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Abstract 
 
Functional magnetic resonance imaging (fMRI) of the human spinal cord faces many challenges, 
one of which is signal loss due to local magnetic field inhomogeneities. This issue can be addressed 
with slice-specific z-shimming, which compensates for the dephasing effect of the 
inhomogeneities using a single, slice-specific gradient pulse. Since the original demonstration of 
its utility, this technique has already been employed in several spinal fMRI studies. Here, we aim 
to address two outstanding issues regarding this technique: on the one hand, we evaluate its effects 
on several parameters that are directly relevant for spinal fMRI (but have not yet been assessed) 
and on the other hand, we improve upon the manual selection of slice-specific z-shims by 
developing automated procedures. First, we demonstrate that the beneficial effects of z-shimming 
i) are apparent across a large range of echo times, ii) hold true for both the dorsal and ventral horn 
gray matter, and iii) are also clearly apparent in the temporal signal-to-noise ratio (tSNR) of 
gradient-echo EPI time-series data. Second, and more importantly, we address the time-consuming 
and subjective nature of manual selection of slice-specific z-shims by developing two automated 
approaches: one is based on finding the z-shim that maximizes spinal cord signal intensity in each 
slice of an EPI z-shim reference-scan and the other is based on finding the strength of the gradient-
field that compensates the through-slice inhomogeneity in field map data. Both automated 
approaches i) were much faster than the manual approach, ii) lead to significant improvements in 
spinal cord gray matter tSNR compared to no z-shimming and iii) resulted in beneficial effects 
that were stable across time. While the field map-based approach performed slightly worse than 
the manual approach, the EPI-based approach performed at least as well as the manual one and 
was furthermore validated on an independently acquired corticospinal data-set (N > 100).  
Together, we believe that automated z-shimming will improve the data quality of future spinal 
fMRI studies and – by removing the subjective step of manual z-shim selection – may also lead to 
increased reproducibility in longitudinal studies.  
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1. Introduction 
 
The spinal cord is one of the key structures linking the brain with the peripheral nervous system 
and participates in numerous sensory, motor and autonomic functions (Hochman, 2007). Non-
invasive approaches to investigate the human spinal cord are therefore of great interest not only 
from a basic neuroscientific perspective, but also with regards to their possible clinical utility in 
order to understand pathological mechanisms in motor and sensory disorders such as multiple 
sclerosis and chronic pain (Wheeler-Kingshott et al., 2014). Currently, the main approach to 
investigate spinal cord function is based on blood-oxygen-level-dependent functional magnetic 
resonance imaging (BOLD fMRI; for reviews see Giove et al., 2004; Stroman et al., 2014; 
Summers & Brooks, 2014; Cohen-Adad, 2017). Using conventional BOLD fMRI techniques such 
as gradient-echo echo-planar imaging (GE EPI) is however challenging in the spinal cord due to 
i) its small cross-sectional diameter, ii) prominent physiological noise from cardiac and respiratory 
sources and iii) magnetic field inhomogeneities. 
In the cervical spinal cord (i.e. the part that is easiest to access with currently available receive 
coils at 3T), inhomogeneities in the magnetic field occur at both large and small spatial scales 
(Cohen-Adad, 2017). While large-scale variations are for example due to the proximity of the 
lungs (and can thus vary dynamically; e.g. Verma & Cohen-Adad, 2014), small-scale variations 
are due to anatomical considerations, i.e. the numerous interfaces between vertebrae and 
connective tissue, which have different magnetic susceptibilities (Cooke et al., 2004; Finsterbusch 
et al., 2012). These small-scale field inhomogeneities are reproduced spatially along the superior-
inferior axis of the spinal cord and significantly affect image quality, leading to consistent patterns 
of signal loss (Maieron et al., 2007; Finsterbusch et al., 2012; Finsterbusch et al., 2014). While it 
would thus be imperative for reliable and reproducible fMRI of the spinal cord to mitigate these 
effects, standard shimming techniques implemented on common whole-body MR systems are not 
able to compensate these spatially repeating inhomogeneities to an adequate degree (Finsterbusch, 
2014). 
One method that is commonly employed to overcome through-slice dephasing is slice-specific 'z-
shimming' (Frahm et al., 1988; Constable, 1995; Glover, 1999) where an additional gradient pulse 
is applied in the slice-selection direction in order to compensate the effect of susceptibility-induced 
gradients and resulting signal loss. In the brain, z-shimming has been applied in GE EPI studies 
focused on susceptibility-prone regions, i.e. those that are close to air/bone interfaces such as the 
orbitofrontal, the medial temporal and the inferior temporal lobes (Yang et al., 1997; Deichmann 
et al., 2003; Posse et al., 2003; Weiskopf et al., 2006). Finsterbusch et al. (2012) investigated 
whether one could use this approach to also compensate for the periodically occurring signal drop-
outs (along the superior-inferior axis) on T2*-weighted GE EPI images of the spinal cord. By 
applying slice-specific compensation moments – which were manually determined based on a 
reference-scan acquired prior to the experimental EPI acquisition – they were able to demonstrate 
an improvement in spinal cord image quality: reducing the spatially repeating signal drop-outs via 
slice-specific z-shimming resulted in an increase of mean signal-intensity by ~20% and a reduction 
of signal-intensity variability along the cord by ~80%. 
While the slice-specific z-shimming protocol developed by Finsterbusch and colleagues has 
already been used in several spinal (Sprenger et al., 2012; Geuter & Buchel, 2013; Kong et al., 
2014; van de Sand et al., 2015; Eippert et al., 2017; Sprenger et al., 2018) and cortico-spinal fMRI 

.CC-BY-NC-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted July 28, 2021. ; https://doi.org/10.1101/2021.07.27.454049doi: bioRxiv preprint 

https://doi.org/10.1101/2021.07.27.454049
http://creativecommons.org/licenses/by-nc-nd/4.0/


4 

 

studies (Sprenger et al., 2015; Tinnermann et al., 2017; Vahdat et al., 2020), the direct benefit of 
slice-specific z-shimming for fMRI has yet to be demonstrated in a systematic study. This is due 
to the fact that Finsterbusch and colleagues only evaluated its effects on single volumes of GE EPI 
data, but not on time-series metrics such as tSNR (Welvaert & Rosseel, 2013). Even more 
important – and already argued for by Finsterbusch and colleagues – would be an automated way 
to determine the slice-specific z-shims, as these are currently determined manually by the scanner 
operator: either visually by going through each slice and z-shim value obtained in a reference-scan 
or by manually placing a region of interest on each slice of this reference scan and evaluating the 
extracted signal intensity. This procedure is time-consuming, requires expertise in judging the 
quality of spinal EPI data and contains a subjective component, thus also limiting its potential in 
terms of reproducibility. 
In this study, we aim to develop an automated and user-friendly procedure for determining slice-
specific z-shims in order to improve the quality of spinal fMRI. In a first step, we aim to replicate 
the results of Finsterbusch et al. using an adequately powered sample-size (N=48). Next, we aim 
to extend their findings by probing the relevance of slice-specific z-shimming for fMRI through 
investigating its effects a) across different echo times, b) in distinct anatomical regions, and c) on 
a time-series metric (tSNR). Most importantly, we propose two different automated methods for 
determining slice-specific z-shims (each based on a sample-size of N=24). The first method is 
based on a z-shim reference-scan acquisition and determines z-shim values by analyzing the EPI 
signal-intensity within the spinal cord for each combination of slice and z-shim value. The second 
method is based on a field map acquisition and determines z-shim values by estimating the strength 
of the gradient field needed to compensate for the local through-slice inhomogeneity for each slice. 
In a final step, we use an independently acquired external data-set (N>100; Oliva et al., 2021) in 
order to validate our candidate approach for automating the selection of slice-specific z-shims. 
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2. Material and Methods 
 

2.1 Participants 
48 healthy participants (22 females, mean age: 27.17 years, range 20-37 years) participated in this 
study. All participants provided written informed consent and the study was approved by the ethics 
committee of the University of Leipzig. The sample size was determined based on a study by 
Finsterbusch et al. (2012), who originally introduced z-shimming to fMRI of the spinal cord: as 
we wanted to replicate and extend their findings (which were based on a sample of N=24), we 
chose the same sample size for each of our two sub-groups. 
 

2.2  Study design 
All participants underwent the following scans in the order described below (for details of scans, 
see section ‘2.3 Data acquisition’). 
After an initial localizer scan, the EPI slice stack and the adjust volume were prescribed and a 
single EPI volume was acquired in order to initialize the scanner’s ‘Advanced shim mode’ – this 
shim was then employed in all the following EPI acquisitions by using the same adjust volume. 
An EPI z-shim reference scan was performed next in order to allow for the manual as well as EPI-
based automated selection of the optimal z-shim moment for each slice. Two sagittal field maps 
(vendor-based and in-house version, respectively) were then acquired to obtain the B0 static 
magnetic field distribution, of which the vendor-based one was used for the field map based 
automated z-shim selection due to it being widely available. This was followed by the acquisition 
of a high-resolution T2-weighted image in order to allow for spinal cord segmentation as needed 
for the field map based automated z-shim selection. 
In order to compare the signal characteristics under different z-shimming conditions, EPI data were 
acquired with three different EPI protocols for each participant: without z-shim gradient 
compensation (condition “no z-shim”), with z-shim gradient compensation based on manual z-
shim selection (condition “manual z-shim”), and with z-shim gradient compensation based on 
automated z-shim selection (condition “automated z-shim”). For one-half of the participants (24 
participants), the automated selection was based on the EPI reference scan, whereas for the other 
half, the automated selection was based on the vendor-based field map. Both single EPI volumes 
(as in Finsterbusch et al., 2012), as well as 250 EPI volumes (in order to assess effects on time-
series data) were acquired for each condition; the order of the EPI scans under different conditions 
were pseudo-randomized across participants. 
We also wanted to assess the benefits of slice-specific z-shimming at different echo times (TE), 
and therefore acquired 25 EPI volumes under three different TEs (30, 40 and 50ms, each with a 
repetition time (TR) of 2552ms) for each of the three conditions. Please note that the z-shim indices 
chosen reflect gradient fields to be compensated (rather than moments of the compensation 
gradient pulse) and, thus, scale the pulsed gradient moment with the TE such that a determined 
index is valid for all TEs. The order of the EPI scans acquired with different TEs were also pseudo-
randomized across participants. 
The EPI reference scan and the in-house field map acquisitions were repeated at the end of the 
scanning session in order to assess the stability of z-shimming across time. 
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2.3 Data acquisition 
All measurements were performed on a 3T whole-body Siemens Prisma MRI System (Siemens, 
Erlangen, Germany) equipped with a whole-body radio-frequency (RF) transmit coil and 64-
channel RF head-and-neck coil and an RF spine-array, using the head coil element groups 5–7, the 
neck coil element groups 1 and 2, and spine coil element group 1 (all receive-only). 
EPI acquisitions were based on the z-shim protocol developed by Finsterbusch et al. (2012) that 
employed a single, slice-specific gradient pulse for compensating through-slice signal dephasing. 
EPI volumes covered the spinal cord from the 2nd cervical vertebra to the 1st thoracic vertebra 
and were acquired with the following parameters: slice orientation: transverse oblique; number of 
slices: 24; slice thickness: 5mm; field of view: 128×128mm2, in-plane resolution: 1×1mm2; TR: 
2312ms; TE: 40ms; flip angle: 84°; GRAPPA acceleration factor: 2; partial Fourier factor: 7/8, 
phase-encoding direction: anterior-to-posterior (AP), echo spacing: 0.93ms, bandwidth per pixel: 
1220 Hz/Pixel.  The EPI reference scan (TE: 40ms, total acquisition time: 55 seconds) was 
acquired with 21 equidistant z-shim moments compensating field inhomogeneities between +21 
and -21 mT m-1ms (in steps of 2.1 mT m-1ms).  
The vendor-based field map (total acquisition time: 4.31min) was obtained using the 2D GRE 
sequence provided by Siemens with two echoes per shot (TE 1: 4.00ms; TE 2: 6.46ms; slice 
orientation: sagittal; slice number: 32; slice thickness: 2.2mm; field-of-view: 180×180mm2; in-
plane resolution: 1×1mm2; TR: 500ms; flip angle: 50°, bandwidth per pixel: 630 Hz/pixel). 
Additionally, a 3D multi-echo FLASH sequence was applied using 12 bipolar gradient echoes, an 
inter-TE of 1.3ms, a repetition time of 32ms, a flip angle of 15°, bandwidth per pixel of 1030 
Hz/pixel and sagittal slice orientation (parallel to the normal vector of the axial EPI slices). The 
in-plane and partition resolutions of this in-house field map were 1×1mm2 and 2.2mm, 
respectively, with corresponding fields-of-view of 180×180×70.4mm3. A total scan time of less 
than 2min was achieved by the application of GRAPPA. The frequency offset ∆𝜈# in each voxel 
was extracted from a linear fit to the unwrapped phases of all echoes. Compared to the 2D double-
echo approach, the 3D acquisition (combined with multiple gradient echoes acquired at short inter-
TEs) yielded a superior signal-to-noise ratio at a reduced overall scan time. 
A high-resolution T2-weighted image was acquired using a 3D sagittal SPACE sequence as 
recently recommended (Cohen-Adad et al., in press; 64 sagittal slices; resolution: 
0.8×0.8×0.8mm3; field-of-view 256×256mm2; TE: 120ms; flip angle: 120°; TR: 1500ms; 
GRAPPA acceleration factor: 3; acquisition time: 4.02min). 
 

