetic characteristics of a different GES-5 producing

Nakanishi et al.

39 bacterium, *S. marcescens* isolated from an ICU outbreak in Japan in 2020.

41	A total of six carbapenem-resistant S. marcescens strains were isolated from the
42	samples from three ICU patients collected during May-October 2020 (Table 1). Strain was
43	identified using MALDI Biotyper (Bruker Daltonics K.K., Yokohama, Japan), and the
44	minimal inhibitory concentrations (MICs) of various antimicrobial agents were determined
45	by E-test (bioMérieux Japan Ltd., Tokyo, Japan) following the manufacturer's guidelines. As
46	indicated in Table 1, all of the six S. marcescens strains were resistant to imipenem,
47	meropenem, and ceftazidime. Modified carbapenem inactivation method (mCIM) indicated
48	the absence of carbapenemase genes in all the strains. This was supported by the negative
49	results of PCR screening conducted for the major carbapenemase genes bla _{IMP} , bla _{NDM} ,
50	$bla_{\rm KPC}$, and $bla_{\rm OXA-48-like}$; however, a positive result was obtained for $bla_{\rm GES}$. The MICs of
51	antimicrobial agents (except ampicillin (AM) and cefotaxime (CTX)) in 2020-O-14-2 strain
52	lacking the $bla_{\text{GES-5}}$ gene, isolated from patient B, were significantly lower than all the other

Nakanishi et al.

53	isolates. Whole-genome sequencing of the six isolates harboring bla_{GES-5} gene and the one
54	lacking the gene was done for analyzing single nucleotide variations and deriving genetic
55	relationships among the seven isolates to understand the mechanisms of antimicrobial
56	resistance. A survey for analyzing environmental contamination in the ICU was conducted
57	during the outbreak period; however, the presence of carbapenem-resistant S.
58	marcescens strains was not detected.
59	Genomic libraries of all seven isolates were prepared using the Nextera XT DNA library
60	prep kit (Illumina, San Diego, CA, USA) and sequenced on the iSeq 100 system (Illumina).
61	Additionally, Oxford Nanopore Technologies (ONT) were used for constructing a
62	sequencing library of the strain 2020-O-9 with the help of Rapid Barcoding Kit
63	(SQK-RBK004), and sequenced on a MinION device using flow cell type R9.4.1
64	(FLO-MIN106D). Hybrid assembly of 2020-O-9 genome was performed using Unicycler

Nakanishi et al.

65 v0.4.8 (14), and a circular chromosome and plasmid (p2020-O-9) sequence was obtained.

66 The genome sequences were annotated using DFAST (https://dfast.nig.ac.jp/) and are

available in DDBJ (DNA Data Bank of Japan) under the accession numbers AP024847

68 (chromosome) and AP024848 (plasmid). SNP analysis of the remaining 6 strains was

69 performed taking the genome sequence of 2020-O-9 as a reference, using bwa version 0.7.17,

samtools version 1.9, and VarScan v2.4.4 (15-17). The analysis revealed high degree of

71 genetic homogeneity with 0 to 5 SNPs consistent among the seven strains isolated, including

72 GES-5 negative strain 2020-O-14-2. The whole-genome sequencing reads are available in

73 DDBJ Sequence Read Archive under the accession number listed in Table 1. Since MICs of

carbapenems in 2020-O-14-2 strain lacking the bla_{GES-5} gene were significantly decreased, it

is evident that the newly detected bla_{GES-5} containing plasmid contributes to carbapenem

Nakanishi et al.

resistance.

77	Further genetic characterization of p2020-O-9 was done using ResFinder 3.2 to identify
78	resistance genes, and plasmid incompatibility replicon typing was performed using
79	PlasmidFinder 2.0 developed by the Center for Genomic Epidemiology
80	(http://www.genomicepidemiology.org/). The chromosomal sequence of 2020-O-9
81	consisted of a single antimicrobial resistance gene bla_{SRT-2} , as identified by existing
82	databases. p2020-O-9 is a novel 23,921-bp circular untypeable plasmid, with the bla_{GES-5}
83	gene located between intI1 of class 1 integron and the $qacE\Delta I$ and $sul1$, together with a gene
84	of GNAT-family N-acetyltransferase, <i>aac</i> (6)-29a. It has a GC-content of 61% and carries 26
85	protein-coding genes (Fig.1). Sequence analysis using NCBI revealed that the plasmid
86	backbone of p2020-O-9 showed highest similarity with plasmid pCAV1374-16 from

Nakanishi et al.