2.4 Selection of slice-specific z-shim moments 
2.4.1 Manual selection 
The researcher carrying out the data acquisition (MK) determined the z-shim moment with the 
highest signal intensity in the spinal cord for each slice by visual inspection. This selection process 
took ~10 minutes per participant and was carried out for all 48 participants, i.e. in both sub-groups 
of 24 participants. 
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2.4.2 Automated selection 
The necessary scans for the automated selection (EPI reference-scan for EPI-based selection; 
vendor-based field map and T2-weighted scan for field map based selection) were sent from the 
scanner console to the online calculation computer (OS: Ubuntu 18.04, CPU: Intel Core(TM) i7-
3770K 3.50GHz, RAM: 16 GB, Mainboard: Gigabyte Z77X-UD3H) using the scanner console’s 
in-built network connection. In-house MATLAB (The Mathworks Inc, 2019) scripts utilizing tools 
from dcm2niix (version 1.0.20180622; Li et al., 2016; https://github.com/rordenlab/dcm2niix), 
SCT (version 3.2.7; De Leener et al., 2017; https://spinalcordtoolbox.com/en/stable/), and FSL 
(version 5.0; Jenkinson et al., 2012; https://fsl.fmrib.ox.ac.uk/fsl/fslwiki) were employed to 
determine the optimal z-shim moment for each slice. These values were then sent back to the 
scanner console in a text file that is read by the z-shim sequence. An overview of the automated 
methods is given in Figure 1 (please note that the z-shim selection process is automated and does 
not require any input from the user). 

 
2.4.2.1 EPI-based selection 
In a subsample of 24 participants, the EPI z-shim reference-scan was used to determine the 
optimum z-shim moments. The EPI z-shim reference-scan – consisting of 21 volumes (each 
volume corresponding to one z-shim moment) with 24 slices each – was then averaged temporally, 
i.e. over all z-shim moments and the resulting mean image was automatically segmented using the 
PropSeg approach implemented in SCT (De Leener et al., 2014). Based on experience from pilot-
experiments, we built in several fail-safes (i.e. systematically changing the arguments of SCT’s 
PropSeg function that affect the propagation in the z-direction) in order to ensure that the 
segmentation would propagate across the entire slice stack. We used the mean image for 
segmentation because we wanted to ensure that image quality was sufficient for automatic 
segmentation of the spinal cord and because the averaging of volumes acquired during different 
breathing cycles avoids a bias towards one respiratory state as could occur with single volumes. 
Using the automatically generated spinal cord mask, the mean signal intensities for each slice and 
z-shim moment were extracted, resulting in a 24×21 matrix, from which the z-shim moment 
yielding the maximum intensity across the cord mask was determined for each slice. The average 
time for the execution of the selection code was 15.6 seconds (range across the entire sample: 7.7- 
62.3 seconds). 

 
2.4.2.2 Field map (FM) based selection 
In another subsample of 24 participants, sagittal field maps (with a 1mm resolution in z-direction) 
were used to determine the optimum z-shim moments. First, a spinal cord mask was generated via 
a PropSeg-based automatic segmentation of each participant’s T2-weighted image because a high-
quality segmentation of the field map magnitude image was not possible due to the sagittal slice 
thickness of 2.2mm as well as poor image contrast between spinal cord and cerebrospinal fluid 
(note that T2-weighted image and field map were well aligned and we thus did not carry out a 
separate registration step). Field map based (from now on referred to as FM-based) z-shim 
moments were then calculated for each EPI slice using a linear least-squares fit of a set of spatial 
basis functions to the measured field map (which was smoothed with an isotropic 1mm Gaussian 
kernel prior to the calculation). The spatial basis functions consisted of three linear field terms 
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along the main imaging axes and a spatially homogenous field term, representing a field offset. 
Only voxels within the spinal cord mask contributed to the fitting procedure, which included 
voxels within a 9 mm thick slab (i.e. 9 transversal field map slices) centered on the center of the 
corresponding EPI slice. The slab was chosen to be thicker than the EPI slice (i.e. addition of 2mm 
on each side of the EPI slice) in order to give more robust estimates of the through-slice field 
gradient. The fitted through-slice linear field term (𝐺%) was taken to represent the local field 
gradient causing through-slice signal dephasing within the corresponding EPI slice. The resulting 
dephasing gradient moment of 𝐺% ∙ 𝑇𝐸 was rounded to the nearest of the 21 z-shim compensations 
available in the EPI protocol and then used for subsequent EPI acquisitions. The average time for 
the execution of the selection code was 36.1 seconds (range across the entire sample: 31.5- 53.3 
seconds). 

 
Figure 1. Schematic depiction of automated z-shim methods for an exemplary participant. 
After the acquisition of the necessary scans for each method (z-shim reference EPI for EPI-based 
approach, T2-weighted image and field map for field map based approach), DICOM images were 
sent from the scanner console to an online calculation computer, and converted to NIfTI format 
before further processing. A. EPI-based selection. Three exemplary volumes from the z-shim 
reference scan (consisting of 21 volumes, one per moment) acquired with different z-shim 
moments are shown as mid-sagittal sections. The z-shim reference scan was then averaged in the 
temporal dimension and the resulting mean image was segmented (the segmentation is shown as 
a transparent red overlay). The mean signal intensities for each slice and z-shim moment were 
extracted from the spinal cord region indicated by the segmentation, resulting in a 24×21 signal 
intensity matrix (slices×volumes). For each slice, the z-shim index resulting in the maximum 
intensity was selected. B. Field map-based selection.  A high resolution T2-weighted image was 
segmented and the segmentation was used to determine the field map voxels included in the fitting 
procedure (the segmentation is shown as a transparent red overlay). The gray and the black boxes 
depict the EPI coverage on the T2-weighted image and phase map, respectively. Voxels within a 
9 mm thick slab (i.e. 9 transversal field map slices, corresponding to a 5mm EPI slice + 2mm on 
each side) were included in each slice-wise fitting procedure. The green lines on the phase map 
indicate the input volume for fitting an exemplary target slice (dashed green line). Exemplary 
transversal slices are also shown, with the red line outlining the spinal cord. Slice-wise fitting, 
including three linear field coefficients (Gx, Gy and Gz) along the main axes and a spatially 
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homogenous field term (field offset), was repeated over slices and the z-shim moments 
corresponding to the center of EPI slice were selected. 

 

2.5 Preprocessing 

All images were visually inspected before the analysis for potential artefacts. Preprocessing steps 
were performed using MATLAB (version 2021a), FSL (version 6.0.3), and SCT (version 4.2.2). 
The reason we carried out preprocessing steps and did not work only on the raw data is two-fold: 
i) we were interested in z-shim effects on time-series metrics (tSNR) and thus needed to motion-
correct the fMRI data and ii) we were performing most analyses in template space and thus need 
to bring structural and functional data to this space (requiring segmentation and registration-to-
template steps). 
 

2.5.1 Motion-correction of fMRI data 
A two-step motion correction procedure was applied to the EPI time-series data. Initially, the mean 
of 750 volumes (250 volumes under each of the three different conditions, i.e. no z-shim | manual 
z-shim | automated z-shim) was calculated in order to serve as the target image for the first step of 
motion correction; averaging across all three conditions eliminates a bias towards any one 
condition with respect to the target image. Based on this mean image, the spinal cord was 
automatically segmented in order to provide a spinal cord centerline that then served as input for 
creating a cylindrical mask (with a diameter of 30mm). This mask was employed during the 
motion-correction procedure in order to ensure that image regions moving independently from the 
cord would not adversely affect motion estimation. Slice-wise motion correction with a polynomial 
regularization in the z-direction was then performed (De Leener et al., 2017). In the second step, 
a new target image was obtained by calculating the mean of motion-corrected images from the 
first step and the raw images were realigned to this new target image, using the identical procedure 
as described above. Please note that the data obtained under different TEs (25 images per TE and 
condition) were also registered to this target image using the same procedure.  
Under the “no z-shim” condition, especially the inferior slices suffered from severe signal drop-
outs that hampered the quality of the slice-wise motion correction algorithm by inducing 'artificial’ 
movements that were indeed not present in the raw data. This could impact the tSNR calculation 
negatively by artificially increasing the standard deviation across time and thus give an inflated 
estimate of the beneficial effects of z-shimming. Therefore, in a control analysis, we also 
performed a ‘censoring’ of outlier volumes before the tSNR calculation. The outlier volumes were 
defined using dVARS (the root mean square difference between successive volumes) and refRMS 
(root mean square intensity difference of each volume to the reference volume) as metrics using 
FSL’s ‘fsl_motion_outliers’ tool. Volumes presenting with dVARS or refRMS values two 
standard deviations above the mean values of each run were selected as outliers. These outlier 
volumes were then individually modelled as regressors of no interest. 

 
2.5.2 Segmentation 
T2-weighted images were initially segmented using the DeepSeg approach implemented in SCT 
(Gros et al., 2019). This initial segmentation was used for smoothing the cord along its centerline 
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using an anisotropic kernel with 8mm sigma. The smoothed image was again segmented in order 
to improve the robustness of segmentation. The quality of the segmentations was assessed visually 
and further manual corrections were not deemed to be necessary in any participant.  
For functional images, a manual segmentation was used instead of an automated procedure. For 
the single-volume EPIs, the single volumes under the three different z-shimming conditions were 
averaged and this across-condition mean image was used to manually draw a spinal cord mask. 
For the EPI time-series, all motion-corrected volumes were averaged and a spinal cord mask was 
manually drawn based on this mean image (please note that this mask is also used for the 
normalization of the volumes with different TEs). These manually drawn masks were also used to 
calculate results in native space. 

 
2.5.3 Registration to template space 
SCT was utilized for registering the EPI images to the PAM50 template space (De Leener et al., 
2018); PAM50 is an MRI template of the spinal cord and brainstem available in SCT for multiple 
MRI contrasts. The T2-weighted image of each participant was brought into template space using 
three consecutive registration steps: i) using the spinal cord segmentation, the spinal cord was 
straightened, ii) the automatically determined labels of vertebrae between C2-C7 (manually 
corrected where necessary) were used for vertebral alignment between the template and the 
individual T2-weighted image, and iii) the T2-weighted image was registered to the template using 
non-rigid segmentation-based transformations. 
In order to bring the functional images to template space, the template was registered to the 
functional images using non-rigid transformations (with the initial step using the inverse warping 
field obtained from the registration of the T2-weighted image to the template image). The resulting 
inverse warping fields obtained from this registration (from native EPI space to template space) 
were then applied to the respective functional images (e.g. single EPI volumes, mean EPI volume, 
tSNR maps) to bring them into template space where statistical analyses were carried out. 
Finally, we also brought each participant’s field map into template space in order to visualize the 
average B0 field variation across participants. Each participant’s field map was first resampled to 
the resolution of the T2-weighted image before the warping field obtained from the registration to 
template space was applied to the field map. 