87 Klebsiella oxytoca with a query coverage of 59%; however, there was no bla_{GES-5} in

pCAV1374-16 (Accession no. CP011628). The class 1 integron cassette around the *bla*_{GES-5}

gene in p2020-O-9 is similar to that of pMRY16-414SMA_2 from S. marcescens (Accession

90 no. LC486677) and the plasmid from Aeromonas hydrophila strain WCHAH 01-derived

91 plasmids pGES5 (Accession no. KR014105) (Fig. 1). Plasmid sequences similar to the

92 backbone of p2020-O-9 such as pCAV1374-16, have been registered in databases from a

93 wide range of bacterial species. It is believed that bla_{GES-5} was integrated into the class 1

94 integron cassette of a plasmid like pCAV1374-16 to construct the novel p2020-O-9 plasmid.

95 This suggests that p2020-O-9 could be an untypeable plasmid with the potential to distribute

96 itself widely in *Enterobacteriaceae*.

Nakanishi et al.

97	In	summary,	we	reported	the	molecular	characterization	of	GES-5	producing	S.
----	----	----------	----	----------	-----	-----------	------------------	----	-------	-----------	----

98 marcescens strain harboring a novel bla_{GES-5} gene-encoding plasmid, p2020-O-9 isolated

99 from the ICU outbreak in Japan The prevalence and transmission of GES-producing bacteria

100 is largely underestimated due to their rare presence in clinical isolates. However, through this

101 study, we highlight the necessity of surveillance programs for monitoring novel, as well as

102 commonly occurring carbapenemases in clinical settings.

103

104 **Data availability**

- 105 Sequence data that support the findings of this study have been deposited in DDBJ
- 106 (https://www.ddbj.nig.ac.jp/) with the accession numbers AP024847 and AP024848.

Nakanishi et al.

108 Author contributions

- 109 NN, RN designed the study methods and wrote the first draft of the manuscript. NN, RN,
- 110 SK collected the data. NN, RN analyzed the data. TI contributed to the writing of the
- 111 manuscript.

112

113 Ethical approval

- 114 This study was approved by the Ethical Review Committee of the Kobe Institute of Health
- 115 (approval No. SenR3-9).

116

117 Acknowledgments

Nakanishi et al.

118	We are	grateful	to Dr.	Mari	Matsui	and D	r. Satowa	ı Suzuki	at the	e National	Institute	of
-----	--------	----------	--------	------	--------	-------	-----------	----------	--------	------------	-----------	----

119 Infectious Diseases, Japan, for their guidance. This work was partially supported by a

- 120 grant-in-aid from the Japan Agency for Medical Research and Development (AMED)
- 121 Research Program on Emerging and Re-emerging Infectious Diseases (grant no.

122 JP21fk0108103).

123 We declare no conflicts of interest.

124

125 **References**

- 126 1. Iosifidis E, Farmaki E, Nedelkopoulou N, Tsivitanidou M, Kaperoni M, Pentsoglou
- 127 V, Pournaras S, Athanasiou-Metaxa M, Roilides E. 2012. Outbreak of bloodstream
- 128 infections because of Serratia marcescens in a pediatric department. Am J Infect Control

Nakanishi et al.

129 **40**:11–15. doi: <u>10.1016/j.ajic.2011.03.020</u>.

130 2. Gastmeier P. 2014. Serratia marcescens: an outbreak experience. Front Microbiol.

131 2014 **5**:81. doi: <u>10.3389/fmicb.2014.00081</u>.

132 3. Moradigaravand D, Boinett CJ, Martin V, Peacock SJ, Parkhill J. 2016. Recent

133 independent emergence of multiple multidrug-resistant Serratia marcescens clones

134 within the United Kingdom and Ireland. Genome Res. **26**:1101–1109.

135 4. Silva KE, Cayô R, Carvalhaes CG, Patussi Correia Sacchi F, Rodrigues-Costa F,

136 **Ramos da Silva AC, Croda J, Gales AC, Simionatto S**. 2015. Coproduction of KPC-2

137 and IMP-10 in carbapenem-resistant *Serratia marcescens* isolates from an outbreak in a

138 Brazilian teaching hospital. J Clin Microbiol **53**:2324–2328. doi:

139 <u>10.1128/JCM.00727-15</u>.

Nakanishi et al.

140 5. Nastro M, Monge R, Zintgraff J, Vaulet LG, Boutureira M, Famiglietti A,

- 141 **Rodriguez CH**. 2013. First nosocomial outbreak of VIM-16-producing Serratia
- 142 marcescens in Argentina. Clin Microbiol Infect.: the Official Publication of the
- 143 European Society of Clinical Microbiology and Infectious Diseases **19**:617–619. doi:
- 144 <u>10.1111/j.1469-0691.2012.03978.x</u>.
- 145 6. Logan LK, Weinstein RA. 2017. The epidemiology of carbapenem-resistant
- 146 Enterobacteriaceae: the impact and evolution of a global menace. J Infect Dis. 215:S28–
- 147 S36. doi: <u>10.1093/infdis/jiw282</u>.
- 148 7. Bontron S, Poirel L, Nordmann P. 2015. In vitro prediction of the evolution of GES-1
- 149 ß-lactamase hydrolytic activity. Antimicrob. Agents Chemother. **59**:1664–1670.
- 150 8. Walther-Rasmussen J, Høiby N. 2007. Class A carbapenemases. J Antimicrob

Nakanishi et al.

151 Chemother **60**:470–482.

152	9.	Ellington MJ, Davies F, Jauneikaite E, Hopkins KL, Turton JF, Adams G, Pavlu J,
153		Innes AJ, Eades C, Brannigan ET, Findlay J, White L, Bolt F, Kadhani T, Chow Y,
154		Patel B, Mookerjee S, Otter JA, Sriskandan S, Woodford N, Holmes A. 2020. A
155		multispecies cluster of GES-5 carbapenemase-producing Enterobacterales linked by a
156		geographically disseminated plasmid. Clin Infect Dis.: an Official Publication of the
157		Infectious Diseases Society of America 71:2553–2560. doi: <u>10.1093/cid/ciz1130</u> .
158	10	. Chudejova K, Rotova V, Skalova A, Medvecky M, Adamkova V, Papagiannitsis
159		CC, Hrabak J. 2018. Emergence of sequence type 252 Enterobacter cloacae producing
160		GES-5 carbapenemase in a Czech hospital. Diagn Microbiol Infect Dis 90:148–150.
161	11.	. Hishinuma T, Tada T, Kuwahara-Arai K, Yamamoto N, Shimojima M, Kirikae T.

Nakanishi et al.

162	2018	Spread	of	GES-5	carba	penemase-	producing	Pseudomonas	aeruginosa	clinical
104	2010.	Spread	O1	OLD J	curou	penemuse	producing	1 Seudomonus	ucruginosu	ennicui

163 isolates in Japan due to clonal expansion of ST235. PLoS One **13**:e0207134.

164 12. Literacka E, Izdebski R, Urbanowicz P, Żabicka D, Klepacka J, Sowa-Sierant I,

165 Żak I, Garus-Jakubowska A, Hryniewicz W, Gniadkowski M. 2020. Spread of

166 Klebsiella pneumoniae ST45 Producing GES-5 carbapenemase or GES-1

167 Extended-Spectrum β -lactamase in Newborns and Infants. Antimicrob Agents

168 Chemother 64:64(9):e00595-20. doi: <u>10.1128/AAC.00595-20</u>.

169 13. Kanayama A, Kawahara R, Yamagishi T, Goto K, Kobaru Y, Takano M,

170 Morisada K, Ukimura A, Kawanishi F, Tabuchi A, Matsui T, Oishi K. 2016.

171 Successful control of an outbreak of GES-5 extended-spectrum β -lactamase-producing

172 Pseudomonas aeruginosa in a long-term care facility in Japan. J Hosp Infect. **93**:35–41.

Nakanishi et al.

173 14. Wick RR, Judd LM, Gorrie CL, Holt KE. 2017. Unicycler: resolving bacterial

174 genome assemblies from short and long sequencing reads. PLoS Comput Biol

175 **13**:e1005595.

176 15. Li H. Aligning sequence reads, clone sequences and assembly contigs with

177 BWA-MEM. <u>arXiv:1303.3997v2</u> [q-bio.GN]. 2013.

178 16. Danecek P, Bonfield JK, Liddle J, Marshall J, Ohan V, Pollard MO, Whitwham

179 A, Keane T, McCarthy SA, Davies RM, Li H. 2021. Twelve years of SAMtools and

- 180 BCFtools. GigaScience **10**. <u>https://doi.org/10.1093/gigascience/giab008</u>.
- 181 17. Koboldt DC, Zhang Q, Larson DE, Shen D, McLellan MD, Lin L, Miller CA,
- 182 Mardis ER, Ding L, Wilson RK. 2012. VarScan 2: Somatic mutation and copy
- 183 number alteration discovery in cancer by exome sequencing. Genome Research

Nakanishi et al.

184 22:568–576. DOI: <u>10.1101/gr.129684.111</u>.

185 18. Alikhan NF, Petty NK, Ben Zakour NL, Beatson SA. 2011. BLAST Ring Image

186 Generator (BRIG): simple prokaryote genome comparisons. BMC Genomics **12**:402.

187 PMID: <u>21824423</u>.

Nakanishi et al.