 
2.5.4 EPI signal extraction 
In order to assess the effects of z-shimming, we obtained signal intensity data from each EPI slice. 
When analyses were carried out in native space and were based on the entire spinal cord cross-
section, we used the above-mentioned hand-drawn masks of the spinal cord and obtained one value 
per slice (average across the entire slice). In contrast, when analyses were carried out in template 
space or were based on gray matter regions only, we made use of the available PAM50 template 
masks of the entire spinal cord or the gray matter (with the probabilistic gray matter masks 
thresholded at 90%); again, we obtained one average value per mask and slice. Please note that in 
addition to reporting p-values from statistical tests, we also report (where adequate) the percentage 
difference between conditions and the associated 95% confidence interval (CI) as estimated via 
bootstrapping. 
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2.6 Statistical analysis 
2.6.1 Replication and extension of previous findings 

2.6.1.1 Direct replication 
In a first set of analyses (across all 48 participants), we aimed to replicate the findings of 
Finsterbusch et al. (2012). We therefore used template space single-volume EPI data acquired 
under no z-shim and manual z-shim conditions, calculated the individual EPI signal intensity per 
slice and reported the mean of signal intensity across all slices as well as the variation of signal 
intensity across all slices; for the latter we initially used the variance (as done by Finsterbusch et 
al., 2012), but from then on used the coefficient of variation. Both descriptive changes (percent 
increase / decrease) as well as statistical values (based on paired t-tests) were reported for the 
condition comparison. To additionally investigate how robust these findings were, we 
complemented these single-volume analyses (that might be affected by various noise sources) by 
the same analysis approach, but now carried out on an EPI volume that is the average of a time-
series of 250 motion corrected EPI volumes (acquired both for no z-shim and manual z-shim). In 
order to demonstrate that neither of these results were impacted by registration to template space, 
we also reported native space results. 

 
2.6.1.2 Slice-by-slice characterization of z-shim effects 
Finsterbusch et al. (2012) already demonstrated that the improvement due to slice-specific z-
shimming varies spatially along the rostro-caudal direction. We therefore reasoned that it might 
be informative to also quantify the benefit for slices with various degrees of signal-loss (obviously, 
such an analysis could only be carried out in native space). We first did this in a descriptive manner 
by reporting i) the maximally found percentage increase in signal intensity due to z-shimming and 
ii) the proportion of slices that differed by 0, 1, 2, 3 and >3 z-shim steps from the ‘neutral’ setting 
of no z-shim. We then followed this up more formally with an analysis where we categorized slices 
according to the manually chosen z-shim value and compared the signal intensity in these 
categories between no z-shim and manual z-shim both descriptively (using % signal intensity 
difference)  and inferentially using a 2×5 repeated-measures ANOVA (factor 1: condition with 
two levels: no z-shim, manual z-shim; factor 2: step-difference with five levels: 0, 1, 2, 3, >3). We 
tested for a main effect of condition, a main effect of step-difference and an interaction between 
these two factors; post-hoc t-tests were Bonferroni corrected. To estimate the robustness of the 
results from these analyses (which were based on single EPI volumes), we repeated them on the 
average across the 250 motion-corrected EPI volumes. 
 

2.6.1.3 z-shim effects across different TEs 
We also aimed to assess the effects of z-shimming at TEs clearly shorter and longer than the 
estimated T2* in the cervical spinal cord at 3T (~40ms; Barry et al., 2019). We therefore repeated 
the analyses described in section 2.6.1.1 (assessing the mean of signal intensity across all slices as 
well as the variation of signal intensity across all slices for no z-shim and manual z-shim 
conditions) on the template-space EPI data obtained with TEs of 30ms and 50ms, both for single-
volume data and for an average of the 25 volumes acquired at each of the different TEs. 
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2.6.1.4 z-shim effects in gray matter regions 
The effects reported in Finsterbusch et al. (2012) were obtained from averages across the entire 
cross-section of the spinal cord, thus mixing gray and white matter signals. However, with the 
availability of probabilistic gray matter maps (via SCT, see 
https://github.com/neuropoly/spinalcordtoolbox; De Leener et al., 2017) it is now possible to 
investigate whether the signal-drop outs and their mitigation via z-shimming are also present in 
the gray matter (which is the relevant tissue for fMRI) and might even vary spatially (i.e. between 
dorsal and ventral horns). In order to address these two questions, we ran a 2×2 repeated-measures 
ANOVA (factor 1: condition with two levels: no z-shim, manual z-shim; factor 2: anatomical 
location: dorsal horn, ventral horn) where we tested for a main effect of condition, a main effect 
of location and an interaction between the two factors; this was followed up by post-hoc 
Bonferroni-corrected t-tests (where we also report % increase for the direct comparisons). As 
underlying metrics, we tested both the mean of signal intensity across all slices and the variation 
of signal intensity across slices. To assess robustness, the above-described analyses (based on 
single-volume EPIs) were repeated based on the average across the 250 motion-corrected volumes. 
As a negative control, we also performed the same analyses as above, but now splitting the spinal 
cord gray matter into left and right parts. 
 

2.6.1.5 z-shim effects on time-series data 
The analyses described above, as well as the results reported by Finsterbusch et al. (2012) were 
solely based on measures of signal intensity. In order to directly investigate the potential benefit 
of z-shimming for spinal cord fMRI, we also investigated its effect on the temporal signal-to-noise 
ratio (tSNR, i.e. temporal mean divided by temporal standard deviation on a voxel-by-voxel basis) 
of motion-corrected data (250 volumes). Following up on section 2.6.1.4, we only assessed this in 
the region most relevant for fMRI, i.e. the gray matter of the spinal cord. We compared mean tSNR 
across all slices, as well as variation of tSNR across slices, between no z-shim and manual z-shim 
conditions: we descriptively reported % increase and also tested for significant differences using 
paired t-tests. 
Since there was a possibility that the signal loss occurring in the lowermost slices in the no z-
shimming condition could negatively impact the motion correction that was employed in the 
current study (as this is regularized along z using a 2nd-degree polynomial), we performed the 
above-mentioned analyses also after “censoring” of outlier volumes (see also section 2.5.1). 
As we only acquired 25 volumes for the short and long TEs due to time-constraints, we did not 
calculate TE-dependent z-shim effects on tSNR (as these would be based on unstable tSNR 
estimates). 
 

2.6.2 Automating slice-specific z-shimming 
2.6.2.1 EPI-based automation 
Next, we investigated the performance of the EPI-based automated approach for selecting z-shim 
values, both in comparison to the conditions of no z-shim and manual z-shim; this was carried out 
in a sub-group of 24 participants. For the sake of brevity, we: i) only reported our effects of interest 
– signal intensity based on single EPI volumes and tSNR based on EPI time-series – in the spinal 
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cord gray matter (i.e. ignoring whole-cord data) and ii) employed direct comparisons of conditions 
without using an initial omnibus test. Thus, in this sub-group of 24 participants we investigated:  
i) no z-shim vs manual z-shim, ii) no z-shim vs auto z-shim, and iii) manual z-shim vs auto z-shim. 
We reported % differences, as well as Bonferroni-corrected p-values from paired t-tests, again 
using mean and variation metrics. 
 

2.6.2.2 FM-based automation 
We investigated the performance of the FM-based automated approach for selecting z-shim values 
(based on a different sub-group of 24 participants) using the identical procedure as outlined in the 
previous paragraph. 
However, since we discovered that the performance of the FM-based approach was slightly 
inferior compared to the manual approach, we followed this up with several post-hoc 
investigations (detailed in the Supplementary Material). Briefly, we first used the vendor-based 
field map and assessed the contributions of i) the choice of mask for identifying the spinal cord in 
the field map phase data, ii) various choices of parameters employed in the fitting process of the 
gradient field, iii) field-gradients in the AP-direction, and iv) inhomogeneity-induced mis-
localizations between EPIs and field map. Second, we substituted the vendor-based field map by 
the more robust in-house field map and compared their performance. Finally, we assessed the 
general reliability of estimating z-shim values from field map data by repeating the fitting process 
on a second in-house field map that was acquired at the end of the experiment. 

 
2.6.2.3 Comparing all three approaches 
So far, the automated approaches were compared to the manual approach within each sub-group 
of 24 participants. We next turned to directly comparing the approaches, using all 48 participants. 
First, we used two-sample t-tests (with Bonferroni-corrected two-tailed p-values) in order to assess 
the following: i) comparing the baselines of no z-shim between the two groups, ii) comparing the 
improvement of manual z-shim vs no z-shim between the two groups, iii) comparing the 
improvement of auto z-shim vs no z-shim between the two groups and iv) comparing the difference 
of manual z-shim vs auto z-shim between the two groups. This was carried out based on gray 
matter tSNR from EPI time-series, using both the mean as well as the variation of tSNR across all 
slices. 
Second, we assessed the similarity between the automated approaches and the manual approach in 
terms of the actually chosen z-shim step. This was done on a participant-by-participant basis, using 
two different metrics, both of which were based on the same input: slice-wise (i.e. 24) z-shim 
values from 1 to 21 (with 11 designating the neutral state of no z-shim) in the manual condition 
and in an automated condition. First, we calculated rank-based correlations between the values 
chosen for the manual and the automated approach. Second (and overcoming the inherent 
limitations of a correlation-based approach, i.e. the fact that a perfect correlation might be obtained 
if the pattern of z-shim values were the same across slices, even if there was a constant shift in z-
shim values), we employed the Euclidean distance – the square root of the sum of squared 
differences between the corresponding elements of the two vectors of z-shim values across slices 
– between the values chosen for the manual and the automated approach. In both cases, we used 
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two-sample t-tests to compare the two sub-groups (i.e. EPI-based automation and FM-based 
automation). 
Third, we assessed the stability of z-shim effects (based on either of the automated approaches as 
well as the manual approach) over time in all 48 participants. We were able to do this since we 
acquired an EPI reference-scan not only at the beginning of the experiment, but also at the end 
(~60 minutes later). Using these reference scans, we ‘artificially reconstructed’ an EPI volume 
from each of the reference scans by selecting the corresponding volume for each slice based on 
the chosen z-shim values, no matter whether a participant was in the EPI-based or FM-based 
automation group. Importantly, we chose the ‘originally’ determined z-shim values to reconstruct 
‘artificial volumes’ from both the first and the second reference scan. These volumes were then 
realigned to the mean of the motion-corrected time series. The warping fields that were obtained 
during the normalization of motion-corrected mean image to the template space were used to bring 
these volumes to the template space. We then compared gray matter signal characteristics (mean 
and variation of signal intensity across slices, respectively) for both time-points using the various 
conditions via paired t-tests with Bonferroni-correction. 
 

2.6.3 Validation of EPI-based automation approach 
In order to validate the EPI-based automation method (which performed at least as well as the 
manual approach), we obtained an independent, externally acquired data set of spinal fMRI data. 
These data were acquired by VO, RHD and JCWB as part of a larger project on pharmacological 
aspects of cortico-spinal pain modulation (Oliva et al., 2021). Here, we report results based on 
analyzing the z-shim reference data from 117 acquisitions (39 participants, each with three visits). 
The EPI reference scan (total acquisition time: 54 seconds) was acquired using a 2D EPI sequence 
with the following parameters: slice orientation: axial; slice number: 43 (20 slices for the spinal 
cord and 23 slices for the brain, i.e. concurrent cortico-spinal data acquisition); slice thickness: 
4mm; slice gap: 25-50% (depending on length of neck / size of head); field of view: 170×170mm2; 
in-plane resolution: 1.77×1.77mm2; TR: 3000ms; TE: 30ms; flip angle: 90°; GRAPPA 
acceleration factor: 2; z-shim resolution and range: 15 equidistant moments between -4.9 and 4.9 
mT m-1ms (in steps of  0.7 mT m-1ms). The high-resolution T1-weighted images that were used 
for registration to template space were acquired with a 3D sagittal MPRAGE sequence with the 
following parameters: 260 sagittal slices; field-of-view: 320×260mm2; percentage phase field of 
view: 81.25%; voxel size: 1×1×1mm3; TE: 3.72ms; flip angle: 9°; TR: 2000ms; inversion time: 
1000ms; GRAPPA acceleration factor: 3. All measurements were conducted on 3T whole body 
Siemens Skyra system. 
As the validation dataset did not include volumes that were acquired under different z-shimming 
conditions, for each participant we ‘artificially reconstructed’ an EPI volume from their reference 
scan by selecting the corresponding volume for each slice based on the chosen z-shim values (see 
also section 2.7.3). We created three different EPI volumes for each participant and visit: i) a ‘no 
z-shim’ volume (based an index of 8 for each slice, which corresponds to a z-shim moment of 0 
mT m-1ms), ii) a ‘manual z-shim’ volume (based on the z-shim values manually selected by VO 
when the experiment was carried out) and iii) an ‘automated z-shim’ volume (based on the above-
described EPI-based automation carried out post-hoc). 

.CC-BY-NC-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted July 28, 2021. ; https://doi.org/10.1101/2021.07.27.454049doi: bioRxiv preprint 

https://doi.org/10.1101/2021.07.27.454049
http://creativecommons.org/licenses/by-nc-nd/4.0/


15 

 

To bring these volumes to template space for each participant and visit, we applied the following 
steps to the T1-weighted anatomical data: i) segmenting the T1 image using SCT’s DeepSeg 
approach (Gros et al., 2019), ii) automatically labelling the vertebral levels C2-C7, and iii) bringing 
the T1 image to template space using non-rigid transformations. Then, we applied the following 
steps to the reconstructed EPI volumes: i) calculating the average of these three volumes (one 
volume for no z-shim, manual z-shim and automated z-shim each), ii) segmenting the average 
using the PropSeg approach, iii) registering this average EPI to the template space (with the initial 
step of using the inverse warping field obtained from the registration of the T1-weighted image to 
the template image), iv) registering individual EPI volumes to the template space using the warps 
obtained from the previous step (in order to be unbiased), and v) in template space obtaining the 
signal over slices using the PAM50 cord mask. 
Four individual data sets were excluded due to i) artifacts in the images (three data-sets) and ii) a 
wrong placement of the slice stack (one data-set). Our final sample thus consisted of 113 
measurements from 38 participants. Please also note that for preprocessing of data from one 
individual data set, we used a more recent version of SCT (version 5.2.0) due to a bug present in 
version 4.2.2. 
Finally, we compared whole cord signal characteristics (mean and variation of signal intensity 
across slices) for i) no z-shim vs manual z-shim, ii) no z-shim vs auto z-shim, and iii) manual z-
shim vs auto z-shim via paired t-tests with Bonferroni-correction and also reported % differences. 
For sake of simplicity, we treated each visit as a separate data point, thus ignoring the within-
subject dependency structure. We also reported the results of the same analyses for gray matter 
signal characteristics. 

 
2.7 Open science 
The code that was run during the experiment for the automated selection of z-shim moments (both 
EPI-based and FM-based) as well as all the code necessary to reproduce the reported results is 
available on GitHub (https://github.com/eippertlab/zshim-spinalcord). The underlying data are 
available in BIDS-format via OpenNeuro (https://openneuro.org/datasets/ds003743; note that the 
dataset is currently only accessible to reviewers, but will be made publicly available when the 
manuscript is published) with the exception of the external validation data-set obtained by VO, 
RHD and JCWB. The intended data-sharing via OpenNeuro was mentioned in the Informed 
Consent Form signed by the participants and approved by the ethics committee of the University 
of Leipzig. 
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3. Results 

 

3.1 Replication and extension of previous findings 
3.1.1 Direct replication 
Our first aim was to replicate earlier findings that demonstrated a significant increase of mean 
signal intensity and decrease of signal intensity variation across slices via z-shimming. In our data-
set we were able to replicate these findings (Figure 2A), by also showing a significant increase of 
mean signal intensity (t(47) = 19.97, p < .001, difference of 14.8%, CI: 13.4-16.2%) and a significant 
reduction of signal intensity variation across slices, either using the variance as a metric (as the to-
be-replicated study did; t(47) = 18.03, p < .001, difference of 67.8%, CI: 64-71.2%) or using the 
coefficient of variation (as we did in all further analyses; t(47) = 23.97, p < .001, difference of 51%, 
CI: 47.7-53.8%). To additionally investigate how robust these findings are, we supplement these 
single-volume analyses (that might be affected by various noise sources) by the same analysis 
approach, but now carried out on an EPI volume that is the average of a time-series of 250 motion 
corrected EPI volumes (acquired both for no z-shim and manual z-shim). Results of these averaged 
data showed a very similar picture: significant increases of mean signal intensity and reductions 
of signal intensity variation across slices (Supplementary Material); all of these template-space 
analyses were furthermore repeated in native-space with very similar results (Supplementary 
Material). 
 

3.1.2 Slice-by-slice characterization of z-shim effects 
As depicted in Figure 2A, the improvement afforded by slice-specific z-shimming periodically 
varies along the rostro-caudal direction in a consistent manner across participants (for a depiction 
of individual data, see Supplementary Figure 1). In a next step, we thus investigated not only what 
the average benefit of z-shimming is across the entire slice-stack, but also quantified the benefit 
for slices with various degrees of signal-loss due to dropouts. We first asked what the maximal 
signal intensity gain is per participant and observed that this varied between 72% and 209%, with 
an average across participants of 122% (note that this analysis is based on the most-affected slice 
per participant). To descriptively characterize how many slices where affected by signal drop-out 
to what degree across participants, we quantified for each slice by how much the manually chosen 
z-shim value (between 1 and 21) differs from that of the no z-shim condition (a constant value of 
11). We observed that on average 20% of slices had no difference, 32% of slices had a 1-step 
difference, 22% of slices had a 2-step difference, 11% of slices had a 3-step difference, and 16% 
of slices had more than a 3-step difference. In this last category, the most extreme possibly value 
(i.e. a 10-step difference) occurred only in 1% of the slices across the whole sample, demonstrating 
that the range chosen here for the z-shim reference scan is appropriate. As expected, signal 
intensity improvements became more pronounced with the increasing z-shim step size: 0% 
difference for a 0-step-difference, 5% different for a 1-step-difference, 18% difference for a 2-
step-difference, 41% difference for a 3-step-difference and 122% difference for a >3-step-
difference (Figure 2B). This relationship was also characterized statistically and the above-
reported patterns (which were obtained from single-volume analyses) were confirmed when we 
carried out the same analyses based on the average across the 250 motion-corrected volumes 
(Supplementary Material). 
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3.1.3 z-shim effects across different TEs 
In addition to the TE of 40ms (which was the default across this study), we also investigated the 
effects of z-shimming at shorter (30ms) and longer (50ms) TEs. Focusing on mean signal intensity 
and signal intensity variation across slices, we observed a beneficial effect of z-shimming at the 
TE of 30ms (mean signal intensity: t(47) = 18.82, p < .001, difference of 9.5%, CI: 8.6-10.5%; 
signal intensity variation across slices: t(47) = 21.42, p < .001, difference of 48%, CI: 44.2-50.7% 
as well as at the TE of 50ms (mean signal intensity: t(47) = 16.09, p < .001, difference of 11.6%, 
CI: 10.2-12.9%; signal intensity variation across slices: t(47) = 22.20, p < .001, difference of 44.7%, 
CI: 41.4-47.7%). We repeated these analyses using an average of the 25 motion-corrected volumes 
acquired at each of the different TEs and observed similar results (Supplementary Material). 
 

3.1.4 z-shim effects in gray matter regions 
Next, we assessed whether z-shim effects might be present in the spinal cord gray matter and might 
even vary between the dorsal and ventral horns. An initially performed analysis of variance already 
indicated significant effects of z-shimming in the gray matter, as well as a location-dependent 
effects of z-shimming (Figure 2C and Supplementary Material). Direct comparisons via 
Bonferroni-corrected paired t-tests revealed that there was a significant beneficial effect of z-
shimming on mean signal intensity in the dorsal horn (t(47) = 18.39, p < .001, difference of 18.2%, 
CI: 16.3-20.3%), as well as in the ventral horn (t(47) = 17.05, p < .001, difference of 10.9%, CI: 
9.8-12.1%), but that the beneficial effect of z-shimming was more evident in the dorsal horn than 
in the ventral horn (t(47) = 7.43, p < .001). When we followed up these analyses by looking not at 
mean signal intensity, but at signal intensity variation across slices with the same statistical 
approach we observed nearly identical results (Supplementary Material). As a negative control, 
we also performed the same analyses as above, but now splitting the spinal cord gray matter into 
left and right parts: as expected, there were no significant differences between these two regions. 
All of the above analyses were furthermore repeated with very similar results when using an 
average of the 250 motion-corrected volumes (Supplementary Material). These results are also in 
line with what can be observed visually in Figure 2A, where drop-outs seem to be most pronounced 
in the dorsal part of the cervical spinal cord (with the exception of caudal slices, where the whole 
cord is affected). 
 

3.1.5 z-shim effects on time-series data 
Moving away from reporting single-volume signal intensity measures, we next investigated the 
effect of z-shimming on the gray matter temporal signal-to-noise ratio (tSNR) of motion-corrected 
time-series data (250 volumes, acquired under no z-shim and manual z-shim, respectively). We 
observed a significant increase in mean tSNR (t(47) =10.64, p < .001, difference of 11.9%, CI: 9.7-
14.2%), as well as a significant reduction of tSNR variation across slices (t(47) = 11.01, p < .001, 
difference of 26%, CI: 21.9-30%), directly highlighting the benefits for spinal fMRI (Figure 2D). 
In the most-affected slices, z-shimming increased the tSNR by 28% on average, ranging from 1% 
to 155% across participants (this analysis revealed that there was one outlier where tSNR 
decreased by 26% for manual z-shimming compared to no z-shimming). For the sake of 
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robustness, we also repeated these analyses using an additional ‘motion-censoring’ technique and 
observed very similar results (Supplementary Material). 

 
 

 
Figure 2. Replication and extension of previous results. A. Direct replication of Finsterbusch 
et al. (2012). The mid-sagittal EPI sections consist of the group-average single volume EPI data 
in template space of 48 participants acquired under different conditions (no z-shim and manual z-
shim); red lines indicate the spinal cord outline. On the right side, group-averaged signal intensity 
in the spinal cord is shown for no (red) and manual (blue) z-shim sequences along the rostro-caudal 
axis of the cord. The solid line depicts the mean value and the shaded area depicts the standard 
error of the mean. B. Slice-by-slice characterization of z-shim effects. Bar graphs are grouped 
according to the absolute step size difference in the z-shim indices (x-axis) between no z-shim 
(red) and manual z-shim (blue) selections. The bars depict the mean signal intensity in the spinal 
cord for 48 participants for no and manual z-shim single volume acquisitions in native space. The 
vertical lines depict the standard error of the mean and the gray lines indicate participant-specific 
mean signal intensity changes between the no and manual z-shim conditions. C. Z-shim effects 
in gray matter regions. Signal intensity changes in different gray matter regions (dorsal horn, 
ventral horn) under different conditions (no z-shim, manual z-shim) are depicted via box-plots and 
raincloud plots. For the box plots, the median is denoted by the central mark and the bottom and 
top edges of the boxes represent the 25th and 75th percentiles, respectively, with the whiskers 
encompassing ~99% of the data and outliers being represented by red dots. The circles represent 
individual participants and half-violin plots show the distribution of the gray matter intensity 
values across participants. The thick gray lines show the mean signal intensity across participants 
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in the dorsal and ventral gray matter under different conditions. D. Z-shim effects on time-series 
data. Group-average coronal tSNR maps for the no z-shim and manual z-shim conditions as 
obtained from the motion-corrected EPI data in template space. The maps are overlaid onto the 
group-average mean image of the motion-corrected EPI data and depict a tSNR range from 11-20. 
The green line marks the outline of the gray matter. In the right panel, the participant-specific mean 
gray matter tSNR of the data acquired with and without z-shim are shown. Box plots are identical 
to those in C, the gray lines indicate individual tSNR changes between both conditions and the 
half-violin plots show the distribution across participants. Abbreviation: a.u., arbitrary units. 

 

3.2 Automation of z-shimming 
In the previous sections we i) replicated the initially demonstrated beneficial effects of z-
shimming, ii) characterized these effects on a slice-by-slice level, iii) demonstrated that they are 
prevalent at different TEs, iv) showed that they exist in gray matter, and v) extended them to time-
series data by investigating their occurrence also in gray matter tSNR. These results were all 
obtained using manually determined z-shim values and we now turn to results obtained when 
automating the z-shim selection process, for which we propose two methods: one is based on 
obtaining these values from the EPI z-shim reference scan (EPI-based) and one relies on 
calculating the necessary z-shim values based on a field map (FM-based). 
 