188 **Figure legends**

189 **Figure 1.**

190 Circular representation of p2020-O-9 was generated using BLAST Ring Image Generator

191 0.95 (18). A comparison of the plasmid with pMRY16-414SMA_2 from Serratia marcescens

192 MRY-414SMA (LC486677), pGES5 from Aeromonas hydrophila WCHAH 01

193 (KR014105), and pCAV1374-16 from Klebsiella oxytoca (CP011628). The outermost circle

194 indicates the coding sequence of p2020-O-9. Red, carbapenemase genes; blue, other

antimicrobial resistance genes; purple, IS6100; orange, transposase, and recombinase genes;

196 green, integrase genes; grey, other genes or coding sequences.

Patients	Age (yr),	No. of isolate	Date of isolation	Specimens						MICs (µg/ml) for	r ^b					bla	DDBJ accession no.	
	sex ^a	No. of isofate	(year/month/day)	specimens	AM	СТХ	CAZ	FEP	ATM	IMP	MPM	DOR	ETP	AK	МС	CIP	РМВ	bla _{GES-5}	of read data
		2020-0-9	2020/5/25	Sputum	>256	>32	>32	6	6	>32	>32	>32	>32	>256	4	0.5	>1024	+	DRR308222
	76 5	2020-O-12	2020/6/23	Blood	>256	>32	>32	3	4	>32	>32	>32	>32	>256	3	1	>1024	+	+ DRR308223
А	76, F	2020-O-21-2	2020/8/3	Sputum	>256	>32	>32	2	3	6	>32	>32	8	64	3	1.5	64	+ DRR308224	DRR308224
		2020-0-21-3	2020/8/4	Blood	>256	>32	>32	2	8	>32	>32	24	>32	96	3	1.5	128	+	DRR308225
5	70.14	2020-O-14-1	2020///10		>256	>32	>32	4	6	>32	>32	>32	>32	128	12	12 >32 96 + D	DRR308226		
В	70, M	2020-O-14-2	2020/6/19	Blood	>256	>32	2	3	4	1	1.5	1.5	4	16	3	3	64	-	DRR308227
С	59, M	2020-0-25	2020/10/15	Ascites	>256	>32	>32	3	8	>32	>32	>32	>32	>256	3	0.38	>1024	+	DRR308228

TABLE 1. Information and the antibiotic susceptibility of the Serratia marcescens isolated from three patients involved in the ICU outbreaks

^a F, feamale, M, male.

^bampicillin (AM), cefotaxime (CTX), ceftazidime (CAZ), cefepime (FEP), aztreonam (ATM), imipenem (IMP), meropenem (MPM), doripenem (DOR), ertapenem (ETP), amikacin (AK), minocycline (MC), ciprofloxacin (CIP), polymyxin B (PMB)

99

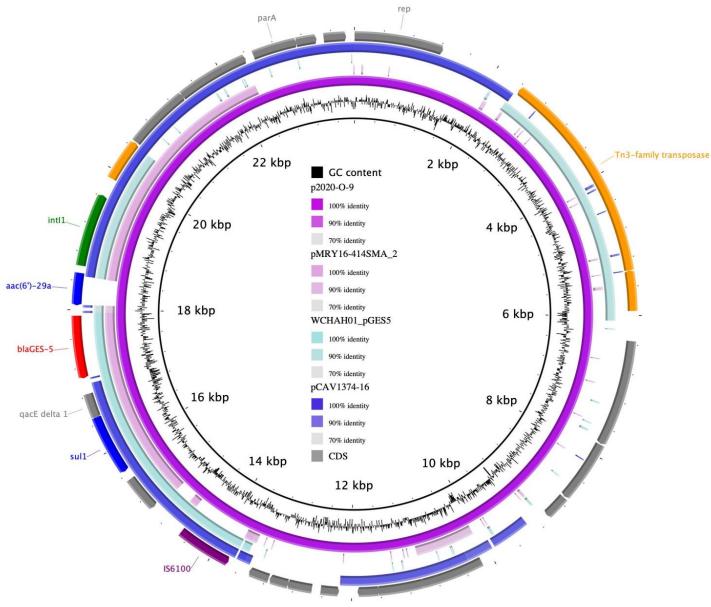


Figure 1. Circular representation of p2020-O-9 was generated using BLAST Ring Image Generator 0.95 (18). A comparison with the pMRY16-414SMA_2 from *Serratia marcescens* MRY-414SMA (LC486677), pGES5 from *Aeromonas hydrophila* WCHAH 01 (KR014105), and pCAV1374-16 from *Klebsiella oxytoca* (CP011628). The outermost circle shows the coding sequence of p2020-O-9. Red, carbapenemase genes; blue, other antimicrobial resistance genes; purple, IS6100; orange, transposase and recombinase genes; green, integrase genes; grey, other genes or coding sequences.