3.2.1 EPI-based automation 
In a sub-group of 24 participants, we first confirmed – using gray matter tSNR as obtained from 
motion-corrected time-series data – that also in this sub-sample manual z-shimming resulted in a 
significant increase in mean tSNR (t(23) = 7.37, p < .001, difference of 10%, CI: 7.4-12.7%) and a 
significant decrease in tSNR variation across slices (t(23) = 7.03, p < .001, difference of 27.2%, CI: 
20.5-33.8%). Most importantly, we found a similarly beneficial effect when using our automated 
approach (Figure 3 upper panel; Supplementary Figure 3), i.e. a significant increase in mean tSNR 
(t(23) = 8.69, p < .001, difference of 11.3%, CI: 8.9-13.9%) and a significant decrease in  tSNR 
variation across slices (t(23) = 7.04, p < .001, difference of 26%, CI: 19.4-32.7%). When directly 
comparing the two approaches to determine z-shim values, we observed no significant difference, 
neither for mean tSNR (t(23) = 1.23, p = 0.70), nor for  tSNR variation across slices (t(23) = 0.61, p 
= 1), though a very slight benefit for the automated compared to the manual method was apparent. 
In order to relate these effects to those from the direct replication performed in the beginning, we 
also carried out the same analyses, but now based on gray matter signal intensity data from single 
EPI volumes in this sub-group of 24 participants and observed highly similar effects 
(Supplementary Material). 

 
3.2.2 FM-based automation 
Field map data demonstrate that the source of the signal drop-outs z-shimming aims to compensate 
are B0 field inhomogeneities in the slice direction that are present where one would expect them 
based on anatomical and theoretical grounds (i.e. close to the intervertebral junctions and at the 
bottom of the field of view where the shim is poorer) and that are also consistent across participants 
(Supplementary Figure 2). In the FM-based approach we therefore used field map data for z-shim 
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calculation and in a sub-group of 24 participants (different from the ones used for the EPI-based 
approach described above), we first confirmed – using gray matter tSNR as obtained from motion-
corrected time-series data – that also in this sub-sample manual z-shimming resulted in a 
significant increase in mean tSNR (t(23) = 7.99, p < .001, difference of 13.8%, CI: 10.6-17.4%) and 
a significant decrease in tSNR variation across slices (t(23) = 9.36,  p< .001, difference of 24.6%, 
CI: 20.4-29%). As expected, we also observed a beneficial effect of our FM-based approach, which 
resulted in a significant increase in mean tSNR (t(23) = 6.41, p < .001, difference of 9.6%, CI: 6.9-
12.9%) and a significant decrease in tSNR variation across slices (t(23) = 8.30, p < .001, difference 
of 21.8%, CI: 17.4-26.2%). 
Unexpectedly though, despite this clear benefit, the performance of the FM-based approach was 
slightly worse than using manually determined z-shims (Figure 3 lower panel; Supplementary 
Figure 3): this occurred for mean tSNR (t(23) = 3.86, p = .002), but not for tSNR variation across 
slices (t(23) = 1.07, p = .88); please note that all p-values shown here and in the paragraph above 
are Bonferroni-corrected for three tests. Analyses based on gray matter signal intensity data from 
single EPI volumes (instead of time-series tSNR) in this sub-group of 24 participants led to highly 
similar effects (Supplementary Material). 
In post-hoc analyses carried out after the complete data-set was acquired, we investigated several 
possibilities that might account for this slightly poorer performance – these are explained in detail 
in the Supplemental Material. Briefly, we investigated the influence of i) the choice of mask for 
data extraction, ii) the choice of parameters for the fitting process, iii) the influence of field- 
gradients in the AP-direction, and iv) inhomogeneity-induced mis-localizations between EPIs and 
field map. Additionally, we also investigated whether the type of field map played a role and 
whether z-shims could be reliably derived at all from field map data. Importantly, none of the 
investigations we carried out provided results that led to a substantial and consistent improvement 
in performance. 
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Figure 3. Performance of both automated methods. Top panel. EPI-based automation. 
Bottom panel. FM-based automation. In both panels, the left-most plots show the group-
averaged gray-matter tSNR for no (red), manual (blue) and automated (green) z-shim sequences 
along the rostro-caudal axis of the cord. The solid line depicts the mean value and the shaded area 
depicts the standard error of the mean. Condition-wise group-average tSNR maps of the transversal 
slices at the middle of each segment are shown in the second graphs from the left. The maps are 
overlaid onto the group-average mean image of the motion-corrected EPI data and depict a tSNR 
range from 11-20. The outlines of the thresholded gray matter mask are marked by green lines. 
The scatter plots to the right show gray matter tSNR for manual (x-axis) and automated z-shim 
sequences (y-axis) plotted against each other (N = 24 for each automation sub-group).  Bland-
Altman plots show the gray matter tSNR for manual z-shim plotted as the ground truth (x-axis) 
and the difference in gray matter tSNR between automated and manual sequences plotted on the 
y-axis. The horizontal solid gray line represents the mean difference in the gray matter tSNR 
between the two (automated and manual) sequences, and the dotted lines show the 95% limits of 
agreement (1.96×standard deviation of the differences). 

 

3.2.3 Comparing all three approaches 
To extend the within-group analyses reported above (each with N = 24) we next i) formally 
compared the three approaches with several different analyses based on the entire set of 
participants (N = 48) and ii) investigated the general question of how stable z-shim effects obtained 
via the three methods are across an experiment. 
First, and most relevant for fMRI, we used mean gray matter tSNR to test for differences between 
the EPI-based and FM-based groups. These analyses (using Bonferroni corrected two-sample t-
tests) revealed that there was neither a significant difference between the baselines of no z-
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shimming in the two groups (p = 1), nor a significant difference between the improvement 
compared to no z-shimming for either the manual (p = 0.38) or the automated approaches in the 
two groups (p = 1). However, we did observe a significant difference between manual z-shim vs 
auto z-shim in the two groups (p = 0.003), indicating the slightly worse performance of FM-based 
approach (see also Supplementary Figure 5). A second set of analyses based on tSNR variation 
across slices showed no significant differences between any of the approaches with all p-values > 
.9. 
Second, in order to compare how close the automated and manual (current ‘gold standard’) shim 
selection processes were, we calculated rank-based correlations between the chosen values in each 
of the two groups of 24 participants. We observed very high correlations of z-shim values in the 
EPI-based group (average correlation: rs = 0.95, t(23) = 33.28, p < .001; range of correlations across 
participants: 0.85 - 0.99), as well as in the FM-based group (average correlation: rs = 0.91, t(23) = 
26.04, p < .001; range of correlations across participants: 0.62 - 0.97). When directly comparing 
the two groups, we observed that the correlations were higher in the EPI-based group (t(46) = 2.67, 
p = .01). We also took a complementary approach and asked what the Euclidean distance was 
between the automated and the manual approach in terms of the chosen z-shim values (which can 
range from 1 to 21 for the chosen parameters): while the average Euclidean distance for the EPI-
based group was 3.40 (range across participants: 2.24–4.80), it was 5.21 for the FM-based group 
(range across participants:   3.61– 8.94), leading to a significant difference (t(46) = 7.19, p < .001). 
Finally, we investigated how stable the beneficial effects of z-shimming are across time. When 
comparing how well each of the three z-shim methods performed against the case of no z-
shimming in terms of mean signal intensity, we observed that despite some differences the 
beneficial effect of z-shimming was rather stable across time. More specifically, we observed that 
i) there was a significant difference between the two time-points in the baseline condition of no z-
shim (t(47) = 5.59, p < .001, with the first time point having significantly higher mean signal 
compared to second one), ii) that there was a slight degradation in performance when comparing 
z-shim benefits against no z-shimming between the 2nd and the 1st reference scan (manual: t(47) = 
8.44, p < .001; EPI-based: t(47) = 9.70, p < .001; FM-based: t(47) = 9.84, p < .001; thus similar across 
all three approaches) and iii) that all z-shim methods led to significant benefits not only in the data 
acquired at the beginning (manual vs no z-shimming: t(47) = 22.35, p < .001, difference of 14%; 
EPI-based vs no z-shimming: t(47) = 22.38, p < .001, difference of 14%; FM-based vs no z-
shimming: t(47) = 19.36, p < .001, difference of 11%) but also in the data acquired temporally later 
from when the z-shims were determined (manual vs no z-shimming: t(47) = 18.52, p < .001, 
difference of 11%; EPI-based vs no z-shimming: t(47) = 18.63, p < .001, difference of 11%; FM-
based vs no z-shimming: t(47) = 14.12, p < .001, difference of 8%). 
 

3.3 Validation of EPI-based automation approach 
In order to validate the EPI-based automation approach we obtained an externally acquired 
corticospinal fMRI dataset consisting of 113 EPI z-shim reference scans acquired on a different 
MR-system (Oliva et al. 2021), which also allowed us to investigate the generalizability of the 
EPI-based automated approach in a dataset in which the manual selection was conducted by a 
different researcher (VO). Using this independently acquired data set, we observed that – 
compared to no z-shim – manual z-shimming resulted in a significant increase in mean signal 
intensity (t(112) = 19.24, p < .001, difference of 22.1%, CI: 19.7-24.4%) and a significant decrease 
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in signal intensity variation across slices (t(112) = 8.83, p < .001, difference of 37.1%, CI: 29.7-
43.9%). Most importantly, the automated EPI-based approach resulted in a significant increase in 
mean signal intensity (t(112) = 25.93, p < .001, difference of 28.3%, CI: 26.2-30.6%) and a 
significant decrease in signal intensity variation across slices (t(112) = 10.98, p < .001, difference of 
43.1%, CI: 36.4-49.3%). When we directly compared the automated and manual approaches, we 
observed that the automated method performed significantly better than the manual method both 
for mean signal intensity (t(112) = 11.85, p < .001), and signal intensity variation across slices (t(122) 
= 4.79, p < .001), demonstrating that the proposed EPI-based automated method can even 
outperform the manual selection (Figure 4). We also repeated this analysis based on gray matter 
signal only and observed highly similar results (Supplementary Material). 

Figure 4. Validation of EPI-based automation on an independent data-set. The mid-sagittal 
EPI sections on the left consist of the group-average reconstructed z-shim reference scan EPI data 
in template space for the three different conditions (note that ‘EPI reconstruction’ was carried out 
via creating a single volume for each participant from the corresponding 15-volume z-shim 
reference scan by selecting for each slice the volume in which the z-shim moment maximized the 
signal intensity; for no z-shim reconstruction, the 8th volume of the z-shim reference scan was 
selected, which corresponds to the central/neutral z-shim moment, as this acquisition had a range 
of 15 moments). The line plots in the middle depict the group-averaged spinal cord signal intensity 
(obtained from the reconstructed z-shim reference-scan EPIs) along the rostro-caudal axis of the 
cord for the different conditions. The solid lines depict the group-mean values and the shaded areas 
depict the standard error of the mean. The box plots on the right show the group-mean spinal cord 
signal intensity averaged over the entire slice-stack. The median values are denoted by the central 
marks and the bottom and top edges of the boxes represent the 25th and 75th percentiles, 
respectively. The whiskers encompass approximately 99% of the data and outliers are represented 
by red dots. The gray lines indicate the participant-specific data (N=113) upon which the box-plots 
are based. Abbreviation: a.u., arbitrary units. 
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4. Discussion 
 
One of the main challenges in fMRI of the human spinal cord is the occurrence of spatially varying 
signal loss due to local magnetic field inhomogeneities. Here, we addressed this issue by 
employing the technique of slice-specific z-shimming. First, we aimed to replicate the results from 
the initial study on z-shimming in the spinal cord by investigating whether slice-specific z-shims 
mitigate signal loss in spinal cord GE-EPI data. Next, we probed the direct relevance of z-
shimming to studies measuring spinal cord activity with fMRI, by investigating its benefits with 
respect to different TEs, gray-matter signals and time-series metrics. Most importantly, we aimed 
to improve upon the typical implementation of slice-specific z-shimming (user dependent shim 
selection) by developing two automated approaches: one based on data from an EPI reference-
scan and one based on data from a field map acquisition. 
The first demonstration of the benefits obtainable with slice-specific z-shimming in T2*-weighted 
imaging of the human spinal cord was provided by Finsterbusch et al. (2012), who developed a z-
shim protocol tailored to the peculiarities of spinal cord imaging and assessed its effects on single 
volume GE-EPI data. Here, our first aim was to provide a direct replication of their results in a 
larger cohort of participants (N = 48) on a different MR-system. Similar to Finsterbusch and 
colleagues, we observed that z-shimming led to a significant and meaningful increase of average 
signal intensity (15%) and decrease of signal intensity variation over slices (68%) compared to the 
baseline of no z-shimming. In order to provide some detail on the expected benefits afforded by 
this method, we also performed a slice-by-slice characterization: while in ~20% of the slices no z-
shimming was needed, in the rest of the slices the application of a slice-specific z-shim resulted in 
a significant signal increase which could be as large as ~200% in the most extreme cases. 
Comparing these effects to those obtained with slice-specific z-shimming in the brain (Weiskopf 
et al., 2006; Volz et al., 2019), it becomes clear that they are more prominent in the spinal cord 
and their compensation is thus critical. 
The above-discussed results were obtained with a TE of 40ms in order to be close to the estimated 
T2* in the gray matter of the cervical spinal cord at 3T (41ms; Barry et al., 2019) and the TE 
considered by Finsterbusch and colleagues (44ms). Similar to Finsterbusch et al. (2012), we 
however also investigated the effect of z-shimming over different TEs (30ms, 40ms, 50ms), though 
now quantitatively and at the group-level. We observed that the beneficial effect of z-shimming 
was present to a similar degree across TEs (both in terms of average signal intensity and signal 
intensity variation across slices), which is of direct relevance for fMRI. The use of longer TEs is 
for example unavoidable when having to acquire data with a larger field of view (e.g. in thoracic 
or lumbar spinal cord acquisitions in cases where one does not have access to selective excitation) 
or higher in-plane resolution. Conversely, shorter TEs might be desirable with respect to increasing 
the temporal resolution or optimizing BOLD sensitivity (Menon et al., 1993; Gati et al., 1997). In 
this respect, the consistent effect across TEs bodes well for using this technique flexibly in various 
settings. 
In addition to the choice of TE in different scenarios of spinal fMRI, another important factor to 
consider is the anatomical region-of-interest. While this is typically the gray matter of the spinal 
cord – with studies on motor function likely focusing on the ventral horn and studies on 
somatosensation likely focusing on the dorsal horn – the specific effects of z-shimming on these 
structures are currently unclear, as Finsterbusch et al. (2012) only evaluated the entire spinal cord 
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cross-section, thus mixing gray and white matter signals. There is indeed the possibility that z-
shim effects might be rather negligible for the spinal cord gray matter, considering that field 
variations are most pronounced at the edge of the cord (Cooke 2004, Finsterbusch 2012, Cohen-
Adad 2017), which largely consists of white matter. With the recent availability of probabilistic 
gray matter maps via SCT (De Leener et al., 2018), we were in a position to address this question 
in this study. We observed that the beneficial effects of z-shimming were highly significant and of 
appreciable magnitude in the gray matter. While these effects were already prominent in the ventral 
horns (11% increase), they were much stronger in the dorsal horns (18% increase) where signal 
losses were more severe (see also Cooke et al., 2004). Together, these results demonstrate the 
relevance of z-shimming for spinal fMRI and highlight its necessity specifically in studies of dorsal 
horn function, such as somatosensation and nociception. It should be mentioned though that it is 
currently unclear whether such a pattern will also hold outside of the cervical spinal cord, i.e. in 
thoracic and lumbar segments (see e.g. Finsterbusch, 2014). It is also important to note that in the 
current study, we aimed to optimize the signal in the entire spinal cord cross section, but one might 
also consider optimizing the z-shim moments based on a gray matter region of interest. However, 
this approach would be more time-consuming (and might require user intervention), as for 
obtaining the gray matter masks it is necessary to first register the participant’s native-space data 
to template space and then warp the probabilistic gray-matter masks back to native space. Such a 
two-step approach is necessary since with the current spatial resolution and signal quality of EPI 
data at 3T it is not possible to automatically segment the gray matter robustly in every slice of 
every participant (in our experience, this also holds for T2*-weighted ME-GRE protocols in lower 
cervical segments). 
The improvement in signal intensity we have discussed so far might in the worst case not directly 
translate into improved fMRI data quality (as indexed e.g. by tSNR): this might for example 
happen if physiological noise dominates the time-series or if participants move strongly in the z-
direction (and thus render the chosen z-shim moment for a slice incorrect). We therefore quantified 
the beneficial effect of z-shimming on gray matter tSNR, by acquiring time-series data under 
different z-shimming conditions, and observed a 12% increase in the mean tSNR and a 26% 
decrease of tSNR variability over slices. It is important to note that as none of the data analysed 
here were high-pass filtered or corrected for the presence of physiological noise (Brooks et al., 
2008), it is likely that the absolute tSNR values observed (range across participants for manually 
z-shimmed data in template space: 11.4 to 18.1) represent a worst case. By acquiring z-shim 
reference scans at the beginning and at the end of our experiment (separated by ~60 minutes), we 
were furthermore able to demonstrate that the effect of z-shimming was sufficiently stable across 
time, which is another important consideration for fMRI studies, as they usually require long 
scanning sessions. In future methodological studies, it would be interesting to also acquire task-
based spinal fMRI data under different z-shimming conditions to demonstrate the effect of z-
shimming on the detection of BOLD responses – while this has been demonstrated in brain fMRI 
studies (Gu et al., 2002; Du et al., 2007), such evidence is currently lacking for the spinal cord (for 
a first step in this direction, see Islam et al., 2019). 
While the above-mentioned results demonstrate the utility of z-shimming for fMRI of the spinal 
cord, this approach requires detailed manual intervention in order to select the slice-specific z-
shim moments. In order to overcome this drawback, in this study we developed two different 
automated methods for the selection of the z-shim moments. Although such approaches have been 
developed for fMRI of the brain (Weiskopf et al., 2007a; Marshall et al., 2009; Tang & Huang, 
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2011; Volz et al., 2019), they are lacking for fMRI of the spinal cord (with one notable exception 
to be discussed later, i.e. Islam et al., 2019) despite being desirable for a number of reasons. First, 
an automated method would be more time-efficient by reducing the time needed for selecting the 
z-shim moments. Second, it might enable more sites to perform spinal fMRI studies, as it reduces 
the need for extensive experience in judging spinal cord EPI data quality. Third, due to its 
automated nature it would eliminate the subjective (and error prone) component involved in z-
shim selection and thus increase reproducibility, which is especially important in longitudinal 
studies. In the following, we describe the two different automated z-shim approaches we 
developed, with one being EPI-based and the other being field map-based (FM-based).  
The first automated method is based on the acquisition of an EPI z-shim reference scan – which is 
also employed for the manual selection – and relies on finding the z-shim moment that leads to the 
highest spinal cord EPI signal in each slice. This simple method achieved an at least identical 
performance in terms of all the investigated signal characteristics compared to the manual z-shim 
moment selection. In addition to that, the EPI-based approach was much faster compared to the 
manual selection: the calculations were completed in 15 seconds on average, whereas the manual 
selection took approximately 10 minutes for our set-up (24 slices and 21 z-shim values). The 
acquisition time of the z-shim reference scan was 55 seconds, but this could be shortened by 
limiting the range of the acquired z-shim moments. With the current set-up, we observed that the 
range of the acquired z-shim moments could indeed be restricted to achieve shorter acquisition 
times, as the most extreme z-shim moments were chosen quite rarely (lower-most moment of z-
shim range chosen only in 1% of the slices, upper-most moment never). A drawback of the EPI-
based approach is that it does not provide the flexibility to obtain slice-specific x- and y-shim 
settings at the same time in order to account for field gradients in the read and phase direction 
simultaneously (Volz et al., 2019). To obtain those, additional reference scans would be necessary 
and thus prolong the scan-time significantly (Finsterbusch et al., 2012). This draw-back could be 
overcome by basing the slice-specific shim selection on a field map, which would allow for 
estimating x-, y-, and z-shims for each slice simultaneously – as already suggested by Finsterbusch 
et al. (2012) and Islam et al. (2019) – and this was the second approach we employed. 
The FM-based approach was motivated by the fact that the source of the signal drop-outs which 
slice-specific z-shimming aims to compensate are B0 field inhomogeneities in the slice direction.  
The optimum z-shim value should thus be derivable from a field map, and we therefore fit a 
spatially linear gradient field in the slice direction to the measured field map data in order to 
estimate the gradient moment that will compensate the local through-slice field inhomogeneity. 
This FM-based approach provided highly significant benefits when compared to no z-shimming 
in terms of all the investigated signal characteristics. Similar to the EPI-based approach, the FM-
based approach was clearly advantageous over manual z-shim selection in terms of the selection 
time (36 seconds on average). Compared to the EPI-based approach, it was however more time 
consuming in terms of the time needed to acquire the different scans. First, we acquired a vendor-
based field map, which took ~5 minutes (though shorter field maps could be used). Second, we 
acquired a standard high-resolution T2-weighted image (which also took approximately 5 minutes 
to acquire; Cohen-Adad et al., in press) for automated segmentation of the spinal cord, instead of 
the magnitude image from the field map. This choice was motivated by not wanting our results to 
be affected by the quality of the segmentation as neither the image resolution, nor the contrast of 
the magnitude image was optimal for the currently employed automated segmentation. However, 
the increased acquisition time for field map and T2-weighted image should be considered against 

.CC-BY-NC-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted July 28, 2021. ; https://doi.org/10.1101/2021.07.27.454049doi: bioRxiv preprint 

https://doi.org/10.1101/2021.07.27.454049
http://creativecommons.org/licenses/by-nc-nd/4.0/


27 

 

the background that such images are acquired routinely in spinal fMRI experiments (e.g. for 
registration purposes). We thus believe that in typical research settings (where a few additional 
minutes of scan time might be negligible), the choice between the EPI-based and FM-based should 
in principle be guided by the slice-specific shim sets one needs to obtain (z-shim only: EPI-based; 
x-, y-, and z-shim: FM-based). 
However, we would currently mainly recommend to use the EPI-based approach, as the 
performance of the FM-based approach was slightly inferior compared to the manual approach. 
While this difference was significant, it was small (~4%) and did only occur in some of the 
investigated metrics. There are several possibilities why the FM-based approach might perform 
slightly worse. First, the chosen parameter set for the fitting routine of the FM-data might be sub-
optimal.  Second, the EPI-based approach is based on the same pulse sequence and has identical 
acquisition parameters as the target data, i.e. it exactly reflects the image quality achieved with the 
fMRI protocol; in contrast, the FM-based approach is based on a different pulse sequence that is 
less prone to artifacts, but comes with a different voxel size as well as image orientation and 
position. These data can be expected to have a better quality and be more accurate, but may be less 
consistent with the EPI data, e.g. in terms of effects arising from field gradients in the AP direction 
(Deichmann et al., 2002), readout-direction (Weiskopf et al., 2007b) or slice thickness/profile 
modifications due to field inhomogeneities (Epstein & Magland, 2006). And third, the chosen field 
map (vendor-based with two echoes) might not be robust enough for reliable determination of 
slice-specific z-shims. We investigated these different possibilities, but were not able to determine 
any factor that would significantly improve the FM-based approach. The only noticeable 
improvement was brought about when substituting the vendor-based field map with a more robust 
in-house field map – yet even with this change the performance was still slightly inferior compared 
to the manual approach. Therefore, none of the investigated factors were able to provide conclusive 
results, leaving this question open for future studies. 
It is also important to note that there are multiple ways of calculating the optimal z-shim moments 
from field map data. While we employed a slice-wise fit of linear field gradients in order to 
optimize field-homogeneity and effectively EPI signal intensity, other approaches have taken the 
route of directly optimizing BOLD sensitivity in the brain based on EPI BOLD contrast models 
(e.g. Balteau et al., 2010; Volz et al., 2019). In the spinal cord, Islam et al. (2019) recently proposed 
an FM-based automated z-shim selection method for simultaneous brain and spinal fMRI. 
However, their implementation was aimed at compensating spatially broader field variations, as 
they fit a quadratic field term using voxels from slices that were ±4 cm distant from the target slice 
(which would cover 16 EPI slices in our case). In our study, we aimed to compensate more 
localized field variations along the superior inferior axis of cord and therefore only included voxels 
from slices that were ±4 mm distant from the target slice. While comparing the performance of 
our approach directly to these approaches is beyond the scope of the current work, with the open 
availability of our code and data this should be possible for the interested reader. 
Finally, we demonstrated the validity of our EPI-based automation approach in an independently 
acquired large-scale cortico-spinal dataset (N > 100; Oliva et al., 2021). In this case the automated 
approach exceeded the performance of manual selection (though that we were not able to test this 
performance advantage in a further independent data-set). Such a pattern of results might be 
expected for studies where manual z-shim selection has to be performed rather fast due to time 
constraints (such as in the validation dataset, where a pharmacological challenge of the opioidergic 
and noradrenergic systems took place) – in our methodologically oriented study, particular 
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emphasis was placed on the manual z-shim selection being as precise as possible, thus making the 
advantage of the automated approach possibly less apparent. Finally, since the cortico-spinal 
dataset naturally suffered from more severe signal drop-outs and acquisition artefacts such as 
ghosting (e.g. due to the large acquisition volume), the performance of the EPI-based automation 
approach demonstrates the robustness of this method with regards to varying levels of data quality. 
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5. Conclusions 
 
Spinal cord fMRI suffers from magnetic field inhomogeneities that negatively affect data quality 
particularly via signal loss. In the current study, we extensively characterized the performance of 
slice-specific z-shimming in mitigating the effects of these inhomogeneities and developed two 
automated slice-specific z-shim approaches. We believe that our automated approaches will be 
beneficial for future spinal cord fMRI studies since they i) are less time-consuming than the 
traditional approach, ii) do not require extensive experience in judging data quality and iii) are 
expected to increase reproducibility by eliminating the subjective component in the z-shim 
selection processes. This latter point is particularly important for longitudinal fMRI studies as they 
could be envisioned in the clinical setting where disease progression and treatment could be 
monitored. 
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Supplementary Material 
 
Please note that for sake of readability, the numbering of the header in the Supplementary Material 
was kept consistent with the Results section in the main text. 

 
3.1 Replication and extension of previous findings 

3.1.1 Direct replication 
Using the average of a time-series of 250 motion corrected EPI volumes (acquired both for no z-
shim and manual z-shim), we observed a significant increase of mean signal intensity (t(47) = 19.03, 
p < .001, difference of 12%) and a significant reduction of signal intensity variation across slices 
(t(47) = 27.22, p < .001, difference of 51%) for manual z-shim compared to no z-shim. 
We also conducted the same analysis in native space (both for single-volume data and the average 
of a time-series of 250 motion corrected EPI volumes)  instead of template space and observed 
very similar results demonstrating the benefit of z-shimming: for the single-volume data, we 
observed a significant increase of mean signal intensity (t(47) = 21.07, p < .001, difference of 19%) 
and a significant reduction of signal intensity variation across slices (t(47) = 25.55, p < .001, 
difference of 55%). For the average of a time-series of 250 motion corrected EPI volumes, we also 
observed a significant increase of mean signal intensity (t(47) = 20.14, p < .001, difference of 16%) 
and a significant reduction of signal intensity variation across slices (t(47) = 26.15, p < .001, 
difference of 54%). 

 
3.1.2  Slice-by-slice characterization of z-shim effects 
Here, we complement the qualitative results reported in the main text by a more formal approach: 
we first carried out an analysis where we categorized each slice of the single-volume EPIs 
according to the step-difference between the manually chosen z-shim value and that of no z-shim 
(value 11) and compared the signal intensity in these categories between no z-shim and manual z-
shim using a 2x5 repeated-measures ANOVA (factor 1: condition with levels no z-shim and 
manual z-shim; factor 2: step-difference of 0, 1, 2, 3, >3). We observed a significant main effect 
of condition (F(1,88) = 222.74, p < .001), a significant main effect of step-difference (F(4,352) = 355.8, 
p < .001) and a significant interaction (F(4,352) = 204.66, p < .001). Post-hoc Bonferroni-corrected 
t-tests then revealed that the signal intensity improvement by z-shimming was not significant in 
those slices that had no step-difference and thus served as a negative control (t(47) = 1.16, p = 1), 
but that it increased with increasing step-difference (step-difference of 1: t(47) = 11.48 p < .001; 
step-difference of 2: t(47) = 19.84, p < .001; step-difference of 3: t(47) = 18.02, p < .001; step-
difference of >3: t(47) = 35.13, p < .001). 
In order to assess the robustness of these effects, we also repeated the same analysis on the average 
of 250 motion corrected EPI volumes. The ANOVA showed a significant main effect of condition 
(F(1,88) = 145.99, p < .001), a significant main effect of step-difference (F(4,352) = 311.18, p < .001) 
and a significant interaction (F(4,352) = 184.72, p < .001). Post-hoc Bonferroni-corrected t-tests 
revealed that the signal intensity in the no z-shimming condition unexpectedly was minimally (but 
consistently) higher in those slices that had no step-difference control (t(47) = -4.95, p < .001, 
difference of 1%), but more importantly  that the beneficial effect of z-shimming increased with 
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increasing step-difference (step-difference of 1: t(47) = 5.35 p < .001, difference of 3%; step-
difference of 2: t(47) = 16.91, p < .001, difference of 16%; step-difference of 3: t(47) = 13.45, p < 
.001, difference of 32%; step-difference of >3: t(47) = 32.79, p < .001, difference of 115%). 
 

3.1.3  z-shim effects across different TEs 
When we repeated the analysis from the main text on the average of 25 motion-corrected volumes 
we observed very similar results. The effects of z-shimming were highly significant both at the TE 
of 30ms (mean signal intensity: t(47) = 21.40, p < .001, difference of 10%; signal intensity variation 
across slices: t(47) = 22.60, p < .001, difference of 48%) and at the TE of 50ms (mean signal 
intensity: t(47) = 16.70 , p < .001, difference of 12%; signal intensity variation across slices: t(47) = 
20.80, p < .001, difference of 44%). 
 

3.1.4 z-shim effects in gray matter regions 
In order to formally compare the mean of signal intensity in different gray matter regions, we used 
a 2x2 repeated-measures ANOVA (factor 1: condition with levels no z-shim and manual z-shim; 
factor 2: anatomical location with levels dorsal horn and ventral horn), we observed a significant 
main effect of condition (F(1,94) = 621.33, p < .001), a significant main effect of anatomical location 
(F(1,94) = 39.70, p < .001) and a significant interaction (F(1,94) = 21.31, p< .001); note that post-hoc 
t-tests are reported in the main text. 
When we investigated the variation of signal intensity using the same ANOVA approach, we 
observed a significant main effect of condition (F(1,94) = 1024.40, p < .001), a significant main 
effect of anatomical location (F(1,94) = 30.32, p < .001) and a significant interaction (F(1,94) = 9.60, 
p = .003). Following this up with post-hoc Bonferroni-corrected t-tests revealed there was a 
significant beneficial effect of z-shimming in the dorsal horn (t(47) = 21.43, p < .001, difference of 
48%), as well as in the ventral horn (t(47) = 25.18, p < .001, difference of 47%), but that the 
beneficial effect of z-shimming was more evident in the dorsal horn than in the ventral horn (t(47) 
= 4.06, p < .001). 
As a negative control analysis, we carried out the same ANOVA approach, but now using the mean 
of signal intensity from the left vs right parts of the cord, where no differential effects should occur. 
As expected, we observed a significant main effect of condition (F(1,94) = 690.05, p < .001), no 
significant main effect of location (F(1,94) = 0.01, p = 0.90) and no significant interaction (F(1,94) = 
0.09, p = 0.76). 
We repeated the above analyses (which are based on single-volume EPIs) with an average of the 
250 motion-corrected volumes. A 2x2 repeated-measures ANOVA (factor 1: condition with levels 
no z-shim and manual z-shim; factor 2: anatomical location with levels dorsal horn and ventral 
horn) showed a significant a significant main effect of condition (F(1,94) = 629.52, p < .001), a 
significant main effect of anatomical location (F(1,94) = 36.55, p < .001) and a significant interaction 
(F(1,94) = 4.90, p = .03). Post-hoc Bonferroni-corrected t-tests revealed there was a significant 
beneficial effect of z-shimming in terms of the signal intensity in the dorsal horn (t(47) = 18.85, p 
< .001, difference of 15%), as well as in the ventral horn (t(47) = 16.59, p < .001, difference of 
11%), but that the beneficial effect of z-shimming was more evident in the dorsal horn than in the 
ventral horn (t(47) = 4.87, p < .001). With respect to variation of signal intensity, the ANOVA 
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resulted in a significant main effect of condition (F(1,94) = 1300.20, p < .001), a significant main 
effect of anatomical location (F(1,94) = 27.78, p < .001) and a significant interaction (F(1,94) = 4.08, 
p = .046). Post-hoc Bonferroni-corrected t-tests revealed there was a significant beneficial effect 
of z-shimming in terms of reduction in the signal intensity variation over slices in the dorsal horn 
(t(47) = 24.95, p < .001, difference of 46%), as well as in the ventral horn (t(47) = 26.33, p < .001, 
difference of 48%), but that the beneficial effect of z-shimming was more evident in the dorsal 
horn than in the ventral horn (t(47) = 2.69, p = 0.01). 
 

3.1.5 z-shim effects on time-series data 
When we investigated the effects of z-shimming on tSNR using motion-censored time-series data, 
we observed a significant increase in mean tSNR (t(47) = 10.73, p < .001, difference of 9%), as well 
as a significant reduction of tSNR variation across slices (t(47) = 10.94, p < .001, difference of 
25%). In the most-affected slices, z-shimming increased the tSNR by 26% on average, ranging 
from 6% to 116% across participants (this analysis revealed that there were 3 outliers where tSNR 
decreased by 1% (for two of the outliers) and 29% (for one of the outliers) for manual z-shimming 
compared to no z-shimming). 

 
3.2 Automation of z-shimming 

3.2.1 EPI-based automation 
When analyzing single-volume EPI gray matter signal intensity, we observed a significant increase 
of mean signal intensity (t(23) = 12.51, p < .001, difference of 13%) and a significant decrease in 
signal intensity variation across slices (t(23) = 16.89, p < .001, difference of 51%) for manual z-
shimming against no z-shimming. Most importantly, we found a similarly beneficial effect when 
using our automated approach, i.e. a significant increase in mean signal intensity (t(23) = 12.18, p 
< .001, difference of 14%) and a significant decrease in signal intensity variation across slices (t(23) 
= 16.97, p < .001, difference of 48%). When directly comparing the two approaches to determine 
z-shim values, we observed no significant difference, neither for mean signal intensity (t(23) = 0.31, 
p = 1), nor for  signal variation across slices (t(23) = 2.49, p = 0.06), though in both cases the 
performance of the automated approach was slightly superior. 
 

3.2.2 Field map based (FM-based) automation 
When analyzing single-volume EPI gray matter signal intensity, we observed a significant increase 
of mean signal intensity (t(23) = 15.39, p < .001, difference of 15%) and a significant decrease in 
signal intensity variation across slices (t(23) = 20.81, p < .001, difference of 52%) for manual z-
shimming against no z-shimming. Most importantly, we found a similarly beneficial effect when 
using our automated approach, i.e. a significant increase in mean signal (t(23) = 13.59, p < .001, 
difference of 12%) and a significant decrease in signal variation across slices (t(23) = 17.42, p < 
.001, difference of 49%). When directly comparing the two approaches to determine z-shim values, 
we observed a significant difference for the mean signal intensity (t(23) = 3.82, p = 0.003), but not 
for variation across slices (t(23) = 1.52, p =  0.43), again showing the slightly inferior performance 
of this automated approach compared to manual z-shimming. 
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In the following, we detail the post-hoc investigations we undertook in order to determine possible 
reasons for the unexpected sub-optimal performance of the FM-based approach. Briefly, we first 
used the vendor-based field map and assessed the contributions of i) the choice of mask for 
identifying the spinal cord in the field map phase data, ii) various choices of parameters employed 
in the fitting process of the gradient field, iii) field-gradients in the AP-direction, and iv) 
inhomogeneity-induced mis-localizations between EPIs and field map. Second, we substituted the 
vendor-based field map by the more robust in-house field map and compared their performance. 
Finally, we assessed the general reliability of estimating z-shim values from field map data by 
repeating the fitting process on a second in-house field map that was acquired at the end of the 
experiment. In order to determine whether the performance of FM-based z-shim selection would 
improve with the different post-hoc approaches we undertook, we i) calculated the chosen z-shim 
values, ii) based on those we then artificially ‘reconstructed’ the EPI z-shim reference scan for 
each approach (see Methods section 2.7.3 for details), and iii) compared the gray matter signal 
characteristics (mean and coefficient of variation) between the new implementation and the 
original implementation. Please note that since we have a directional hypothesis (new FM-
approach better than main manuscript FM-approach), we only test for an improvement compared 
to our original implementation. 
 

3.2.2.1 Choice of mask for identifying the spinal cord in the field map phase data  
In our original implementation, the fitting of the linear gradient field was performed only on voxels 
within the spinal cord. This voxel selection was determined by a mask that was obtained from a 
segmentation of the T2-weighted image. While visual inspection of the mask overlaid onto the 
field map magnitude image did not give cause for concern in any of the 48 participants (i.e. due to 
possible participant movement between T2 and field map acquisitions), we nevertheless asked 
whether a change of the mask might improve performance. We therefore re-ran the original fitting 
procedure, but now based on a mask that was either eroded by 1 voxel or dilated by 1 voxel. When 
comparing the results based on these new masks to the standard mask, we observed that neither of 
these changes resulted in a meaningful and significant change in gray matter mean signal intensity 
(11% increase against no z-shim for all three masks) or signal intensity variation across slices 
(50% decrease for original and dilated masks, 49% decrease for eroded mask compared to no z-
shimming). In line with these descriptive results, when directly comparing the original and new 
approaches statistically, we observed no significant differences (all puncorrected > 0.30). 

 
3.2.2.2 Choice of parameters employed in the fitting process of the gradient field 
In our original implementation, we chose the following parameters based on pilot acquisitions: we 
smoothed the field map data with an isotropic 1mm kernel, used 9mm slab thickness (i.e. 
9 transversal field map slices) for each fit and gave equal weight to all voxels in the fitting 
procedure. We next investigated whether variations of these parameters might have an influence 
on the performance: the smoothing kernel width (sigma) was set to 0, 1 or 2mm; the slab thickness 
was set to 5, 9 or 13mm, either with equal weighting or weighted by a raised cosine kernel of full-
width half-maximum equal to the slab thickness and a roll-off factor beta of 0.5 (the purpose of 
the weighting was to down-weight voxels further away from the corresponding EPI slice). 
However, none of these choices seemed to make a meaningful difference, although out of these 17 
additional variations (3 smoothing options crossed with 3 slab-thickness options and 2 weighting 
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options) one showed a slight improvement for mean signal intensity and one showed a slight 
improvement for signal intensity variation along slices compared to our initial parameter set of 
choice that we used throughout the experiment (maximum improvement for mean signal intensity 
observed with parameter set “slab thickness = 9, beta = 0.5, smoothing sigma = 1”: t(47) = 1.64, 
puncorreced = 0.054, pcorrected = 1, difference of 0.2%; maximum improvement for signal intensity 
variation over slices observed with parameter set “slab thickness = 9, beta = 0, smoothing sigma 
= 0”: t(47) = 2.92, puncorrected = 0.003, pcorrected = 0.05, difference of 2%).Thus, the slightly worse 
performance of the FM-based approach reported in the main manuscript – which was based on a 
significant difference for mean signal intensity – does not seem to be due to the choice of 
parameters employed in the fitting process. 

 
3.2.2.3 Field gradients in the AP-direction 
Another possible explanation for the slightly inferior performance of the FM-based approach is 
that field inhomogeneities in the A-P (y) direction may shift the center of k-space in the EPI 
acquisitions which – depending on their polarity – would result in a shorter or longer effective TE. 
Because the calculation of the z-shim gradient moment from the field map assumes that the echo 
forms up at the nominal TE, any shift of the effective TE would lead to an imperfect compensation 
of the through-slice dephasing and would cause a signal loss. This is in contrast to the EPI-based 
approach, which rests on an EPI acquisition where the effective TE is inherently considered by 
just picking the best z-shim moment tested. 

In the presence of a susceptibility-induced field gradient in the phase encoding direction, 𝐺)*, 
refocusing happens at an effective TE given by: 

𝑇𝐸+,, =
𝑇𝐸
𝑄 , 

where 

𝑄 = 1 −
𝐺)*
𝐺*2

. 

𝐺*2 is the effective phase encoding gradient: 

𝐺*2 =
1
𝛾 ∙
𝑑𝑘
𝑑𝑡 , 

where 𝑑𝑡 is the echo spacing (Deichmann et al., 2002). Based on the fitted linear field gradient in 
the AP direction, we calculated 𝑄 for each slice, and adjusted the z-shim gradient moment to 
account for the effective TE. We then investigated how the adjustment of the z-shim moments 
(please note that we considered both positive and negative polarities) affected the gray matter 
signal characteristics compared to our original implementation. We neither observed a meaningful 
increase in mean signal intensity (negative polarity vs original implementation: t(47) = -0.59, 
puncorreced = 0.72, pcorrected = 1, <0.1% decrease; positive polarity vs original implementation: t(47) = 
0.08, puncorreced = 0.47, pcorrected = 0.94, <0.1% increase) nor a meaningful decrease in signal 
intensity variation over slices (negative polarity vs original implementation: t(47) = -0.93, puncorreced 
= 0.82, pcorrected = 1, 0.8% increase; positive polarity vs original implementation: t(47) = -1.58, 
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puncorreced = 0.06, pcorrected = 0.12, 1% decrease). It thus seems that the influence of AP gradients is 
rather negligible with respect to the slightly inferior performance of the FM-based approach. 

 
3.2.2.4 Inhomogeneity-induced mis-localizations between EPIs and field map 
The FM-based z-shim selection relies on spatial congruency between the field map and the EPI 
acquisitions in the through-slice direction of the axial EPI volume. Local susceptibility-induced 
field offsets can however affect the spatial congruency in different ways. In the sagittal field map 
acquisitions, local field offsets will result in a shift along the readout direction, i.e. superior-
inferior. The readout bandwidth of the field map acquisition was 630 Hz/pixel at a voxel resolution 
of 1 mm. Except for the region most inferior, the local field offsets were below 100 Hz, which 
results in voxel shifts of less than 0.16 mm. In the EPI-acquisitions, the field offset affects the 
effective slice localization. The EPI excitation bandwidth was ~2 kHz at a 5 mm slice thickness. 
Field offsets <100 Hz would thus correspond to slice shifts <0.25 mm. In the worst-case scenario, 
where both effects are superimposed, an effective relative spatial shift of <0.4 mm is obtained 
which was deemed small enough to have a negligible impact on the z-shim selection.  
However, to additionally empirically investigate whether an inhomogeneity-induced mis-
localization between the EPI and the field map might be a driving factor for the slightly inferior 
performance of the FM-based approach, we selected the participants for which the FM-based 
automated selection of z-shim values led to a step-size difference of at least three steps in at least 
one slice compared to the manual z-shim values (N = 10). In other words, we tried to identify a 
sub-group with the most extreme differences, since higher step size differences compared to 
manual z-shim implies that the field map selection of z-shim values was unsuccessful or ‘off’. In 
those participants, we plotted the local field offset and the absolute difference between automated 
and manually selected z-shim values (Supplementary Figure 4) and then visually investigated 
whether there would be any detectable relationship between a high step size difference and high 
field offset. However, these plots do not indicate that higher step size differences generally 
coincide with high local field offsets. If anything, there may be a tendency towards increased 
differences in regions where the field offset is changing rapidly. 

 
3.2.2.5 Use of different field map 
We also investigated whether the quality of our default field map protocol might have led to the 
slightly inferior performance of the FM-based approach. In order to assess this, we calculated z-
shim values not only based on the originally chosen field map (vendor-provided with 2 echoes), 
but also based on a separate in-house field map (with 12 echoes) which was acquired directly after 
the vendor-based one. When we quantified the signal characteristics, we observed that both 
methods led to a similar increase in mean signal intensity (11% for vendor-based and 12% for in-
house field map) and decrease in signal intensity variation across slices (50% for vendor-based 
field map and 52% for in-house field map). In line with these descriptive results, when directly 
comparing the performance of the vendor-based and in-house approaches statistically (e.g. auto-
vendor compared to auto-in-house; note that the baseline of no z-shimming is identical between 
the two), we observed a slight benefit of the in-house field map (for mean signal intensity: t(47) = 
2.34, p =  0.01, difference of 0.5%, for signal intensity variation over slices: t(47) = 1.84, p =  0.04, 
difference of 4%). In order to test whether this improvement would lead to a change in the pattern 
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reported in the main text (i.e. the FM-based approach performing worse when comparing mean 
tSNR for the automated compared to the manual approach), we followed up on this by comparing 
the performance of both approaches against manual approach and still observed a slightly inferior 
performance for FM-based approaches for the mean signal intensity (auto-vendor compared to 
manual: t(47) = 7.14, p < .001, difference of 2.0%; auto-in-house compared to manual: t(47) = 8.20, 
p < .001, difference of 1.5%) but not for the coefficient of variation (auto-vendor compared to 
manual: t(47) = 0.46, p = 0.65; auto-in-house compared to manual: t(47) = 1.40, p = .17), which is 
consistent with the results reported in the main text. 

 
3.2.2.6 Assessing the reliability of z-shim selection based on FM-based automation 
To probe how reliably z-shims can in general be determined via field maps, we also acquired a 
second in-house field map near the end of our experiment (please note that due to technical 
problems the second field map was not acquired for three participants) and investigated whether 
this would result in similar automatically chosen z-shim values: across participants, we observed 
a mean Spearman rank-correlation of rs = 0.88, range: 0.50-0.98), suggesting that the robustness 
of the FM-based determination is unlikely to be a driving factor in the slightly inferior 
performance. 
 

3.2.3 Comparing all three approaches 
Please note that no additional analyses were carried out in this section. 

 
3.3 Validation of EPI-based automation approach 
In the independently acquired data set, we observed that for gray matter signal intensity, manual 
z-shimming resulted in a significant increase in mean signal intensity (t(112) = 22.04, p < .001, 
difference of 25%) and a significant decrease in signal intensity variation across slices (t(112) = 
8.29, p < .001, difference of 40%). When we investigated the performance of our automated EPI-
based selection approach, we observed a significant increase in mean signal intensity (t(112) = 28.44, 
p < .001, difference of 32%) and a significant decrease in signal intensity variation across slices 
(t(112) = 10.32, p < .001, difference of 47%). When we directly compared the automated and manual 
approaches, we observed that the automated method outperformed the manual method both for 
mean signal intensity (t(112) = 12.14, p < .001) and for signal intensity variation across slices (t(112) 
= 5.63, p < .001).  
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Supplementary Figures 
 

 
Supplementary Figure 1. Slice-wise individual signal intensity data. Based on single volume 
EPIs acquired without z-shim and with manual z-shim, we calculated the mean signal intensity of 
each slice in native space. The heat-maps show signal intensity in axial slices (y-axis; 24 slices) 
for each participant (x-axis; 48 participants).  
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Supplementary Figure 2. Relationship between field-variations and EPI signal loss. The line 
graph on the very left shows the group-averaged (N = 48) template-space spinal cord signal 
intensity along the rostro-caudal axis of the cord in acquisitions without z-shimming. The solid 
line depicts the group-mean value and the shaded area depicts the standard error of the mean. The 
mid-sagittal section on the left shows the group-average template-space single-volume EPI data 
acquired without z-shimming. The mid-sagittal section on the right shows the group-average 
template-space field map in order to depict the consistent field variations along the rostro-caudal 
axis of the cord. On the very right, there are three exemplary axial sections from the “no z-shim’ 
group-average template-space EPIs in order to demonstrate the influence of field variations on the 
EPI image quality in terms of signal loss. Abbreviation: a.u., arbitrary units.  
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Supplementary Figure 3. tSNR for different sequence variants. The mid-sagittal EPI sections in 
the background consist of the group-average mean of motion-corrected time-series data in template 
space for each sub-group of participants (EPI-based and FM-based, each of those with N=24) and 
condition (no z-shim, manual z-shim, automated z-shim). Condition-wise group-average tSNR 
maps (based on the motion-corrected EPI data) are overlaid onto these mid-sagittal images 
(depicted tSNR range: 11-20). 
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Supplementary Figure 4. Relationship between field-offset and differential z-shim indices. 
Each subplot shows the field offset in Hz (black line; plotted on left y-axis) and the absolute 
difference in z-shim indices between the FM-based and the manual z-shim selection (gray circles; 
plotted on right y-axis). Depicted are those participants who had a difference of at least 3 steps 
between the FM-based and the manual z-shim selection (N = 10). Five FM slices (120 slices in 
total, 1mm slice thickness) correspond to a single EPI slice (24 slices in total, 5 mm slice thickness) 
with the black filled dots representing the corresponding center of each EPI slice in the FM 
resolution. 
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Supplementary Figure 5. Mean gray matter tSNR of automated and manual approaches. We 
calculated the mean gray matter tSNR based on motion-corrected time series data acquired with 
different sequences (N = 24 for each group). The median is denoted by the central mark and the 
bottom and top edges of the boxes represent the 25th and 75th percentiles, respectively. The 
whiskers encompass approximately 99% of the data and outliers are represented by red dots. The 
gray lines indicate participant-specific tSNR in each condition and its change across conditions.  
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